Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9919Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | BISWAS, ANUP | en_US |
| dc.contributor.author | Quaas, Alexander | en_US |
| dc.contributor.author | Topp, Erwin | en_US |
| dc.date.accessioned | 2025-05-16T10:53:05Z | |
| dc.date.available | 2025-05-16T10:53:05Z | |
| dc.date.issued | 2025-10 | en_US |
| dc.identifier.citation | Journal of Functional Analysis, 289(08), 111008. | en_US |
| dc.identifier.issn | 0022-1236 | en_US |
| dc.identifier.issn | 1096-0783 | en_US |
| dc.identifier.uri | https://doi.org/10.1016/j.jfa.2025.111008 | en_US |
| dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9919 | |
| dc.description.abstract | In this article we consider a large family of nonlinear nonlocal equations involving gradient nonlinearity and provide a unified approach, based on the Ishii-Lions type technique, to establish Liouville properties of the solutions. We also answer an open problem raised by Cirant and Goffi [24]. Some applications to regularity issues are also studied. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier B.V. | en_US |
| dc.subject | Lipschitz regularity | en_US |
| dc.subject | Bernstein estimate | en_US |
| dc.subject | Nonexistence | en_US |
| dc.subject | Hamilton-Jacobi equations | en_US |
| dc.subject | 2025-MAY-WEEK2 | en_US |
| dc.subject | TOC-MAY-2025 | en_US |
| dc.subject | 2025 | en_US |
| dc.title | Nonlocal Liouville theorems with gradient nonlinearity | en_US |
| dc.type | Article | en_US |
| dc.contributor.department | Dept. of Mathematics | en_US |
| dc.identifier.sourcetitle | Journal of Functional Analysis | en_US |
| dc.publication.originofpublisher | Foreign | en_US |
| Appears in Collections: | JOURNAL ARTICLES | |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.