Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/993
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMALLICK, VIVEK MOHANen_US
dc.contributor.authorKUMAR, SUDHIRen_US
dc.date.accessioned2018-05-16T04:34:14Z
dc.date.available2018-05-16T04:34:14Z
dc.date.issued2018-05en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/993-
dc.description.abstractMany topological spaces exist as the total spaces of real vector bundles over some base spaces. Topological properties like Hausdorffness, connectedness, the first axiom of countability, path connectedness, local connectedness of the total space of a vector bundle can be studied by knowing these topological properties of the base space. We want to classify vector bundles up to vector bundle isomorphism. It is very difficult to classify vector bundles using topological properties. We would be using algebraic topology concepts like singular homology and singular cohomology of base space to classify vector bundles. We have used axioms of Stiefel-Whitney classes to classify some vector bundles.en_US
dc.language.isoenen_US
dc.subject2018
dc.subjectMathematicsen_US
dc.subjectCharacteristic classesen_US
dc.titleCharacteristic classesen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20131053en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
final thesis.pdf371.18 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.