Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9555
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiswas, Indranilen_US
dc.contributor.authorGANGOPADHYAY, CHANDRANANDANen_US
dc.contributor.authorSebastian, Ronnieen_US
dc.date.accessioned2025-04-15T06:53:30Z-
dc.date.available2025-04-15T06:53:30Z-
dc.date.issued2024-05en_US
dc.identifier.citationInternational Mathematics Research Notices, 2024(09), 8067–8100.en_US
dc.identifier.issn1073-7928en_US
dc.identifier.issn1687-0247en_US
dc.identifier.urihttps://doi.org/10.1093/imrn/rnae033en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9555-
dc.description.abstractLet $E$ be a vector bundle on a smooth complex projective curve $C$ of genus at least two. Let $\mathcal{Q}(E,d)$ be the Quot scheme parameterizing the torsion quotients of $E$ of degree $d$. We compute the cohomologies of the tangent bundle $T_{\mathcal{Q}(E,d)}$. In particular, the space of infinitesimal deformations of $\mathcal{Q}(E,d)$ is computed. Kempf and Fantechi computed the space of infinitesimal deformations of $\mathcal{Q}({\mathcal O}_{C},d)\,=\, C<^>{(d)}$ [ , ].en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectSurfacesen_US
dc.subjectBundlesen_US
dc.subject2024en_US
dc.titleInfinitesimal Deformations of Some Quot Schemes, IIen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleInternational Mathematics Research Noticesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.