Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9715
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Becher, Karim Johannes | en_US |
dc.contributor.author | GUPTA, PARUL | en_US |
dc.contributor.author | Mishra, Sumit Chandra | en_US |
dc.date.accessioned | 2025-04-22T09:48:53Z | - |
dc.date.available | 2025-04-22T09:48:53Z | - |
dc.date.issued | 2024-03 | en_US |
dc.identifier.citation | Journal of Pure and Applied Algebra, 228(03), 107492. | en_US |
dc.identifier.issn | 1873-1376 | en_US |
dc.identifier.issn | 0022-4049 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jpaa.2023.107492 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9715 | - |
dc.description.abstract | It is shown that a valuation of residue characteristic different from 2 and 3 on a field E has at most one extension to the function field of an elliptic curve over E, for which the residue field extension is transcendental but not ruled. The cases where such an extension is present are characterised. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Mathematics | en_US |
dc.subject | 2024 | en_US |
dc.title | A ruled residue theorem for function fields of elliptic curves | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Pure and Applied Algebra | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.