Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9672
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDAUNDKAR, NAVNATHen_US
dc.date.accessioned2025-04-22T09:21:38Z-
dc.date.available2025-04-22T09:21:38Z-
dc.date.issued2024-05en_US
dc.identifier.citationJournal of Applied and Computational Topology, 8, 2051–2067.en_US
dc.identifier.issn2367-1734en_US
dc.identifier.issn2367-1726en_US
dc.identifier.urihttps://doi.org/10.1007/s41468-024-00171-yen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9672-
dc.description.abstractIn this paper, we obtain an upper bound on the higher topological complexity of the total spaces of fibrations. As an application, we improve the usual dimensional upper bound on higher topological complexity of total spaces of some sphere bundles. We show that this upper bound on the higher topological complexity of the total spaces of fibrations can be improved using the notion of higher subspace topological complexity. We also show that the usual dimensional upper bound on the higher topological complexity of any path-connected space can be improved in the presence of positive dimensional compact Lie group action. We use these results to compute the exact value of higher topological complexity of lens spaces in many cases.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectLS-categoryen_US
dc.subjectHigher topological complexityen_US
dc.subjectGroup actions lens spacesen_US
dc.subject2024en_US
dc.titleGroup actions and higher topological complexity of lens spacesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Applied and Computational Topologyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.