Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9875
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBHAGWAT, CHANDRASHEEL-
dc.contributor.authorGHOSH HAZRA, MANJIMA-
dc.date.accessioned2025-05-15T09:13:42Z-
dc.date.available2025-05-15T09:13:42Z-
dc.date.issued2025-05-
dc.identifier.citation82en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9875-
dc.description.abstractJohn Tate in his doctoral dissertation, “Fourier Analysis on Number Fields and Hecke’s Zeta Function”, established the meromorphic continuation and functional equation of Hecke’s Zeta Function over a number field using methods of harmonic analysis on the ad`ele ring of the number field. The theory in Tate’s thesis can be extended to L-functions that are attached to Hecke characters - which are id`ele class group characters. In this thesis, we study the necessary background and explore the key concepts to provide a comprehensive exposition of Tate’s work. Further, we continue to study Hecke characters - the associated L-functions along with the arithmetic aspects of these L-functions.en_US
dc.language.isoenen_US
dc.subjectResearch Subject Categories::MATHEMATICSen_US
dc.titleL-functions of Hecke Characters and Cohomologyen_US
dc.typeThesisen_US
dc.description.embargoNo Embargoen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20201226en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20201226_Manjima_Ghosh_Hazra_Thesis.pdfMS Thesis658.34 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.