Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9522
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | PANJA, SAIKAT | en_US |
dc.contributor.author | Prasad, Sachchidanand | en_US |
dc.date.accessioned | 2025-04-15T06:51:47Z | |
dc.date.available | 2025-04-15T06:51:47Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Miskolc Mathematical Notes, 25 (01), 425-428. | en_US |
dc.identifier.issn | 1787-2405 | en_US |
dc.identifier.issn | 1787-2413 | en_US |
dc.identifier.uri | https://doi.org/10.18514/MMN.2024.4383 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9522 | |
dc.description.abstract | It was conjectured that the augmentation ideal of a dihedral quandle of even order n > 2 satisfies |Δk(Rn)∕Δk+1(Rn)| = n for all k ≥ 2. In this article we provide a counterexample against this conjecture. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Mathematics, University of Miskolc Miskolc, Hungary | en_US |
dc.subject | Quandle rings | en_US |
dc.subject | Augmentation ideal | en_US |
dc.subject | 2024 | en_US |
dc.title | Counterexample to a conjecture about dihedral quandle | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Miskolc Mathematical Notes | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.