Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9691
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhasin, Dhruven_US
dc.contributor.authorPODDER, MOUMANTIen_US
dc.date.accessioned2025-04-22T09:22:44Z-
dc.date.available2025-04-22T09:22:44Z-
dc.date.issued2024en_US
dc.identifier.citationCombinatorics and Number Theory, 13(01), 1-58.en_US
dc.identifier.issn2996-220Xen_US
dc.identifier.issn2996-2196en_US
dc.identifier.urihttps://doi.org/10.2140/cnt.2024.13.1en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9691-
dc.description.abstractWe study the k-jump normal and k-jump misère games on rooted Galton–Watson trees, expressing the probabilities of various possible outcomes of these games as specific fixed points of functions that depend on k and the offspring distribution. We discuss phase transition results pertaining to draw probabilities when the offspring distribution is Poisson(λ). We compare the probabilities of various outcomes of the 2-jump normal game with those of the 2-jump misère game, and a similar comparison is drawn between the 2-jump normal game and the 1-jump normal game, under the Poisson regime. We describe the rate of decay of the probability that the first player loses the 2-jump normal game as λ→∞. We also discuss a sufficient condition for the average duration of the k-jump normal game to be finite.en_US
dc.language.isoenen_US
dc.publisherMathematical Sciences Publishersen_US
dc.subjectTwo-player combinatorial gamesen_US
dc.subjectNormal gamesen_US
dc.subjectMisère gamesen_US
dc.subjectRooted Galton–Watson treesen_US
dc.subjectFixed pointsen_US
dc.subjectPoisson offspringen_US
dc.subjectGeneralized finite state tree automataen_US
dc.subject2024en_US
dc.titleCombinatorial games on Galton–Watson trees involving several-generation-jump movesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleCombinatorics and Number Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.