K-Theory of Monoid Algebras

A Thesis

submitted to
Indian Institute of Science Education and Research Pune in partial fulfillment of the requirements for the BS-MS Dual Degree Programme
by

Manish Kumar Singh

IISER PUNE
Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan, Pune 411008, INDIA.

April, 2018

Supervisor: Dr. Rabeya Basu
(c) Manish Kumar Singh 2018

All rights reserved

Certificate

This is to certify that this dissertation entitled K-Theory of Monoid Algebras towards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research, Pune represents study/work carried out by Manish Kumar Singh at Indian Institute of Science Education and Research under the supervision of Dr. Rabeya Basu, Assistant Professor, Department of Mathematics, during the academic year 2017-2018.

Dr. Rabeya Basu

Committee:
Dr. Rabeya Basu
Dr. Vive Mohan Mallick

To my family

Declaration

I hereby declare that the matter embodied in the report entitled K-Theory of Monoid Algebras are the results of the work carried out by me at the Department of Mathematics, Indian Institute of Science Education and Research, Pune, under the supervision of Dr. Rabeya Basu and the same has not been submitted elsewhere for any other degree.

Manish Kumar Singh

Acknowledgments

I would like to thank my parents, teachers and friends who helped me to reach this stage. I would also like to thank Dr. Rabeya Basu for introducing me to this exciting subject and guiding me through. I am also thankful to Professor Raja Sridharan for providing me a simplified version of Quillen's graded L-G principal (cf: 3.5.1). Finally, I express my deep gratitude to IISER, Pune for giving me an opportunity to learn mathematics.

Abstract

As a generalisation of Serre's problem on projective modules over polynomials ring. in 1980 D. Anderson asked the analogue problem for monoid algebras. In 1988 Joseph Gubeladze proved Anderson's conjecture by geometric and combinatorial methods. Soon after, following his idea R.G Swan came up with algebraic version if Gubeladze's proof. This thesis is an expository article of Swan's paper appeared in 1991.

Contents

Abstract vi
1 Preliminaries 4
1.1 Finitely generated modules 4
1.2 Tensor product 6
1.3 Localisation 8
1.4 Projective modules 10
1.5 Milnor patching property 13
2 Graded rings and modules 16
2.1 Graded Rings: Basic definition and examples 16
2.2 Graded ideals 18
2.3 Graded prime and maximal ideals 18
2.4 Graded local rings 19
2.5 Graded modules: Basic definitions and examples 20
2.6 Graded free modules 21
2.7 Graded projective modules 21
3 Classical result on Serre's conjecture 25
3.1 Rank 1 projective modules 25
3.2 Serre's problem for one variable 27
3.3 Serre's problem for graded case 28
3.4 Quillen-Suslin theorem: Outline of the proof 29
3.5 Quillen's graded local-global principal 31
4 Monoids and monoid algebras 34
4.1 Monoids: Definition and examples 34
4.2 Normal and seminormal monoids 36
4.3 Monoid algebras 38
4.4 Grading of monoid algebras 40
5 Some properties of monoids and monoid algebras 43
5.1 Extremal submonoids 43
5.2 Homothetic submonoids 45
5.3 Graded Weierstrass preparation theorem 47
5.4 Pyramidal extension 49
6 Swan's proof of Anderson's conjecture 55
6.1 Preliminary reductions 55
6.2 Non-degenerate pyramidal extension 58
6.3 Admissible sequence 61
6.4 Final proof 65
7 Converese and application of Gubeladze's theorem 66
7.1 Converse of Anderson's conjecture 66
7.2 A question of Hartmut Lindel 68
8 Appendix 71
8.1 Leavitt path algebras 71
8.2 Convex geometry and monoids 79
8.3 Definition of $\operatorname{Pic}(R[M])$ and $K_{0}(R[M])$ 83

Introduction

Let us begin with the following facts in classical algebraic K-theory known as Serre's problem for projective modules. In 1955, J.P. Serre asked the following question:
Theorem. Is every finitely generated projective module over polynomial ring $K\left[X_{1}, \ldots, X_{n}\right]$ over a field K free?

It took two decades and several crucial intermediary milestone before a final resolution was reached due to D. Quillen and A. Suslin independently in 1976. They proved:
Theorem (Quillen-Suslin theorem). If R is a PID and $A=R\left[X_{1}, \ldots, X_{n}\right]$ then every finitely generated projective A-module P is extended from R.

Quillen's proof relied on two crucial result which were:
Theorem (Horrocks theorem). Let (R, \mathfrak{m}) be any local commutative ring, and let P be a finitely generated projective $R[T]$-module. If $P\langle t\rangle:=R\langle T\rangle \otimes_{R[T]} P$ is extended from a finitely generated R-module, then P is extended from R.
Theorem (Quillen's L-G (local-global) principal). Let R be a commutative ring and let P be a projective $R\left[X_{1}, \ldots, X_{n}\right]$-module. If $P_{\mathfrak{m}}$ is extended from $R_{\mathfrak{m}}$ for all $\mathfrak{m} \in \max \left(R_{0}\right)$ if and only if P is extended from R.

As we can see, Horrocks thoerem is a result concerning only local rings, it is only due to Quillen L-G principal, that we are able to extend this result for non-local rings.

The aim of this thesis is to study analogue problem in K-theory of monoid algebras from [15].

In 1978, D. Anderson asked the same question for a more generalised class of ring namely the monoid algebras $R[M]$:
Theorem (Anderson's conjecture). Under what condition on R and M is every finitely
generated projective module P over monoid algebra $R[M]$.
It was finally in 1988 when J. Gubeladze confirmed the Anderson's conjecture.
Theorem (Gubeladze's theorem). Let P be a finitely generated projective $R[M]$-module. Then P is free if M is affine, finitely generated and seminormal and R is a PID. Gubeladze's theorem in the language of K-theory is equivalent to the following conditions (cf: appendix):

1. $\operatorname{Pic}(R[M])=0$.
2. $K_{0}(R[M])=\mathbb{Z}$.
3. Finitely generated projective $R[M]$-module is free.
4. Monoid M is seminormal.

His proof involved clever interplay of convex -geometry and algebra. In principal Gubeladze's proof relied on the above two theorems (Horrocks and Quillen's L-G) written for monoid algebras and some extra arguments for monoids. In 1991, R. Swan inspired by Gubeladze's geometric ideas, gave an algebraic version of the Gubeladze's theorem.

The layout of the thesis is as follows:
In chapter 1 we recalls the basic commutative algebra required viz few definitions, example and properties of tensor products, localisation tool etc. It also covers projective moduleswhich is the central object of our study. Finally in the last section we discuss about patching diagrams and its properties. The main references for this chapter is [2]. For definition and properties in commutative algbera cf. [5]. To see the details about Milnor patching property see [11] and [12] .

In chapter 2 we covers the basics of graded ring and modules, which helps us to solve a graded version of Serre's problem. Most of the results can be found in [8]. In chapter 3 we give a proof of Serre's problem by starting with some historical result which includes cases like projective modules of rank 1 , polynomial ring in one variable $R[X]$, graded projective modules over graded rings $R=\bigoplus_{i \in \Gamma} R_{\gamma}$ (cf: [11]) before cumulating in the final proof (only outline) for polynomial rings in n-variables (cf: [13]). In the end we have included a graded-version of Quillen's L-G principal from [4] and [15], one of the two important result for having $K_{0}(R[X])=\mathbb{Z}$.

Theorem (Graded Quillen's patching). Let $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus \cdots$ be a graded ring and P a finitely generated R-module. Then P is extended from R_{0} if and only if $P_{\mathfrak{m}}$ is extended from $\left(R_{0}\right)_{\mathfrak{m}}$ for every maximal ideal $\mathfrak{m} \subset R$.

The importance of this result is not only restricted to Gubeladze's theorem. As a general result, it is an important tool to study the structure of graded commutative rings.

Chapter 4 and 5 covers technical details of monoids and monoid algebra which would be required in the proof of the Anderson's conjecture. More details can be found out in [4]. In chapter 6, we dicuss the proof of Anderson's conjecture and in chapter 7 we look at the converse of Anderson's conjecture and some its interesting application. Additional details can be found in [4] and [11].

In Appendix we briefly talk about Leavitt-path algebras (LPA). As it turns out that LPA form a non-commutative, non-IBP ring with a \mathbb{Z}-grading and serves as an excellent example to test various conjectures. Studying its property is currently an area of active research. It is natural to ask how far can we generalise classical algebraic K-theory problems for this non-commutative graded algebras. More information on this can be found out in [1]. Next, we include a short discussion on convex geometry, which would demonstrate how algebra and convex geometry interact, we also give some geometric intuition behind some of the abstract algebraic constructions and proof. Finally, we define K-theoretic structures: K_{0}-group and Pic-group.

Chapter 1

Preliminaries

Throughout this thesis let

1. \mathbb{N} : set of natural numbers.
2. \mathbb{Z} : set of integers.
3. \mathbb{Z}_{+}: set positive integers.
4. \mathbb{Q} : set rational numbers
5. \mathbb{Q}_{+}: set positive rational numbers.
6. \mathbb{R} : set real numbers and \mathbb{R}_{+}: set positive real numbers.

In this chapter, we would recall certain preliminary results from commutative algebra which would be used throughout this thesis. Also in the end, we discuss patching diagram which again will be useful later.

1.1 Finitely generated modules

Throughout the thesis we will mostly deal with finitely generated modules over a commutative ring R with identity. We now give some standard commutative algebra result whose
proof can be found in [2]. Let us begin with the well known Nakayama Lemma.
Lemma 1.1.1 (Nakayama Lemma). Let M be finitely generated R-module, \mathfrak{a} an ideal contained in the Jacobson ideal of R, then $\mathfrak{a} M=M$ implies $M=0$.

Corollary 1.1.2. If M is a finitely generated R-module, N submodule of M and $\mathfrak{a} \subset$ Jacobson radical of R, then $M=\mathfrak{a} M+M$ implies $M=N$.

Definition 1.1.3. A sequence of R-module homomorphism is exact

$$
\cdots \rightarrow A_{i-1} \xrightarrow{f_{i-1}} A_{i} \xrightarrow{f_{i}} A_{i+1} \rightarrow \cdots
$$

if $\operatorname{Im}\left(f_{i-1}\right)=\operatorname{Ker}\left(f_{i}\right)$. We denote by $\operatorname{Coker}\left(f_{i}\right)=A_{i+1} / \operatorname{Im} f_{i}\left(A_{i}\right)$.
Example 1.1.4. The following sequence is exact, where I is an ideal of the polynomial ring $R[X]$ and f is the , natural map:

$$
0 \rightarrow I \rightarrow R[X] \rightarrow R[X] / I \rightarrow 0
$$

Lemma 1.1.5. Consider thr following sequence be an exact sequence of R-modules

$$
0 \rightarrow A_{0} \xrightarrow{f_{0}} A_{1} \xrightarrow{f_{1}} A_{2} \rightarrow 0
$$

with P an arbitrary R-module. Let $\operatorname{Hom}_{R}\left(P, A_{i}\right)$ denote the set of all homomorphism h : $P \rightarrow A_{i}$, then

$$
0 \rightarrow \operatorname{Hom}_{R}\left(P, A_{0}\right) \xrightarrow{f_{0}^{\prime}} \operatorname{Hom}_{R}\left(P, A_{1}\right) \xrightarrow{f_{1}^{\prime}} \operatorname{Hom}_{R}\left(P, A_{2}\right)
$$

is an exact sequence.
Definition 1.1.6 (Split Exact Sequence). A sequence of R-module homomorphism

$$
0 \rightarrow A_{0} \xrightarrow{f_{0}} A_{1} \xrightarrow{f_{1}} A_{2} \rightarrow 0
$$

is called split exact if there exists a R-module homomorphism $g_{2}: A_{2} \rightarrow A_{1}$ such that $f_{2} \circ g_{2}=1_{A_{2}}$.

Example 1.1.7. The following sequence, where f_{i} are the inclusion map, is easily verified to be split exact:

$$
0 \rightarrow 2 \mathbb{Z} \xrightarrow{f_{0}} \mathbb{Z} \xrightarrow{f_{1}} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

where the inverse map $\left(f_{1}^{-1}\right)$ is given by $\overline{0} \mapsto 0$ and $\overline{1} \mapsto 1$.

Lemma 1.1.8. If the following sequence of R-modules,

$$
0 \rightarrow A_{0} \xrightarrow{f_{0}} A_{1} \xrightarrow{f_{1}} A_{2} \rightarrow 0
$$

is split exact. then

$$
A_{2} \oplus f_{0}\left(A_{0}\right)=A_{1}
$$

1.2 Tensor product

Intuitively $A \otimes B$ is the free R-module generated over $A \times B$ modulo the relations of the type $a \otimes(b+c)=a \otimes n+a \otimes c$.

Definition 1.2.1 (Tensor Product of Modules). Let A and B be a R-module, then there exists a bilinear map \hat{f} between R-modules $A \times B$ and $A \otimes B$ such that whenever their is a bilinear map f between $A \times B$ and T, there exists a linear map π from $A \otimes B$ to T such that $\hat{f} \circ \pi=f$ (it satisfies a universal property).

Few properties of Tensor product of modules:
Lemma 1.2.2. 1. $\left(M \otimes_{R} N\right) \otimes_{S} P \simeq M \otimes_{R}\left(N \otimes_{S} P\right)$
2. $M=\bigoplus_{i} M_{i}$ and $N=\bigoplus_{j} N_{j}$, then $M \otimes N \simeq \bigoplus_{i, j} M_{i} \otimes N_{j}$

Proof. For R-modules, we have the following isomorphism.

Let the map

$$
\phi:\left(M \otimes_{R} N\right) \times P \rightarrow M \otimes_{R}\left(N \otimes_{S} P\right) \text { be given by }(x \otimes y, z) \mapsto x \otimes(y \otimes z) .
$$

Then this map is a bilinear map. Hence, it induces a linear map
$\tilde{\phi}\left(M \otimes_{R} N\right) \otimes_{S} P \rightarrow M \otimes_{R}\left(N \otimes_{S} P\right)$. This is an isomorphism, since there exists a
inverse map $x \otimes(y \otimes z) \mapsto(x \otimes y) \otimes z$.
Q. The map

$$
\phi: M \otimes N \rightarrow \bigoplus_{i, j} M_{i} \otimes N_{j} \text { given by }(m \otimes n) \mapsto \Sigma\left(m_{i} \otimes n_{j}\right)
$$

is a linear map. Let $\psi_{i, j}: M_{i} \otimes N_{j} \rightarrow M \otimes N$ be the linear inclusion map. Then $\psi=\Sigma_{i, j} \psi_{i, j}$ (where $\psi_{i, j}=0$ if it is outside the domain) is also a linear map with $\psi \circ \phi=\operatorname{Id}$ and $\phi \circ \psi=$ Id. Hence ψ is an isomorphism.

Lemma 1.2.3. $-\bigotimes R$ is left exact on an exact sequence of R-modules.

Proof. Observe that $\operatorname{Hom}_{R}(M \otimes N, P) \simeq \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$. Hence using Lemma 1.1.5 on
$0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3}$ twice (first with P and then with M) we have $\operatorname{Hom}_{R}\left(M,, \operatorname{Hom}_{R}\left(N_{i}, P\right)\right)$ as a left exact sequence and hence $\operatorname{Hom}_{R}\left(M \otimes N_{i}, P\right)$ is left exact.

Lemma 1.2.4. Tensor product commutes with direct sum i.e. for R-modules M, N and P

$$
(M \oplus N) \otimes P \simeq(M \otimes P) \oplus(N \otimes P)
$$

Proof. Consider the map
$f:(M \oplus N) \otimes P \xrightarrow{f}(M \otimes P) \oplus(N \otimes P)$ given by $(m+n) \otimes p \mapsto m \otimes p+n \otimes p$. This is an identity map and hence isomorphism.

One of the important properties of commutative ring is the invariance of free rank of a free module as illustrated in the following lemma.

Lemma 1.2.5. Let R be a commutative ring, then for finite $m, n, R^{n} \simeq R^{m}$ implies $m=n$.

Proof. If $R^{m} \simeq R^{n}$, then $(R / \mathfrak{m}) \otimes R^{m}=(R / \mathfrak{m}) \otimes R^{n}$. Hence $(R / \mathfrak{m})^{m}=(R / \mathfrak{m})^{n}$, but the new modules are vector space and since dimension of vector space is invariant, we have $m=n$.

Definition 1.2.6. Consider the ring homomorphism $f: A \rightarrow B$, then B can be considered as an A-module by defining the scalar multiplication as follows:

For $a \in A, b \in B, a b:=f(a) b$. We call such B an A-algebra.
Example 1.2.7. The polynomial ring $R[X]$ is an R-algebra with generating set $\langle X, 1\rangle$.
Remark 1.2.8. As seen from 1.2.7, $R[X]$ is a finitely generated R-algebra but we know that $R[X]$ is not a finitely generated R-module.

Definition 1.2.9. Let $R \subset S$ be two commutative rings. Then we say $s \in S$ is integral over R if their exists a monic polynomial $f(X) \in R[X]$ such that $f(s)=0$. The set of all integral element of R over S is called integral closure of R and is denoted by \tilde{R}.

Example 1.2.10. Consider $\mathbb{Z} \subsetneq \mathbb{Q}$. Then the integral closure of \mathbb{Z} is $\tilde{\mathbb{Z}}=\mathbb{Z}$.

1.3 Localisation

We now aim to generalise the concept of ring of fraction to an arbitrary commutative ring (not just domain).

Definition 1.3.1. Let R be a ring and S be a multiplicative closed subset of R. Then $S^{-1} R$ denotes the ring $S \times R$ under the equivalence relation that

$$
\begin{aligned}
\left(s_{1}, r_{1}\right) & \sim\left(s_{2}, r_{2}\right) \\
\text { if } k\left(s_{1} r_{2}-s_{2} r_{1}\right) & =0 \text { for some } k \in S .
\end{aligned}
$$

If $S=(f)$ then $S^{-1} R$ is denoted as R_{f}. If $S=R-\mathfrak{p}, \mathfrak{p}$ a prime ideal, then $S^{-1} R$ is denoted as $R_{\mathfrak{p}}$. If M is an R-module then we can define equivalence class in $S^{-1} M$ as follows:

$$
\begin{aligned}
\left(m_{1}, r_{1}\right) & \sim\left(m_{2}, r_{2}\right) \\
\text { if } k\left(m_{1} r_{2}-m_{2} r_{1}\right) & =0 \text { for some } k \in S .
\end{aligned}
$$

Example 1.3.2. Consider $S=R-\mathfrak{m}$, where \mathfrak{m} a maximal ideal. Then $R_{\mathfrak{m}}$ is a local ring (and hence the terminology).

Lemma 1.3.3. If $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}$ is exact sequence of R-modules, then $M_{S}^{\prime} \xrightarrow{f_{S}} M_{S} \xrightarrow{g_{S}} M_{S}^{\prime \prime}$ is also exact.

Proof. $g f=0$ implies $g_{S} f_{S}=0$ and hence $\operatorname{Im}\left(f_{S}\right) \subset \operatorname{Ker}\left(g_{S}\right)$. If $x \in M_{S}$ such that $g_{S}(x / s)=$

0 , then $k g(x)=0$ for some $k \in S$, hence $g(k x)=0$ or $k x \in M^{\prime}$. Therefore $(x / s)=(k x / k s) \in$ M^{\prime}.

Corollary 1.3.4. If N is a R-submodule of M, then $(M / N)_{S}=\left(M_{S} / N_{S}\right)$.
Corollary 1.3.5. If \mathfrak{p} is a prime ideal, then $\left(M \otimes_{R} N\right)_{\mathfrak{p}}=M_{\mathfrak{p}} \otimes N_{\mathfrak{p}}$.
Lemma 1.3.6. Given R-module $M, S^{-1} R \otimes M \simeq S^{-1} M$ by the map $f:(a / s) \otimes m \mapsto(a m / s)$.

Proof. First we check if the map is well defined or not. If $(a / s)=(b / t)$, then $((a / s) \otimes m)=$ $(a m / s)$ and $(b m / t)=f((b m / t))$. Since $(a / s)=(b / t)$ it implies $k(a t-b s)=0$ and hence $k m(a t-b s)=0$ or equivalently $k(a m t-b m s)=0$ or $(a m / s)=(b m / t)$. Hence it is well defined. Now surjectivity of f is obvious $((1 / s) \otimes m \mapsto(m / s))$. To check for injectivity of f, let assume to the contrary i.e. $(a / s) \otimes x \neq 0$ but $(a / s) x=0$ hence $k(a x)=0$, therefore $(k a x) /(k x s)=a / s=0$, and therefore $(a / s) \otimes x=0-$ a contradiction. Hence f is injective and therefore f is an isomorphism.

Definition 1.3.7. Given a R-module M and a ring homomorphism
$f: R \rightarrow S$ then $S \otimes_{R} M$ is a S modules and is called the module obtained by scalar extension.
Remark 1.3.8. Let P is a projective $R\left[X_{1}, \ldots, X_{n}\right]$-module, then P is extended from $P / X_{1} P$ module which is a projective $R\left[X_{2}, \ldots, X_{n}\right]$-module.

Example 1.3.9. Let R be a integral domain, and K be its field of fraction, then an R module M becomes a K-vectors space $M \otimes_{R} K$.

We call a K-module N extended from R if there exists a R-module M such that $M \otimes K=N$. Note that if N is considered as an R-module (i.e restriction of scalars), then it need not follow that N is extended from R due to next lemma.

Lemma 1.3.10. Let $\psi: R \rightarrow K$ be a ring homomorphism and let N be a K-module. If we consider N to be a R-module, then N is direct sum of $N \otimes_{R} K=N_{K}$.

Proof. Consider the map $g: N \rightarrow N_{K}$ given by $n \mapsto n \otimes 1$ and the map $f: N_{K} \rightarrow N$ given by $n \otimes k \mapsto k n$, then $f \circ g(n)=f(1 \otimes n)=n$, hence $f \circ g=1$ and therefore g is injective. It is obvious that f need not be injective, as $b \otimes n=b n=0$ if b is annihilator of n. To see why it is a direct sum, observe that $N \subset N_{K}$ due to injectivity of g, hence this homomorphism is a split homomorphism and hence the result follows.

Remark 1.3.11. Let $R \subset S$. In general if P is a projective module (see section 1.4) S module which admits an extension from a R-module Q i.e.
$P \simeq Q \otimes S$, then P considered as a R-module need not be isomorphic to Q.
Example 1.3.12. If P is a projective $R[X]$ module, then P admits a R-extension $P / X P$. Clearly P, as an R-module is not isomorphic to $P / X P$.

Lemma 1.3.13. Let M and N be projective R-module (see next section). If $M_{S} \xrightarrow{\psi} N_{S}$ are R_{S} module isomorphism, then their exists $f \in S$ such that $R_{f} \xrightarrow{\phi} N_{f}$ is an R_{f}-module isomorphism and ϕ localised to ψ.

Proof. cf: ([11] corollary 2.16).
see

1.4 Projective modules

Definition 1.4.1. P is a projective R-module if it is the direct summand of a free R-module R^{n}.

Notation 1.4.2. Let $\mathcal{P}(R)$ denote the set of all projective R module.
Example 1.4.3. Free Modules are obviously projective. For the case of non-free projective module, consider

$$
\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / m \mathbb{Z} \simeq \mathbb{Z} / m n \mathbb{Z}
$$

where $(m, n)=1$ by Chinese remainder theorem. Since $\mathbb{Z} / n \mathbb{Z}$ is direct summand of $\mathbb{Z} / m n \mathbb{Z}$.
Proposition 1.4.4. The following are equivalent definitions for a projective $\mathrm{m} R$-module P.

1. P is direct summand of a free R-module.
2. Short exact of R-modules $0 \rightarrow A_{0} \xrightarrow{f_{0}} A_{1} \xrightarrow{f_{1}} A_{2} \rightarrow 0$ induces a short exact sequence

$$
0 \rightarrow \operatorname{Hom}_{R}\left(P, A_{0}\right) \xrightarrow{f_{0}^{\prime}} \operatorname{Hom}_{R}\left(P, A_{1}\right) \xrightarrow{f_{1}^{\prime}} \operatorname{Hom}_{R}\left(P, A_{2}\right) \rightarrow 0 .
$$

3. Every exact sequence of R-modules $0 \rightarrow K \rightarrow L \xrightarrow{g} P \rightarrow 0$ splits at g.

Proof. (1) $\Longrightarrow(2):$ Using results from previous chapter, the only part remained to be proved is

$$
\operatorname{Hom}_{R}\left(P, A_{1}\right) \xrightarrow{f_{1}^{\prime}} \operatorname{Hom}_{R}\left(P, A_{2}\right) \rightarrow 0
$$

which is same as proving $g \in \operatorname{Hom}\left(P, A_{2}\right)$ implies there exists $h \in \operatorname{Hom}\left(P, A_{1}\right)$.

such that $f_{1} h=g$.
Since P is projective, let $\mathcal{F}(P)$ denote the free module of which P was direct summand. If $g^{\prime} \in \operatorname{Hom}\left(\mathcal{F}(P), A_{2}\right)$ then it can easily be lifted to $h^{\prime} \in \operatorname{Hom}\left(F(P), A_{1}\right)$ by choosing suitable elements

$$
\begin{aligned}
& f_{1}\left(x_{i}\right)=y_{i} \\
& h^{\prime}\left(e_{i}\right)=x_{i} \\
& g^{\prime}\left(e_{i}\right)=y_{i}
\end{aligned}
$$

Since P is direct summand, $h=\left.h^{\prime}\right|_{P} \in \operatorname{Hom}\left(P, A_{1}\right)$. Hence we can successfully lift g to h.
$(2) \Longrightarrow(3):$ Substitute A_{2} with P in (2) and we get lifting of $I d_{P}-h \in \operatorname{Hom}(P, M)$ with $f_{2} \circ h=\operatorname{Id}_{P}$.
(3) \Longrightarrow (1) : Consider the exact sequence $0 \rightarrow K \rightarrow R_{n} \rightarrow P \rightarrow 0$ which splits due to (3) which implies $R^{n} \simeq P \oplus K$. Hence the result.

Lemma 1.4.5. Let $R=\bigcup_{i \in I} R_{i}\left(R_{i} \subseteq R_{i+1}\right)$ and P be finitely generated projective R module, then their exists a projective R_{i}-module Q_{i} such that $P=R \otimes Q_{i}$.

Proof. If I is finite, then choose $Q=P$ for some R-module Q. If not, then since P is projective such that $P \oplus Q \simeq R^{n}$. Hence we get the split exact sequence $R, Q 0 \rightarrow P \rightarrow$ $R^{n} \rightarrow Q \rightarrow 0$. Since P is finitely generated by $\left\langle p_{1}, \ldots, p_{n}\right\rangle$, and each $p_{i}=\left\langle b_{i 1}, \ldots, b_{i n}\right\rangle \in R^{n}$, we can choose an index $i \in I$ such that $p_{i} \in R_{i}{ }^{n}$. Choosing $Q=P \otimes R_{i}$, we have our desired projective module.

Lemma 1.4.6. If $\psi: P \rightarrow Q$ is a R-module homomorphism such that $\bar{\psi}: \bar{P} \simeq \bar{Q}$ where bar
denotes modulo by $J=\operatorname{rad}(R)$, then ψ is an isomorphism.

Proof. One checks $(P / J P) /(Q / J Q)=(P / Q) / J(P / Q)=0$ hence by Lemma 1.1.1 $P / Q=0$ or $P \simeq Q$.

Lemma 1.4.7. Let (R, \mathfrak{m}) be a local ring and $P \in \mathcal{P}(R)$, then P is free.

Proof. $F=R / \mathfrak{m}$ is field, hence every module $M / \mathfrak{m} M$ is a vector space over F (and hence free). Therefore M is free using Lemma 1.4.6.

Definition 1.4.8. Let M be an R-module and $p \in \operatorname{Spec}(R)$. Then M_{p} is a free R_{p}-module. By rank of M at p we mean the rank of free R_{P}-module M_{p}. We denote it as $\mathrm{rk}_{p} \mathrm{M}$. Then P is free R-modules and $\operatorname{rk}(P)=n$.

Example 1.4.9. Let P be an R-module and. R is a local ring, then $\mathrm{rk}_{p} \mathrm{P}=n$ (see [11] where n is the free rank of M).

Lemma 1.4.10. If R has no non-trivial idempotent then $P \in \mathcal{P}(R)$ has a constant rank. More specifically a commutative integral domain has constant rank.

Proof. If R has no idempotent, then $\operatorname{Spec}(R)$ is connected (common fact in commutative algebra). Hence the continuous function rk_{p} is forced to be constant. A commutative ring has no non-trivial idempotent since $e^{2}=e$ implies $e(e-1)=0$ implies $e=0$ or $e=1$.

Proposition 1.4.11. Finitely generated projective modules over PID are free.

Proof. Let P be a projective module over R. Hence by Proposition 1.4.4 there exists an R-module Q such that $P \oplus Q \simeq R^{n}$. for some $n \geq 0$. Since R is a PID, we have a structure for P and Q i.e.

$$
P \simeq R^{m} \oplus T(P), Q \simeq R^{t} \oplus T(Q)
$$

where $T(P)$ and $T(Q)$ represent the torsion part of P and Q respectively. If $T(P) \neq 0$ (or $T(Q) \neq 0$), then $P \oplus Q$ has a torsion element which is a contradiction since $P \oplus Q \simeq R^{n}$ and R^{n} has no torsion element. Therefore $T(P)=T(Q)=0$. Hence P (and Q) are free R-modules.

1.5 Milnor patching property

Let $A, A_{1}, A_{2}, A^{\prime}$ be commutative rings and $i_{1}, i_{2}, j_{1}, j_{2}$ be ring homomorphism such that it satisfies the commutative diagram (1.1).

Given the ring homomorphsim $i: X \rightarrow Y$ the following diagram (1.2) be defined by

$$
\begin{gathered}
\mathcal{P}(X) \rightarrow \mathcal{P}(Y) \\
P \mapsto P \otimes_{X} Y
\end{gathered}
$$

Then we say that it satisfies Milnor property if

1. $P_{k} \in \mathcal{P}\left(A_{k}\right) ; k=1,2$,
2. $h: P_{1} \otimes_{A_{1}} A^{\prime} \rightarrow P_{2} \otimes_{A_{2}} A^{\prime}$ an isomorphism of A^{\prime} modules implies,
3. The pull back A-module P is projective i.e. $P \in \mathcal{P}(A)$.
4. $P \otimes_{A} A_{k} \simeq P_{k} ; k=1,2$.

Example 1.5.1 (Type A). Consider the following diagram 1.3 under the condition that j_{2} (or j_{1}) is subjective, then (1.3) satisfies Milnor patching (see [12] for more information).

Example 1.5.2 (Type B). Consider the following diagram (1.4), under the condition that $s, t \in A ; A s+A t=1$ and map the being the natural localization map. Then (1.4) satisfies Milnor patching property (see [11] for more informations).

Proposition 1.5.3. Consider the following diagram (1.1) and assume it satisfies the Milnor patching property, let $P \in \mathcal{P}\left(A_{1}\right)$ such that $P \otimes A^{\prime} \in \mathcal{P}^{A_{2}}\left(A^{\prime}\right)$, then $P \in \mathcal{P}^{A}\left(A_{1}\right)$.
Notation 1.5.4. Here $\mathcal{P}^{R} S$ means projective modules over S which are extended from R.

Proof. Since we know $P \otimes_{A_{1}} A^{\prime} \in \mathcal{P}^{A_{2}}\left(A^{\prime}\right)$ implies there exists $Q \in \mathcal{P}\left(A_{2}\right)$ such that $P \otimes_{A_{1}}$ $A^{\prime}=Q \otimes_{A_{2}} A^{\prime}$, Now applying Milnor patching property gives us the pullback $M \in \mathcal{P}(A)$ such that $M \otimes_{A} A_{1}=P$.

Proposition 1.5.5. Let f be a monic polynomial in $R\left[X^{-1}\right]$ and let $P \in \mathcal{P}\left(R\left[X, X^{-1}\right]\right)$ such that $P_{f} \in \mathcal{P}^{R}\left(R\left[X, X^{-1}\right]_{f}\right)$, then $P \in \mathcal{P}^{R[X]}\left(R\left[X, X^{-1}\right]\right)$.

Proof. Let $g=X^{-n} f$. Then $R\left[X, X^{-1}\right] g=R\left[X, X^{-1}\right]_{f}$ Now consider the following digram (1.5):

Since P_{f} is extended from R, we have $P_{f} \simeq Q \otimes_{R} R\left[X, X^{-1}\right]$, for some R-module Q. Hence

$$
P_{f} \simeq Q \otimes_{R} R\left[X, X^{-1}\right]=\left(Q \otimes_{R} R[X] \otimes_{R[X]} R[X]_{g}\right) \otimes_{R[X]_{g}}\left(R\left[X, X^{-1}\right]\right)
$$

or

$$
P_{f} \simeq Q^{\prime} \otimes_{R[x] g} R\left[X, X^{-1}\right.
$$

where $Q^{\prime}=\left(Q \otimes_{R} R[X] \otimes_{R[X]} R[X]_{g}\right)$.
Now the diagram (1.5) is of the same type as the diagram (1.4) and hence satisfies Milnor patching property. Hence Proposition 1.5.5 follows immediately by applying Proposition 1.5.3.

Chapter 2

Graded rings and modules

This chapter gives introduction and basic properties of graded rings and modules, which are required because

1. Graded rings are can thought of as a natural generalisation of polynomial rings.
2. The graded L-G principle, which is the key step for the proof of Serre's problem.
3. In the main proof, we give our monoid algebra $R[M]$ a \mathbb{Z}-grading and then apply the graded version of L-G principal.

2.1 Graded Rings: Basic definition and examples

Definition 2.1.1. A ring A is Γ-graded if $A=\bigoplus_{\gamma \in \Gamma} A_{\gamma}$, where Γ is an abelian group and each A_{γ} is an additive subgroup of A satisfying $A_{\gamma} A_{\delta} \subseteq A_{\gamma+\delta}$ for all $\gamma, \delta \in \Gamma$.

The set $A^{h}=\left\{\bigcup A_{\gamma} \mid \gamma \in \Gamma\right\}$ is called the homogeneous element of the ring A. The set $\Gamma_{A}=\left\{\gamma \in \Gamma \mid A_{\gamma} \neq 0\right\}$ is called the support of A. If $a \in A_{\gamma}$, then $\operatorname{deg}(a)=\gamma$.

Example 2.1.2. Let $A=R[X]$ be a polynomial ring with \mathbb{Z}-grading i.e $(A=1 \oplus\langle x\rangle \oplus$ $\left.\left\langle x^{2}\right\rangle \oplus \cdots\right)$, then $\mathbb{Z}_{A}=\mathbb{Z}_{+} \cup\{0\}$.

Definition 2.1.3. Given Γ-graded ring A and B, a graded ring homomorphism $f: A \rightarrow B$
is a ring homomorphism such that $f\left(A_{\gamma}\right) \subset B_{\gamma}$.

Graded ring homomorphism preserves the degree i.e. index of the homogeneous component of A of element.

Example 2.1.4 (Trivial examples of graded and a non-graded homomorphism).

Let R be a graded ring. Then $1_{R}: R \rightarrow R$ is a graded homomorphism and $0_{R}: R \rightarrow R$ is a non-graded homomorphism.

Now we derive some basic property of graded rings.
Proposition 2.1.5. Let $A=\bigoplus A_{\gamma}$ be a Γ-graded ring, then

1. 1_{A} is a homogeneous element of degree 0 .
2. A_{0} is a subring of A.
3. Each A_{γ} is an A_{0}-module.
4. For an invertible element $a \in A_{\gamma}$, its inverse $a^{-1} \in A_{-\gamma}$.

Proof. 1. We will show that $1_{A} \in A_{0}$. Let $1_{A}=\sum_{\gamma \in \Gamma} a_{\gamma}$ and b be any homogeneous element of degree δ. Then $1_{A} b=b=\sum b a_{\gamma}$. As $b a_{\gamma} \in A_{\gamma+\delta}$, due to direct sum property, b has unique representation as a sum, and hence $b a_{\gamma}=0, \gamma \neq 0$. Since b is any arbitrary term, in general we get $1_{A} a_{\gamma}=0$ which implies $a_{\gamma}=0$ for $\gamma \neq 0$. Hence $1_{A}=a_{0}$. Therefore $\operatorname{deg}\left(1_{A}\right)=0$ and hence the result.
2. A_{0} is a subgroup from definition and from above, it follows that $1_{A} \in A_{0}$. So the only non-trivial part to check is closure under multiplication. But by definition $A_{0} A_{0} \subseteq$ $A_{0+0}=A_{0}$. Hence it's a subring.
3. Let $b=\sum b_{\delta}$ be the inverse element of $a \in A_{\gamma}$. Then, as before $a b=1$ implies $a b_{\delta}=0$ for $\delta \neq-\gamma$. Since a is invertible, we have $b_{\delta}=0$ for $\delta \neq-\gamma$. Hence $a^{-1}=b=b_{-\gamma}$.

Example 2.1.6. For an additive abelian group $\Gamma, \mathbb{Z}[\Gamma]$ has a natural Γ-grading i.e. $\mathbb{Z}[\Gamma]=\bigoplus_{\gamma \in \Gamma} \mathbb{Z}[\Gamma]_{\gamma}$, where $\mathbb{Z}[\Gamma]_{\gamma}=\mathbb{Z} \gamma$.

2.2 Graded ideals

Definition 2.2.1. Let A be a Γ-graded ring. An ideal of A is called graded ideal if

$$
I=\bigoplus_{\gamma \in \Gamma}\left(I \cap A_{\gamma}\right) .
$$

In other words I is graded ideal if and only if $x \in I, x=\sum x_{i}$, where x_{i} are homogeneous elements implies $x_{i} \in I$.

Definition 2.2.2. Let A be a Γ-graded ring and I be a graded ideal, then the quotient ring A / I is Γ-graded as follows:

$$
A / I=\bigoplus_{\gamma \in \Gamma}(A / I)_{\gamma}, \text { where }(A / I)_{\gamma}=\left(A_{\gamma}+I\right) / I=A_{\gamma} /\left(I \cap A_{\gamma}\right) \text {. }
$$

It follows that an ideal is graded if and only if it is generated by homogeneous element.
Example 2.2.3. In light of the above statement, ideal generated by X in the polynomial ring $R[X]$ is a \mathbb{Z}-graded ideal.

2.3 Graded prime and maximal ideals

Let P be a graded ideal of Γ-graded ring A. Then its called a graded prime ideal of A if $A \neq P$ and for any two graded ideals I and $J \in A, I J \subset P$ implies either I or $J \subset P$. Under commutative setting, we have $x, y \in A^{h}, x y \in P$ implies either x or $y \in P$. In general graded prime ideal need not be a prime ideal.

Definition 2.3.1. A graded maximal ideal of a Γ-graded ring A, is the maximal graded ideal among the set of all graded ideals.

Example 2.3.2. Consider the natural \mathbb{Z}-grading on a polynomial ring $K[X]$, where K is a field. Then the ideal $\langle X\rangle$ is a graded maximal ideal.

Example 2.3.3. Consider the maximal ideal \mathfrak{m} generated by $\langle X+1\rangle$ on a polynomial ring $K[X]$, where K is a field. Then it is a maximal ideal but not graded, since neither X nor $1 \in \mathfrak{m}$ (because if $X \in \mathfrak{m}$, then $-X \in \mathfrak{m}$ and hence $1 \in \mathfrak{M}$) but $X+1 \in \mathfrak{m}$.

2.4 Graded local rings

We recall that a ring A is local if and only if it has one maximal ideal if and only if set of all non-invertible elements forms an ideal. Motivated by this definition, a ring A is a graded local ring if the set of all non-invertible elements form a graded ideal. It follows from above that if such an ideal exists, then it should be unique.

Proposition 2.4.1. Let A be a Γ-graded ring. Then A is graded local if and only if A_{0} is a local ring.

Proof. Let A be a graded local ring with maximal ideal \mathfrak{m}.
Let $\mathcal{M}=\mathfrak{m} \cap A_{0}$. Then \mathcal{M} is proper ideal of A_{0}. Suppose $x \in A_{0}-\mathcal{M}$, then x is a homogeneous element of degree 0 and is not in \mathfrak{m}, hence it is invertible in A. Since $x \in A_{0}$, its inverse is also in A_{0} and hence x in invertible in A_{0}. As x is an arbitrary element of A_{0} we man conclude that \mathcal{M} is a unique maximal ideal of A_{0} which make A_{0} a local ring.

Let A_{0} be a local ring.
Let \mathcal{M} be the ideal generated by non-invertible homogeneous element of A. We will show that \mathfrak{m} is a proper graded ideal and hence A is a graded local ring. Let us assume to the contrary that $\mathfrak{m}=A$. This implies $1=\sum_{i} m_{i} a_{i}$, where a_{i} are non-invertible elements in A. Since 1 has degree 0, we have $\operatorname{deg}\left(m_{i} a_{i}\right)=0$ and hence each $\left(m_{i} a_{i}\right) \in \mathcal{M}$ (because if $a_{i} m_{i}$ is invertible, then a_{i} would be invertible; a contradiction) and therefore $1 \in \mathcal{M}$ which is a contradiction, hence the result.

Example 2.4.2 (Example of a graded local which is not local). Let R be a local ring. Then consider $A=R[X]$. It follows that A is a graded local from Proposition 2.4.1. Clearly A is not local because is has atleast two (infact many) non-identical maximal ideal such as $\mu=\langle x\rangle$ and $\nu=\langle x+1\rangle$.

After graded rings, now we discuss the grading on modules.

2.5 Graded modules: Basic definitions and examples

Definition 2.5.1. Let A be a Γ-graded ring. Then a graded right module M is an A-module such that $M=\bigoplus_{\gamma \in \Gamma} M_{\gamma}$ and $A_{\gamma} M_{\delta} \subseteq M_{\gamma+\delta}$.
Example 2.5.2. $K[X]$ is a \mathbb{Z}-graded $K[X]$-module.

If M and N are two γ-graded A-module, then the homomorphism $f: M \rightarrow N$ is a graded homomorphism if $f\left(M_{\gamma}\right) \subset N_{\gamma}$ for all $\gamma \in \Gamma$. Similarly we define graded isomorphism.

Example 2.5.3. The 1_{M} and 0_{M} is an example of graded and non-graded homomorphism for a graded module M.

Definition 2.5.4. A submodule N of a graded module M is called graded submodule if

$$
N=\bigoplus_{\gamma \in \Gamma}\left(N \cap M_{\gamma}\right) .
$$

Remark 2.5.5. If a Γ-graded ring A is considered a module over itself, then the notion of graded ideal coincide with that of graded submodule.

Example 2.5.6. Let A be a Γ-graded ring. If $a \in A$ is a homogeneous element of degree α, then the ideal $a A$ is a graded submodule (and ideal) with

$$
(a A)_{\gamma}:=a A_{\gamma-\alpha} .
$$

It is graded, i.e $a A=\bigoplus\left(a A \cap A_{\gamma}\right)$. Indeed, if $x \in a A$ implies

$$
x=a\left(\cdots+a_{-\gamma}+\cdots+a_{0}+\cdots a_{\gamma}+\cdots\right)
$$

for some a_{γ} in A_{Γ}, which in turn implies $a a_{-\gamma} \in A_{-\gamma+\alpha} \cap a A$.

If M is a Γ-graded module and N is its submodule, then we define graded quotient module as

$$
M / N=\bigoplus_{\gamma \in \Gamma}(M / N)_{\gamma}, \text { where }(M / N)_{\gamma}=\left(M_{\gamma}+N\right) / N
$$

Definition 2.5.7. Let M be Γ-graded right A-module and N be Γ-graded left A-module.

We now defined Tensor grading on $M \otimes_{R} N$ from Lemma 1.2.4 as follows:

$$
M \otimes_{A} N=\left(\bigoplus_{\gamma \in \Gamma} M_{\gamma}\right) \otimes_{A}\left(\bigoplus_{\gamma \in \Gamma} N_{\gamma}\right)=\bigoplus_{\gamma+\delta \in \Gamma} M_{\gamma} \otimes_{A} N_{\delta}
$$

2.6 Graded free modules

Just as we have the notion of free modules, we have a corresponding notion for graded case and it is called graded free modules. In general free module with grading is not same as a graded free module.

Definition 2.6.1 (Graded free modules). Let A be a Γ-graded ring. Then a graded A module F is graded free if it is a free A-module and its basis elements are homogeneous elements of F.

Example 2.6.2. If $A=R[X]$ with \mathbb{Z}-grading, then $A \times A$ is a graded free A-module with basis elements $(1,0)$ and $(0,1)$.

Example 2.6.3. Consider the matrix ring $M_{n}(A)$ as \mathbb{Z}-graded which is concentrated at degree 0 and consider $M_{n}(A)$ as module over itself with grading $\left(M_{n}(A)\right)_{i}=e_{i} M_{n}(A)$. It follows that all non-zero homogeneous elements are 0 divisors and hence can not constitute a linear independent set. Therefore, the module is not graded-free inspite of it being graded and free.

2.7 Graded projective modules

Just as we have a notion of projective modules, we have a corresponding notion for graded case called graded free. Unlike graded free case, here projective modules with grading would imply that the module is graded-projective as we will see later in this section.

Definition 2.7.1. P is called a graded projective module if the following

diagram of graded A-modules and graded A-homomorphism, there is graded A-homomorphism $h: P \rightarrow M$ such that $g \circ h=j$.

Lemma 2.7.2. Let the following

be a commutative diagram of graded modules M, N, and P, such that $f=g h$, where f is a graded A-homomorphism. If g is a graded homomorphism, then their exists a graded homomorphism $h^{\prime}: M \rightarrow N$ such that $f=g h^{\prime}$.

Proof. Let $g: M \rightarrow N$ be a graded homomorphism. If $p \in P_{\alpha}$, define $h^{\prime}(p)=h(p) \cap M_{\alpha}$ and extend this map linearly to all $p \in P$ as follows:

$$
h^{\prime}(p)=\Sigma_{\alpha \in \Gamma} h\left(p_{\alpha}\right)_{\alpha} .
$$

It follows immediately that h^{\prime} is a graded A - homomorphism. To check for $g h^{\prime}=j$, observe that for $p \in P_{\alpha}$, we have

$$
f(p)=g \Sigma_{\alpha \in \Gamma} h(p)_{\alpha}=\Sigma_{\alpha \in \Gamma} g h(p)_{\alpha} .
$$

Since g and f are graded homomorphism, so it preserves the degree i.e the above relation become

$$
f(p)=g h(p)_{\alpha}=g h^{\prime}(p) .
$$

Using the linearity of f, g and h^{\prime} it follows $f=g h^{\prime}$.
Proposition 2.7.3. Let A be a Γ-graded ring and P be a graded A-module, then the followings are equivalent:

1. P is a graded and projective module.
2. P is a graded projective module.
3. $0 \rightarrow A_{0} \xrightarrow{f_{0}} A_{1} \xrightarrow{f_{1}} A_{2} \rightarrow 0$ implies

$$
0 \rightarrow \operatorname{Hom}_{R}\left(P, A_{0}\right) \xrightarrow{f_{0}^{\prime}} \operatorname{Hom}_{R}\left(P, A_{1}\right) \xrightarrow{f_{1}^{\prime}} \operatorname{Hom}_{R}\left(P, A_{2}\right) \rightarrow 0
$$

where f_{0} and f_{1} are graded homomorphism.
4. Every short exact sequence

$$
0 \rightarrow L \rightarrow M \xrightarrow{g} P \rightarrow 0
$$

of graded A homomorphism splits (at g) via a graded map.
5. P is graded isomorphic to direct summand of graded free module.

Proof. 1. $(1) \Longrightarrow(2)$: Consider the following commutative diagram

where M and N are graded A-modules and f and g are graded homomorphisms. Since P is a projective module, we have a map h such that $f=g h$. Using Lemma 2.7.2, we have a graded homomorphism h^{\prime} such that $f=g h^{\prime}$. Hence P is a graded projective module.
2. $(2) \Longrightarrow(3)$: Since $\operatorname{Hom}(P,-)$ is always left exact by Lemma 1.1.5, the only nontrivial part remains to be shown is the right exactness. Given $g \in \operatorname{Hom}\left(P, A_{2}\right)$, from the definition of graded projective modules, their exists $h \in \operatorname{Hom}\left(P, A_{1}\right)$. Hence the sequence is right exact.
3. $(3) \Longrightarrow$ (4): If $h \in \operatorname{Hom}(P, M)$ then $g h \in \operatorname{Hom}(P, P)$. Since $\operatorname{Hom}(P,-)$ is exact, for $1_{P} \in \operatorname{Hom}(P, P)$ their exists $h^{\prime} \in \operatorname{Hom}(P, M)$ such that $g h^{\prime}=1_{P}$. Hence g splits.
4. (4) $\Longrightarrow(5)$: Let $\left\{p_{1}, \ldots, p_{n}\right\}$ be the homogeneous generators of P (we can choose such a generators by breaking generators of P in homogeneous parts). Let $\operatorname{deg}\left(p_{i}\right)=\delta_{i}$. Consider the free graded F-module generated by $\left\{e_{1}, \ldots, e_{n}\right\}$, where $\operatorname{deg}\left(e_{i}\right)=\delta_{i}$. Then there is a surjective graded-homomorphism $\phi: F \rightarrow P$ with $e_{i} \mapsto p_{i}$. Since ϕ splits from, we have P as a direct summand of F.
5. $(5) \Longrightarrow(1)$: Since P is direct summand of a graded free module F and since F is free, we conclude that P is a projective module. From definition P is graded.

Example 2.7.4. Due to Proposition 2.7.3, to find examples of graded-free, we have to find a projective module with grading. Consider the ring $A=R[X]$. Then module N (i.e the ideal generated by $\langle X\rangle$) is a graded-projective module.

Chapter 3

Classical result on Serre's conjecture

This chapter deals with classical results from Serre's conjecture. This section assumes importance because for rank 1 normal monoid $M, R[M] \simeq R[X]$ and hence serves as a suitable base for our induction hypothesis for tackling the general problem.

We will first discuss the case of rank 1 projective modules over a polynomial $K\left[X_{1}, \ldots, X_{n}\right]$ over a field K.

3.1 Rank 1 projective modules

Lemma 3.1.1. Let R be an integral domain, with quotient field K. Let $P \neq 0$ be a R submodule of K. Then P is projective if and only if there exists R-submodule $Q \subseteq K$, such that $P Q=R$. This would also imply that P is finitely generated.

Proof. Let P be a projective R-module.
Let $F=\bigoplus_{i \in I} R e_{i}$ be a free R-module for some index set I. Since P is a projective module, we have

$$
F \underset{\mathrm{~g}}{\stackrel{\mathrm{f}}{\rightleftarrows}} P
$$

such that $f \circ g=1$.

Now we look at the nature of the map g. Since $g: P \rightarrow F, g$ must be of the form $g(p)=\Sigma_{i \in I} g_{i}(p) e_{i}$, for each $g_{i}=\pi_{i} \circ g \in \operatorname{Hom}(P, R)$ where π_{i} is the natural projection. Since both P and R are R-submodule of K, we extend the $g_{i}: K \rightarrow K$ as follows:

$$
K \otimes_{R} P \xrightarrow{1 \otimes g_{i}} K \otimes_{R} R
$$

Since only endomorphism between K 's is multiplication by some element, we now have $g_{i}(p)=b_{i} p$ and $g=\sum_{i \in I} b_{i} p$. Since only finitely many terms are non-zero in the summation, hence we can assume our index set I to be finite and hence without loss of generality let us assume $\left\{b_{1}, \ldots, b_{n}\right\}$ are non-zero.

Let $Q=\Sigma R b_{i}$, then we have $Q P \subseteq R$. So the only part remained to be proved is $Q P \supseteq R$. For that observe that $f\left(e_{i}\right)=p_{i} \in P$. Hence P is generated by $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Using the property of split-homomorphism, we have

$$
f \circ g(p)=p=f\left(\Sigma_{i \in I}\left(b_{i} p\right) e_{i}\right)=p \Sigma_{i \in I} b_{i} p_{i}
$$

That is

$$
p=p \Sigma_{i \in I} a_{i} p_{i} \Longrightarrow \Sigma_{i \in I} b_{i} p_{i}=1
$$

Hence $1 \in P Q$ and therefore $P Q=R$.
Conversely let $P Q=R$, to show P is R-projective.
Since $\sum_{i \in I} b_{i} a_{i}=1$, let's define $f: F=\oplus_{i \in I} R e_{i} \rightarrow P$ by $e_{i} \mapsto a_{i}$ and similarly define $g: P \rightarrow F$ by $p \mapsto \Sigma_{i \in I}\left(b_{i} p\right) e_{i}$. Now we have split-homomorphism between F and P

$$
F \underset{\mathrm{~g}}{\stackrel{\mathrm{f}}{\rightleftarrows}} P .
$$

Hence using Proposition1.4.4, we prove that P is projective.
Proposition 3.1.2. Let R be a UFD, and P is a projective R-module. Then $\operatorname{rk}(P)=1$ implies $P \simeq R$.

Proof. Assume P to be an ideal of R generated by $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Then from Lemma 3.1.1, we have $P Q=R$ and $\sum_{1}^{n} b_{i} p_{i}=1$. Since Q in general is not a subset of R, we cannot directly conclude that $P=R$. Let $b_{i}=c_{i} / d_{i}$. Since $b_{i} p_{j} \in R$, we have $c_{i} / d_{i} \in R$ and hence
(due to UFD) we have d_{i} divides p_{j} for every possible pair (i, j). Hence $\operatorname{lcm}\left(d_{i}\right)=d$ divides p_{j} for every j. Therefore

$$
\sum_{1}^{n} b_{i} p_{i}=\sum_{1}^{n}\left(c_{i} / d_{i}\right) p_{i}=\sum_{1}^{n}\left(\tilde{c}_{i} / d\right) p_{i}=\sum_{1}^{n} \tilde{c}_{i} \tilde{p}_{i}=1
$$

Hence $1 \in P$, and therefore $P=R$.
Corollary 3.1.3. Let A be a UFD, $R=A\left[X_{1}, X_{2}, \ldots, X_{n}\right]$, and P be a rank 1 projective R-module, then $P \simeq R$.

Proof. By Gauss's lemma on UFD, R is a UFD and hence by Proposition 3.1.2, $P \simeq R$.

3.2 Serre's problem for one variable

We now consider the case of projective modules over $K[X]$, where K is a field.
Definition 3.2.1. A ring R is called hereditary if every ideal of R is projective.
Proposition 3.2.2. [Kaplansky] If R is a hereditary ring, then any submodule A of any free module $F=\oplus R e_{i}$ is isomorphic to direct sum of R-ideals. In particular A is projective.

Proof. Let F_{i} denote the submodule of F with basis e_{j}, and $j \leq i$. Let A be a submodule of F and $A_{i}=A \cap F_{i}$. Then $A_{i+1} / A_{i} \subseteq R$ is a projective R-module. One checks $A_{i+1}=A_{i} \oplus I_{i}$. Now we will inductively show that $A=\oplus I_{i}$.

Suppose not, then there exists a least i such that $a \in A_{i+1}-\sum I_{i}, a \neq 0$. Since $a \in A_{i+1}$ we have $a=\tilde{a}+\bar{a}, \tilde{a} \in A_{i}$ and $\bar{a} \in I_{i}$. Because we have choose such least i, it follows that $\tilde{a} \in \sum \oplus I_{i}$, and hence $a \in \oplus I_{i}$, a contradiction. Therefore it follows $A=\oplus I_{i}$.

Corollary 3.2 .3 . If R is a ring whose ideal are free (like PID), then submodules of free R-modules are free. In particular, all projective modules are free.

Proof. From definition, R is a hereditary ring. Hence by Proposition 3.2.2 all projective modules is a direct sum of ideal which by the above hypothesis is free and hence every projective module is free.

Remark 3.2.4. Projective modules over PID's are free.

3.3 Serre's problem for graded case

We now consider the case where the projective module has a \mathbb{Z}-graded structure.
Definition 3.3.1. We say a graded R-module M is bounded from below if there exists $r \in \mathbb{Z}$ such that $M_{j}=0, j<r$.

Proposition 3.3.2. Any finitely generated graded R-module M is bounded from below.

Proof. Suppose m_{1}, \ldots, m_{r} are generators for M. Choose r small enough such that homogeneous component of m_{i} have degree $\geq r$. Then $M=\sum R m_{i}$ and hence the result.

Proposition 3.3.3. Let R be a graded ring and M be a graded module bounded from below, Then $\bar{M}=M / R^{+} M=0$ implies $M=0$.

Notation 3.3.4. Let R^{+}denote the ideal $R_{1} \oplus R_{2} \oplus \cdots$.

Proof. Since M is bounded from below, we have $M=M_{r}+M_{r+1}+\cdots$, hence $R^{+} M=$ $M_{r+1}+\cdots$. If $M=R^{+} M$, then $M_{r}=0$ and repeating the same argument, we get $M=0$.

Proposition 3.3.5. Let P, Q be finitely generated R-modules over a graded ring R, with P being a projective R-module. Let $\gamma: Q \rightarrow P$ be a graded-ring homomorphism. Then γ is an isomorphism if and only if $\bar{\gamma}: \bar{P} \rightarrow \bar{Q}$ is an isomorphism.

Notation 3.3.6. For an R-module P, by \bar{P} we mean $P / R^{+} P$.

Proof. Assume $\bar{\gamma}$ if isomorphism.

Let $K=\operatorname{ker}(\gamma)$ and $C=\operatorname{coker}(\gamma)$. Then C and K both are graded modules. Since modulo by R^{+}is same as $\otimes R / R^{+}$, and since tensor product is right-exact, we have $\bar{C}=0$. Also C is finitely generated, and hence by Lemma 1.1.1, $C=0$ and therefore γ is onto. Since P is projective, $Q=K \oplus P$, where K is kernel of γ and therefore $\bar{Q}=\bar{K}+\bar{P}=\bar{P}$ and hence $\bar{K}=0$ and since K is finitely generated, again using Lemma 1.1.1, we conclude that $K=0$. Hence $P \simeq Q$.

Conversely assume γ is isomorphism.
$P \simeq Q$ and hence $P \otimes R / R^{+}=Q \otimes R / R^{+}$or $\bar{P}=\bar{Q}$. Hence the result follows.
Theorem 3.3.7. Let $R=R_{0}+R_{1}+\cdots$ be a graded ring. Let P be a projective R-module. Then P is extended form R_{0} or more precisely $R \otimes_{R_{0}} \bar{P}=P$ where \bar{P} is a graded R_{0}-module.

Proof. Let $f: P \rightarrow \bar{P}$ be a projection map (also a graded R_{0}-module homomorphism). Since P is projective R-module, \bar{P} is also a projective R_{0}-module. Hence this homomorphism splits. Let $g: \bar{P} \rightarrow P$ be the required split map. Since f is a graded homomorphsim, g can be made into a graded homomorphism. Hence g induces a graded R-module homomorphism

$$
\bar{\gamma}: R \otimes_{R_{0}} \bar{P} \otimes R / R^{+} \simeq P \otimes_{R_{0}} R / R^{+} \rightarrow P \otimes_{R_{0}} R / R^{+}=\bar{P} .
$$

Hence $\bar{\gamma}$ as an isomorphism. Hence by Proposition 3.3.5, we have γ as isomorphism. Hence the result.

Corollary 3.3.8. Let $R=R_{0}\left[X_{1}, \ldots, X_{n}\right]$ be the ring with the natural grading. Let P be a graded R-module. Then P is extended from R_{0}. If R_{0} is a PID, then P is free.

3.4 Quillen-Suslin theorem: Outline of the proof

We begin with the following theorem due Horrocks. For more detail refer to [13]
Proposition 3.4.1 (Horrocks theorem). Let (R, \mathfrak{m}) be a local ring and let P be a projective $R[X]$-module. If P_{f} is a free $R[X]_{f}$-module for some monic polynomial f, then P is free.

One can deduce Proposition 3.4.1 from the following two results. For more details cf [13].
Proposition 3.4.2 (Murthy-Pedrini). Let P and Q be a projective module over $R[X]$ and let P_{f} be isomorphic to Q_{f} as a $R[X]_{f}$-module for some monic element f. Then P and Q are stably isomorphic over $R[X]$.

Proposition 3.4.3. Let R, \mathfrak{m} be a local ring and let P, Q be a projective $R[X]$-modules such that $\operatorname{rk}(Q)<\operatorname{rk}(P)$. Suppose that Q_{f} is a direct summand of P_{f} as an $R[X]_{f}$-module for some monic polynomial $f \in R[X]$. Then Q is a direct summand of P.

Let us now derive Proposition 3.4.1 from Proposition 3.4.2 and Proposition 3.4.3.

Case $n=1$.

If $P_{f} \simeq A_{f}{ }^{n}$, where n is the $\operatorname{rk}(P)=n$ and $A=R[X]$. By Proposition 3.4.2, P is stably isomorphic to A_{n}. From Proposition 3.1.2, we prove that P is free.

Hence let us assume $n>1$.
Since $A_{f}{ }^{n-1}$ is isomorphic to direct summand of P_{f}, from Proposition 3.4.3, A^{n-1} is direct summand of P. Hence $P \simeq A^{n-1} \oplus L$ for some rank 1 projective module L. Hence $L_{f} \oplus$ $A_{f}{ }^{n-1} \simeq P_{f} \simeq A^{n}{ }_{f}$. Since $\operatorname{rk}(L)=1$, we have $L_{f}=A$. Hence from $n=1$ case, we have L as a free A-module. Hence P is free.

Having obtained Proposition 3.4.1, we now use Quillen's localisation to extend Proposition 3.4.1 from local rings to more general rings. We assume that R is any commutative ring with identity.

Proposition 3.4.4 (Quillen's Localisation Theorem). If P is a projective $R[X]$-module such that the $R_{\mathfrak{m}}[X]$-module $P_{\mathfrak{m}}$ is extended from $R_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m} of R, then P is extended from R.

Now we use the next proposition to arrive at Quillen-Suslin Theorem.
Proposition 3.4.5. Let P be a finitely generated projective module over $R[X]$. If the $R[X]_{f}$-module P_{f} is extended from a projective module over R for some monic f, then P is extended from R.

Using the fact that all projective modules over fields are free, we arrive at Quillen-Suslin Theorem.

Proposition 3.4.6 (Quillen -Suslin theorem). Let P be a finitely generated projective module over $R[X]$ and let P_{f} be $R[X]_{f}$-free for some monic $f \in R[X]$. Then P is free.

Serre's problem follows from the following proposition:
We use induction on n. Let K be a field and P a finitely generated projective module over $K\left[X_{1}, \ldots, X_{n}\right]$. Consider the field $K\left(X_{1}, \ldots, X_{n}\right)$, then the extended module $P \otimes_{K\left[X_{1}, \ldots, X_{m}\right]}$ $K\left(X_{1}, \ldots, X_{n}\right)$ is a vector over the quotient field and hence free. Since P is finitely generated,
P_{f} is free over $K\left[X_{1}, \ldots, X_{n}\right]_{f}$ for some monic polynomial $f\left(X_{1}, \ldots, X_{n}\right)$ (without loss of generality we can assume f to be monic in X_{n} with coefficient in $K\left[X_{1}, \ldots, X_{n-1}\right]$ and use the induction hypothesis). Hence it follows from Proposition 3.4.6 that P is free.

Definition 3.4.7 (Stably Isomorphic). Two R-modules M and N are said to be stably isomorphic if $M \oplus R^{m} \simeq N \oplus R^{n}$ for some $m, n>0$.

Horrocks theorem has an alternate formulation due to P. Roberts.
Proposition 3.4.8. Let (R, \mathfrak{m}) be a local ring, and A be an R-algebra. let S be multiplicative set of central non zero-divisors in A, and $n \geq 0$ be a fixed integer. Assume that following hypothesis holds:

1. For any $f \in S, A / f A$ is finitely generated R-module.
2. $G L_{n}\left(\overline{S^{-1}}\right)=G L_{n}\left(S^{-1} A\right)\left(G L_{n}(\bar{A})\right.$.
3. $S^{-1} A$ contains an R-subalgebra B such that $S^{-1} A=A+B$ and $\mathfrak{m} B \subset \operatorname{rad}(B)$.
4. Let P be a finitely generated A-module such that f is regular on P and $\bar{P} \simeq \overline{A^{n}}$ and $S^{-1} P \simeq\left(S^{-1} A\right)^{n}$.

Then $P \simeq A^{n}$.

Proof. cf: ([11], 4.1).

3.5 Quillen's graded local-global principal

A more general version of Proposition 3.4.4 is needed for proving the Anderson's conjecture.
Proposition 3.5.1 (Graded Quillen's Patching). Let $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus \cdots$ be a graded ring and P a finitely generated R-module. Then P is extended from R_{0} if and only if $P_{\mathfrak{m}}$ is extended from $\left(R_{0}\right)_{\mathfrak{m}}$ for every maximal ideal $\mathfrak{m} \subsetneq R_{0}$.

Notation 3.5.2. If $f: A \rightarrow B$ is a ring homomorphism, then by $f_{*}(P)$ we mean the extended module $P \otimes B$, where the module structure is induced by f.

Proof. Consider the following maps:

1. $i: R_{0} \rightarrow R$ be the inclusion map (we shall use the same symbol for the map $\left(R_{0}\right)_{\mathfrak{m}} \rightarrow$ $\left.R_{\mathfrak{m}}\right)$.
2. $j: R \rightarrow R[X]$ be the inclusion map (we shall use the same symbol for the map $R_{\nu} \rightarrow$ $\left.R_{\nu}[X]\right)$.
3. $w: R \rightarrow R[X]$ given by $r_{0}+r_{1}+\cdots \mapsto r_{0}+r_{1} X+r_{2} X^{2}+\cdots$.
4. $\epsilon: R \rightarrow R_{0}$ sending $R_{n} \mapsto 0$ for $n>0$.
5. $e_{k}: R[X] \rightarrow R$ for $k=0,1$ by sending X to k.

From above we get the following equality:

$$
e_{0} j=e_{1} k=e_{1} w=1_{R} \text { and } e_{0} w=i \epsilon
$$

Consider a projective R-module P. Let $W=w_{*}(P)$ i.e. $W=P \otimes_{R} R[T]$ via w. Let \mathfrak{m} be a maximal ideal in R_{0}. Hence $P_{\mathfrak{m}}$ is $\left(R_{0}\right)_{\mathfrak{m}}$ extended and hence W_{m} is $\left(R_{0}\right)_{\mathfrak{m}}$ extended (W is also $R_{\mathfrak{m}}$ extended). Using Lemma 1.3.13, we have $s \in R_{0}-\mathfrak{m}$ such that W_{s} (and P_{s}) is $\left(R_{0}\right)_{s}$ extended. Let \mathfrak{n} be a maximal ideal of R such that $\mathfrak{n} \cap R_{0} \subset \mathfrak{m}$. Since $\mathfrak{n} \cap R_{0} \subset \mathfrak{m}$ for some maximal ideal \mathfrak{m} of R_{0} choose $s \in R_{0}-\mathfrak{m}$ and the using the fact that W_{s} is $\left(R_{0}\right)_{s}$ extended implies $W_{\mathfrak{n}}$ is $R_{\mathfrak{n}}$ extended (note that $s \in R-\mathfrak{n}$). Hence by the usual Quillen's L-G principal, we have W extended from R-module Q.

Now we have

$$
P \simeq e_{1 *} j_{*}(Q)
$$

since $e_{1}^{-1}=w$ and hence $w_{*}(P)=W=j_{*}(Q)$. Therefore,

$$
e_{1_{*}} j_{*}(Q)=e_{0 *} j_{*}(Q) \simeq e_{0 *}(W) \simeq e_{0 *} w_{*}(P) \simeq i_{*} \epsilon_{*}(P)
$$

implying P is extended from R_{0}.
The other implication is obvious.

Another proof: (for definition see [3])

Proof. Let $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus \cdots$ and $v=\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ be a unimodular ring in R and
$v_{\mathfrak{m}}$ be locally extended from $\left(R_{0}\right)_{\mathfrak{m}}$ for some maximal ideal \mathfrak{m} of R_{0}. Hence we can find a $s \in R_{0}-\mathfrak{m}$ such that v_{s} is locally extended from $\left(R_{0}\right)_{s}$ by Lemma 1.3.13. Consider the ring homomorphism

$$
F: R \rightarrow R[T] \text { given by } a=r_{0}+r_{1}+\cdots \mapsto r_{0}+r_{1} T+r_{2} T^{2}+\cdots
$$

Let $F\left(a_{i}\right)=f_{i}(T)$ and since F is a ring homomorphism, $F(v)=\left(f_{1}(T), f_{2}(T), \ldots, f_{m}(T)\right)$ is also unimodular. Let \mathfrak{n} be a maximal ideal of R and consider the localisation of $F(v)$ in $R_{\mathfrak{n}}[T]$. Choose $\mathfrak{m} \supset \mathfrak{n} \cap R_{0}$ and then select s as done before. Since $s \in R_{0}-\mathfrak{m}$ we have $s \in R-\mathfrak{n}$. Therefore $F(v)_{s}$ is R_{s} extended. Since $F(v)_{\mathfrak{n}}$ is the further localisation of $F(v)_{s}$, we have

$$
F(v)_{\mathfrak{n}}=\left(f_{1}(T), f_{2}(T), \ldots, f_{m}(T)\right)
$$

is extended from $R_{\mathfrak{n}}$. Hence by classical Quillen's L-G principal, we have $F(v)$ is extended from R. This implies $\left(f_{1}(0), f_{2}(0), \ldots, f_{m}(0)\right)$ and $\left(f_{1}(1), f_{2}(1), \ldots, f_{m}(1)\right)$ (we substitute $T=0,1$ respectively in v) are in the same $G L_{m}(R)$ orbits. Hence

$$
\left(b_{1}, \ldots, b_{m}\right) \sim_{G L_{m}(R)}\left(a_{1}, \ldots, a_{m}\right)
$$

where $b_{i} \in R_{0}$. Hence v is extended from R_{0}.

Chapter 4

Monoids and monoid algebras

In this chapter, we discuss about few definition, and general properties of monoids and monoid algebras.

4.1 Monoids: Definition and examples

A monoid is an algebraic structure which generalises the notion of a group.
Definition 4.1.1 (Monoid). A set $(M,+)$ with a binary operation $M \times M \rightarrow M$ which is associative and has an identity element e is called a monoid.

Notation 4.1.2. Throughout this chapter, we would either denote the monoid operation as + with identity 0 or . with identity 1.

A monoid is said to be commutative if $a+b=b+a$. A subset $N \subseteq M$ is a submonoid if it is closed under addition and every element has an inverse. If $m \in M$ has an inverse in M, then m is called a unit.
Remark 4.1.3. A monoid M is said to be an affine monoid if M is finitely generated and a submonoid of \mathbb{Z}^{d} for some positive integer d. From here onward, unless otherwise mentioned, we would assume our monoid to be affine.

Example 4.1.4. : Few examples of commutative affine monoids:

1. Any group G is a monoid.
2. \mathbb{Z}^{+}is a monoid under usual multiplication.
3. Let $R\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial ring in n variables, then the set

$$
X:=\left\{X_{i}{ }^{j} \mid 1 \leq i \leq n, j \geq 0\right\}
$$

forms a monoid under multiplication.

In groups, we have maps (called homomorphism) to compare two groups. Similarly we borrow the concept of homomorphism for monoids as follows:

Definition 4.1.5 (Monoid Homomorphism). Let $\psi: M \rightarrow N$ be a map of monoids such that $\psi(a+b)=\psi(a)+\psi(b)$ for all $a, b \in M$, then ψ is said to be a monoid homomorphism.

Remark 4.1.6. Monoid homomorphism between groups turns out to be the group homomorphism and vice-versa.

Consider the monoid \mathbb{Z}^{+}. Intuitively it is clear that we can complete this monoid to a group \mathbb{Q}^{+}by adding inverse of non-zero element. We now formalise this argument for arbitrary commutative monoid as follows:

Lemma 4.1.7 (Completion of a monoid). Let M be a monoid, then we can associate a group $\operatorname{gp}(M)=G$ and a monoid homomorphism $\hat{f}: M \rightarrow G$ such that the following diagram of monoid homomorphism commutes:

i.e., given any group H, if $f \in \operatorname{Hom}(M, H)$ (monoid homomorphism), then there exists a unique $\pi \in \operatorname{Hom}(G, H)$ (group homomorphism) such that $\hat{f} \circ \pi=f$.

Outline of proof. For a monoid M, we construct a new monoid $M \times M$ such that M is identified as $(M, 0)$ and M^{-1} is identified as $(0, M)$. To cover the overlap of elements we go modulo the overlapping elements and finally check $(M \times M) / \sim$ is a group.

Proof. Let $(x, y):=x-y$ denote an equivalence relation such that $(x, y) \sim(a, b)$ if and only if $x+b=y+a$. This defines an equivalence class on $M \times M$. We define addition on this equivalence class as follows: $(x, y)+(a, b)=(x+a, y+b)$.

We claim that this equivalence class (called G) has a group structure:

It is associative and closed under addition by definition. The inverse of (x, y) is (x, y) for all $(x, y) \in\left(\frac{M \times M}{\sim}\right)($ as $(x, y)+(x, y)=(x+y, x+y)$ or $(x+y, x+y):=x+y-(x+y)$ and the identity element is $(z, z)=(0,0)$ because $(x, y)+(z, z)=(x+z, y+z)$ or $(x+z, y+z):=$ $x+z-(y+z)=x-y:=(x, y)$.

We now claim that the map $m \mapsto(m, 0)$ is the monoid homomorphism $\psi: M \rightarrow \operatorname{gp}(M)$ and satisfies the universal property and the result follows immediately.
$\psi\left(m_{1}+m_{2}\right)=\left(m_{1}+m_{2}, 0\right):=m_{1}+m_{2}-0$ and $\psi\left(m_{1}, 0\right)+\psi\left(m_{2}, 0\right):=m_{1}-0+m_{2}-0$. Hence $\psi\left(m_{1}+m_{2}\right)=\psi\left(m_{1}\right)+\psi\left(m_{2}\right)$. Now if $f: M \rightarrow H$ is monoid-homomorphism such that $m \mapsto h$, then $\pi: G \rightarrow H$ is defined as $\pi(m, n)=f(m) f(n)^{-1}$.

Definition 4.1.8 (Rank of a monoid). The rank of monoid M is defined to be the rank of $M \otimes_{\mathbb{Z}} \mathbb{Q}$ in \mathbb{Q}.

Notation 4.1.9. From here onwards, we will denote rank M as rk(M).
Example 4.1.10. If $M=\mathbb{Z}^{2}$, then $\mathbb{Q} \otimes \mathbb{Z}^{2}=\mathbb{Q}^{2}$ and hence $\operatorname{rk}(M)=2$.

4.2 Normal and seminormal monoids

In this section we recall few standard properties and examples of affine monoids.
Definition 4.2.1. Let M be an affine monoid of $N=\operatorname{gp}(M)$. We define normalisation of M in N (in additive notion) to be

$$
\widetilde{M_{N}}:=\{x \in N \mid n x \in M \text { for some } n \in \mathbb{N}\} .
$$

Example 4.2.2. Normalisation of \mathbb{Z} over \mathbb{Q} is \mathbb{Q} itself as we can get rid of denominators, by choosing a suitable n to be the value of denominator.

Definition 4.2.3. A monoid M is called normal if $\widetilde{M_{N}}=M$.

We now give an example of a normal monoid.

Example 4.2.4. Consider the monoid $M=\{x\}$ and $G=\left\{x, x^{-1}\right\}$ under multiplication. Then if $x^{-1} \in \widetilde{M}$ implies $x^{-k} \in M$ for some k. But that is not possible. Hence $x^{-1} \notin \widetilde{M}$. In general every free monoid with no non-trivial units is normal.

Infact, normalisation of M can also be thought of as the intersection of all normal monoids containing M.

Normalisation has a nice geometric picture for affine monoids as the next proposition shows (whose proof can be found in ([4], 2.22):

Proposition 4.2.5. Given M and $N=\operatorname{gp}(M)$, let $C=\mathbb{R}_{+} M$. Then $\widetilde{M}_{N}=C \cap M$.

Following is an important consequence of Proposition 4.2 .5 which we will use in the later chapter.

Corollary 4.2.6. Let M be integrally closed in N. If $\operatorname{rk}(M)=\operatorname{rk}(N)$, then $\operatorname{gp}(M)=\operatorname{gp}(N)$. In particular, $\operatorname{gp}\left(N^{\star}\right)=\operatorname{gp}(N)$. (see definition 5.1.5).

In a similar manner we define seminormalisation of M over $\operatorname{gp}(M)$ as

$$
\operatorname{sn}(M)=\left\{x \in \operatorname{gp}(M) \mid x^{2}, x^{3} \in M\right\} .
$$

Definition 4.2.7. A monoid M is called seminormal if $\operatorname{sn}(M)=M$.
Definition 4.2.8. Let M be an affine monoid and $G=\operatorname{gp}(M)$, then

$$
\operatorname{sn}(M):=\left\{x \in N \mid x^{2}, x^{3} \in M\right\} .
$$

Example 4.2.9. A free monoid with no non-trivial units is seminormal.

Just like normal monoids, it can be inferred that $\operatorname{sn}(M)$ is the intersection of all seminormal submonoids which contain M.

From definition it follows that every normal monoid is seminormal. However, the converse is not true. There exists seminormal monoid which are not normal. For more details cf. ([4] 2.56a).

Inspite of the previous example, we can still obtain a correspondence between normal and seminormal monoids. Let $M^{\star}=\operatorname{Int}(M) \cup\{0\}$.

Proposition 4.2.10. An affine monoid M is seminormal if and only if $(M \cap F)_{\star}$ is a normal monoid for every face F of $\mathbb{R}_{+} M$. Hence $\widetilde{M}=\widetilde{M^{\star}}$.

Proof. If M is seminormal, then $M \cap F$ is seminormal for each face F of $\mathbb{R}_{+} M$. Hence it is enough to show that M^{\star} is normal. By corollary 4.2.6, $\operatorname{gp}\left(M^{\star}\right)=\operatorname{gp}(M)$. If $x \in \operatorname{gp}\left(M^{\star}\right)$, $x \neq 1$ and $w=x^{n} \in M^{\star}$, then $w \in \operatorname{Int}(M)$. Rewriting $x=y z^{-1}$ for $y, z \in M^{\star}$. Since $w \in$ $\operatorname{Int}(M)$, we have $w^{m} z^{-r} \in M$ for some $m>0$ and $r=0,1, \ldots, n-1$. Then $w^{m} x^{r} \in M$ for same range of r. Let $s \geq 0, s=n q+r$, then $x^{n m+s}=w^{m} x^{s}=w^{q} w^{m} x^{r} \in M$ and hence $x^{t} \in M$ for a large t. Since $x \in M$ it is obvious that $x \in \operatorname{Int}(M)$ since $x^{n} \in \operatorname{Int}(M)$.

4.3 Monoid algebras

In this section, we discuss about monoid algebras and some its properties. As we know monoid algebras is the ring under consideration in Anderson's conjecture.

Definition 4.3.1. Let R be a commutative ring and M be a monoid, and consider the set

$$
R[M]:=\left\{\Sigma_{i \in I} r_{i} m_{i} \mid r_{i} \in R, m_{i} \in M\right\} .
$$

If we define addition and multiplication in a natural way, we see that $R[M]$ forms ring and since $R \subset R[M]$, it is a R-algebra which is also known as monoid algebra. It follows that $R[M]$ is an R-module with basis from M.

Example 4.3.2. Some examples of monoid algebras are:

1. Polynomial ring $R\left[X_{1}, \ldots, X_{n}\right]$ is a monoid algebra where M is a free monoid generated by $\left\{X_{1}, \ldots, X_{n}\right\}$.
2. Group ring $R[G]$ (like Laurent's polynomial) is a monoid algebra where $M=G$.

Remark 4.3.3. If M is a free monoid with n generators $\left\{m_{1}, \ldots, m_{n}\right\}$, then there is a natural isomorphism $R[M] \rightarrow R\left[X_{1}, \ldots, X_{n}\right]$ given by $m_{i} \mapsto x_{i}$.

Lemma 4.3.4. Let M be an affine monoid. Then $R[M]$ is finitely generated as an R algebra. If R is Noetherian, then using Hilbert basis theorem, we conclude that $R[M]$ is also Noetherian.

Proof. If M is finitely generated (with generators $\left\{m_{1}, \ldots, m_{n}\right\}$), then $R[M]$ is finitely generated (with same generators) as a R algebra. Let N be a free monoid with n generators e_{i}. Then from remark 4.3 .3 we have $R[N] \simeq R\left[X_{1}, \ldots, X_{n}\right]$, where $e_{i} \mapsto X_{i}$. Since R is Noetherian, it implies $R\left[X_{1}, \ldots X_{n}\right] \simeq R[N]$ is Noetherian. Let $\psi: N \rightarrow M$ be the surjective monoid homomorphism, where $e_{i} \mapsto m_{i}$, then this ψ can be extended to a surjective ring homomorphism $\widehat{\phi}: R[N] \rightarrow R[M]$ given by $\widehat{\psi}(r m)=r \psi(m)$. Hence it follows that $R[M]$ is a Noetherian ring.

We know that Laurent polynomial is an example of monoid algebra. Now the next lemma gives a deeper relation between these two.

Lemma 4.3.5. Let M be an affine monoid with $\operatorname{gp}(M)=\mathbb{Z}^{r}$ for some integer $r \geq 0$, then there is an injective R-algebra homomorphism $R[M] \rightarrow R\left[X_{1}, X_{1}^{-1}, \ldots, X_{r}, X_{r}^{-1}\right]$ mapping element of M to monomial in variable X_{1}, \ldots, X_{r}.

Proof. Clearly $R\left[\mathbb{Z}^{r}\right] \rightarrow R\left[X_{1}, X_{1}^{-1}, \ldots, X_{r}, X_{r}^{-1}\right]$ is an isomorphism given by $e_{i} \mapsto X_{i}$. So if we show that $R[M] \rightarrow R[\operatorname{gp}(M)]$ is an embedding, then we get the required map. We already know that there exists monoid homomorphism $f: M \rightarrow \operatorname{gp}(M)$, so we extend f to $f_{R}: R[M] \rightarrow R[\operatorname{gp}(M)]$, where $f_{R}\left(r_{i} m_{i}\right)=r_{i} f\left(m_{i}\right)$ induces a R-algebra homomorphism.

A simple corollary of the above lemma is the following:
Corollary 4.3.6. Let M be an affine monoid. Then $R[M]$ is integral domain if R is an integral domain.

Proof. Let $\operatorname{gp}(M)=G$, then $M \subseteq G \subset \mathbb{Z}^{d}$, hence $R[M] \subseteq R[G] \subseteq R\left[\mathbb{Z}_{+}{ }^{d}\right]$. By applying Lemma 4.3.5, we reach our conclusion.

A result of general interest is the sharpening of the corollary 4.3.6:
Proposition 4.3.7. Let R a domain and M (not affine) a cancellative and torsionfree. Then $R[M]$ is a domain. Conversely, if $R[M]$ is a domain, then R is a domain and M is cancellative and torsionfree.

Proof. Let $f, g \in R[M]$, then $f=\sum_{i=0}^{n} r_{i} m_{i}$ and $g=\sum_{i=0}^{k} s_{i} m_{i}$ for some $r_{i}, s_{i} \in R, m_{i} \in M$ (assume $n<k$). Consider the submonoid $N=\left\langle m_{1}, \ldots, m_{k}\right\rangle$. Then $f g \in R[N] \subset R[M]$.

Since N is finitely generated, by corollary 4.3.6, $R[N]$ is a domain, hence $f g \neq 0$ if $f, g \neq 0$. As f and g are arbitrary, result follows.

To prove the converse, observe that R is a domain if $R[M]$ is a domain. If M is not cancellative, then $x y=x z$ would imply $x(y-z)=0$ which would give contradiction to the fact that $R[M]$ is a domain. If M is not torsionfree, then

$$
x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+y^{n-1}\right) .
$$

Since none of the term is 0 on RHS (because all elements of M are basis for $R[M]$), we again arrive at a contradiction, hence M is torsionfree.

4.4 Grading of monoid algebras

The aim of these section is show some non-trivial grading on $R[M]$. We begin with a basic lemma.

Lemma 4.4.1. (Gordan's lemma) Let M be finitely generated monoid and let $\psi: M \rightarrow \mathbb{Z}$ be a homomorphism. Then $N:=\{x \in M \mid \psi(x) \geq 0\}$ is finitely generated.

Outline of proof. We will show that N is finitely generated by choosing a finitely generated submonoid K and showing $N / K \simeq L$ is finitely generated (in fact a finite set).

Proof. Let M be generated by m_{1}, \ldots, m_{n}. Then their exists a free monoid F and a surjective monoid homomorphism $f: F \rightarrow M$ such that basis of F maps to generators of M. Hence if image of $\psi \circ f \geq 0$ is finitely generated, then image of $\psi \geq 0$ is finitely generated. Hence we may assume that M is free. It follows immediately that N is a submonoid because if $x, y \in N$ then $\psi(x+y)=\psi(x)+\psi(y) \geq 0$ and hence $x+y \in N$.

Let $\left\{e_{i}, f_{j}, g_{k}\right\}$, where $i, j, k \in \mathbb{N}$, are basis of M such that

$$
\psi\left(e_{i}\right) \geq 0, \psi\left(f_{j}\right) \leq 0 \text { and } \psi\left(g_{k}\right)=0 .
$$

We rearrange the index such that $\left\{\psi\left(e_{i}\right)=a_{i}\right\}$ is in descending order and $\left\{\psi\left(f_{j}\right)=-b_{j}\right\}$ in
ascending order. Let K be a submonoid of M generated by

$$
K:=\left\langle e_{i}, g_{k}, a_{i} f_{j}-b_{j} e_{i}\right\rangle
$$

Observe that $\psi\left(a_{i} f_{j}\right)-\psi\left(b_{j} e_{i}\right)=0$. Since it is closed under multiplication and $\psi(K) \geq 0$ it is a submonoid of N. Let

$$
L=N / K
$$

Then we can choose each representative element u such that $\psi(u)<a_{1}$ (due to presence of e_{1} in kernel K). Similarly, if $u=\Sigma x_{i} e_{i}+\Sigma y_{j} f_{j}$ then either $x_{i}<b_{j}$ or $y_{j}<a_{i}$ (due to presence of $a_{i} f_{j}-b_{j} e_{i}$ in K). Hence only finitely many possible values of u is possible and therefore L is a finite set. Now the result follows.

We now prove the main proposition of the section, whose conclusion will establish the grading on $R[M]$.

Proposition 4.4.2. Let M be an affine monoid with set of units $U(M)=1$. Let $G=\operatorname{gp}(M)$. Then their is a group homomorphism $\psi: G \rightarrow \mathbb{Z}$ such that $\psi(x)>0$ for all $x \in M-\{1\}$. Hence $R[M]$ can be graded.

Proof. If $\operatorname{rk}(M)=1$, then $M=\mathbb{Z}^{+}$(because if x is the least positive and $-y$ is the highest negative members of M, then $x-y$ violates the either minimality of x or maximality of y, and hence the only way out is to have only positive or negative elements) and hence we have the natural inclusion map to satisfy the above theorem.

We now use induction on $\mathrm{rk}(G)$. Let $G=\mathbb{Z} \times H$ (by structure theorem of G) and consider the submonoid $N=M \cap(0 \times H)$ and the projection map $\pi: G \rightarrow \mathbb{Z}$ restricted to M. Then N is finitely generated by Lemma 4.4.1 and hence by induction there exists a map $\phi: H \rightarrow \mathbb{Z}$ such that $\phi(x)>0$ for $x \in N-\{1\}$. If $\psi(1,0)=\lambda$, such that if the map $\psi: G \rightarrow \mathbb{Q}$ is well defined in a natural way, then we are done. So the only non-trivial part in the proof is show that such a λ exists. To do so, we divide the generators of G into three parts namely (a, u), $(-b, v)$ and $(0, w)$. So now λ is constrained by these equations

$$
a \lambda+\phi(u)>0 \text { and }-b \lambda+\phi(v)>0 .
$$

Now observe that $b(a, u)+a(-b, v)=(0, b u-a v) \in N$. This element cannot be 0 because then $b(a, u)+a(-b, v)=0$ and hence $U(M)=1$, a contradiction. Therefore $\phi(b u-a v)>0$ or $b \phi(u)-a \phi(v)>0$. Since the inequality is strict, the interval is non-empty and hence we can find a λ in between, and therefore the extension map $\psi: G \rightarrow \mathbb{Q}$ is well defined. Now we multiply λ by k to get rid of denominator. Hence we finally have $k \psi: G \rightarrow \mathbb{Z}$.

Grading: From the above argument, we can grade $R[M]$ as follows, let $(R[M])_{n}=\psi^{-1}(n)$ for $n \geq 0$ and $(R[M])_{n}=0$ for $n<0$.

Proposition 4.4.3. Let G be a finitely generated free group and let M be a submonoid of G. If $\psi: M \rightarrow \mathbb{Z}$ is a homomorphism, then we can find a k such that $k \psi: G \rightarrow \mathbb{Z}$ is homomorphism.

Proof. We extend the map ψ to $H=\operatorname{gp}(M)$. Let $G=T \times F$ where T / H is the torsion part of G / H. Let k be chosen such that $k T / H=0$ or $k T \subset H$. Hence $k \psi: T \rightarrow \mathbb{Z}$ is the extension of ψ to T. Hence we compose this map with the projection map, to get a map from $G \rightarrow \mathbb{Z}$.

Chapter 5

Some properties of monoids and monoid algebras

5.1 Extremal submonoids

In this section we look at a particular submonoids of M called extremal submonoid and list out some of its properties.

Definition 5.1.1 (Extremal submonoids). A submonoid $E \subset M$ is called extremal if $x y \in E$ implies $x, y \in E$.

Notation 5.1.2. The set of all extremal monoids of M will be denoted by \mathcal{E}_{M}.
Remark 5.1.3. If M is an affine monoid, then $C=\mathbb{R}_{+} M$ is a cone. Let F be a face of C, then $M \cap F$ is a submonoid which is the geometrical realisation of the extremal submonoid.

Example 5.1.4. In the monoid $M:=\left\langle x_{1}, x_{2}\right\rangle$, submonoid $\left\langle x_{1}\right\rangle$ is extremal.
Definition 5.1.5. The interior of M denoted by $\operatorname{Int}(M):=\{x \in M \mid$ for all $y \in M$ we can find $n>0$ with $\left.x^{n}=y z, z \in M\right\}$.

Remark 5.1.6. If $z \in \operatorname{Int}(M)$, then $m z \in \operatorname{Int}(M)$ for every $m \in M$.
Notation 5.1.7. Let $x \in \operatorname{Int}(M)$, then $m x \in \operatorname{Int}(M)$ from the above definition. Hence if $M^{\star}:=\{1\} \cup \operatorname{Int}(M)$ is a submonoid.
Remark 5.1.8. Infact M^{\star} is a normal monoid because if $x \in g p\left(M^{\star}\right)-\{1\}$ and $x^{n} \in$
$M^{\star}-\{1\}$, then

$$
\left(x^{n}\right)^{m}=y z=x^{m n}=y z
$$

and hence $x \in M^{\star}-\{1\}$.
Remark 5.1.9. If M is an affine monoid, then $C=\mathbb{R}_{+} M$ is a cone. Let $\operatorname{Int}(C)$ denote the interior of C in topological sense. Then $M \cap \operatorname{Int}(C):=$ is the geometric realisation of $\operatorname{Int}(M)$.

Example 5.1.10. In the monoid $M:=\left\{\left\langle x_{1}, x_{2}\right\rangle, \operatorname{Int}(M)=x^{i} y^{i} \mid i, j \neq 0\right\}$.
Lemma 5.1.11. If E is a maximal submonoid of $M-\operatorname{Int}(M)$, then E is extremal.

Proof. If E is not extremal, then there exists $y \notin E$ such that $x y \in E$. Consider the monoid $\{E, y\}$. This should intersect $\operatorname{Int}(M)$. Let $z \in \operatorname{Int}(M)$, such that $z=e y^{r}$ for some $e \in E$. Now $x^{r} z \in \operatorname{Int}(M)$ and $x^{r} z=e(x y)^{r} \in E$ which implies $E \cap \operatorname{Int}(M) \neq \emptyset$, which is a contradiction. Hence E is an extremal submonoid.

Lemma 5.1.12. Let E be extremal submonoid of M and let N be any submonoid of M. If E meets $\operatorname{Int}(N)$, then $N \subset E$.

Proof. Let $x \in E \cap \operatorname{Int}(M)$ and $y \in N$. Therefore we have $x^{n}=y z$ for some $n>0$ and some $z \in N$. Since $x \in E$, we have $x^{n}=y z \in E$. Since E is extremal, it follows that $y, z \in E$. Hence $N \subset E$.

Corollary 5.1.13. For extremal submonoids E and E^{\prime} of an affine monoid, if $\operatorname{Int}(E) \cap$ $\operatorname{Int}\left(E^{\prime}\right) \neq \emptyset$, then $E=E^{\prime}$.

Proof. Using Lemma 5.1.12, we have $E^{\prime} \subset \operatorname{Int}(E)$ and $E \subset \operatorname{Int}\left(E^{\prime}\right)$. Hence $E=E^{\prime}$.

Using a combination both Int and extremal submonoids, we have a nice structure of M in terms of the former as illustrated in the next lemma:

Lemma 5.1.14. If M is finitely generated then $M=\bigsqcup_{i} \operatorname{Int}\left(E_{i}\right), E_{i} \in \mathcal{E}_{M}$ i.e. M can be expressed as a disjoint union of extremal submonoids.

Proof. Using 5.1.13, we know that $\operatorname{Int}\left(E_{i}\right)$ are disjoint. To see why \mathcal{E} covers M, observe that if $x \in M$ is not covered by any $\operatorname{Int}\left(E_{i}\right)$, then maximal submonoid containing x of $M-$ $\operatorname{Int}\left(E_{i}\right)$ is extremal, a contradiction and hence x is covered by some $\operatorname{Int}\left(E_{i}\right)$.

The following proposition is the generalisation of Proposition 4.4.2.
Proposition 5.1.15. Let M is an affine monoid with no non-trivial units.. Then a submonoid E of M is extremal if and only if their exists a homomorphism $\psi: M \rightarrow \mathbb{N}$ with $E=\psi^{-1}(0)$.

Outline of proof. To prove the converse, we move from monoid homomorphism to group homomorphims, and see M and E as subset of $g p(M)$ and kernel respectively.

Proof. If such a ψ exists, then if follows that the kernel E is extremal. Indeed, let $a+b \in E$, then $\psi(a+b)=\psi(a)+\psi(b)=0$ implies $\psi(a)=\psi(b)=0$.

To prove the converse let $G=\operatorname{gp}(M)$ and let $H^{\prime} \subset G$ be the subgroup generated by E. Let

$$
H=\left\{g \in G \mid g^{n} \in H^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

and let $\nu: G \rightarrow G / H$ be the natural surjection.
Now we claim \bar{G} is torsionfree because if $\bar{g}^{n}=0$ for some n then $\bar{g}^{n m} \in H^{\prime}$ for some m, which implies $\bar{g}^{n m} \in E$ or $\bar{g}^{-n m} \in E$. Hence $\bar{g} \in E$ implying $\bar{g}=1$.

Let $\bar{M}=\nu(M)$. If $x \in E$, then $\nu(x)=1$. Conversely, if $\nu(x)=1$ implies $x \in H^{\prime}$ and using the above reasoning $x \in E$. Hence \bar{M} has no non-trivial units. Therefore using Proposition 4.4.2, we have $\mu: \bar{G} \rightarrow \mathbb{Z}$ such that $\mu(\bar{M}) \geq 0$. Hence $\mu \circ \nu$ is the required map.

Corollary 5.1.16. If an extremal submonoid $E \subsetneq M$, then by using Proposition 2.3.1, we can infer that rk $E<\mathrm{rk} M$ (strict inequality).

5.2 Homothetic submonoids

We know that if M is finitely generated cancellative torsion free monoid with no non trivial units, then their exists a homomorphism $\psi: M \rightarrow \mathbb{N}$ with $\psi^{-1}(0)=\{1\}$ from Proposition 4.4.2. Now for $z \in \operatorname{Int}(M)$ and $m>0$, we define a map θ_{m} with centre z as

$$
\theta_{m}(x)=x^{m} z^{\psi(x)} .
$$

If M is normal, define $M^{(m)}$ as normalisation of $\theta_{m}(M)$ in $\operatorname{gp}(M)$. Now it follows that $M^{(m)} \subset \operatorname{Int}(M) \cup\{1\}$. Indeed, if $y \in M^{(m)}$, then $y^{n} \in \theta_{m}(M)$ and since every term of $\theta_{m}(M)$ has the form $x^{m} z^{\psi(x)}$, we have $y^{n} \in M^{\star}$ (because $z \in M^{\star}$). Since M^{\star} is a normal monoid containing M, we have $M^{(m)} \subset M^{\star}$ by remark 5.1.3.

Definition 5.2.1. Let M be an monoid with no non-trivial units and $z \in \operatorname{Int}(M)$ and ψ as above. Then $M^{(m)}$ is called the homothetic submonoid of M with centre z.

Remark 5.2.2. Homothetic transform corresponds to the homothetic transformation of $\Phi(M)$ in an affine space (see appendix 2).

Lemma 5.2.3. If θ_{m} is defined as above, then it is injective.

Proof. Suppose $\theta_{m}(x)=1$, then $\theta_{m}(z)^{\psi(x)}=z^{(m+\psi(z))(\psi(x))}=1$. Since M ha no non-trivial units, therefore $\psi(x)=0$. Hence $\theta_{m}(x)=x^{m}$ implies $x=1$ because M is torsionfree.

Lemma 5.2.4. If $M^{(i)}$ is defined as above, then $M^{(1)} \subset M^{(2)} \subset \ldots$..

Proof. Observe that $\theta_{m}(x)^{m+1}=\theta_{m+1}(x)^{m} z^{\psi(x)} \in M^{(m+1)}$, hence $\theta_{m}(x) \in M^{m+1}$ due to normal property of M^{m+1} and hence $M^{m} \in M^{m+1}$ again due to normal property of M^{m+1}.

Lemma 5.2.5. Let M be a monoid. Then $M^{\star}=\bigcup M^{(m)}$

Proof. Clearly $M^{\star} \supseteq \cup M^{m}$ follows immediately because $z \in \operatorname{Int}(M)$. For the converse, consider $x \in \operatorname{Int}(M)$. This implies $x^{k}=y z$ for some $y, z \in M$. Let $l=\psi(y)$. Now $x^{(k l)}=y^{l} z^{l}=y^{l} z^{\psi(y)}$. Hence $x^{(k l)} \in M^{(l)}$.

In general if $M \subset N$, no inclusion relation is observed between $\operatorname{Int}(M)$ and $\operatorname{Int}(N)$, but the next lemma show under specific circumstances, we can obtain such a relationship:

Lemma 5.2.6. Let M be a monoid and N a finitely generated submonoid of M. If $\operatorname{rank}(M)$ $=\operatorname{rank}(N)$, then $\operatorname{Int}(M) \supseteq \operatorname{Int}(N)$.

Proof. If $N \cap \operatorname{Int}(M)=\emptyset$, then N is a submonoid of $M-\operatorname{Int}(M)$, hence is contained in some extremal submonoid E. By Proposition 5.1.15 we can find an homomorphism $\phi: M \rightarrow \mathbb{Z}$ such that $\phi^{-1}(0)=E$. Hence rank $N \leq \operatorname{rank} E<\operatorname{rank} M$ which is a contradiction. Hence $N \cap \operatorname{Int}(M) \neq \emptyset$. Let $z \in N \cap \operatorname{Int}(M)$. If $y \in \operatorname{Int}(N)$, then $y^{n}=z w$. Hence $y^{m} \in \operatorname{Int}(M)$ which implies $y \in \operatorname{Int}(M)$.

Lemma 5.2.7. If $z \in \operatorname{Int}(M)$, then $\left\{z^{-1}, M\right\}=\operatorname{gp}(M)$.

Proof. Let $x / y \in \operatorname{gp}(M)$. Write $z^{r}=y t$ with $t \in M$. Then $x / y=t x / z^{r}$.
Lemma 5.2.8. Let M be an affine monoid, and N be a finitely generated submonoid of M such that $\operatorname{gp}(M)=\operatorname{gp}(N)$. Then by fixing $z \in \operatorname{Int}(N)$ and $m>0$, let $\theta_{m}: M \rightarrow M$ be the homothetic transformation. For large enough s, we have $\theta_{m}^{s}(M) \subset N^{\star}$.

Proof. Let x_{1}, \ldots, x_{n} generate M. By Lemma 5.2.8, $\left\langle z^{-1}, N\right\rangle=\operatorname{gp}(N)=\operatorname{gp}(M)$. Therefore, for some $t, z^{t-1} x_{i} \in N$ and hence $z^{t} x_{i} \in \operatorname{Int}(N)$ for all i. Hence $\left(\theta_{m}\right)^{s}(x)=x^{a(s)} z^{b(s) \psi(x)}$, where $a(s)=m^{s}$ and $\left.b(s)=c^{-1}[(m+c)]^{s}-m^{s}\right]$ with $c=\psi(z)>0$. Therefore, $b(s) \geq s m^{s-1}$. Suppose that $s \geq t m$. Then $b(s) \geq t m^{s}=t a(s)$ so $\left(\theta_{m}\right)^{s}(x)=\left(x z^{t}\right)^{a(s)} z^{d}$ with $d \geq 0$. It follows that $\left(\theta_{m}\right)^{s}\left(x_{i}\right) \in \operatorname{Int}(N) \subset N^{\star}$. Since the x_{i} generate M, we have our result.

5.3 Graded Weierstrass preparation theorem

This section deals with a technical lemma which will be useful in the next section.
Proposition 5.3.1. Let $d=\delta(v)$ and $A=A_{0} \oplus A_{1} \oplus \cdots$ be a graded commutative ring and let v be an element of A_{d}. Let $M_{0} \oplus M_{1} \oplus \cdots$ be a graded A-module satisfying

$$
\begin{equation*}
\nu: M_{i} \rightarrow M_{i+\delta(v)} \text { given by } m_{i} \mapsto v m_{i} \text { is an isomorphism for } i \geq 0 . \tag{5.1}
\end{equation*}
$$

Let $f \in A$ with $f \equiv a_{0}+\cdots+a_{n d-1}+v^{n} \bmod \operatorname{nil}(A)$ (nilpotent elements of A), with $a_{i} \in A$. Then if $z \in M$, we can write $z=f q+r$ with $q \in M$ and $r_{0} \in M_{0}+\cdots+M_{n d-1}$. Moreover, r and q are unique.

Proof. Let $f=f_{0}+\cdots+f_{m}$. Then $f_{n d}, \ldots, f_{m}$ and $f_{n d}-v^{n}$ are nilpotent and therefore generate a homogeneous nilpotent ideal J. Let $J^{h}=0$ for some h. If $h=0$ then the usual division algorithm applies. Hence we use induction on h.

Let

$$
N:=\left\{x \in M \mid v^{k} x \in J^{h-1} \text { for some } k \geq 0\right\}=\bigcup_{k \geq 0}\left(J^{h-1} M: v^{k}\right)
$$

Then $\nu_{1}: N_{i} \rightarrow N_{i+d}$ satisfies the equation (5.1) and hence $\nu_{2}:(M / N)_{i} \rightarrow(M / N)_{i+d}$ satisfies (5.1). Also M / N has a A / J^{h-1}-module structure (since $J^{h-1} M \subset N$) and N has a A / J module structure (since $v^{k} J M=0$ and v doesn't annihilate M). Therefore, by induction the proposition holds to the residue class of f in A / J^{h-1} and A / J for the modules M / N and N respectively.

Writing $\bar{z}=\overline{f q}+\bar{r}$ in M / N, and lifting it back to M, we get $z=f q+r+w, w \in N$. Now writing $w=f q^{\prime}+r^{\prime}$ in N, we have

$$
z=f q+r+f q^{\prime}+r^{\prime}=f\left(q+q^{\prime}\right)+\left(r+r^{\prime}\right)
$$

To show uniqueness, let $z=0$, then we have $\bar{q}=\bar{r}=0$ in M / N. Hence q and r lie in N and so $q=r=0$ when induction is applied to N.

Corollary 5.3.2. Let $A=A_{0} \oplus A_{1} \oplus \cdots$ be a graded ring and let v be an element of A_{d} satisfying the condition

$$
\nu: A_{i} \rightarrow A_{i+d} \text { given by } x \mapsto v x
$$

is an isomorphism for $i \geq 0$.
Let $f \in A$ with $f \equiv f_{0}+f_{1}+f_{n d-1}+v^{n} \bmod (\operatorname{nil}(A))$. Then
$f=(1+\mu)\left(v^{n}+r\right)$, where $\mu \in \operatorname{nil}(A)$ and $r \in A_{0}+\cdots+A_{n d-1}$.

Proof. Using Proposition 5.3.1 for $M=A$ and $z=v^{n}$, we have $v^{n}=f q+r$.
Then Proposition 5.3 .1 can also be applied to $M=A /$ nil (A). To see why observe that surjectivity follows because $v: A_{i} \rightarrow A_{i+d}$ is surjective and injectivity follows because if x is nilpotent only if $v x$ is nilpotent.

Hence we have

$$
\bar{v}=\bar{f}-\left(\overline{f_{0}}+\overline{f_{1}}+\overline{f_{2}}+\cdots+\overline{f_{n d-1}}\right)=\overline{q f}+\bar{r} .
$$

Thus uniqueness of \bar{q} implies $\bar{q}=1$ or $q=1+\mu_{1}$ with μ_{1} being nilpotent. Therefore, q is invertible and $q^{-1}=1+\mu$ with $\mu \in \operatorname{nil}(A)$.

5.4 Pyramidal extension

In this section we study one of the important tools to solve Anderson's conjecture viz. pyramidal extension.

Definition 5.4.1. An extension of monoids $N \subseteq M$ is called integral if for every $x \in M$, $x^{n} \in N$ for some n. An extension is called a pyramidal extension if the following conditions hold:

1. M is torsionfree, cancellative, finitely generated, normal and has no non-trivial units.
2. There is a homomorphism (not unique) $\delta: M \rightarrow \mathbb{Z}$ such that $N=\{x \in M \mid \delta(x) \leq 0\}$.
3. There is an element $v \in M-N$ such that $\langle v, N\rangle$ is integral over M. The element v is also called as vertex. This means that for $x \in M$, there exists $m>0$ and $y \in N$ such that $x^{m}=y v^{a}$.

Remark 5.4.2. In geometric terms, $N=M \cup \Delta$, where Δ is a pyramid with vertex v and M is a polytope such that they intersect in the facet opposite to v (see Appendix).

Statement (3) actually says that for $x \in M, x^{n}=v^{a} y$ for some $y \in N$. Before proving the main proposition on pyramidal extension, we first prove a couple of lemmas.

Lemma 5.4.3. If $x \in M$ and $\delta(x) \geq \delta(v)$, then $x=v y$ for some $y \in M$.

Proof. Using the condition (3) of definition 2.4.1, we have $x^{n}=v^{a} y$ for some a. Under the image of δ we have $n \delta(x)=a \delta(v)+\delta(y)$. Since $\delta(y) \leq 0$, we have $n \delta(x) \leq a \delta(v)$. But since $\delta(x) \geq \delta(v)$, we have $n \leq a$. Hence $\left(v^{-1} x\right)^{n}=v^{a-n} y \in M$. Since M is normal, we have $v^{-1} x \in M$ and hence the result.

Remark 5.4.4. Let H be the integral closure of $\langle v\rangle$ in $g p(M)$. Then $H=\langle v\rangle$.
Lemma 5.4.5. If v is the vertex of the pyramidal extension $N \subseteq M$, then $\langle v\rangle$ is extremal in M.

Proof. Let $x y \in\langle v\rangle$, then $x y=v^{a}$ for some $a>0$. Using (3) of definition 5.4.1, we have (for common m), $x^{m}=v^{b} s$ and $y^{m}=v^{c} t$ with $b, c \geq 0$. Now $x y=v^{b+c} s t=v^{a}$ forces $b=c=1$, as M has no non-trivial units. Since $\langle v\rangle$ is integrally closed it follows $x, y \in\langle v\rangle$.

Now we move towards the main theorem of this section:
Let x_{1}, \ldots, x_{d} generate M. Let us fix $m>0$ such that $x_{i}{ }^{m} \in\langle N, v\rangle$ for all i. Hence $x^{m}=v^{a} y$ for all $x \in M$.

Definition 5.4.6. Let $\operatorname{deg}(x)$ denote the least a in the expression $x^{m}=v^{a} y$ for fixed m.
Remark 5.4.7. $\operatorname{deg}\left(v^{a}\right)=a m$.
Lemma 5.4.8. If $x \in M$ and $\operatorname{deg}(x) \geq \operatorname{deg}\left(v^{a}\right)$, with $a \geq 0$, then $x=v^{a} y$ for some $y \in N$ with $\operatorname{deg}(y) \leq \operatorname{deg}(x)-\operatorname{deg}\left(v^{a}\right)$.

Proof. Let $x^{m}=v^{a} y$ for some $y \in M$ and $b>a m$. Hence $\left(v^{-a} x\right)^{m}=v^{b-a m} y \in M$ and therefore $v^{-a} x \in M$ as M is normal.

Definition 5.4.9. Let $f \in A$, we write $\operatorname{def}(f)<d$, if $f=r_{1} w_{1}+\cdots+r_{n} w_{n}$ for some $n>0$, where $r_{i} \in L$ and $w_{i} \in M$ and $\operatorname{deg}\left(w_{i}\right)<d$. An element $g \in A$ is monic if $g=v^{a}+f$ with $\operatorname{deg}(f)<\operatorname{deg}\left(v^{a}\right)$. Then we put $\operatorname{deg}(g)=\operatorname{deg}\left(v^{a}\right)=a m$.

Remark 5.4.10. Let g be a monic polynomial and $f \in A$. Then we can write $f=g q+r$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$.

Proposition 5.4.11. Let $N \subseteq M$ be a pyramidal extension with vertex v. Let (R, \mathcal{M}_{R}) be a local ring and let \mathcal{M} be the maximal ideal of $R[N]$ generated by \mathcal{M}_{R} and $N-\{1\}$. Let P be a finitely generated projective $R[M]$-module. If P_{v} is free, then $P_{\mathcal{M}}$ is free.

Proof. Let $L=R[N]_{\mathcal{M}}$ and $A=R[M]_{\mathcal{M}}$. Let

$$
S:=\{\text { set of all monic polynomial }\}
$$

and

$$
B:=\{\alpha+(f / g): \alpha \in L, g \in S, f \in A, \operatorname{deg}(f)<\operatorname{deg}(g)\}
$$

Let P be a projective $R[M]$-module. We now apply Proposition 3.4.8. To do so, we first check the following condition which are:
(1) $A / f A$ is a finitely generated L-module for all $f \in S$.

By using Lemma 5.4.3, we have $A / f A$ generated by monomial $m_{i} v^{k}$, where m_{i} is the generating set of M. Since $\operatorname{deg}\left(m_{i} z^{k}\right)<\operatorname{deg}(f)$, we have only finitely many such monomials and hence $A / f A$ is finitely generated.
(2) $G L_{n}\left(\overline{S^{-1} A}\right)=G L_{n}\left(S^{-1} A\right) / G L_{n}(\bar{A})$. where GL_{n} is the set of all $n \times n$ invertible matrices. The proof of this statement is bit lengthy and hence we postpone it to after this proposition.
(3) There is an L-algebra $B \subset S^{-1} A$ with $S^{-1} A=A+B$ and $\mathfrak{m} B \subset J(B)$, where \mathfrak{m} is the maximal ideal of the local ring R and $J(B)$ denotes the Jacobson radical of the ring B.

Every element in $S^{-1} A$ has the form f / g, where g is a monic polynomial. Writing $f=g q+r$ and using Lemma 5.4.3, it follows $f / g=q+r / g \in A+B$. Hence $S^{-1} A=A+B$.

If $m_{i} \in \mathfrak{M}$ and $\alpha_{i}+f_{i} / g \in B$, then $u=1+\sum m_{i}\left(\alpha_{i}+f_{i} / g\right)=e+f / g$, where $f=\sum m_{i} f_{i}$. Therefore, $u=e\left(g+e^{-1} f\right) / g$ which is a unit in $S^{-1} A$, as $g+e^{-1} f$ is monic (because $\left.\operatorname{deg}\left(e^{-1} f\right)<\operatorname{deg}(f)<\operatorname{deg}(g)\right)$. Hence $\mathfrak{M} B \subset J(B)$.
(4) $P_{S} \simeq\left(A_{S}\right)^{n}$ and $\bar{P} \simeq \bar{A}^{n}$ for some n.

Since $A_{\text {red }}=k[v]$ where k is a field, $\bar{P} / \operatorname{nil}(\bar{A}) \bar{P}$ if free by Lemma 1.4.5 and so is P. If $v \in S$ is such that P_{v} is free, the P_{S} is free . Also since $R[M]$ is a domain, it has a constant rank and therefore rank $P_{S}=\bar{P}$.

Let I be an ideal in $R[M]$ generated by $N-\{1\}$. Then I as an R-module is a free module over R with basis $X=\{y z \mid y \in N-\{1\}, z \in M\}$. Then the R-algebra $C=R[M] /\langle N-\{1\}\rangle$ is a free R-module with basis $Y=M-X$. In C, the multiplication is defined in a natural way i.e. R-linear extension of:

$$
x \cdot y= \begin{cases}x y & \text { if } x y \in Y \\ 0 & \text { if } x y \in M-X\end{cases}
$$

Let $Y_{n}:=\{x \in Y \mid \delta(x)=n\}$ and $C_{n}=R\left[Y_{n}\right]$. Then $C_{n}=0$ for $n<0$ as $N-\{1\} \subset X$. Hence $C=C_{0} \oplus C_{1} \oplus \cdots$ is \mathbb{Z}-graded (positively graded) with $C_{0}=R$.

Lemma 5.4.12. If $i \geq 0$, then $\nu: C_{i} \rightarrow C_{i+\delta(v)}$ given by $c \mapsto v c$ is an isomorphism.

Proof. It is sufficient to prove that $v Y_{i}$ is bijective to $Y_{i+\delta(v)}$. Let $y_{i} \in Y_{i}$, suppose $y_{i} v \notin$ $C_{i+\delta(v)}$, then $y_{i} v \in N-\{1\}$. Hence $y_{i} v=x z$ for $x \in N-\{1\}$. Since $\delta\left(y_{i}\right)>0$ and and $\delta(x) \leq 0$, therefore $\delta(v)<\delta(z)$. From Lemma 5.4.8, we have $z=s v$ for some $s \in N$.

Therefore, by cancellation $y=x s$ implies $y \in N-\{1\}$, a contradiction.
The map is injective because it is a domain. To check for surjectivity, let $y \in Y_{i+\delta(v)}$. Then by Lemma 5.4.3, we have $y=v x$ for some $x \in M$. Hence x must lie in Y_{i}, otherwise $x \in N-\{1\}$. But then $y \in N-\{1\}$, which is a contradiction.

Now we tackle the case (2) of Proposition 5.4.11.
Proposition 5.4.13. Let A be a L-algebra and S be a closed set as defined in Proposition 5.4.11, then $G L_{n}\left(\overline{S^{-1} A}\right)=G L_{n}\left(S^{-1} A\right) / G L_{n}(\bar{A})$.

Proof. Let $L / \mathfrak{M}=R / \mathfrak{M}_{R}=k$ (a field). Then

$$
\bar{A}=A / \mathfrak{M} A=R[M] /\langle m, N-\{1\}\rangle=k[M] /\langle N-\{1\}\rangle .
$$

If $x \in M$, then $x^{m}=v^{a} y$ by 5.4.1 for some $m>0, y \in N$. Hence either $x \in v^{\mathbb{Z}_{+}}$, where $v^{\mathbb{Z}_{+}}:=\left\{1, v, v^{2} \ldots\right\}$ or x is nilpotent modulo $N-\{1\}$. By Lemma 5.4.5, $\langle v\rangle$ is extremal and hence $\mathrm{R}[M-\langle v\rangle]$ is an ideal. Therefore $R[M] /\langle M-\langle v\rangle\rangle \simeq R[v]$. Hence

$$
(R[M] /\langle N-\{1\}\rangle)_{\mathrm{red}} \simeq R[v] \text { and } \bar{A}_{\mathrm{red}} \simeq k[v]
$$

because $\langle M-\langle v\rangle\rangle /\langle N-\{1\}\rangle$ is nilpotent as discussed above.
Since S was a closed set in A, let us look its image in $\bar{A}_{\text {red }}=k[v]$. If $f \in S$, then $f=v^{a}+\Sigma s_{i} m_{i}$ for some $s_{i} \in L, m_{i} \in M$ with $\operatorname{deg}\left(m_{i}\right)<a \operatorname{deg}(v)$. Since we are going modulo $\left\langle M-v^{\mathbb{Z}_{+}}\right\rangle$, only those m_{i} such that $m_{i}=v^{j}$ will survive. Since $\operatorname{deg}\left(m_{i}\right)<a \operatorname{deg}(v)$, we have $j<a$. Furthermore, s_{i} will go to its residue class in k. Hence S goes to monic polynomials in $k[v]$. Conversely, every monic polynomial can be trivially lifted (identify the coefficient as s_{i}). Hence

$$
\left(\overline{S^{-1} A}\right)_{\mathrm{red}} \simeq k(t)
$$

Therefore it follows that $\bar{S}^{-1} A$ red is a local ring, and hence $S L_{n}\left(\overline{S^{-1} A}\right)=E_{n}\left(\overline{S^{-1} A}\right)$ and $S L_{n}\left(S^{-1} A\right) \rightarrow S L_{n}\left(\overline{S^{-1} A}\right)$ is onto. Hence we only need to prove $U\left(S^{-1} A\right) \oplus U(\bar{A}) \rightarrow$ $U\left(\overline{S^{-1} A}\right)$ is surjective (Here $S L_{n}$ means $n \times n$ matrix of determinant 1 and E_{n} mean group of elementary matrix generated by $\left\langle I+\lambda e_{i j}\right\rangle$, where $i \neq j$ and $e_{i j}$ is the matrix units. See [11] for more details).

From above we know that $C=R[M] /\langle N-\{1\}\rangle$ has a graded structure. Hence

$$
\bar{A}=C / \mathfrak{M} C=\overline{A_{0}} \oplus \overline{A_{1}} \oplus \cdots
$$

where $\overline{A_{i}}=C_{i} / \mathfrak{M} C_{i}$ and a modification of Lemma 5.4.12, we have $\overline{A_{i}} \rightarrow \overline{A_{i+\delta(v)}}$. An unit of $\overline{S^{-1} A}$ has the form f / s where $s \in$ image of $S \subset U\left(S^{-1} A\right)$ and $f \in \bar{A}$ divides some element of the image of S. Since $\bar{A}_{\text {red }}=k[v]$, implies that upto a factor of k^{*}, f maps to a monic polynomial in $k[v]$. Hence by Proposition 5.3.1 $f=(1+\mu) g$, where μ is nilpotent and $g=v^{m}+a_{m \delta(v)-1}+\cdots+a_{0}$ with $a_{i} \in \overline{A_{i}}$. Since $(1+\mu) \in U(\bar{A})$, it will be sufficient to prove that g lies in image of S. We lift g to h where $h=v^{m}+b_{m \delta(v)-1}+\cdots+b_{0}$ where b_{i} 's are linear combination of L and Y_{i}. Since the element of C_{i} have smaller degree that t^{m} for $i<m e$, we have lifted g to a monic element (here Y_{i} is the same Y_{i} we defined above the Lemma 5.4.12.

The next lemma will show that our assumption of P_{v} free is true under certain conditions.
Lemma 5.4.14. Let M be a finitely generated, normal affine monoid with no non-trivial units. let v be an element of M with $\langle v\rangle$ extremal. Then $\left\langle M, v^{-1}\right\rangle \simeq \mathbb{Z} \times M_{1}$ where \mathbb{Z} is generated by v and M_{1} has no non-trivial units.

Proof. Let $G=\operatorname{gp}(M)$. If $v=w^{n}$, with $w \in G$, then by normality of $N, w \in M$. Since $\langle v\rangle$ is extremal, would imply $w \in v$ which would contradict the fact that v is the generator of $\langle v\rangle$. Hence v is an unimodular element of G (see [11] chapter 14.12) for the definition of unimodular element). Since G is a free group, we can find a homomorphism $\phi: G \rightarrow \mathbb{Z}$ such that $\phi(v)=1$ (because of unimodularity). Let $M_{1}=\left\{x \in\left\langle M, v^{-1}\right\rangle \mid \phi(x)=0\right\}$. To check the surjectivity assume $x \in\left\langle M, v^{-1}\right\rangle$ with $\phi(x)=n$. Then $\phi\left(v^{-n} x\right)=0$ which would imply $v^{-n} x \in M_{1}$. To check for injectivity let $v^{a} x=v^{b} y, x, y \in M_{1}$, then under the image of $\phi, a=b$ which in turn imply $x=y$. Hence $\left\langle M, v^{-} 1\right\rangle \simeq M_{1} \times \mathbb{Z}$. If $z \in M_{1}$ is invertible, then $z=v^{-a} x$ and $z^{-1}=v^{-b} y$ with $x, y \in M$. Then $x y=v^{a+b}$ and so $x, y \in\langle v\rangle$ since $\langle v\rangle$ is extremal. Therefore $z=1$.

Induction

Let the main theorem (stated in next chapter) holds true for any monoid of rank less than that of rank M.

Corollary 5.4.15. Assume the induction hypothesis. Let $N \subset M$ be a pyramidal extension
with vertex v. Let R be a local ring with maximal ideal \mathcal{M}_{R} and \mathcal{M} be the maximal ideal of $R[N]$ generated by \mathcal{M}_{R} and $N-\{1\}$. Let P be a finitely generated projective $R[M]$-module, Then $P_{\mathcal{M}}$ is free.

Proof. If we show P_{v} is free, then by Proposition 2.4.1, we would conclude $P_{\mathcal{M}}$ is free. Now P_{v} is a $R\left[M_{v}\right]$-module, but by Lemma 5.4.14,

$$
R\left[M_{v}\right]=R\left[M, v^{-1}\right]=R\left[\mathbb{Z} \times M_{1}\right] .
$$

By Induction, $R\left[M_{1}\right]$ satisfies the Anderson's conjecture (studied in next chapter), then by Lemma 5.4.14, $R[M \times \mathbb{Z}]$ satisfies the main theorem, hence P_{v} projective $R[M \times \mathbb{Z}]$-module is free.

Chapter 6

Swan's proof of Anderson's conjecture

D. Anderson in 1980's conjecture a problem for monoid algebra analogue to the Serre's problem for projective modules. In 1988, the conjecture was proved by J. Gubeladze. His method was based on convex geometry of affine monoids. Following Gubeladze's technique, in 1991 R.G. Swan came up with an algebraic version. This chapter deals with the algebraic version of Anderson's conjecture. To see the original proof of this theorem see [7]. This chapter deals with the resolution of Anderson's conjecture:

Main Theorem

Let R be principal ideal domain (PID) and M be an affine seminormal monoid. Then all finitely generated projective $R[M]$-modules are free.

6.1 Preliminary reductions

In this section, we will simplify the hypothesis of the main theorem. We first start by simplifying hypothesis on M.

Lemma 6.1.1. It is sufficient to prove the main theorem for M with no non-trivial units.

Proof. Let $K^{\prime}=M-U(M)$ and $K=K^{\prime} \cup\{1\}$. Now Consider the following commutative diagram:

under the maps:

1. The vertical map sends K^{\prime} to 0 and is identity on N.
2. The horizontal map are the inclusion map.

We now claim that:

1. K is a submonoid and $M K^{\prime} \subset K^{\prime}$.

Let $x, y \in K$. Since x, y are non-invertible, their product should also be non-invertible, hence its closed under multiplication. Since $\{1\} \in K, K$ has an identity element and therefore K is a submonoid of M.
2. The Diagram 6.1 is a milnor square of type A.

In Diagram 6.1, the map $f: R[M] \rightarrow R[U(M)]$ is surjective. Since

$$
f\left(r_{0}+r_{1} k_{1}+\cdots+r_{n} k_{n}\right)=f\left(r_{0}\right)=g\left(r_{0}\right),
$$

the pullback of the diagram i.e.

$$
\{(x, y) \in R[M] \times R: f(x)=g(y)\}
$$

is $R[K]$. Hence the diagram satisfies the condition of type A Milnor square

3. K is seminormal.

If $x^{2}, x^{3} \in K$ and $x \in M-K$, then x is invertible, hence x^{2}, x^{3} are invertible, a contradiction. Therefore, $x \in K$ and hence K is seminormal.

Now if P is finitely generated projective module over $R[M]$, then by Proposition 1.5.3 is extended from $R[K]$. Hence without loss of generality, we can assume M to have no nontrivial units.

Having simplified the assumption on M, we now simplify the assumption on ring R.
Lemma 6.1.2. It is enough to prove the main theorem for the case when R is local.

Proof. Using Proposition 4.4.2, we can non-trivially grade the ring $R[M]$. Hence we can now apply graded Quillen's patching Theorem 3.5.1, and hence we can assume R to be local.

Let M be a finitely generated monoid and M_{1}, \ldots, M_{n} be the set of extremal submonoids labelled in such a way that $M_{i} \supseteq M_{j}$ if $i \leq j$. Hence $M_{1}=M$ and $M_{n}=U(M)=1$. Let $U_{i}=\operatorname{Int}\left(M_{i}\right)$ for $i=1,2, \ldots, n$ and $W_{i}=U_{1} \cup \cdots \cup U_{i}$. By Lemma 5.1.14, U_{i} partitions M. Also, we have $W_{0}=\emptyset$ and $W_{n}=M$. Now this W_{i} satisfies an important property.

Lemma 6.1.3. Let W_{i} be defined as above. Then $M W_{i} \subset W_{i}$ for each i.

Proof. Let $x \in M$ and $y \in W_{i}$ (and hence in some $U_{k}, k \leq i$. Since U_{i} partitions M, we have $x y \in U_{j}$. But $U_{j} \subseteq M_{j}$, and since M_{j} is extremal, we have $x, y \in M_{j}$. Using Lemma 5.1.12, we have $M_{k} \subseteq M_{j}$, hence $j \leq q$ and hence $x y \in W_{j} \subseteq W_{i}$.

Having simplified M and R, we now simplify the hypothesis of ring $R[M]$.
Lemma 6.1.4. Let M be the monoid in the hypothesis of the main theorem. If the main theorem holds for all $R[N]$, where N is a submonoid of $\operatorname{rk}(N 0<\operatorname{rk}(M)$, then every projective $R[M]$-module is extended from $R\left[M^{*}\right]$.

Proof. Let J_{i} be an $R[M]$-submodule generated by W_{i}. Using Lemma 6.1.3, J_{i} becomes an ideal. Let $R[M] / J_{i}=A_{i}$. Then there is a natural map between $A_{i-1} \rightarrow A_{i}$, whose kernel is $R\left[U_{i}\right]$. Let $M_{i}^{*}=\{1\} \cup U_{i}$ for $i<n$. Then we make the following claim:

Following diagram is a Milnor square of type A:

where horizontal maps are natural and vertical maps takes $M_{i}^{*}-\{1\}$ to 0.

The natural map $A_{i-1} \rightarrow A_{i}$ is surjective and arguing the same as we did in Lemma 6.1.1, we see that this is indeed a Milnor square of type A.

Since $M_{i} \subsetneq M, \operatorname{rk}\left(E_{i}\right)<\operatorname{rk}(M)$ and M_{i}^{*} is filtered union of normal monoids by Lemma 5.2.5, hence all projective $R\left[M_{i}^{*}\right]$-modules are extended from $R[M]$, which by induction hypothesis are free. Since $A_{n-1}=R$, using Proposition 1.5.3, we have A_{n-1} is extended from $R\left[M_{n-1}\right]$ and since $R\left[M_{i}\right]$ is free, A_{n-2} is extended from R. Now using decreasing induction, and noting that $A_{0}=R[M]$, we arrive at the conclusion that $R[M]$ is extended from [$\left.M^{*}\right]$.

Lemma 6.1.5. If $\operatorname{rk}(M)=1$, then the main theorem holds true for $R[M]$.

Proof. If $\operatorname{rk}(M)=1$, then $R[M] \simeq R[X]$ and from the classical result of Serre's conjecture, we reach our conclusion.

Combining all the above the result, we have the final simplification as:
Remark 6.1.6. It is sufficient to prove the main theorem under the following assumption

1. R is local and M has no non-trivial units.
2. $M=\operatorname{Int}(N) \cup\{1\}$, where N is a finitely generated, cancellative, torsionfree, normal monoid with no-non trivial units (see Proposition 4.2.10).
3. (Induction hypothesis) Main theorem hold for monoids of rank $<r k(M)$ and is true for $r k(M)=1$.

6.2 Non-degenerate pyramidal extension

In the previous chapter, we have discussed the notion of pyramidal extension of N over M. In this section we use pyramidal extension as a tool to prove the main theorem. Since we are using induction to prove our theorem, we now require pyramidal extension to be such that $\delta(w)<0$ so that this gives $\operatorname{rk}(N)=\operatorname{rk}(M)$ (the next lemma). Such a pyramidal extension is called non-degenerate extension. This turns out to be the general case scenario, since we have reduced the size of the monoid without decreasing the rank.

Lemma 6.2.1. If $N \subset M$ be a pyramidal extension with $\delta: M \rightarrow \mathbb{Z}$ such that $\delta(w)<0$, then $\operatorname{gp}(M)=\operatorname{gp}(N)$, where $\operatorname{gp}(M)$ is generated by w and $w^{n} x$ for large enough n for
$w^{n} x \in N$ and $x \in \operatorname{gp}(M)$.

Proof. If $x \in \operatorname{gp}(M)$, then $\left(w^{-1}\right)^{n} . w^{n} x=x \in \operatorname{gp}(N)$. Other way inclusion is obvious.

We start with a lemma which says normalisation preserves pyramidal extension.
Lemma 6.2.2. Let G be a finitely generated free abelian group and let $N \subset M$ be a nondegenerate pyramidal extension of finitely generated normal submonoids of G. Then the normalisation of G also forms a non-degenerate pyramidal extension $\widetilde{N} \subset \widetilde{M}$.

Proof. Let $\delta: M \rightarrow \mathbb{Z}$ be the given map. Using Proposition 4.4.2, we can extend this map to $k \delta: G \rightarrow \mathbb{Z}$, where $G=\operatorname{gp}(M)$. So, without the loss of generality, we replace δ with $k \delta$. Now let $\bar{N}=\{x \in \widetilde{M} \mid \delta(x) \leq 0\}$. Thus if $x \in \bar{N}$, then $x^{n} \in M$ and $x^{n} \in \bar{N}$, hence $x^{n} \in N$ and therefore $x \in \tilde{N}$. Other way inclusion is obvious.

Let $\left(R, \mathcal{M}_{R}\right)$ be a local ring and M^{*} denote the submonoid $\operatorname{Int}(M) \cup\{1\}$ and \mathcal{M}^{*} denote the maximal ideal of $R\left[N^{*}\right]$ generated by \mathcal{M}_{R} and $N^{*}-\{1\}$. The next proposition proves a result similar to Proposition 5.4.11.

Lemma 6.2.3. Let R be a local PID. Let $N \subset M$ be a non-degenerate pyramidal extension. If P is a finitely generated projective $R\left[M^{*}\right]$-module, then $P_{\mathcal{M}^{*}}$ is free.

Proof. Since P is finitely generated $R\left[M^{*}\right]$ module, and M^{*} is a filtered union of homothetic submodule $M^{(m)}$ with centre at z (which we choose to lie in $\operatorname{Int}(M)$). By Lemma 5.2.5, all generators m_{1}, \ldots, m_{r} lie in some $M^{(m)}$. So using Lemma 1.4.5, we have a projective $R\left[M^{(m)}\right]$-module Q such that $P \simeq Q \otimes R[M]$.

Now we claim the following:

1. Let θ_{m} be same entity as defined in 5.2.1, then $\theta_{m}(N) \subset \theta_{m}(M)$ is a non-degenerate pyramidal extension and hence $N^{(m)} \subset M^{(m)}$ is a non-degenerate pyramidal extension.

Since θ_{m} is injective by Lemma 5.2.3, $\theta_{m}(M) \subset \theta_{m}(N)$ is a pyramidal extension. Using Lemma 6.2.2, it's normalisation is also pyramidal extension, i.e. $M \subset N$ is a pyramidal extension.
2. $\mathcal{M}^{*} \cap R\left[N^{(m)}\right]=\mathcal{M}^{\prime}$ (Here \mathcal{M}^{\prime} is the maximal ideal of $R\left[N^{(m)}\right]$ generated by \mathcal{M}_{R} and $\left.N^{(m)}-\{1\}\right)$.

One way is obvious. For the other way we know $\mathcal{M}^{*} \cap R\left[N^{(m)}\right]$ is an ideal in $R\left[N^{(m)}\right]$. Since \mathcal{M}^{\prime} is a maximal ideal and $\mathcal{M}^{*} \cap R\left[N^{(m)}\right] \subseteq \mathcal{M}^{\prime}$, it implies $\mathcal{M}^{*} \cap R\left[N^{(m)}\right]=\mathcal{M}^{\prime}$.

By Proposition 5.4.11, $Q_{\mathcal{M}^{\prime}}$ is free. Since $N^{(m)} \subset N^{*}$ and $\mathcal{M}^{*} \cap R\left[N^{(m)}\right]=\mathcal{M}^{\prime}$, so $P_{\mathcal{M} *}$ is extended from $Q_{\mathcal{M} *}$ and hence is free.

Proposition 6.2.4. Let R be a local PID. If $N \subset M$ is a non-degenerate pyramidal extension, then $\mathcal{P}\left(R\left[N^{*}\right]\right) \rightarrow \mathcal{P}\left(R\left[M^{*}\right]\right)$ is onto.

Proof. If the diagram

is Milnor square of type B , then we are done. To show that we take $S=R\left[N^{*}\right]-\mathcal{M}^{*}$. Now we must show that $R\left[N^{*}\right] /(f) \rightarrow R\left[M^{*}\right] /(f)$ isomorphism for all $f \in S$. It is sufficient to check this locally on $R\left[N^{*}\right]$ (using a variant of the result that $M_{m}=0$ for all m in $\max R$ for a R-module M implies $M=0$). At \mathcal{M}^{*}, the localisation makes both side 0 (because f, an invertible element becomes a zero-divisor).

Lemma 6.2.5. Let \mathfrak{p} be the prime ideal in $R\left[N^{*}\right]$ not contained in \mathcal{M}^{*}, then $\mathfrak{p} \cap \mathcal{N}^{*}=\emptyset$.

Proof. Let $x \in N^{*} \cap \mathfrak{p}$. As $x \neq 1$, it follows that $x \in \operatorname{Int}(N)$. Let $y \in \operatorname{Int}(N)$. Hence $y^{n}=$ $x w \in N$ for some q or $y^{2 n}=x\left(x w^{2}\right) \in \operatorname{Int}(N)$, and hence $y \in \mathfrak{p}$. Therefore, $\mathfrak{p} \supseteq N^{*}-\{1\}$. Since $R\left[N^{*}\right] /\left(N^{*}-\{1\}\right)=R$ is local, we have $\mathfrak{p} \subseteq M^{*}$.

Observing that $N^{*} \subset R\left[N^{*}\right] \mathcal{N}$ for some maximal ideal \mathcal{N} in $R\left[N^{*}\right]$. The next lemma says that $R\left[N^{*}\right]$ is locally equal to $R\left[M^{*}\right]$ at all maximal ideals other than \mathcal{M}^{\prime} and hence the Diagram 6.3 would be Karoubi square or Milnor square of type B.

Lemma 6.2.6. Let $N=\{x \in M \mid \delta(x) \leq 0\}$ have the same rank as M. Then $N^{-1} N=$ $N^{-1} M=M^{-1} M$.

Proof. One way inclusion is obvious. For other way, let $x / y \in M^{-1} M$. Since N and M have same rank, hence their exists w such that $\delta(w)<0$. Let $x^{\prime}=w^{n} x$ and $y^{\prime}=w^{n} y$. Hence $x / y=x^{\prime} / y^{\prime}$. If we make n large enough, then $x^{\prime}, y^{\prime} \in N$. Hence the $N^{-1} N=M^{-1} M$.

Using Lemma 6.2.6, we have $R[N *]_{\mathcal{N}} \xrightarrow{f} R[M *]_{\mathcal{N}}$ as an isomorphism for a maximal ideal \mathcal{N} in $R[N *]$ because $N^{*-1} N^{*}=N^{*-1} M$. and hence $N^{*-1} R\left[N^{*}\right] \simeq N^{*-1} R\left[M^{*}\right]$. Further localisation gives $R\left[N^{*}\right]_{\mathcal{N}} \simeq R\left[M^{*}\right]_{\mathcal{N}}$ and hence the result follows by taking quotient with (f).

6.3 Admissible sequence

The previous section relied on the existence of non-degenerate pyramidal extension. In this section we show the existence of such a pyramidal extension.

Definition 6.3.1. A sequence of submonoids $M=M_{0}, M_{1}, \ldots, M_{n}$ is called an admissible sequence if each M_{i} is torsionfree, cancellative, finitely generated and normal in M and has no non-trivial units, and for each i, either of these happens:

1. $M_{i} \subset M_{i+1}$
2. $M_{i} \supset M_{i+1}$ is a non-degenerate pyramidal extension.

It is called weakly admissible if (2) is only pyramidal extension.
Since $\operatorname{rank}\left(M_{i}\right)=\operatorname{rk}\left(M_{j}\right)$ for all i, j, by Lemma 5.2 .6 we have, $\operatorname{Int}\left(M_{i}\right)=\operatorname{Int}\left(M_{j}\right)$ for all i, j.

Now we will try to show that M in the main theorem has an admissible sequence such that M_{n} is free and $M_{n} \subset M^{*}$.

Lemma 6.3.2. If M is an affine monoid and has no non-trivial units, then there is a free monoid $F \subset M^{*}$ with $\operatorname{gp}(F)=\operatorname{gp}(M)=G$.

Proof. We first claim that:
If $z \in \operatorname{Int}(M)$ and $u \in g p(M)$, then for some $m, z^{m} u \in M$ and hence $z^{m+1} u \in \operatorname{Int}(M)$.

Proof of the claim: If $u=x / y$, then take $z^{m}=y w$, then $z^{m} u=w x \in M$.
Using this, if G has free generators t_{1}, \ldots, t_{n}, then for some common $r, x_{i}=z^{r} t_{i} \in \operatorname{Int}(M)$. Let $x_{0}=z^{r}$ and N be a submonoid of M generated by $\left\langle x_{0}, \ldots, x_{n}\right\rangle$. Now it easily follows that $\operatorname{gp}(N)=\operatorname{gp}(M)$ (because of x_{0}, we can invert z^{r} and hence show that t_{i} 's $\operatorname{gp}(N)$). Since $\operatorname{rk}(N)=d$, all the relation between x_{i} 's (since i runs from 0 to d i.e. it has $d+1$ elements), will be of the form

$$
a_{0} x_{0}+a_{1} x_{1}+\cdots+a_{s} x_{s}=a_{s+1} x_{s+1}+\cdots+a_{d} x_{d}
$$

where all $a_{i} \geq 0$. If $a_{0}, a_{1}>0$, and $a_{0} \leq a_{1}$, replace x_{0} by $x_{0} x_{1}$ getting a new relation

$$
a_{0} x_{0}^{\prime}+a_{1}^{\prime} x_{1}+\cdots+a_{s} x_{s}=a_{s+1} x_{s+1}+\cdots+a_{d} x_{d}
$$

where $a_{1}^{\prime}=a_{1}-a_{0}$. This decreases the sum of the a_{i}. Repeating the process (without disturbing the group it generates), we eventually replace x_{0}, \ldots, x_{d} with y_{0}, \ldots, y_{d} which generate $\operatorname{gp}(M)$ and satisfy a relation of the form $a y_{0}=b y_{d}$. The normalisation N^{\prime} of $\left\langle y_{0}, y_{d}\right\rangle$ is isomorphic to \mathbb{N} (because normal rank 1 monoid is isomorphic to \mathbb{N}) and lies in M^{*}. Let w be the generator of N^{\prime}. Then $F_{1}=\left\langle y_{1}, \ldots, y_{d-1}\right\rangle$ is a free monoid as y_{i} 's have no relation. Hence $\left\langle w, F_{1}\right\rangle$ is also a free monoid with the required properties because there is no relation among generators. Note that $\operatorname{gp}(N) \subset \operatorname{gp}(F) \subset \operatorname{gp}(M)$ so $\operatorname{gp}(F)=\operatorname{gp}(M)$.

Proposition 6.3.3. Let M be torsionfree, cancellative, finitely generated, normal monoid with no non-trivial units. Let $F \subset M^{*}$ be a free monoid with $\operatorname{gp}(M)=\operatorname{gp}(F)$. Then there is an admissible sequence $M=M_{0}, \ldots, M_{n}=F$.

To prove this proposition, we will require the following result. But before that we shall discuss the following consequences of this proposition:

Corollary 6.3.4. Let M be a finitely generated, normal, affine monoid with no non-trivial units. Then there is a weakly admissible sequence $M=M_{0}, \ldots, F, \ldots, M_{n}=\{1\}$.

Proof. We already have sequence till F due to previous proposition. Now we claim that: there exists a sequence of monoid generated by removing one free basis of F at a time

So let x_{1}, \ldots, x_{n} be generators of F and let $\delta: F \rightarrow \mathbb{Z}$ by $\delta\left(x_{1}\right)=1$ and $\delta\left(x_{i}\right)=0$ for $i \neq 1$. This would show that $\left\langle x_{2}, \ldots, x_{n}\right\rangle$ is pyramidal over F and we can continue this process to
reach 1.

Lemma 6.3.5. Let M be finitely generated, normal affine monoid with no non-trivial units. Let E be an extremal monoid of M. Let $N \subset M$ be finitely generated and normal in M, and let $N \cap E \subset E^{\prime} \subset E$ with E^{\prime} finitely generated and normal in E. Then there is a finitely generated submonoid N^{\prime}, normal in M, with $N \subset N^{\prime} \subset M$ and $N^{\prime} \cap E=E^{\prime}$.

Proof. Let us take N^{\prime} to be normalisation of $\left\langle N, E^{\prime}\right\rangle$ in M and verify the above claim. Clearly, $E^{\prime} \subset N \cap E$. Let $x \in N^{\prime} \cup E$, then for some $n, x^{n}=y z$, where $y, z \in N$ and E^{\prime} respectively. Now $x \in E$ and since E is extremal implies $y \in E$ and hence $y \in N \cup E \subset E^{\prime}$. This shows $x^{n} \in E^{\prime}$. Since E^{\prime} is normal, we have $x \in E^{\prime}$ and hence the proof.

Lemma 6.3.6. Let M be finitely generated, normal affine monoid, with no non-trivial units. Let $E \neq M$ be an extremal monoid. Let $E^{\prime} \subset E$ be a pyramidal extension, then there is a non-degenerate pyramidal extension $N \subset M$ with $N \cap E=E^{\prime}$.

Proof. Since $E^{\prime} \subset E$ is pyramidal extension, we have $E^{\prime}=\{x \in E \mid \delta(x) \leq 0\}$ and $\delta(v)>0$ for some $v \in E$ and E integral over $\left\langle v, E^{\prime}\right\rangle$. By Proposition 4.4.3, we can extend this to $\delta^{\prime}: M \rightarrow \mathbb{Z}$. Since E is extremal, we have $\phi: M \rightarrow \mathbb{N}$ with $E=\phi^{-1}(0)$. Now define $\delta_{k}: M \rightarrow \mathbb{Z}$ as $\delta_{k}(x)=\delta^{\prime}(x)-k \phi(x)$. Hence δ_{k} also extends E to M. Let T be the generator of M. If k is large enough, then $\delta_{k}<0$ for all $T-E$. Hence $N=\left\{x \in M \mid \delta_{k}(x) \leq 0\right\}$ is the required submonoid which give pyramidal extension. To see it satisfies the integral property, observe that if $x \in M$, then $x=y z$, for $y \in E$ and and $z \in T-E$. Now let $z^{m}=v^{a} w$ with $w \in E^{\prime} \subset N$ (because E^{\prime} integral over E), hence $x^{m}=v^{a} w y^{m} \in\langle v, N\rangle$. Finally $T-E \neq \emptyset$ as $E \neq M$, hence there exists $u \in T-E$ such that $\delta_{k}(u)<0$ which proves the extension is non-degenerate.

We now use the above lemma's to construct a new admissible sequence for a given weakadmissible sequence.

Corollary 6.3.7. Let M be finitely generated, affine normal monoid with no non-trivial units. Let $E \neq M$ be an extremal submonoid of M. Let $E=E_{0}, \ldots, E_{n}$ be a weakly admissible sequence. Then there is an admissible sequence $M=M_{0}, \ldots, M_{n}$ with $M_{i} \cap E=$ E_{i}.

Proof. Suppose inductively, we have constructed $M=M_{0}, \ldots, M_{i}$. Now if $E_{i+1} \supset E_{i}$, then Lemma 6.3.5 gives us the required $M_{i+1} \supset M_{i}$. Now suppose $E_{i+1} \subset E_{i}$ is a pyramidal extension, since $M_{i} \neq E_{i}$ (because $\operatorname{gp}\left(M_{i}\right)=\operatorname{gp}(M)$ but $\operatorname{gp}\left(E_{i}\right)=\operatorname{gp}(E)$), and $E_{i}=M \cap E_{i}$ is extremal in M_{i}, we can now apply Lemma 6.3.6 to $E_{i} \subset M_{i}$, to have a non-degenerate pyramidal extension M_{i+1}.

Corollary 6.3.8. Let M be a torsionfree, cancellative, finitely generated, normal, with no non-trivial units. Let E_{1}, \ldots, E_{m} be proper extremal submonoid of M. Assume Proposition 6.3.3 holds for monoids of rank less than that of M, then there is an admissible sequence $M=M_{0}, \ldots, M_{n}$ with $M \cap E_{i}=\{1\}$ for all i.

Proof. We use induction on m. Since Proposition 6.3.3 holds for E_{1}, so does the corollary6.3.4, hence by corollary 6.3.7 there is an admissible sequence $M=M_{0}, \ldots, M_{k}$ with $M_{k} \cap E_{1}=\{1\}$. By induction hypothesis on M_{k} and extremal submonoids $M_{k} \cap E_{i}$ for $i \geq 2$, so we can extend it.

In lieu of Corollary 6.3.8 if we take all extremal submonoids, it would follows that we have an admissible sequence $M=M_{0}, \ldots, M_{n}$ with $M_{n} \subset M^{*}$. Using Lemma 5.2.4, we know M_{n} will lie in some homothetic submonoid $M^{(m)}$. Here we choose our centre z to lie in $\operatorname{Int}(F)$, which in turn would lie in $\operatorname{Int}(M)$ be Lemma 5.2.6. Hence it follow that there is an admissible sequence from M to M^{m} by setting $M_{n+1}=M^{(m)}$ (we apply the condition (1) of 6.3.1).

Since as construction θ_{m} is injective by Lemma 5.2.3, applying Lemma 6.2.2 on the sequence

$$
\theta_{m} M=\theta_{m} M_{0}, \ldots, \theta_{m} M_{n}
$$

gives an admissible sequence $M^{(m)}, \ldots, M_{n}^{(m)}$ where $M_{n}^{(m)} \subset\left(M^{(m)}\right)^{(m)}$. Hence combining this sequence with the original sequence we get a new admissible sequence from M to $\left(M^{(m)}\right)^{m}$. Now for any homomorphism $\theta, \theta(\widetilde{M})$ is integral over $\theta(M)$, hence normalisation of $\theta(\widetilde{M})$ is same as that of $\theta(M)$. Therefore $M^{(m)^{(m)}}$ is the normalisation of $\theta_{m}{ }^{2}(M)$. Now we repeat this process till normalisation of $\theta_{m}{ }^{s}(M)$. By Lemma 5.2.8, $\theta_{m}{ }^{s}(M)$ lies in some F^{*} for some large s and hence its normalisation too lies in that F^{*}. Choose the next element of the sequence to be F. Hence we have an admissible sequence from M to F.

6.4 Final proof

To prove the final theorem we need the following lemma.
Lemma 6.4.1. Let M has an admissible sequence $M_{0}, \ldots M_{n}$, Then

$$
\mathcal{P}\left(R\left[M^{*}{ }_{n}\right]\right) \rightarrow \mathcal{P}\left(R\left[M^{*}\right]\right)
$$

is onto.

Proof. We prove it by induction of i, i.e. $\mathcal{P}\left(R\left[M^{*}{ }_{i}\right]\right) \rightarrow \mathcal{P}\left(R\left[M^{*}\right]\right)$. If case (1) of 6.3.1 happens and if $Q \in \mathcal{P}\left(R\left[M^{*}{ }_{i}\right)\right]$, then construct Q_{i+1} as $Q_{i} \otimes R\left[M_{i+1}^{*}\right] \in \mathcal{P}\left(R\left[M^{*}{ }_{i}\right)\right]$. This is clearly projective and by induction the map $\mathcal{P}\left(R\left[M^{*}{ }_{i+1}\right]\right) \rightarrow \mathcal{P}\left(R\left[M^{*}\right)\right)$ is onto. In case (2) of 6.3.1, we use Proposition 6.2.4 to conclude the result.

Main proof

If $M_{n} \subset M^{*}$, then $\mathcal{P}\left(R\left[M^{*}{ }_{n}\right]\right) \rightarrow \mathcal{P}\left(R\left[M^{*}\right]\right)$ is onto. Since M_{n} is free and $M_{n} \subset M^{*}$, we have $R\left[M^{*}{ }_{n}\right] \subset R\left[M_{n}\right] \subset R\left[M^{*}\right]$ and since $R\left[M^{*}\right]$ in extended from $R\left[M^{*}{ }_{n}\right]$ it is extended from $R\left[M_{n}\right]$. Since M_{n} is free, we have $\mathcal{P}\left(R\left[M_{n}\right]\right)=\mathbb{Z}$ and therefore $\mathcal{P}\left(R\left[M^{*}\right]\right)=\mathbb{Z}$. This completes the final algebraic proof of Gubeladze's theorem due to R.G. Swan (cf. [15]).

Chapter 7

Converese and application of Gubeladze's theorem

In previous chapter we have stated and discussed the Anderson's conjecture. It turns, it admits a converse as follows:

7.1 Converse of Anderson's conjecture

Theorem 7.1.1. Let M be a cancellative monoid. If $\operatorname{Pic}(R[M])=1$ for every PID R of characteristics 0 , then M is seminormal.

Proposition 7.1.2. Let G be an abelian group. Then the ring $R[G]$ is seminormal for every PID R of characteristics 0 if and only if G is torsionfree.

Using Proposition 7.1.2 we give a proof of 7.1.1.

Proof. From [4] (lemma 8.1) we know that $R(X)$ is a PID if R is so. Since every projective $R[X]$-module P is free, its extension onto $R(X)$ is also free and hence $\operatorname{Pic}(R[X]) \rightarrow$ $\operatorname{Pic}(R(X))$ is injective. Hence it follows that
$\operatorname{Pic}(R[M][X])=\operatorname{Pic}(R[X][M]) \rightarrow \operatorname{Pic}(R(X)[M]) \rightarrow \operatorname{Pic}(R[M](X))=0$.

Since $R(X)$ is a PID we have $\operatorname{Pic}(R[M])=\operatorname{Pic}(R(X)[M])=0$ and hence $\operatorname{Pic}(R[M][X])=0$. By ([4]-theorem 4.74), we have $R[M]$ to be seminormal and hence $R[\operatorname{gp}(M)]$ is seminormal. Hence $\operatorname{gp}(M)$ is torsionfree and therefore M is torsionfree as desired in the theorem.

To prove Proposition 7.1.2, we need the following lemmas:
Lemma 7.1.3. Let R be a commutative ring and G be an abelian group. Let T be the torsion subgroup of G. Then if $R[G]$ is seminormal so is $R[T]$ is seminormal.

Proof. Using the structure theorem of G, we have $G=T \oplus F$, where T and F are torsion and free part respectively. Let $z^{2}, z^{3} \in R[T], z \in R[G]$. Since there exists a natural homomorphism between $G \xrightarrow{\pi} T$, we assume $w=\pi(z)$. Then w satisfies $w^{2}=z^{2}, w^{3}=z^{3}$ and hence $R[T]$ is seminormal.

Lemma 7.1.4. Let T be an abelian torsion group with infinite number of distinct residue characteristics. Let H be a finite subgroup of T of order n. Then $R[H]$ is seminormal if $R[T]$ is seminormal.

Proof. Let $H \subset T$ and $z^{2}, z^{3} \in R[H], z \in R[T]$ and $|H|=n$. Consider $H^{\prime}=\langle H, z\rangle$ and choose a maximal ideal \mathfrak{m} such that $R / \mathfrak{m} R=k$ has characteristics co-prime to n. Using Maschke's theorem (see [10]), we have $k[H]$ and $k\left[H^{\prime}\right]$ as a reduced ring and hence they are seminormal. Now consider the diagram

Let \bar{z}^{2} and \bar{z}^{3} be the image of $z^{2}, z^{3} \in k[H]$. Hence $z \in R[H]+\mathfrak{m} R\left[H^{\prime}\right]$. Now $R\left[H^{\prime}\right]=$ $R[H] \oplus F$, where $F=H^{\prime}-H$. Hence $z \in R[H]+\mathfrak{m} F$. Since we have infinite supply of \mathfrak{m} hence $z \in \cap_{\mathfrak{m}}(R[H] \oplus \mathfrak{m} F)$ and because F is finite set, we have $\cap \mathfrak{m} F=\emptyset$ or $z \in$ $\cap_{\mathfrak{m}}(R[H] \oplus 0=R[H])$. Hence $R[H]$ is seminormal.

Lemma 7.1.5. Let R be a domain of characteristics 0 . Let H be a finite group of order n such that $R[H]$ is seminormal and $n \notin \mathrm{U}(R)$, then $R / n R$ is a reduced ring.

Proof. cf. [14]

Now we give the proof of Proposition 7.2.2

Proof. Let G be a group with non-zero torsion subgroup T such that $R[G]$ is seminormal. Choose H to be subgroup be of order n and consider the ring of integers $A=\mathbb{Q}[\sqrt{n}]$. Let $R=A\left[s^{-1}\right]$ be a PID with $s \in A$ prime to n. Hence $R[T]$ is seminormal, but $R / n R$ is not reduced, hence $R[H]$ is not seminormal, a contradiction to Lemma 7.1.4. Hence G is a torsion'free group.

7.2 A question of Hartmut Lindel

As an application of Gubeladze's theorem, we can now answer a question raised by H.Lindel:
Proposition 7.2.1. Let R be a PID and M be a monoid generated by $X_{i j}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$ following the relation: $X_{i j} X_{k l}=X_{i l} X_{k j}$. Then all finitely generated projective module over $R[M]$ is free.

It follows that:

$$
R[M] \simeq R\left[X_{1}, \ldots, X_{m+n}\right] / \sim
$$

If we could prove that M is finitely generated, seminormal and affine monoid, then by Gubeladze's theorem, we could conclude the Proposition 7.2.1. We already know that M is finitely generated by $X_{i j}$. We will show that M is a submonoid of \mathbb{Z}^{m+n}. This submonoid will turn out to be normal (and hence seminormal).

Proposition 7.2.2. Their exists an isomorphism $\psi: M \rightarrow N \subset \mathbb{Z}^{m+n}$ such that

$$
N:=\left\{\left(r_{1}, \ldots, r_{m}, c_{1}, \ldots, c_{n}\right)\right\}, \text { where } r_{i}, c_{j} \geq 0 \text { and } \sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}
$$

Corollary 7.2.3. N is a normal monoid.

Proof. Observe that $\operatorname{gp}(N)=\left\{\left(r_{1}, \ldots, r_{m}, c_{1}, \ldots, c_{n}\right)\right\}$, where $\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}$. Let $x \in \operatorname{gp}(N)$. If $n x \in N$ implies $\left(n r_{1}, \ldots, n r_{m}, n c_{1}, \ldots n c_{n}\right) \in N$ implies $n r_{i}, n c_{j} \geq 0$ implies $r_{i}, c_{j} \geq 0$ and hence $x \in N$ therefore N is a normal monoid.

Now we give a proof of Proposition 7.2.2

Proof. Let \mathcal{M} be a monoid of all $m \times n$ matrices with entries in \mathbb{N} under addition. Let $\nu: \mathcal{M} \rightarrow M$ be given by $e_{i j} \mapsto X_{i j}$ where $e_{i j}$ is a unit matrix and $\psi: M \rightarrow \mathbb{Z}^{m+n}$ is given by $X_{i j} \mapsto e_{i}+f_{j}$. Then we have the following map:

$$
\mathcal{M} \xrightarrow{\nu} M \xrightarrow{\phi} \mathbb{Z}^{m+n} \text { where } e_{i j} \mapsto x_{i j} \mapsto e_{i}+f_{j} .
$$

1. $\psi \circ \nu$ is surjective.

If $m=n=1$. Then inverse image of $\left(r_{1}, c_{1}\right), r_{1}=c_{1}$ is the matrix

$$
\left[r_{1}\right]
$$

We now use induction on m and n. Let $\left(r_{1}, \ldots, r_{m}, c_{1}, \ldots r_{m}\right)$ be a given element of \mathbb{Z}^{m+n}. Consider the element $\left(r_{1}-c_{1}, \ldots, r_{m}, c_{2}, \ldots, c_{n}\right) \in \mathbb{Z}^{m+n-1}$. By induction their exists a matrix A^{\prime} as a pre-image. Now consider the matrix

$$
A=\left(\begin{array}{c|c}
c_{1} & \\
0 & \\
\vdots & A^{\prime} \\
0 &
\end{array}\right)
$$

then $\nu(A)=c_{1} x_{11}+\nu\left(A^{\prime}\right)$ and hence

$$
\psi\left(c_{1} x_{11}+\nu\left(A^{\prime}\right)\right)=\psi\left(c_{1} x_{11}\right)+\left(r_{1}-c_{1}, \ldots, r_{m}, 0, c_{2}, \ldots, c_{n}\right)=\left(r_{1}, \ldots, r_{m}, c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Hence A is the required map.
2. The map ν is injective.

If define equivalence relation in \mathcal{M} as follows:

$$
A \sim B \text { if and only if } A=B+e_{i j}+e_{p q}-e_{i q}-e_{p j} \text { or } A=B+\epsilon(i, j, p, q)
$$

(for $c_{p j}, c_{i q}>0$). The motivation for such choice of equivalence relation is $\psi(A)=\psi(B)$ or $(\mathcal{M} / \sim) \simeq M$. To show that ν is injective, we will show that two matrices have same image under $\psi \circ \nu$ if and only if they are similar. Let us choose a matrix A in the equivalence class (A) as representation whose $\left(a_{11}\right)$ is maximum in its class. Let $\left(r_{1}, \ldots r_{m}, c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}^{m+n}$. Since $\psi \circ \nu$ s surjective, we have its pre-images $\left\{A_{i}\right\}$. We will say A_{i} 's are similar. For simplicity let us consider two pre-images A and B. Now both $\left(a_{11}\right)$ and $\left(b_{11}\right)$ are bounded by r_{1}. If a_{11} is maximal for A, and $a_{i 1} \neq 0$ for some i, then $A+\epsilon(1,1, i, j)$ will exceed A at $(1,1)$ term, unless $a_{1 j}=0$ for all $j>1$. Similarly for $a_{1 j} \neq 0$ and B. Hence the following happens:
(a) $a_{i 1}=0$ for all $i>1$. This would imply $r_{1} \geq c_{1}$.
(b) $a_{1 j}=0$ for all $j>1$. This would imply $r_{1} \leq c_{1}$.

Using the above observation we have

$$
A=\left(\begin{array}{c|c}
a_{11} & \\
0 & \\
\vdots & A^{\prime} \\
0 &
\end{array}\right), B=\left(\begin{array}{c|c}
b_{11} & \\
0 & \\
\vdots & B^{\prime} \\
0 &
\end{array}\right)
$$

Now observe that first $a_{11}=b_{11}$, since no other term from column contributes and their images are equal. Secondly note that by induction we can assume $A^{\prime} \sim B^{\prime}$. Since the $\epsilon(i, j, p, q)$ involved doesn't contain the 1 column, we can repeat the same transformation to move from A to B i.e. $A \simeq B$. Repeating this process we will have $A_{i} \simeq A_{j}$ and hence ν is injective.

Chapter 8

Appendix

In this chapter we discuss about LPA and convex geometry of monoids

8.1 Leavitt path algebras

We first star with Leavitt path algebras

Leavitt path algebras

Definition 8.1.1 (IBN). A ring R is to said to have $I B N$ property if $R^{m}=R^{n}$ implies $m=n$.

Rings which have IBN property are used quite often and most of rings we encounter have these properties. Some of them are:

Lemma 8.1.2. The following rings have IBN property:

1. R is a commutative ring.
2. R is a local ring.
3. $R \neq 0$ is a noetherian ring.

Proof. 1. Let $R^{m} \simeq R^{n}$. Let \mathfrak{m} be a maximal ideal of R. Then $R / \mathfrak{m}=k$ is a field. Using
the fact that direct sum commutes with tensor product, we have

$$
k^{m}=(R / \mathfrak{m})^{m} \simeq(R / \mathfrak{m})^{n} \simeq k^{n} .
$$

Since isomorphic vector spaces have same dimension, we have $m=n$.
2. Let $R^{m} \simeq R^{n}$. If (R, \mathfrak{m}) be a local ring, then R / \mathfrak{m} is a division ring D, and since division rings have IBN property, we use the same trick as above to have $D^{m} \simeq D^{n}$ and hence $m=n$.
3. Let $\pi: R^{m} \rightarrow R^{n}(m \geq n)$ be the natural projection. If $R^{m} \simeq R^{n}$ under f, then $f \circ \pi: R^{m} \rightarrow R^{m}$ is a surjective endomorphism, and since R is noetherian Using the fact that surjective Endomorphism is bijective for noetherian rings, $\operatorname{ker}(f \circ \pi)=0$. This implies $\operatorname{ker}(\pi)=0$ and hence $m=n$.

The above classification may suggest that there might exist rings which are does not have IBN property. Indeed, there are rings which does not have IBN property as the next lemma shows.

Lemma 8.1.3. Let V be a infinite dimension vector space over K, Then the $\operatorname{ring} B=\operatorname{End}(V)$ is a ring which doesn't have IBN property.

Proof. Let $B=\operatorname{End}\left(\bigoplus_{i}^{\infty} e_{i} K\right)$. Then $B=\left\langle f_{1}, f_{2}\right\rangle$ generate B where $f_{1}\left(e_{i}\right)=e_{2 i}$ and $f_{2}\left(e_{i}\right)=$ $e_{2 i-1}$. Now we will show that f_{1}, f_{2} are free-generators of B and hence $B^{2} \simeq B$ will follow.

In Lemma 8.1.3 we have observed that $B \simeq B^{2}$ and hence it follows that

$$
B^{m}=B^{n} \text { for all } m, n
$$

But this conclusion is not always true for a ring which does not have IBN property. Hence we have the following definition:

Definition 8.1.4. Let R be a ring which does not have IBN property with $m \in \mathbb{N}$ being the minimum for which $R^{m} \simeq R^{m^{\prime}}$. For this m, let n denote the minimal such m^{\prime}. Then R is have a module type (m, n). In Lemma 8.1.3, B is a $(1,2)$ module type.

For the rest of the appendix, we will be concerned about the properties and structure of rings of module type $(1, n)$. To generate ring of type $(1, n)$, we first analyse the isomorphism $R \simeq R^{n}$. If $R \simeq R^{n}$ implies their exists $\phi \in \operatorname{Hom}\left(R, R^{n}\right)$ and $\psi \in \operatorname{Hom}\left(R^{n}, R\right)$ such that $\phi \circ \psi=1_{R^{n}}$ and $\psi \circ \phi=1_{R}$. Writing in term of row and column vectors we have :

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \tag{8.1}\\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \text { or } \sum_{i}^{n} x_{i} y_{i}=1
$$

and,

$$
\left[\begin{array}{c}
y_{1} \tag{8.2}\\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]=(1)_{R^{n}} \text { or } y_{j} x_{i}=\delta_{i j} 1_{R}(\text { for all } 1 \leq i, j \leq n)
$$

$\sum_{1}^{n} x_{i} y_{i}=1_{R}$ and $Y_{j} X_{i}=\delta_{i j} 1_{R}$ (for all $1 \leq i, j \leq n$). Motivated by above observation we define a free associative K-algebra

$$
S=K\left(X_{1}, X_{2}, \ldots X_{n}, Y_{1}, \ldots Y_{n}\right)
$$

where K is a field and an ideal

$$
I=\left\langle\sum_{1}^{n} X_{i} Y_{i}-1, Y_{j} X_{i}-\delta_{i j} 1\right\rangle
$$

It now follows that $A=S / I$ is a ring of module type $(1, n)$. Such a ring is also denoted as $L_{k}(1, n)$.

Definition 8.1.5. Let K be any field, and $n>1$, then the Leavitt K-algebra of type $(1, n)$ denoted as $L_{k}(1, n)$, is the K-algebra

$$
S=K\left(X_{1}, X_{2}, \ldots X_{n}, Y_{1}, \ldots Y_{n}\right) /\left\langle\sum_{1}^{n} X_{i} Y_{i}-1, Y_{j} X_{i}-\delta_{i j} 1\right\rangle
$$

Leavitt path algberas

Motivated by the example of $L_{k}(1, n)$ we generalise it to a broader class of rings called Leavitt path algebras also known as LPA. To do so, we first recall directed path and path algebras.

Definition 8.1.6 (Directed graph). A directed graph $E=\left\langle E^{0}, E^{1}, r, s\right\rangle$ consists of two sets E^{0}, E^{1} along with two function $r, s: E^{1} \rightarrow E^{0}$. The element of E^{0} are called vertices and elements of E^{1} are called edges.

Remark 8.1.7. Given E^{1}, we define ghost edges $\left(E^{1}\right)^{*}=\left\{e^{*} \mid e \in E^{1}\right\}$ where $r\left(e^{*}\right)=s(e)$ and $s\left(e^{*}\right)=r(e)$.
Remark 8.1.8. A path μ is a sequence of edges $\mu=e_{1}, e_{2}, \ldots, e_{n}$ such that $r\left(e_{i}\right)=s\left(e_{i+1}\right)$.
Definition 8.1.9 (Path algebras). Let E be an arbitrary graph and K be a field, then the path algebra $K E$ is defined as the free associative K-algebra generated by the set $\left\langle E^{0}, E^{1}\right\rangle$ quotient the following relation:
$(V) v v^{\prime}=\delta_{v, v^{\prime}} v$.
$\left(E_{1}\right) \mathrm{s}(e) e=\mathrm{r}(e) e=e$.
Remark 8.1.10. If we extend the graph to include the ghost edges in a natural way, we get another path algebra $L_{K}(\hat{E})$ which is the path algebra over $\left(\left\langle E^{0}, E^{1}, E^{1^{*}}\right\rangle\right)$.

Definition 8.1.11 (Leavitt path algebras). Let E be an arbitrary graph and K be any field. Then we define Leavitt path algbera to a free associative K-algebra generated by the set $\left\langle E^{0} \cup E^{1} \cup E^{1^{*}}\right\rangle$, modulo the following relations:

1. $(V) v v^{\prime}=\delta_{v, v^{\prime}} v$.
2. $\left(E_{1}\right) \mathrm{s}(e) e=\mathrm{r}(e) e=e$.
3. $\left(E_{2}\right) \mathrm{r}(e) e^{*}=e^{*} \mathrm{~s}(e)=e^{*}$.
4. $(C K 1) e^{*} e^{\prime}=\delta_{e, e^{\prime}}$ for all $e, e^{\prime} \in E^{1}$.
5. (CK2) $v=\sum_{e \in E^{1} \mid \mathrm{s}(e)=v} e e^{*}$.

Remark 8.1.12. $L_{K}(E)$ is a the quotient of $K \hat{E}$ under the relation (CK1), (CK2).
Intuitively the operation between symbols in first four relation is concatenation whereas the fifth relation give a weighted value to every vertex v depending upon it role as source.

Example 8.1.13 (Graphicall decription of LPA). Cosider the graph E,

We now do some computation in $L_{K}(E)$, and compare it with our intuition of path concatenation and relative value of a vertex as source and emitter.

1. $a b=\delta(a, b) a=0 a=0$ and $a a=\delta(a, a) a=a$ by (V).

Remark 8.1.14. Concatenation of two disjoint point is 0 and of same point is the point itself.
2. $a f=f=f b$ by $\left(E_{1}\right)$.

Remark 8.1.15. Concatenation of a line and its endpoint is the line itself.
3. $c k^{\star}=a=k^{\star}=k^{\star} a$ by $\left(E_{2}\right)$.

Remark 8.1.16. Since ghost edges are also edges with opposite direction, using 8.1.15 to arrive at the same intuition.
4. $f^{\star} f=\delta\left(f, f^{\star} r(f)=b\right.$ and $f^{\star} k=\delta(f, k) r(f)=0 b=0$ by $(C K 1)$.

Remark 8.1.17. Concatenation of two path is non-zero if the $r(f)=s(e)$. Since one of the paths is a ghost-path is derived from the other path.
5. $a=z z^{\star}+f f^{\star}+k k^{\star}$.

Remark 8.1.18. This part gives relative weightage to a vertex depending on number of source and edge it contributes to a graph.

Three examples of LPA

As seen from 8.1.11, the ring $L_{K}(E)$ depends upon the structure of graph E. In this section we calculate the ring LPA for few simple graph. Before doing, that we introduce those simple graphs.

Example 8.1.19 (Rose with n-petals). Let R_{n} denote the rose with n-petals as shown:

Example 8.1.20 (oriented n-line graph). Let A_{n} denote the following LPA of the following graph:

$$
\begin{equation*}
v_{1} \xrightarrow{e_{1}} v_{2} \xrightarrow{e_{2}} v_{3} \rightarrow v_{n-1} \stackrel{e_{n-1}}{\rightarrow} v_{n} \tag{8.6}
\end{equation*}
$$

Proposition 8.1.21. Let $n \geq 2$ and K be any field. Then

$$
L_{K}(1, n) \simeq L_{K}\left(R_{n}\right)
$$

Proof. Since $L_{K}(E)$ is quotient of $L_{k}(1, n)$, all we need to verify is the the 5 relation (see 8.1.11) are trivial. Identify the elements in the following way:

$$
1 \mapsto v, x_{i} \mapsto e_{i}, \text { and } y_{i} \mapsto e_{i}^{\star} .
$$

Calcualting the 5 relation (see 8.1.11):

1. $v v^{\prime}=v v=1=\delta_{v v^{\prime}} v=v=1$.
2. $s\left(e_{i}\right) e_{i}=1 x_{i}=x_{i} 1=e_{i} r\left(e_{i}\right)=x_{i}=e_{i}$.
3. $r\left(e_{i}\right) e_{i}^{\star}=1 y_{i}=y_{i} 1=e_{i}{ }^{\star} s\left(e_{i}\right)=y_{i}$.
4. $e_{i}^{\star} e_{j}=y_{j} x_{i}=\delta_{i, j} 1=\delta_{e_{i}, e_{j}} v$.
5. $v=1=\sum_{1}^{n} x_{i} y_{i}=\sum e_{i} e_{i}{ }^{\star}$.

Hence the conclusion follows.
Corollary 8.1.22. Let K be a field, then

$$
K\left[X, X^{-1}\right] \simeq L_{K}\left(R_{1}\right)
$$

Proof. For $n=1$ in Proposition 8.1.21, we have CK1: $x y=1$ and $C K 2: y x=1$ and rest all relations are trivial. Hence $y=x^{-1}$ and therefore $L_{K}\left(R_{1}\right) \simeq L_{K}(1,1) \simeq R\left[x, x^{-1}\right]$.

Proposition 8.1.23. Let K be a field, and $n \geq 1$ any positive number. Then

$$
M_{n}(K) \simeq L_{K}\left(A_{n}\right)
$$

Proof. cf. [1]-Proposition 1.3.5.

Grading of LPA

Before we will give a grading to LPA, we first introduce another path algebras called Cohn path algebras which lies in between $K G$ and $L_{K}(E)$. More formally:

Definition 8.1.24. Let E be a directed graph and K be a field. Let $C_{K}(E)$ denote the free associative K-algebra generated by $\left\langle E^{0}, E^{1}, E^{1^{*}}\right\rangle$ quotient the relation $(V),\left(E_{1}\right),\left(E_{2}\right),(C K 1)$.

It follows from the above definition that $C_{K}(E) / C K 2=L_{K}(E)$.
Remark 8.1.25. $C_{K}(E)$ has an IBN property as proved in [9].
\mathbb{Z}-grading on some specific $L_{K}(E)$.
Example 8.1.26 (\mathbb{Z}-grading on $L_{K}\left(A_{n}\right)$:). Since we have established that $F: L_{K}\left(A_{n}\right) \rightarrow$ $M_{n}(K)$, is an isomorphism we instead find a grading on $M_{n}(K)$ and confirm that the isomorphism F is graded. Consider the subspace

$$
A_{t}=\left\{A \mid(A)_{i, j}=0, \text { for } i-j \neq t\right\} .
$$

Now it's clear that $M_{n}(K)=\bigoplus A_{t}$ (set $A_{t}=0$ if $t>n$ or $t<0$). The map F defined in Proposition 8.1.23 turns out to a graded homomorphism (by considering the pre-image of homogeneous component, see Proposition 8.1.30), hence we have grading on $L_{K}\left(A_{n}\right)$.
Example 8.1.27. \mathbb{Z}-grading on $L_{K}\left(R_{1}\right)$.
Since we have established that
$F: L_{K}\left(R_{1}\right) \simeq K\left[X, X^{-1}\right]$ is an isomorphism and since $K\left[x, x^{-1}\right.$ has a natural grading, we take the pre-image of homogeneous component and verify that it induced a graded structure (see Proposition 8.1.23).

Remark 8.1.28. Let A be a graded ideal, if $X \subseteq A_{0}$, then $I(X)$ is an graded ideal.
We show that $K \hat{E}$ is a \mathbb{Z}-graded K-algebra and $I(C K 1)$ is it's graded ideal, hence it will follow that $C_{K}(E)$ is a \mathbb{Z} graded K-algebra. Using the same argument, we will show that $L_{K}(E)$ is a graded \mathbb{Z}-module.

Definition 8.1.29. Let E be a graph. For any $v \in E^{0}$, let $\operatorname{deg}(v)=0$, and $e \in E^{1}$, $\operatorname{deg}(e=1)$ and $\operatorname{deg}\left(e^{\star}\right)=-1$. For any monomial $k x_{1} \ldots x_{m}, \operatorname{deg}\left(k x_{1} \cdots x_{m}\right)=\sum_{i=1}^{m}$ $\operatorname{deg}\left(x_{i}\right)$. Let

$$
A_{n}:=\operatorname{span}_{K}\left\{x_{1} \cdots x_{m} \mid x_{i} \in E^{0} \cup E^{1} \cup E^{1^{\star}} \text { with } \operatorname{deg}\left(x_{1} \cdots x_{m}\right)=n\right\}
$$

Proposition 8.1.30.

1. $K \hat{E}=\bigoplus_{n \in \mathbb{Z}} A_{n}$ as a K-subspaces and this defines a \mathbb{Z}-grading on the path algebra $K \hat{E}$.
2. $C_{K} E=\bigoplus_{n \in \mathbb{Z}} C_{n}$, where

$$
C_{n}:=\operatorname{span}_{K}\left\{\gamma \lambda^{\star} \mid \gamma, \lambda \in E^{n} \text { and } l(\gamma)-l(\lambda)=n\right\} .
$$

Hence this defines a \mathbb{Z}-grading on $C_{K}(E)$.
3. $L_{K}(E)=\bigoplus_{n \in \mathbb{Z}} L_{n}$, where

$$
L_{n}:=\operatorname{span}_{K}\left\{\gamma \lambda^{\star} \mid \gamma, \lambda \in E^{n} \text { and } l(\gamma)-l(\lambda)=n\right\} .
$$

This defines a \mathbb{Z}-grading on $L_{K}(E)$.

Proof. 1. The free algebra $K E$, where E is $\left\langle E^{0}, E^{1}, E^{1^{\star}}\right\rangle$ is \mathbb{Z}-graded where homogeneous component is given by deg (see 8.1.29. We now observe that $I\left(V, E_{1}, E_{2}\right)$ are graded ideals and from 8.1.25 and hence the quotient of free algebra with the relation $(V),\left(E_{1}\right),\left(E_{2}\right)$ is again a graded ring.
2. Using Proposition 8.1.30(1), and observing that $I(C K 1)$ is a graded ideal, we infer $K \hat{E} / I(C K 1)$ is a graded ring with homogeneous component being its deg.
3. Using Proposition 8.1.30(2), and observing that $I(C K 2)$ is a graded ideal, we infer $C_{K}(E) / I(C K 2)$ is a graded ring and homogeneous component being its deg.

Motivation for further studies

LPA is a concrete example of a non-commutative graded algebra without IBN property. As it is well known that many problems related to Quillen-Suslin theorem have been studied for graded rings and for non-commutative rings separately, it is natural to ask whether analogue results holds for LPA. For example it will be interesting to deduce analogue of Quillen's L-G principal and Suslin's K_{1}-analogue of Serre's conjecture for LPA.

8.2 Convex geometry and monoids

The content of this appendix is independent of the thesis. The only aim of this appendix is motivate the abstract algebraic construction through intuitive geometric pictures. The principal object of study here is the property of cone and polytopes. They are defined in terms of halfspaces $H_{\alpha}{ }^{+}$. For more information see [6] and [4].

Consider a affine space A^{n} and map $\psi: A^{n} \rightarrow A$ where $\psi(x)=\lambda(x)+c$ where λ is a linear map. The the of $x \in A^{n}$ such that $\psi(x) \geq 0$ is denoted as $H_{\psi}{ }^{+}$and is called closed halfspaces. The set $\psi(x)=0$ is called hyperplane and is denoted as H_{ψ}.
Definition 8.2.1 (Polytopes). Let H_{i} be a hyperplane and $H_{i}{ }^{+}$be its halfspace. Then P is a polytope if $P=\bigcap_{i \in I} H_{i}^{+}$for finitely many i and is bounded in A^{n}.
Example 8.2.2. Any polygon in \mathbb{R}^{2} is a polytope.

Definition 8.2.3 (Cones). If the H_{i} are all linear affine subspace (i.e. vector subspace), then the polytope is called a cone.

Example 8.2.4. A cone shaped figure in 2-dimension is a cone in \mathbb{R}^{2}.

Similar to cones, we call a set X conical if it is closed under nonnegative linear combination of its elements. One such set is $\mathbb{R}_{+} X$ (which is also the smallest conical set containing X). It becomes evident that a cone C is conical. But the converse in also true under a mild condition.

Proposition 8.2.5. Let C be a conical set in V. Then the following are equivalent:

1. C is finitely generated.
2. C is a cone

Proof. cf. ([4] (1.15)).
Lemma 8.2.6 (Gordan's Lemma). Let C be a rational cone in \mathbb{R}^{d}, then

$$
M=\mathbb{Z}^{n} \cap C
$$

$(n \leq d)$ is an affine monoid.

Proof. Since C is a cone, it is finitely generated by v_{1}, \ldots, v_{n} (we can assume $v_{i} \in \mathbb{Z}^{d}$) over \mathbb{R}_{+}. Let $m \in M$, then $m=\sum_{i=1}^{n} a_{i} v_{i}$, for some $a_{i} \in \mathbb{R}_{+}$. Now if we rewrite the sum as

$$
m=\sum_{i=1}^{n}\left\lfloor a_{i}\right\rfloor v_{i}+\sum_{i=1}^{n} q_{i} v_{i}=m^{\prime}+m^{\prime \prime}
$$

where $a_{i}=\left\lfloor a_{i}\right\rfloor+q_{i}\left(\left\lfloor a_{i}\right\rfloor\right.$ implies the highest integer less than $\left.a_{i}\right)$. Since $m, m^{\prime} \in M$ we have $m^{\prime \prime} \in M$.

Let $B=\left\{y \mid y=q_{i} v_{i}, 0 \leq q_{i} \leq 1\right\}$. Then B is a bounded subset of \mathbb{R}^{d}. Now $B \cap \mathbb{Z}^{d} \in M$ and is finite set and $m^{\prime \prime} \in B \cap \mathbb{Z}^{d}$. Therefore $\left\{v_{1}, \ldots, v_{n}\right\} \cup\left(B \cap \mathbb{Z}^{d}\right)$ is the generator of M and hence M is affine.

Corollary 8.2.7. Let M be a affine monoid, $C=\mathbb{R}_{+} M$. Then

$$
\widehat{M}=C \cap \mathbb{Z}^{n}
$$

is an affine monoid and C is a cone.

Proof. C is cone because C is finitely generated and proposition Proposition 8.2.5. Now C is a cone, then by lemma Lemma 8.2.6 \widehat{M} is an affine monoid.

Corollary 8.2.8. Let M and N be an affine monoid, then $M \cap N$ is an affine monoid.

Proof. By corrolary $8.2 .8, \mathbb{R}_{+} M$ and $\mathbb{R}_{+} N$ are cones, hence $\mathbb{R}_{+} M \cap \mathbb{R}_{+} N$ is also a rational cone (see [4], 2.11). Now if,

$$
\mathbb{R}_{+} M \cap \mathbb{R}_{+} N=\mathbb{R}_{+}(M \cap N)
$$

then again using corollary 8.2.7 we conclude that $M \cap N$ is affine monoid.
Now we prove that $\mathbb{R}_{+} M \cap \mathbb{R}_{+} N=\mathbb{R}_{+}(M \cap N)$. Clearly, $\mathbb{R}_{+} M \cap \mathbb{R}_{+} N \subseteq \mathbb{R}_{+}(M \cap N)$ is obvious. For the converse, let x be a ration element in $\mathbb{R}_{+} M \cap \mathbb{R}_{+} N$. Then their exists $\alpha, \beta \in \mathbb{Z}$ such that $\alpha x \in M$ and $\beta x \in N$. Hence $\alpha \beta x \in M \cap N$, therefore $x \in \mathbb{R}_{+}(M \cap N)$.

Corollary 8.2.9. Let W be a polytope, then $M \mid W=M \cap \mathbb{R}_{+} W$ is an affine monoid.

Proof. Using corollary 8.2.8 it follows that $M \mid W$ is an affine monoid.
Remark 8.2.10. Given an affine monoid M, we form a cone $C=\mathbb{R}_{+}$. If $\lambda \in C^{\star}$ (dual cone), then $\Phi(M):=H_{\lambda(x)=a} \cap C$ is a polytope and plays an important role in the structure of $R[M]$ and is called cross-section of M.

Let P be a polytope and $x \notin \operatorname{aff}(P)$ (smallest affine subspace containing P). Then the $\operatorname{conv}(P, x)$ (smallest convex set containing P and x) is called a pyramid over base P and vertex v.

Definition 8.2.11 (Pyramidal Extension- Combinatorial viewpoint). A polytope P have a pyramidal decomposition if $P=\Delta \cup \Gamma$ such that Δ is a pyramid with apex v and Γ meets
Δ in a facet opposite to v. If $\operatorname{dim}(P)=\operatorname{dim}(\Gamma)$ (here dim means the dimension of aff (Q) for a polytope Q), then the pyramidal decomposition is called non-degenerate decomposition.

We can alternatively proof Gubeladze's theorem using the next two results (Infact, R.G. Swan translated this results in algebraic terms).
Theorem 8.2.12. Let $v \in \Phi(M)$ be a vertex of $\Phi(M)=\Delta \cup \Gamma$ - a nondegenerate pyramidal decomposition of $\Phi(M)$. Then every projective module over $R[M]$ is extended from $R[M \mid \Gamma]$.

Remark 8.2.13. Compare this theorem with proposition Proposition 6.2.4.

Proof. cf. ([4], 8.6).
Theorem 8.2.14. Let P be a polytope and $z \in \operatorname{Int}(P)$ a rational point. Then there exists a sequence $\left(P_{i}\right)_{i \in \mathbb{N}}$ of polytopes with the following properties

1. For all $i \in \mathbb{N}$ we have:
(a) $P_{i} \subset P$,
(b) $P_{i} \subset P_{i+1}$ or $P_{i+1} \subset P_{i}$,
(c) if $P_{i} \subset P_{i+1}$, then P_{i} is a nondegenerate pyramidal extension of P_{i+1},
2. For every $\epsilon>0$ there exists an $i \in \mathbb{N}$ such that $P_{i} \subset U_{\epsilon}(z) \cap P$.

Remark 8.2.15. Compare this theorem with proposition Proposition 6.3.3.

Consequences of Theorem 8.2.12 and Theorem8.2.14 are as follows:

Let Q be a projective $R[M]$-module. The extension $P_{1} \subset P$ is pyramidal and hence their exists a projective $R\left[M \mid P_{1}\right]$-module Q_{1} such that Q is extended from Q. Now we recursively define $R\left[M \mid P_{i}\right]$-module as follows:

1. If $P_{i+1} \subset P_{i}$, then $Q_{i+1}=Q_{i} \otimes R\left[M \mid P_{i+1}\right]$.
2. If $P_{i} \subset P_{i+1}$ be a non-degenerate pyramidal extension, then using theorem 8.2.12 we have Q_{i+1} extended from Q_{i}.

Since M is noraml if follows that $\mathbb{R}_{+} M$ has a unimodular triangulation (cf [4], 2.74).

Choose an $\epsilon>0$. Then there exists $j \in \mathbb{N}$ such that $P_{j} \subset U_{\epsilon}(z) \cap P$ for $z \in$ interior of $\Phi(M) \cap D$, where D is a unimodular cone of triangulation. Consider the extension $Q^{\prime}=Q_{k} \otimes R\left[D \cap \mathbb{Z}^{d}\right]$. Since D is unimodular $D \cap \mathbb{Z}^{d} \simeq \mathbb{Z}_{+}{ }^{d}$ (see [4], Section 2-D for more details) and hence Q^{\prime} is a free module over $R\left[D \cap \mathbb{Z}^{d}\right]$ by Quillen-Suslin theorem. Since Q is extended from Q^{\prime}, it follows that Q is free $R[M]$-module.

8.3 Definition of $\operatorname{Pic}(R[M])$ and $K_{0}(R[M])$

We know discuss the K-theoretic aspect of $R[M]$ in the language of K-theory i.e K_{0}-group and Picard group to state the original result of J. Gubeladze [7].

Definition 8.3.1. Let R be a commutative ring and let (P) denote the isomorphism class of projective R-module P. Then the Grothendieck group $K_{0} R$ is an additive abelian group generated by (P) under the following relation:

1. Let G be a free abelian group generated by (P).
2. Let $H:=$ subgroup generated by $(P \oplus Q)-(P)-(Q)$.
3. Let $K_{0} R=G / H$ and $[P]$ image of (P) in $K_{0} R$.

Example 8.3.2. Let R be commutative PID. Since every projective R-module P is free, from above we have $K_{0}(R)=\mathbb{Z}$.

Definition 8.3.3. $\operatorname{Pic}(R)$ or Picard group is defined as the abelian group whose elements are isomorphic class of rank 1 projective modules $[P]$ and multiplication is defined as $[P] .[Q]=$ $[P \otimes Q]$.

Example 8.3.4. Let $R[X]$ be a ring where R is a PID. Since every projective $R[X]$-module is free, we have $\operatorname{Pic}(R[X])=1$

Remark 8.3.5. Anderson's conjecture written in the language of K-theory is essentially equivalent the following statements:

1. $\operatorname{Pic}(R[M])=1$,
2. $K_{0}(R[M])=\mathbb{Z}$.
3. Finitely generated projective $R[M]$-module is free.
4. Monoid M is seminormal (This is actually the converse of Gubeladze's theorem).

For more information on this section, we refer [11] and [4].

Bibliography

[1] Gene Abrams, Pere Ara, and Mercedes Siles Molina. Leavitt path algebras. Vol. 2191. Springer, 2017.
[2] Michael Atiyah. Introduction to commutative algebra. Vol. 361. Westview Press, 1994.
[3] Rabeya Basu. "On Forster's Conjecture and Related Results". In: (2002).
[4] Winfried Bruns and Joseph Gubeladze. Polytopes, rings, and K-theory. Vol. 27. Springer, 2009.
[5] N.S. Gopalakrishnan. Commutative Algebra. University Press, 2015.
[6] Branko Grünbaum et al. Convex polytopes. Vol. 16. Springer, 1967.
[7] I Dzh Gubeladze. "Anderson's conjecture and the maximal monoid class over which projective modules are free". In: Mathematics of the USSR-Sbornik 63.1 (1989), p. 165.
[8] Roozbeh Hazrat. Graded rings and graded Grothendieck groups. Vol. 435. Cambridge University Press, 2016.
[9] Müge Kanuni and Murad Özaydın. "Cohn-Leavitt Path Algebras and the Invariant Basis Number Property". In: arXiv preprint arXiv:1606.07998 (2016).
[10] Tsit-Yuen Lam. A first course in noncommutative rings. Vol. 131. Springer Science \& Business Media, 2013.
[11] Tsit-Yuen Lam. Serre's problem on projective modules. Springer Science \& Business Media, 2010.
[12] John Milnor. Introduction to Algebraic K-Theory.(AM-72). Vol. 72. Princeton University Press, 2016.
[13] Amit Roy. "Serre's Conjecture". In: Lectures given at IISc (1996).
[14] David E Rush. "Picard groups in abelian group rings". In: Journal of Pure and Applied Algebra 26.1 (1982), pp. 101-114.
[15] Richard G. Swan. "Gubeladze's proof of Anderson's conjecture". In: Contemp. Math 124 (1992), pp. 215-250.

