Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9549
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHIMANI, DIVYANGen_US
dc.contributor.authorGou, Tianxiangen_US
dc.contributor.authorHajaiej, Hichemen_US
dc.date.accessioned2025-04-15T06:52:37Z-
dc.date.available2025-04-15T06:52:37Z-
dc.date.issued2024-07en_US
dc.identifier.citationMathematische Nachrichten, 297, (07), 2543-2580.en_US
dc.identifier.issn0025-584Xen_US
dc.identifier.issn1522-2616en_US
dc.identifier.urihttps://doi.org/10.1002/mana.202200443en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9549-
dc.description.abstractIn this paper, we consider solutions to the following nonlinear Schrodinger equation with competing Hartree-type nonlinearities, -Delta u + lambda u = (|x|(-gamma)(1) * |u|(2))u - (|x|(-gamma)(2) * |u|(2))u in R-N, under the L-2-norm constraint integral(N)(R) |u|(2) dx = c > 0, where N >= 1, 0 < gamma(2) < gamma(1) < min{N,4}, and lambda is an element of R appearing as Lagrange multiplier is unknown. First, we establish the existence of ground states in the mass subcritical, critical, and supercritical cases. Then, we consider the well-posedness and dynamical behaviors of solutions to the Cauchy problem for the associated time-dependent equations.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectGround statesen_US
dc.subjectHartree nonlinearitiesen_US
dc.subjectNormalized solutionsen_US
dc.subjectVariational methodsen_US
dc.subject2024en_US
dc.titleNormalized solutions to nonlinear Schrodinger equations with competing Hartree-type nonlinearitiesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleMathematische Nachrichtenen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.