Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAryasomayajula, Anilatmajaen_US
dc.contributor.authorBALASUBRAMANYAM, BASKARen_US
dc.contributor.authorRoy, Dyutien_US
dc.date.accessioned2025-04-15T06:50:32Z-
dc.date.available2025-04-15T06:50:32Z-
dc.date.issued2025en_US
dc.identifier.citationForum Mathematicum, 37(02).en_US
dc.identifier.issn0933-7741en_US
dc.identifier.issn1435-5337en_US
dc.identifier.urihttps://doi.org/10.1515/forum-2023-0079en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9509-
dc.description.abstractIn this article, for n >= 2, we compute asymptotic, qualitative, and quantitative estimates of the Bergman kernel of Picard modular cusp forms associated to torsion-free, cocompact subgroups of SU((n, 1), C). The main result of the article is the following result. Let Gamma subset of SU(( 2, 1), O-K) be a torsion-free subgroup of finite index, where K is a totally imaginary field. Let B-Gamma(k) denote the Bergman kernel associated to the S-k(Gamma), complex vector space of weight-k cusp forms with respect to Gamma. Let B-2 denote the 2-dimensional complex ball endowed with the hyperbolic metric, and let X-Gamma := Gamma\B-2 denote the quotient space, which is a noncompact complex manifold of dimension 2. Let | center dot |(pet) denote the point-wise Petersson norm on S-k(Gamma). Then, for k >> 1, we have the following estimate:en_US
dc.language.isoenen_US
dc.publisherDe Gruyter Billen_US
dc.subjectSup-norm bounds of cusp formsen_US
dc.subject2025en_US
dc.titleEstimates of Picard modular cusp formsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleForum Mathematicumen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.