Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarey, Benjaminen_US
dc.contributor.authorWessling, Nils Koljaen_US
dc.contributor.authorSteeger, Paulen_US
dc.contributor.authorSchmidt, Roberten_US
dc.contributor.authorde Vasconcellos, Steffen Michaelisen_US
dc.contributor.authorBratschitsch, Rudolfen_US
dc.contributor.authorARORA, ASHISHen_US
dc.date.accessioned2025-04-15T06:54:18Z-
dc.date.available2025-04-15T06:54:18Z-
dc.date.issued2024-04en_US
dc.identifier.citationNature communications, 15, 3082.en_US
dc.identifier.issn2041-1723en_US
dc.identifier.urihttps://doi.org/10.1038/s41467-024-47294-5en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9588-
dc.description.abstractFaraday rotation is a fundamental effect in the magneto-optical response of solids, liquids and gases. Materials with a large Verdet constant find applications in optical modulators, sensors and non-reciprocal devices, such as optical isolators. Here, we demonstrate that the plane of polarization of light exhibits a giant Faraday rotation of several degrees around the A exciton transition in hBN-encapsulated monolayers of WSe2 and MoSe2 under moderate magnetic fields. This results in the highest known Verdet constant of -1.9 × 107 deg T−1 cm−1 for any material in the visible regime. Additionally, interlayer excitons in hBN-encapsulated bilayer MoS2 exhibit a large Verdet constant (VIL ≈ +2 × 105 deg T−1 cm−2) of opposite sign compared to A excitons in monolayers. The giant Faraday rotation is due to the giant oscillator strength and high g-factor of the excitons in atomically thin semiconducting transition metal dichalcogenides. We deduce the complete in-plane complex dielectric tensor of hBN-encapsulated WSe2 and MoSe2 monolayers, which is vital for the prediction of Kerr, Faraday and magneto-circular dichroism spectra of 2D heterostructures. Our results pose a crucial advance in the potential usage of two-dimensional materials in ultrathin optical polarization devices.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectMagneto-opticsen_US
dc.subjectTwo-dimensional materialsen_US
dc.subject2024en_US
dc.titleGiant Faraday rotation in atomically thin semiconductorsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleNature communicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.