Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9617
Title: | Phenacylselenoesters allow facile selenium transfer and hydrogen selenide generation |
Authors: | SARKAR, UTSAV DEY RANA, MAHIMA CHAKRAPANI, HARINATH Dept. of Chemistry |
Keywords: | Selenocysteine Lyase Escherichia-Coli Gene Cloning H2se Donors Purification Glutathione Protein Perselenide Metabolism Liver 2024 |
Issue Date: | Dec-2024 |
Publisher: | Royal Society of Chemistry |
Citation: | Chemical Science, 15(46), 19315-19321. |
Abstract: | Hydrogen selenide (H2Se) is a precursor to several selenium-containing biomolecules and is emerging as an important redox-active species in biology, with yet to be completely characterized roles. Tools that reliably generate H2Se are key to achieving a better understanding of selenium biology. Here, we report the design, synthesis and evaluation of phenacylselenoesters as sources of H2Se. These compounds are prepared in two steps from commercial compounds, some are crystalline solids, and all are stable during storage. In the presence of esterase and a thiol in pH 7.4 buffer, these compounds produce H2Se, with half-lives of 5–20 min. We developed a colorimetric assay for the detection of gaseous H2Se by trapping it as zinc selenide (ZnSe), which is then converted to lead selenide (PbSe), which serves as a convenient visual indicator for this gas. The major organic products that are formed in nearly quantitative yields are relatively benign ketones and carboxylic acids. We provide evidence for these donors producing a thioselenide, a key intermediate in biological selenium metabolism. Finally, we compared sulfur and selenium transfer, both critical processes in cells. Phenacylthiol is relatively stable to cleavage by a thiol, and requires a sulfurtransferase enzyme to produce a persulfide and H2S. By contrast, the selenium analogue reacted with a thiol in the absence of this enzyme to produce H2Se. This result underscores the greater lability of the C–Se bond as compared with a C–S bond, and may have implications in biological selenium transfer. Together, phenacylselenoesters are easy to prepare, stable and generate H2Se under mild and biocompatible conditions. We anticipate that these will be valuable additions to the growing selenium redox toolbox. |
URI: | https://doi.org/10.1039/D4SC05788K http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9617 |
ISSN: | 2041-6520 2041-6539 |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.