Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9593
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMendoza-Sanchez, Beatrizen_US
dc.contributor.authorLADOLE, ATHARVA H.en_US
dc.contributor.authorSamperio-Niembro, Enriqueen_US
dc.contributor.authorMangold, Stefanen_US
dc.contributor.authorKnapp, Michaelen_US
dc.contributor.authorTseng, Eric N.en_US
dc.contributor.authorPersson, Per O. A.en_US
dc.contributor.authorDouard, Camilleen_US
dc.contributor.authorShuck, Christopher E.en_US
dc.contributor.authorBrousse, Thierryen_US
dc.date.accessioned2025-04-15T06:55:02Z-
dc.date.available2025-04-15T06:55:02Z-
dc.date.issued2024-08en_US
dc.identifier.citationEnergy Storage Materials, 71, 103566.en_US
dc.identifier.issn2405-8297en_US
dc.identifier.issn2405-8289en_US
dc.identifier.urihttps://doi.org/10.1016/j.ensm.2024.103566en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9593-
dc.description.abstractMonolayer V4C3Tz is synthesized and its atomic structure is studied using high-end transmission electron microscopy. X-Ray diffraction reveals key 3D to 2D crystal transformations as a V4AlC3 crystal is transformed into V4C3Tz in synthesis processes. The charge storage properties of V4C3Tz film electrodes are investigated for supercapacitor applications in 3 M H2SO4. V4C3Tz film electrodes shows an excellent capacitance of up to 469.6 F g−1 and 845.7 F cm−3, rate performance up to 30 A g−1 and cycling stability up to 10,000 cycles. A combination of electrochemical kinetics/mass transport models, staircase potentio-electrochemical impedance spectroscopy and in situ X-Ray absorption spectroscopy reveals, for the first time for this MXene, the underlying charge storage mechanisms, consisting of double layer capacitance, pseudocapacitance and a minor contribution from mass transport-controlled processes. The latter two implying a outstanding redox activity superior to Ti-based MXenes. The stability in standard environments, mechanical flexibility and the demonstrated excellent charge storage performance of V4C3Tz makes it one of the best candidates for supercapacitor applications, especially in miniaturized devices.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectV4C3Tzen_US
dc.subjectMXeneen_US
dc.subjectAtomic structureen_US
dc.subjectMonolayeren_US
dc.subjectSupercapacitorsen_US
dc.subjectCharge storage processesen_US
dc.subjectIn situ XASen_US
dc.subject2024en_US
dc.titleOn the atomic structure of monolayer V4C3Tz and the study of charge storage processes in an acidic electrolyte using SPEIS and in-situ X-ray absorption spectroscopyen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleEnergy Storage Materialsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.