Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9628
Title: Remark on the Ill-Posedness for KdV-Burgers Equation in Fourier Amalgam Spaces
Authors: BHIMANI, DIVYANG G.
Haque, Saikatul
Cardona, Duván
Restrepo, Joel
Ruzhansky, Michael
Dept. of Mathematics
Keywords: 2024
Fourier amalgam spaces
Fourier-Lebesgue spaces
Ill-posedness
Korteweg-de Vries-Burgers (KdV-B) equation
Modulsation spaces
Issue Date: Feb-2024
Publisher: Springer Nature
Citation: Extended Abstracts 2021/2022 - Methusalem Lectures, 67–73.
Abstract: We have established (a weak form of) ill-posedness for the KdV-Burgers equation on a real line in Fourier amalgam spaces w^sp,q with s<−1. The particular case p=q=2 recovers the result in Molinet and Ribaud (Int. Math. Res. Not. 2002:1979–2005 (2002)). The result is new even in Fourier Lebesgue space ℱLsq which corresponds to the case p=q(≠2) and in modulation space Ms2,q which corresponds to the case p=2,q≠2.
URI: https://doi.org/10.1007/978-3-031-48579-4_7
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9628
ISBN: 978-3-031-48578-7
978-3-031-48579-4
Appears in Collections:BOOK CHAPTERS

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.