
K-Theory of Monoid Algebras

A Thesis

submitted to
Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the
BS-MS Dual Degree Programme

by

Manish Kumar Singh

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2018

Supervisor: Dr. Rabeya Basu
c© Manish Kumar Singh 2018

All rights reserved





To my family





Acknowledgments

I would like to thank my parents, teachers and friends who helped me to reach this stage. I
would also like to thank Dr. Rabeya Basu for introducing me to this exciting subject and
guiding me through. I am also thankful to Professor Raja Sridharan for providing me a
simplified version of Quillen’s graded L-G principal (cf: 3.5.1). Finally, I express my deep
gratitude to IISER, Pune for giving me an opportunity to learn mathematics.

v



Abstract
As a generalisation of Serre’s problem on projective modules over polynomials ring. in 1980

D. Anderson asked the analogue problem for monoid algebras. In 1988 Joseph Gubeladze
proved Anderson’s conjecture by geometric and combinatorial methods. Soon after, following
his idea R.G Swan came up with algebraic version if Gubeladze’s proof. This thesis is an
expository article of Swan’s paper appeared in 1991.
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Introduction

Let us begin with the following facts in classical algebraic K-theory known as Serre’s problem
for projective modules. In 1955, J.P. Serre asked the following question:
Theorem. Is every finitely generated projective module over polynomial ring K[X1, . . . , Xn]

over a field K free?

It took two decades and several crucial intermediary milestone before a final resolution was
reached due to D. Quillen and A. Suslin independently in 1976. They proved:
Theorem (Quillen-Suslin theorem). If R is a PID and A = R[X1, . . . , Xn] then every finitely
generated projective A-module P is extended from R.

Quillen’s proof relied on two crucial result which were:
Theorem (Horrocks theorem). Let (R,m) be any local commutative ring, and let P be a
finitely generated projective R[T ]-module. If P 〈t〉 := R〈T 〉⊗R[T ]P is extended from a finitely
generated R-module, then P is extended from R.
Theorem (Quillen’s L-G (local-global) principal). Let R be a commutative ring and let P
be a projective R[X1, . . . , Xn]-module. If Pm is extended from Rm for all m ∈ max(R0) if and
only if P is extended from R.

As we can see, Horrocks thoerem is a result concerning only local rings, it is only due to
Quillen L-G principal, that we are able to extend this result for non-local rings.

The aim of this thesis is to study analogue problem in K-theory of monoid algebras from
[15].

In 1978, D. Anderson asked the same question for a more generalised class of ring namely
the monoid algebras R[M ]:
Theorem (Anderson’s conjecture). Under what condition on R and M is every finitely
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generated projective module P over monoid algebra R[M ].

It was finally in 1988 when J. Gubeladze confirmed the Anderson’s conjecture.
Theorem (Gubeladze’s theorem). Let P be a finitely generated projective R[M ]-module.
Then P is free if M is affine, finitely generated and seminormal and R is a PID. Gubeladze’s
theorem in the language of K-theory is equivalent to the following conditions (cf: appendix):

1. Pic(R[M ]) = 0.

2. K0(R[M ]) = Z.

3. Finitely generated projective R[M ]-module is free.

4. Monoid M is seminormal.

His proof involved clever interplay of convex -geometry and algebra. In principal Gubeladze’s
proof relied on the above two theorems (Horrocks and Quillen’s L-G) written for monoid
algebras and some extra arguments for monoids. In 1991, R. Swan inspired by Gubeladze’s
geometric ideas, gave an algebraic version of the Gubeladze’s theorem.

The layout of the thesis is as follows:

In chapter 1 we recalls the basic commutative algebra required viz few definitions, example
and properties of tensor products, localisation tool etc. It also covers projective modules-
which is the central object of our study. Finally in the last section we discuss about patching
diagrams and its properties. The main references for this chapter is [2]. For definition and
properties in commutative algbera cf. [5]. To see the details about Milnor patching property
see [11] and [12] .

In chapter 2 we covers the basics of graded ring and modules, which helps us to solve a
graded version of Serre’s problem. Most of the results can be found in [8]. In chapter 3 we
give a proof of Serre’s problem by starting with some historical result which includes cases
like projective modules of rank 1, polynomial ring in one variable R[X], graded projective
modules over graded rings R =

⊕
i∈ΓRγ (cf: [11]) before cumulating in the final proof

(only outline) for polynomial rings in n-variables (cf: [13]). In the end we have included a
graded-version of Quillen’s L-G principal from [4] and [15], one of the two important result
for having K0(R[X]) = Z.
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Theorem (Graded Quillen’s patching). Let R = R0 ⊕ R1 ⊕ R2 ⊕ · · · be a graded ring and
P a finitely generated R-module. Then P is extended from R0 if and only if Pm is extended
from (R0)m for every maximal ideal m ⊂ R.

The importance of this result is not only restricted to Gubeladze’s theorem. As a general
result, it is an important tool to study the structure of graded commutative rings.

Chapter 4 and 5 covers technical details of monoids and monoid algebra which would be
required in the proof of the Anderson’s conjecture. More details can be found out in [4].
In chapter 6, we dicuss the proof of Anderson’s conjecture and in chapter 7 we look at the
converse of Anderson’s conjecture and some its interesting application. Additional details
can be found in [4] and [11].

In Appendix we briefly talk about Leavitt-path algebras (LPA). As it turns out that LPA
form a non-commutative, non-IBP ring with a Z-grading and serves as an excellent example
to test various conjectures. Studying its property is currently an area of active research. It
is natural to ask how far can we generalise classical algebraic K-theory problems for this
non-commutative graded algebras. More information on this can be found out in [1]. Next,
we include a short discussion on convex geometry, which would demonstrate how algebra and
convex geometry interact, we also give some geometric intuition behind some of the abstract
algebraic constructions and proof. Finally, we define K-theoretic structures: K0-group and
Pic-group.
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Chapter 1

Preliminaries

Throughout this thesis let

1. N: set of natural numbers.

2. Z: set of integers.

3. Z+: set positive integers.

4. Q: set rational numbers

5. Q+: set positive rational numbers.

6. R: set real numbers and R+: set positive real numbers.

In this chapter, we would recall certain preliminary results from commutative algebra which
would be used throughout this thesis. Also in the end, we discuss patching diagram which
again will be useful later.

1.1 Finitely generated modules

Throughout the thesis we will mostly deal with finitely generated modules over a commu-
tative ring R with identity. We now give some standard commutative algebra result whose
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proof can be found in [2]. Let us begin with the well known Nakayama Lemma.

Lemma 1.1.1 (Nakayama Lemma). Let M be finitely generated R-module, a an ideal
contained in the Jacobson ideal of R, then aM = M implies M = 0.

Corollary 1.1.2. If M is a finitely generated R-module, N submodule of M and a ⊂
Jacobson radical of R, then M = aM +M implies M = N .

Definition 1.1.3. A sequence of R-module homomorphism is exact

· · · → Ai−1
fi−1−−→ Ai

fi−→ Ai+1 → · · ·

if Im(fi−1) = Ker(fi). We denote by Coker(fi) = Ai+1 /Im fi(Ai).

Example 1.1.4. The following sequence is exact, where I is an ideal of the polynomial ring
R[X] and f is the ,natural map:

0→ I → R[X]→ R[X]/I → 0.

Lemma 1.1.5. Consider thr following sequence be an exact sequence of R-modules

0→ A0
f0−→ A1

f1−→ A2 → 0

with P an arbitrary R-module. Let HomR(P,Ai) denote the set of all homomorphism h :

P → Ai, then
0→ HomR(P,A0)

f ′0−→ HomR(P,A1)
f ′1−→ HomR(P,A2)

is an exact sequence.

Definition 1.1.6 (Split Exact Sequence). A sequence of R-module homomorphism

0→ A0
f0−→ A1

f1−→ A2 → 0

is called split exact if there exists a R-module homomorphism g2 : A2 → A1 such that
f2 ◦ g2 = 1A2 .

Example 1.1.7. The following sequence, where fi are the inclusion map, is easily verified
to be split exact:

0→ 2Z f0−→ Z f1−→ Z/2Z→ 0

where the inverse map (f1
−1) is given by 0 7→ 0 and 1 7→ 1.
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Lemma 1.1.8. If the following sequence of R-modules,

0→ A0
f0−→ A1

f1−→ A2 → 0

is split exact. then
A2 ⊕ f0(A0) = A1.

1.2 Tensor product

Intuitively A ⊗ B is the free R-module generated over A × B modulo the relations of the
type a⊗ (b+ c) = a⊗ n+ a⊗ c.

Definition 1.2.1 (Tensor Product of Modules). Let A and B be a R-module, then there
exists a bilinear map f̂ between R-modules A × B and A ⊗ B such that whenever their is
a bilinear map f between A× B and T , there exists a linear map π from A⊗ B to T such
that f̂ ◦ π = f (it satisfies a universal property).

A×B T

A⊗B

f

f̂
π

Few properties of Tensor product of modules:

Lemma 1.2.2. 1. (M ⊗R N)⊗S P 'M ⊗R (N ⊗S P )

2. M =
⊕

iMi and N =
⊕

j Nj, then M ⊗N '
⊕

i,jMi ⊗Nj

Proof. For R-modules, we have the following isomorphism.

Let the map

φ : (M ⊗R N)× P →M ⊗R (N ⊗S P ) be given by (x⊗ y, z) 7→ x⊗ (y ⊗ z).

Then this map is a bilinear map. Hence, it induces a linear map
φ̃(M ⊗R N) ⊗S P → M ⊗R (N ⊗S P ). This is an isomorphism, since there exists a
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inverse map x⊗ (y ⊗ z) 7→ (x⊗ y)⊗ z.

1.2. The map

φ : M ⊗N →
⊕
i,j

Mi ⊗Nj given by (m⊗ n) 7→ Σ(mi ⊗ nj)

is a linear map. Let ψi,j : Mi ⊗ Nj → M ⊗ N be the linear inclusion map. Then
ψ = Σi,jψi,j (where ψi,j = 0 if it is outside the domain) is also a linear map with
ψ ◦ φ = Id and φ ◦ ψ = Id. Hence ψ is an isomorphism.

Lemma 1.2.3. −
⊗

R is left exact on an exact sequence of R-modules.

Proof. Observe that HomR(M ⊗ N,P ) ' HomR(M, HomR(N,P )). Hence using Lemma
1.1.5 on
0→ N1 → N2 → N3 twice (first with P and then withM) we have HomR(M, , HomR(Ni, P ))

as a left exact sequence and hence HomR(M ⊗Ni, P ) is left exact.

Lemma 1.2.4. Tensor product commutes with direct sum i.e. for R-modules M , N and P

(M ⊕N)⊗ P ' (M ⊗ P )⊕ (N ⊗ P ).

Proof. Consider the map
f : (M ⊕N)⊗ P f−→ (M ⊗ P )⊕ (N ⊗ P ) given by (m+ n)⊗ p 7→ m⊗ p+ n⊗ p. This is an
identity map and hence isomorphism.

One of the important properties of commutative ring is the invariance of free rank of a free
module as illustrated in the following lemma.

Lemma 1.2.5. Let R be a commutative ring, then for finite m,n, Rn ' Rm implies m = n.

Proof. If Rm ' Rn, then (R/m) ⊗ Rm = (R/m) ⊗ Rn. Hence (R/m)m = (R/m)n, but
the new modules are vector space and since dimension of vector space is invariant, we have
m = n.

Definition 1.2.6. Consider the ring homomorphism f : A→ B, then B can be considered
as an A-module by defining the scalar multiplication as follows:

7



For a ∈ A, b ∈ B, ab := f(a)b. We call such B an A-algebra.

Example 1.2.7. The polynomial ring R[X] is an R-algebra with generating set 〈X, 1〉.

Remark 1.2.8. As seen from 1.2.7 , R[X] is a finitely generated R-algebra but we know
that R[X] is not a finitely generated R-module.

Definition 1.2.9. Let R ⊂ S be two commutative rings. Then we say s ∈ S is integral over
R if their exists a monic polynomial f(X) ∈ R[X] such that f(s) = 0. The set of all integral
element of R over S is called integral closure of R and is denoted by R̃.

Example 1.2.10. Consider Z ( Q. Then the integral closure of Z is Z̃ = Z.

1.3 Localisation

We now aim to generalise the concept of ring of fraction to an arbitrary commutative ring
(not just domain).

Definition 1.3.1. Let R be a ring and S be a multiplicative closed subset of R . Then
S−1R denotes the ring S ×R under the equivalence relation that

(s1, r1) ∼ (s2, r2)

if k(s1r2 − s2r1) = 0 for some k ∈ S.

If S = (f) then S−1R is denoted as Rf . If S = R− p, p a prime ideal, then S−1R is denoted
as Rp. If M is an R-module then we can define equivalence class in S−1M as follows:

(m1, r1) ∼ (m2, r2)

if k(m1r2 −m2r1) = 0 for some k ∈ S.

Example 1.3.2. Consider S = R − m, where m a maximal ideal. Then Rm is a local ring
(and hence the terminology).

Lemma 1.3.3. IfM ′ f−→M
g−→M ′′ is exact sequence of R-modules, thenM ′

S

fS−→MS
gS−→M ′′

S

is also exact.

Proof. gf = 0 implies gSfS = 0 and hence Im(fS) ⊂ Ker(gS). If x ∈MS such that gS(x/s) =
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0, then kg(x) = 0 for some k ∈ S, hence g(kx) = 0 or kx ∈M ′. Therefore (x/s) = (kx/ks) ∈
M ′.

Corollary 1.3.4. If N is a R-submodule of M , then (M/N)S = (MS/NS).

Corollary 1.3.5. If p is a prime ideal, then (M ⊗R N)p = Mp ⊗Np.

Lemma 1.3.6. Given R-module M , S−1R⊗M ' S−1M by the map
f : (a/s)⊗m 7→ (am/s).

Proof. First we check if the map is well defined or not. If (a/s) = (b/t), then ((a/s)⊗m) =

(am/s) and (bm/t) = f((bm/t)). Since (a/s) = (b/t) it implies k(at − bs) = 0 and hence
km(at − bs) = 0 or equivalently k(amt − bms) = 0 or (am/s) = (bm/t). Hence it is well
defined. Now surjectivity of f is obvious ((1/s) ⊗m 7→ (m/s)). To check for injectivity of
f , let assume to the contrary i.e. (a/s)⊗ x 6= 0 but (a/s)x = 0 hence k(ax) = 0 , therefore
(kax)/(kxs) = a/s = 0, and therefore (a/s) ⊗ x = 0 - a contradiction. Hence f is injective
and therefore f is an isomorphism.

Definition 1.3.7. Given a R-module M and a ring homomorphism
f : R→ S then S⊗RM is a S modules and is called the module obtained by scalar extension.

Remark 1.3.8. Let P is a projective R[X1, . . . , Xn]-module, then P is extended from P/X1P

module which is a projective R[X2, . . . , Xn]-module.

Example 1.3.9. Let R be a integral domain, and K be its field of fraction, then an R-
module M becomes a K-vectors space M ⊗R K.

We call a K-module N extended from R if there exists a R-moduleM such thatM⊗K = N .
Note that if N is considered as an R-module (i.e restriction of scalars), then it need not follow
that N is extended from R due to next lemma.

Lemma 1.3.10. Let ψ : R→ K be a ring homomorphism and let N be a K-module. If we
consider N to be a R-module, then N is direct sum of N ⊗R K = NK .

Proof. Consider the map g : N → NK given by n 7→ n⊗ 1 and the map f : NK → N given
by n⊗ k 7→ kn, then f ◦ g(n) = f(1⊗n) = n, hence f ◦ g = 1 and therefore g is injective. It
is obvious that f need not be injective, as b⊗n = bn = 0 if b is annihilator of n. To see why
it is a direct sum, observe that N ⊂ NK due to injectivity of g, hence this homomorphism
is a split homomorphism and hence the result follows.

9



Remark 1.3.11. Let R ⊂ S. In general if P is a projective module (see section 1.4) S-
module which admits an extension from a R-module Q i.e.
P ' Q⊗ S, then P considered as a R-module need not be isomorphic to Q.

Example 1.3.12. If P is a projective R[X] module, then P admits a R-extension P/XP .
Clearly P , as an R-module is not isomorphic to P/XP .

Lemma 1.3.13. Let M and N be projective R-module (see next section). If MS
ψ−→ NS

are RS module isomorphism, then their exists f ∈ S such that Rf
φ−→ Nf is an Rf -module

isomorphism and φ localised to ψ.

Proof. cf: ([11] corollary 2.16).

see

1.4 Projective modules

Definition 1.4.1. P is a projective R-module if it is the direct summand of a free R-module
Rn.

Notation 1.4.2. Let P(R) denote the set of all projective R module.

Example 1.4.3. Free Modules are obviously projective. For the case of non-free projective
module, consider

Z/nZ⊕ Z/mZ ' Z/mnZ

where (m,n) = 1 by Chinese remainder theorem. Since Z/nZ is direct summand of Z/mnZ.

Proposition 1.4.4. The following are equivalent definitions for a projective mR-module P .

1. P is direct summand of a free R-module.

2. Short exact of R-modules 0→ A0
f0−→ A1

f1−→ A2 → 0 induces a short exact sequence

0→ HomR(P,A0)
f ′0−→ HomR(P,A1)

f ′1−→ HomR(P,A2)→ 0.

3. Every exact sequence of R-modules 0→ K → L
g−→ P → 0 splits at g.

10



Proof. (1) =⇒ (2) : Using results from previous chapter, the only part remained to be
proved is

HomR(P,A1)
f ′1−→ HomR(P,A2)→ 0

which is same as proving g ∈ Hom(P,A2) implies there exists h ∈ Hom(P,A1).

F(P ) P

A1 A2 0

h
g

f1

such that f1h = g.

Since P is projective, let F(P ) denote the free module of which P was direct summand. If
g′ ∈ Hom(F(P ), A2) then it can easily be lifted to h′ ∈ Hom(F (P ), A1) by choosing suitable
elements

f1(xi) = yi

h′(ei) = xi

g′(ei) = yi

Since P is direct summand, h = h′|P ∈ Hom(P,A1). Hence we can successfully lift g to h.

(2) =⇒ (3) : Substitute A2 with P in (2) and we get lifting of IdP -h ∈ Hom(P,M) with
f2 ◦ h = IdP .

(3) =⇒ (1) : Consider the exact sequence 0 → K → Rn → P → 0 which splits due to (3)

which implies Rn ' P ⊕K. Hence the result.

Lemma 1.4.5. Let R =
⋃
i∈I Ri (Ri ⊆ Ri+1) and P be finitely generated projective R-

module, then their exists a projective Ri-module Qi such that P = R⊗Qi.

Proof. If I is finite, then choose Q = P for some R-module Q. If not, then since P is
projective such that P ⊕ Q ' Rn. Hence we get the split exact sequence R, Q 0 → P →
Rn → Q→ 0. Since P is finitely generated by 〈p1, . . . , pn〉, and each pi = 〈bi1, . . . , bin〉 ∈ Rn,
we can choose an index i ∈ I such that pi ∈ Ri

n. Choosing Q = P ⊗Ri, we have our desired
projective module.

Lemma 1.4.6. If ψ : P → Q is a R-module homomorphism such that ψ : P ' Q̄ where bar

11



denotes modulo by J = rad(R), then ψ is an isomorphism.

Proof. One checks (P/JP )/(Q/JQ) = (P/Q)/ J(P/Q) = 0 hence by Lemma 1.1.1 P/Q = 0

or P ' Q.

Lemma 1.4.7. Let (R,m) be a local ring and P ∈ P(R), then P is free.

Proof. F = R/m is field, hence every module M/mM is a vector space over F (and hence
free). Therefore M is free using Lemma 1.4.6.

Definition 1.4.8. Let M be an R-module and p ∈ Spec(R). Then Mp is a free Rp-module.
By rank of M at p we mean the rank of free RP -module Mp. We denote it as rkpM. Then P
is free R-modules and rk(P ) = n.

Example 1.4.9. Let P be an R-module and. R is a local ring,
then rkpP = n (see [11] where n is the free rank of M).

Lemma 1.4.10. If R has no non-trivial idempotent then P ∈ P(R) has a constant rank.
More specifically a commutative integral domain has constant rank.

Proof. If R has no idempotent, then Spec(R) is connected (common fact in commutative
algebra). Hence the continuous function rkp is forced to be constant. A commutative ring
has no non-trivial idempotent since e2 = eimplies e(e− 1) = 0 implies e = 0 or e = 1.

Proposition 1.4.11. Finitely generated projective modules over PID are free.

Proof. Let P be a projective module over R. Hence by Proposition 1.4.4 there exists an
R-module Q such that P ⊕Q ' Rn. for some n ≥ 0. Since R is a PID, we have a structure
for P and Q i.e.

P ' Rm ⊕ T (P ), Q ' Rt ⊕ T (Q)

where T (P ) and T (Q) represent the torsion part of P and Q respectively. If T (P ) 6= 0 (or
T (Q) 6= 0), then P ⊕ Q has a torsion element which is a contradiction since P ⊕ Q ' Rn

and Rn has no torsion element. Therefore T (P ) = T (Q) = 0. Hence P (and Q) are free
R-modules.
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1.5 Milnor patching property

Let A,A1, A2, A
′ be commutative rings and i1, i2, j1, j2 be ring homomorphism such that it

satisfies the commutative diagram (1.1).

A A1

A2 A′

i1

i2 j1

j2

(1.1)

Given the ring homomorphsim i : X → Y the following diagram (1.2) be defined by

P(X)→ P(Y )

P 7→ P ⊗X Y

.

P(A) P(A1)

P(A2) P(A′)

(1.2)

Then we say that it satisfies Milnor property if

1. Pk ∈ P(Ak); k = 1, 2,

2. h : P1 ⊗A1 A
′ → P2 ⊗A2 A

′ an isomorphism of A′ modules implies,

1. The pull back A-module P is projective i.e. P ∈ P(A).

2. P ⊗A Ak ' Pk; k = 1, 2.

Example 1.5.1 (Type A). Consider the following diagram 1.3 under the condition that j2

(or j1) is subjective, then (1.3) satisfies Milnor patching (see [12] for more information).
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A A1

A2 A′

i1

i2 j1

j2

(1.3)

Example 1.5.2 (Type B). Consider the following diagram (1.4), under the condition that
s, t ∈ A; As + At = 1 and map the being the natural localization map. Then (1.4) satisfies
Milnor patching property (see [11] for more informations).

A As

At Ast

(1.4)

Proposition 1.5.3. Consider the following diagram (1.1) and assume it satisfies the Milnor
patching property, let P ∈ P(A1) such that P ⊗ A′ ∈ PA2(A′), then P ∈ PA(A1).

Notation 1.5.4. Here PRS means projective modules over S which are extended from R.

Proof. Since we know P ⊗A1 A
′ ∈ PA2(A′) implies there exists Q ∈ P(A2) such that P ⊗A1

A′ = Q ⊗A2 A
′, Now applying Milnor patching property gives us the pullback M ∈ P(A)

such that M ⊗A A1 = P .

Proposition 1.5.5. Let f be a monic polynomial in R[X−1] and let P ∈ P(R[X,X−1])

such that Pf ∈ PR(R[X,X−1]f ), then P ∈ PR[X](R[X,X−1]).

Proof. Let g = X−nf . Then R[X,X−1]g = R[X,X−1]f Now consider the following digram
(1.5):

R[X] R[X,X−1]

R[X]g R[X,X−1]f

(1.5)

Since Pf is extended from R, we have Pf ' Q⊗R R[X,X−1], for some R-module Q. Hence

Pf ' Q⊗R R[X,X−1] = (Q⊗R R[X]⊗R[X] R[X]g)⊗R[X]g (R[X,X−1])

14



or
Pf ' Q′ ⊗R[x]g R[X,X−1

where Q′ = (Q⊗R R[X]⊗R[X] R[X]g).

Now the diagram (1.5) is of the same type as the diagram (1.4) and hence satisfies Milnor
patching property. Hence Proposition 1.5.5 follows immediately by applying Proposition
1.5.3.
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Chapter 2

Graded rings and modules

This chapter gives introduction and basic properties of graded rings and modules, which are
required because

1. Graded rings are can thought of as a natural generalisation of polynomial rings.

2. The graded L-G principle, which is the key step for the proof of Serre’s problem.

3. In the main proof, we give our monoid algebra R[M ] a Z-grading and then apply the
graded version of L-G principal.

2.1 Graded Rings: Basic definition and examples

Definition 2.1.1. A ring A is Γ-graded if A =
⊕

γ∈ΓAγ, where Γ is an abelian group and
each Aγ is an additive subgroup of A satisfying AγAδ ⊆ Aγ+δ for all γ, δ ∈ Γ.

The set Ah = {
⋃
Aγ | γ ∈ Γ} is called the homogeneous element of the ring A. The set

ΓA = {γ ∈ Γ | Aγ 6= 0} is called the support of A. If a ∈ Aγ, then deg(a) = γ.

Example 2.1.2. Let A = R[X] be a polynomial ring with Z-grading i.e (A = 1 ⊕ 〈x〉 ⊕
〈x2〉 ⊕ · · · ), then ZA = Z+ ∪ {0}.

Definition 2.1.3. Given Γ-graded ring A and B, a graded ring homomorphism f : A→ B
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is a ring homomorphism such that f(Aγ) ⊂ Bγ.

Graded ring homomorphism preserves the degree i.e. index of the homogeneous component
of A of element.

Example 2.1.4 (Trivial examples of graded and a non-graded homomorphism).

Let R be a graded ring. Then 1R : R→ R is a graded homomorphism and 0R : R→ R is a
non-graded homomorphism.

Now we derive some basic property of graded rings.

Proposition 2.1.5. Let A =
⊕

Aγ be a Γ-graded ring, then

1. 1A is a homogeneous element of degree 0.

2. A0 is a subring of A.

3. Each Aγ is an A0-module.

4. For an invertible element a ∈ Aγ, its inverse a−1 ∈ A−γ.

Proof. 1. We will show that 1A ∈ A0. Let 1A =
∑

γ∈Γ aγ and b be any homogeneous
element of degree δ. Then 1Ab = b =

∑
baγ. As baγ ∈ Aγ+δ, due to direct sum

property, b has unique representation as a sum, and hence baγ = 0, γ 6= 0. Since b is
any arbitrary term, in general we get 1Aaγ = 0 which implies aγ = 0 for γ 6= 0. Hence
1A = a0. Therefore deg(1A) = 0 and hence the result.

2. A0 is a subgroup from definition and from above, it follows that 1A ∈ A0. So the only
non-trivial part to check is closure under multiplication. But by definition A0A0 ⊆
A0+0 = A0. Hence it’s a subring.

3. Let b =
∑
bδ be the inverse element of a ∈ Aγ. Then, as before ab = 1 implies abδ = 0

for δ 6= −γ. Since a is invertible, we have bδ = 0 for δ 6= −γ. Hence a−1 = b = b−γ.

Example 2.1.6. For an additive abelian group Γ, Z[Γ] has a natural Γ-grading i.e.
Z[Γ] =

⊕
γ∈Γ Z[Γ]γ, where Z[Γ]γ = Zγ.

17



2.2 Graded ideals

Definition 2.2.1. Let A be a Γ-graded ring. An ideal of A is called graded ideal if

I =
⊕
γ∈Γ

(I ∩ Aγ).

In other words I is graded ideal if and only if x ∈ I, x =
∑
xi, where xi are homogeneous

elements implies xi ∈ I.

Definition 2.2.2. Let A be a Γ-graded ring and I be a graded ideal, then the quotient ring
A/I is Γ-graded as follows:

A/I =
⊕
γ∈Γ

(A/I)γ , where (A/I)γ = (Aγ + I)/I = Aγ/(I ∩ Aγ).

It follows that an ideal is graded if and only if it is generated by homogeneous element.

Example 2.2.3. In light of the above statement, ideal generated by X in the polynomial
ring R[X] is a Z-graded ideal.

2.3 Graded prime and maximal ideals

Let P be a graded ideal of Γ-graded ring A. Then its called a graded prime ideal of A if
A 6= P and for any two graded ideals I and J ∈ A, IJ ⊂ P implies either I or J ⊂ P .
Under commutative setting, we have x, y ∈ Ah, xy ∈ P implies either x or y ∈ P . In general
graded prime ideal need not be a prime ideal.

Definition 2.3.1. A graded maximal ideal of a Γ-graded ring A, is the maximal graded
ideal among the set of all graded ideals.

Example 2.3.2. Consider the natural Z-grading on a polynomial ring K[X], where K is a
field. Then the ideal 〈X〉 is a graded maximal ideal.

Example 2.3.3. Consider the maximal ideal m generated by 〈X + 1〉 on a polynomial ring
K[X], where K is a field. Then it is a maximal ideal but not graded, since neither X nor
1 ∈ m (because if X ∈ m, then −X ∈ m and hence 1 ∈M) but X + 1 ∈ m.
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2.4 Graded local rings

We recall that a ring A is local if and only if it has one maximal ideal if and only if set of
all non-invertible elements forms an ideal. Motivated by this definition, a ring A is a graded
local ring if the set of all non-invertible elements form a graded ideal. It follows from above
that if such an ideal exists, then it should be unique.

Proposition 2.4.1. Let A be a Γ-graded ring. Then A is graded local if and only if A0 is
a local ring.

Proof. Let A be a graded local ring with maximal ideal m.

Let M = m ∩ A0. Then M is proper ideal of A0. Suppose x ∈ A0 − M, then x is a
homogeneous element of degree 0 and is not in m, hence it is invertible in A. Since x ∈ A0,
its inverse is also in A0 and hence x in invertible in A0. As x is an arbitrary element of A0

we man conclude thatM is a unique maximal ideal of A0 which make A0 a local ring.

Let A0 be a local ring.

Let M be the ideal generated by non-invertible homogeneous element of A. We will show
that m is a proper graded ideal and hence A is a graded local ring. Let us assume to the
contrary that m = A. This implies 1 =

∑
imiai, where ai are non-invertible elements in A.

Since 1 has degree 0, we have deg(miai) = 0 and hence each (miai) ∈ M (because if aimi

is invertible, then ai would be invertible; a contradiction) and therefore 1 ∈ M which is a
contradiction, hence the result.

Example 2.4.2 (Example of a graded local which is not local). Let R be a local ring. Then
consider A = R[X]. It follows that A is a graded local from Proposition 2.4.1. Clearly A
is not local because is has atleast two (infact many) non-identical maximal ideal such as
µ = 〈x〉 and ν = 〈x+ 1〉.

After graded rings, now we discuss the grading on modules.
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2.5 Graded modules: Basic definitions and examples

Definition 2.5.1. Let A be a Γ-graded ring. Then a graded right moduleM is an A-module
such that M =

⊕
γ∈ΓMγ and AγMδ ⊆Mγ+δ.

Example 2.5.2. K[X] is a Z-graded K[X]-module.

If M and N are two γ-graded A-module, then the homomorphism f : M → N is a graded
homomorphism if f(Mγ) ⊂ Nγ for all γ ∈ Γ. Similarly we define graded isomorphism.

Example 2.5.3. The 1M and 0M is an example of graded and non-graded homomorphism
for a graded module M .

Definition 2.5.4. A submodule N of a graded module M is called graded submodule if

N =
⊕
γ∈Γ

(N ∩Mγ).

Remark 2.5.5. If a Γ-graded ring A is considered a module over itself, then the notion of
graded ideal coincide with that of graded submodule.

Example 2.5.6. Let A be a Γ-graded ring. If a ∈ A is a homogeneous element of degree α,
then the ideal aA is a graded submodule (and ideal) with

(aA)γ := aAγ−α.

It is graded, i.e aA =
⊕

(aA ∩ Aγ). Indeed, if x ∈ aA implies

x = a(· · ·+ a−γ + · · ·+ a0 + · · · aγ + · · · )

for some aγ in AΓ, which in turn implies aa−γ ∈ A−γ+α ∩ aA.

If M is a Γ-graded module and N is its submodule, then we define graded quotient module
as

M/N =
⊕
γ∈Γ

(M/N)γ , where (M/N)γ = (Mγ +N)/N.

Definition 2.5.7. Let M be Γ-graded right A-module and N be Γ-graded left A-module.
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We now defined Tensor grading on M ⊗R N from Lemma 1.2.4 as follows:

M ⊗A N = (
⊕
γ∈Γ

Mγ)⊗A (
⊕
γ∈Γ

Nγ) =
⊕
γ+δ∈Γ

Mγ ⊗A Nδ.

2.6 Graded free modules

Just as we have the notion of free modules, we have a corresponding notion for graded case
and it is called graded free modules. In general free module with grading is not same as a
graded free module.

Definition 2.6.1 (Graded free modules). Let A be a Γ-graded ring. Then a graded A-
module F is graded free if it is a free A-module and its basis elements are homogeneous
elements of F .

Example 2.6.2. If A = R[X] with Z-grading, then A× A is a graded free A-module with
basis elements (1, 0) and (0, 1).

Example 2.6.3. Consider the matrix ring Mn(A) as Z-graded which is concentrated at
degree 0 and consider Mn(A) as module over itself with grading (Mn(A))i = eiMn(A). It
follows that all non-zero homogeneous elements are 0 divisors and hence can not constitute
a linear independent set. Therefore, the module is not graded-free inspite of it being graded
and free.

2.7 Graded projective modules

Just as we have a notion of projective modules, we have a corresponding notion for graded
case called graded free. Unlike graded free case, here projective modules with grading would
imply that the module is graded-projective as we will see later in this section.

Definition 2.7.1. P is called a graded projective module if the following

M N 0

P

g

j
h
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diagram of gradedA-modules and gradedA-homomorphism, there is gradedA-homomorphism
h : P →M such that g ◦ h = j.

Lemma 2.7.2. Let the following

P M

N

h

h′

f
g

be a commutative diagram of graded modules M,N, and P , such that f = gh, where f
is a graded A-homomorphism. If g is a graded homomorphism, then their exists a graded
homomorphism h′ : M → N such that f = gh′.

Proof. Let g : M → N be a graded homomorphism. If p ∈ Pα, define h′(p) = h(p)∩Mα and
extend this map linearly to all p ∈ P as follows:

h′(p) = Σα∈Γh(pα)α.

It follows immediately that h′ is a graded A- homomorphism. To check for gh′ = j, observe
that for p ∈ Pα, we have

f(p) = g Σα∈Γ h(p)α = Σα∈Γ gh(p)α.

Since g and f are graded homomorphism, so it preserves the degree i.e the above relation
become

f(p) = gh(p)α = gh′(p).

Using the linearity of f, g and h′ it follows f = gh′.

Proposition 2.7.3. Let A be a Γ-graded ring and P be a graded A-module, then the
followings are equivalent:

1. P is a graded and projective module.

2. P is a graded projective module.

3. 0→ A0
f0−→ A1

f1−→ A2 → 0 implies

0→ HomR(P,A0)
f ′0−→ HomR(P,A1)

f ′1−→ HomR(P,A2)→ 0
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where f0 and f1 are graded homomorphism.

4. Every short exact sequence

0→ L→M
g−→ P → 0

of graded A homomorphism splits (at g) via a graded map.

5. P is graded isomorphic to direct summand of graded free module.

Proof. 1. (1) =⇒ (2): Consider the following commutative diagram

P M

N

h

f
g

whereM and N are graded A-modules and f and g are graded homomorphisms. Since
P is a projective module, we have a map h such that f = gh. Using Lemma 2.7.2, we
have a graded homomorphism h′ such that f = gh′. Hence P is a graded projective
module.

2. (2) =⇒ (3): Since Hom(P,−) is always left exact by Lemma 1.1.5, the only non-
trivial part remains to be shown is the right exactness. Given g ∈ Hom(P,A2), from
the definition of graded projective modules, their exists h ∈ Hom(P,A1). Hence the
sequence is right exact.

3. (3) =⇒ (4): If h ∈ Hom(P,M) then gh ∈ Hom(P, P ). Since Hom(P,−) is exact, for
1P ∈ Hom(P, P ) their exists h′ ∈ Hom(P,M) such that gh′ = 1P . Hence g splits.

4. (4) =⇒ (5): Let {p1, . . . , pn} be the homogeneous generators of P (we can choose
such a generators by breaking generators of P in homogeneous parts). Let deg(pi) = δi.
Consider the free graded F -module generated by {e1, . . . , en}, where deg(ei) = δi. Then
there is a surjective graded-homomorphism φ : F → P with ei 7→ pi. Since φ splits
from, we have P as a direct summand of F .

5. (5) =⇒ (1): Since P is direct summand of a graded free module F and since F is
free, we conclude that P is a projective module. From definition P is graded.
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Example 2.7.4. Due to Proposition 2.7.3, to find examples of graded-free, we have to find
a projective module with grading. Consider the ring A = R[X]. Then module N (i.e the
ideal generated by 〈X〉) is a graded-projective module.
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Chapter 3

Classical result on Serre’s conjecture

This chapter deals with classical results from Serre’s conjecture. This section assumes im-
portance because for rank 1 normal monoid M , R[M ] ' R[X] and hence serves as a suitable
base for our induction hypothesis for tackling the general problem.

We will first discuss the case of rank 1 projective modules over a polynomial K[X1, . . . , Xn]

over a field K.

3.1 Rank 1 projective modules

Lemma 3.1.1. Let R be an integral domain, with quotient field K . Let P 6= 0 be a R-
submodule of K. Then P is projective if and only if there exists R-submodule Q ⊆ K, such
that PQ = R. This would also imply that P is finitely generated.

Proof. Let P be a projective R-module.

Let F =
⊕

i∈I Rei be a free R-module for some index set I. Since P is a projective module,
we have

F
f

�
g
P

such that f ◦ g = 1.
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Now we look at the nature of the map g. Since g : P → F , g must be of the form
g(p) = Σi∈I gi(p)ei, for each gi = πi ◦ g ∈ Hom(P,R) where πi is the natural projection.
Since both P and R are R-submodule of K, we extend the gi : K → K as follows:

K ⊗R P
1⊗gi−−→ K ⊗R R.

Since only endomorphism between K’s is multiplication by some element, we now have
gi(p) = bip and g =

∑
i∈I bip. Since only finitely many terms are non-zero in the summation,

hence we can assume our index set I to be finite and hence without loss of generality let us
assume {b1, . . . , bn} are non-zero.

Let Q = ΣRbi, then we have QP ⊆ R. So the only part remained to be proved is QP ⊇ R.
For that observe that f(ei) = pi ∈ P . Hence P is generated by {p1, p2, . . . , pn}. Using the
property of split-homomorphism, we have

f ◦ g(p) = p = f(Σi∈I(bip)ei) = pΣi∈Ibipi.

That is
p = pΣi∈Iaipi =⇒ Σi∈Ibipi = 1.

Hence 1 ∈ PQ and therefore PQ = R.

Conversely let PQ = R, to show P is R-projective.

Since
∑

i∈I biai = 1, let’s define f : F = ⊕i∈IRei → P by ei 7→ ai and similarly define
g : P → F by p 7→ Σi∈I(bip)ei. Now we have split-homomorphism between F and P

F
f

�
g
P.

Hence using Proposition1.4.4, we prove that P is projective.

Proposition 3.1.2. Let R be a UFD, and P is a projective R-module. Then rk(P ) = 1

implies P ' R.

Proof. Assume P to be an ideal of R generated by {p1, p2, . . . , pn}. Then from Lemma 3.1.1,
we have PQ = R and

∑n
1 bipi = 1. Since Q in general is not a subset of R, we cannot

directly conclude that P = R. Let bi = ci/di. Since bipj ∈ R, we have ci/di ∈ R and hence
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(due to UFD) we have di divides pj for every possible pair (i, j). Hence lcm(di) = d divides
pj for every j. Therefore

n∑
1

bipi =
n∑
1

(ci/di)pi =
n∑
1

(c̃i/d)pi =
n∑
1

c̃ip̃i = 1.

Hence 1 ∈ P , and therefore P = R.

Corollary 3.1.3. Let A be a UFD, R = A[X1, X2, . . . , Xn], and P be a rank 1 projective
R-module, then P ' R.

Proof. By Gauss’s lemma on UFD, R is a UFD and hence by Proposition 3.1.2, P ' R.

3.2 Serre’s problem for one variable

We now consider the case of projective modules over K[X], where K is a field.

Definition 3.2.1. A ring R is called hereditary if every ideal of R is projective.

Proposition 3.2.2. [Kaplansky] If R is a hereditary ring, then any submodule A of any
free module F = ⊕Rei is isomorphic to direct sum of R-ideals. In particular A is projective.

Proof. Let Fi denote the submodule of F with basis ej, and j ≤ i. Let A be a submodule of
F and Ai = A∩Fi. Then Ai+1/Ai ⊆ R is a projective R-module. One checks Ai+1 = Ai⊕Ii.
Now we will inductively show that A = ⊕Ii.

Suppose not, then there exists a least i such that a ∈ Ai+1 −
∑
Ii, a 6= 0. Since a ∈ Ai+1

we have a = ã + ā, ã ∈ Ai and ā ∈ Ii. Because we have choose such least i, it follows that
ã ∈

∑
⊕Ii, and hence a ∈ ⊕Ii, a contradiction. Therefore it follows A = ⊕Ii.

Corollary 3.2.3. If R is a ring whose ideal are free (like PID), then submodules of free
R-modules are free. In particular, all projective modules are free.

Proof. From definition, R is a hereditary ring. Hence by Proposition 3.2.2 all projective
modules is a direct sum of ideal which by the above hypothesis is free and hence every
projective module is free.
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Remark 3.2.4. Projective modules over PID’s are free.

3.3 Serre’s problem for graded case

We now consider the case where the projective module has a Z-graded structure.

Definition 3.3.1. We say a graded R-moduleM is bounded from below if there exists r ∈ Z
such that Mj = 0, j < r.

Proposition 3.3.2. Any finitely generated graded R-module M is bounded from below.

Proof. Suppose m1, . . . ,mr are generators for M . Choose r small enough such that homo-
geneous component of mi have degree ≥ r. Then M =

∑
Rmi and hence the result.

Proposition 3.3.3. Let R be a graded ring and M be a graded module bounded from
below, Then M = M/R+M = 0 implies M = 0.

Notation 3.3.4. Let R+ denote the ideal R1 ⊕R2 ⊕ · · · .

Proof. Since M is bounded from below, we have M = Mr + Mr+1 + · · · , hence R+M =

Mr+1 + · · · . If M = R+M , then Mr = 0 and repeating the same argument, we get M = 0.

Proposition 3.3.5. Let P,Q be finitely generated R-modules over a graded ring R, with
P being a projective R-module. Let γ : Q→ P be a graded-ring homomorphism. Then γ is
an isomorphism if and only if γ : P → Q is an isomorphism.

Notation 3.3.6. For an R-module P , by P we mean P/R+P .

Proof. Assume γ if isomorphism.

Let K = ker(γ) and C = coker(γ). Then C and K both are graded modules. Since modulo
by R+ is same as ⊗R/R+, and since tensor product is right-exact, we have C = 0. Also C
is finitely generated, and hence by Lemma 1.1.1, C = 0 and therefore γ is onto. Since P is
projective, Q = K ⊕ P , where K is kernel of γ and therefore Q = K + P = P and hence
K = 0 and since K is finitely generated, again using Lemma 1.1.1, we conclude that K = 0.
Hence P ' Q.
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Conversely assume γ is isomorphism.

P ' Q and hence P ⊗R/R+ = Q⊗R/R+ or P = Q. Hence the result follows.

Theorem 3.3.7. Let R = R0 +R1 + · · · be a graded ring. Let P be a projective R-module.
Then P is extended form R0 or more precisely R⊗R0 P = P where P is a graded R0-module.

Proof. Let f : P → P be a projection map (also a graded R0-module homomorphism). Since
P is projective R-module, P is also a projective R0-module. Hence this homomorphism splits.
Let g : P → P be the required split map. Since f is a graded homomorphsim, g can be
made into a graded homomorphism. Hence g induces a graded R-module homomorphism
γ : Q = R⊗R0 P

1⊗g−−→ P given by (r, u) 7→ ru. Taking quotient with R+, we have

γ : R⊗R0 P ⊗R/R+ ' P ⊗R0 R/R
+ → P ⊗R0 R/R

+ = P .

Hence γ as an isomorphism. Hence by Proposition 3.3.5, we have γ as isomorphism. Hence
the result.

Corollary 3.3.8. Let R = R0[X1, . . . , Xn] be the ring with the natural grading. Let P be
a graded R-module. Then P is extended from R0. If R0 is a PID, then P is free.

3.4 Quillen-Suslin theorem: Outline of the proof

We begin with the following theorem due Horrocks. For more detail refer to [13]

Proposition 3.4.1 (Horrocks theorem). Let (R,m) be a local ring and let P be a projective
R[X]-module. If Pf is a free R[X]f -module for some monic polynomial f , then P is free.

One can deduce Proposition 3.4.1 from the following two results. For more details cf [13].

Proposition 3.4.2 (Murthy-Pedrini). Let P and Q be a projective module over R[X] and
let Pf be isomorphic to Qf as a R[X]f -module for some monic element f . Then P and Q
are stably isomorphic over R[X].

Proposition 3.4.3. Let R,m be a local ring and let P , Q be a projective R[X]-modules
such that rk(Q) < rk(P ). Suppose that Qf is a direct summand of Pf as an R[X]f -module
for some monic polynomial f ∈ R[X]. Then Q is a direct summand of P .
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Let us now derive Proposition 3.4.1 from Proposition 3.4.2 and Proposition 3.4.3.

Case n = 1.

If Pf ' Af
n, where n is the rk(P ) = n and A = R[X]. By Proposition 3.4.2, P is stably

isomorphic to An. From Proposition 3.1.2, we prove that P is free.

Hence let us assume n > 1.

Since Afn−1 is isomorphic to direct summand of Pf , from Proposition 3.4.3, An−1 is direct
summand of P . Hence P ' An−1 ⊕ L for some rank 1 projective module L. Hence Lf ⊕
Af

n−1 ' Pf ' Anf . Since rk(L) = 1, we have Lf = A. Hence from n = 1 case, we have L as
a free A-module. Hence P is free.

Having obtained Proposition 3.4.1, we now use Quillen’s localisation to extend Proposition
3.4.1 from local rings to more general rings. We assume that R is any commutative ring
with identity.

Proposition 3.4.4 (Quillen’s Localisation Theorem). If P is a projective R[X]-module such
that the Rm[X]-module Pm is extended from Rm for every maximal ideal m of R, then P is
extended from R.

Now we use the next proposition to arrive at Quillen-Suslin Theorem.

Proposition 3.4.5. Let P be a finitely generated projective module over R[X]. If the
R[X]f -module Pf is extended from a projective module over R for some monic f , then P is
extended from R.

Using the fact that all projective modules over fields are free, we arrive at Quillen-Suslin
Theorem.

Proposition 3.4.6 (Quillen -Suslin theorem). Let P be a finitely generated projective mod-
ule over R[X] and let Pf be R[X]f -free for some monic f ∈ R[X]. Then P is free.

Serre’s problem follows from the following proposition:

We use induction on n. Let K be a field and P a finitely generated projective module over
K[X1, . . . , Xn]. Consider the field K(X1, . . . , Xn), then the extended module P ⊗K[X1,...,Xm]

K(X1, . . . , Xn) is a vector over the quotient field and hence free. Since P is finitely generated,
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Pf is free over K[X1, . . . , Xn]f for some monic polynomial f(X1, . . . , Xn) (without loss of
generality we can assume f to be monic in Xn with coefficient in K[X1, . . . , Xn−1] and use
the induction hypothesis). Hence it follows from Proposition 3.4.6 that P is free.

Definition 3.4.7 (Stably Isomorphic). Two R-modules M and N are said to be stably
isomorphic if M ⊕Rm ' N ⊕Rn for some m,n > 0.

Horrocks theorem has an alternate formulation due to P. Roberts.

Proposition 3.4.8. Let (R,m) be a local ring, and A be an R-algebra. let S be multi-
plicative set of central non zero-divisors in A, and n ≥ 0 be a fixed integer. Assume that
following hypothesis holds:

1. For any f ∈ S, A/fA is finitely generated R-module.

2. GLn(S−1) = GLn(S−1A)(GLn(A).

3. S−1A contains an R-subalgebra B such that S−1A = A+B and mB ⊂ rad(B).

4. Let P be a finitely generated A-module such that f is regular on P and P ' An and
S−1P ' (S−1A)n.

Then P ' An.

Proof. cf: ([11], 4.1).

3.5 Quillen’s graded local-global principal

A more general version of Proposition 3.4.4 is needed for proving the Anderson’s conjecture.

Proposition 3.5.1 (Graded Quillen’s Patching). Let R = R0 ⊕R1 ⊕R2 ⊕ · · · be a graded
ring and P a finitely generated R-module. Then P is extended from R0 if and only if Pm is
extended from (R0)m for every maximal ideal m ( R0.

Notation 3.5.2. If f : A→ B is a ring homomorphism, then by f∗(P ) we mean the extended
module P ⊗B, where the module structure is induced by f .

Proof. Consider the following maps:
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1. i : R0 → R be the inclusion map (we shall use the same symbol for the map (R0)m →
Rm).

2. j : R→ R[X] be the inclusion map (we shall use the same symbol for the map Rν →
Rν [X]).

3. w : R→ R[X] given by r0 + r1 + · · · 7→ r0 + r1X + r2X
2 + · · · .

4. ε : R→ R0 sending Rn 7→ 0 for n > 0.

5. ek : R[X]→ R for k = 0, 1 by sending X to k.

From above we get the following equality:

e0j = e1k = e1w = 1R and e0w = iε.

Consider a projective R-module P . Let W = w∗(P ) i.e. W = P ⊗R R[T ] via w. Let m be
a maximal ideal in R0. Hence Pm is (R0)m extended and hence Wm is (R0)m extended (W
is also Rm extended). Using Lemma 1.3.13, we have s ∈ R0 − m such that Ws (and Ps) is
(R0)s extended. Let n be a maximal ideal of R such that n ∩ R0 ⊂ m. Since n ∩ R0 ⊂ m

for some maximal ideal m of R0 choose s ∈ R0 −m and the using the fact that Ws is (R0)s

extended implies Wn is Rn extended (note that s ∈ R − n). Hence by the usual Quillen’s
L-G principal, we have W extended from R-module Q.

Now we have
P ' e1∗j∗(Q),

since e1
−1 = w and hence w∗(P ) = W = j∗(Q). Therefore,

e1∗j∗(Q) = e0∗j∗(Q) ' e0∗(W ) ' e0∗w∗(P ) ' i∗ε∗(P )

implying P is extended from R0.

The other implication is obvious.

Another proof: (for definition see [3])

Proof. Let R = R0 ⊕R1 ⊕R2 ⊕ · · · and v = (a0, a1, . . . , am) be a unimodular ring in R and
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vm be locally extended from (R0)m for some maximal ideal m of R0. Hence we can find a
s ∈ R0 −m such that vs is locally extended from (R0)s by Lemma 1.3.13. Consider the ring
homomorphism

F : R→ R[T ] given by a = r0 + r1 + · · · 7→ r0 + r1T + r2T
2 + · · · .

Let F (ai) = fi(T ) and since F is a ring homomorphism, F (v) = (f1(T ), f2(T ), . . . , fm(T ))

is also unimodular. Let n be a maximal ideal of R and consider the localisation of F (v) in
Rn[T ]. Choose m ⊃ n ∩ R0 and then select s as done before. Since s ∈ R0 − m we have
s ∈ R− n. Therefore F (v)s is Rs extended. Since F (v)n is the further localisation of F (v)s,
we have

F (v)n = (f1(T ), f2(T ), . . . , fm(T ))

is extended from Rn. Hence by classical Quillen’s L-G principal, we have F (v) is extended
from R. This implies (f1(0), f2(0), . . . , fm(0)) and (f1(1), f2(1), . . . , fm(1)) (we substitute
T = 0, 1 respectively in v) are in the same GLm(R) orbits. Hence

(b1, . . . , bm) ∼GLm(R) (a1, . . . , am),

where bi ∈ R0. Hence v is extended from R0.
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Chapter 4

Monoids and monoid algebras

In this chapter, we discuss about few definition, and general properties of monoids and
monoid algebras.

4.1 Monoids: Definition and examples

A monoid is an algebraic structure which generalises the notion of a group.

Definition 4.1.1 (Monoid). A set (M,+) with a binary operation M ×M → M which is
associative and has an identity element e is called a monoid.

Notation 4.1.2. Throughout this chapter, we would either denote the monoid operation as
+ with identity 0 or . with identity 1.

A monoid is said to be commutative if a+ b = b+ a. A subset N ⊆M is a submonoid if it
is closed under addition and every element has an inverse. If m ∈ M has an inverse in M ,
then m is called a unit.
Remark 4.1.3. A monoid M is said to be an affine monoid if M is finitely generated and a
submonoid of Zd for some positive integer d. From here onward, unless otherwise mentioned,
we would assume our monoid to be affine.

Example 4.1.4. : Few examples of commutative affine monoids:

1. Any group G is a monoid.
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2. Z+ is a monoid under usual multiplication.

3. Let R[X1, . . . , Xn] be a polynomial ring in n variables, then the set

X := {X i
j | 1 ≤ i ≤ n, j ≥ 0}

forms a monoid under multiplication.

In groups, we have maps (called homomorphism) to compare two groups. Similarly we
borrow the concept of homomorphism for monoids as follows:

Definition 4.1.5 (Monoid Homomorphism). Let ψ : M → N be a map of monoids such
that ψ(a+ b) = ψ(a) + ψ(b) for all a, b ∈M , then ψ is said to be a monoid homomorphism.

Remark 4.1.6. Monoid homomorphism between groups turns out to be the group homomor-
phism and vice-versa.

Consider the monoid Z+. Intuitively it is clear that we can complete this monoid to a group
Q+ by adding inverse of non-zero element. We now formalise this argument for arbitrary
commutative monoid as follows:

Lemma 4.1.7 (Completion of a monoid). LetM be a monoid, then we can associate a group
gp(M) = G and a monoid homomorphism f̂ : M → G such that the following diagram of
monoid homomorphism commutes:

M H

G

f

f̂
π

i.e., given any group H, if f ∈ Hom(M, H) (monoid homomorphism), then there exists a
unique π ∈ Hom(G, H) (group homomorphism) such that f̂ ◦ π = f .

Outline of proof. For a monoid M , we construct a new monoid M ×M such that M is
identified as (M, 0) and M−1 is identified as (0,M). To cover the overlap of elements we go
modulo the overlapping elements and finally check (M ×M)/ ∼ is a group.

Proof. Let (x, y) := x− y denote an equivalence relation such that (x, y) ∼ (a, b) if and only
if x + b = y + a. This defines an equivalence class on M ×M . We define addition on this
equivalence class as follows: (x, y) + (a, b) = (x+ a, y + b).
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We claim that this equivalence class (called G) has a group structure:

It is associative and closed under addition by definition. The inverse of (x, y) is (x, y) for all
(x, y) ∈ (M×M∼ ) (as (x, y) + (x, y) = (x+ y, x+ y) or (x+ y, x+ y) := x+ y− (x+ y) and the
identity element is (z, z) = (0, 0) because (x, y) + (z, z) = (x+ z, y + z) or (x+ z, y + z) :=

x+ z − (y + z) = x− y := (x, y).

We now claim that the map m 7→ (m, 0) is the monoid homomorphism ψ : M → gp(M) and
satisfies the universal property and the result follows immediately.

ψ(m1 + m2) = (m1 + m2, 0) := m1 + m2 − 0 and ψ(m1, 0) + ψ(m2, 0) := m1 − 0 + m2 − 0.
Hence ψ(m1 + m2) = ψ(m1) + ψ(m2). Now if f : M → H is monoid-homomorphism such
that m 7→ h, then π : G→ H is defined as π(m,n) = f(m)f(n)−1.

Definition 4.1.8 (Rank of a monoid). The rank of monoid M is defined to be the rank of
M ⊗Z Q in Q.

Notation 4.1.9. From here onwards, we will denote rank M as rk(M).

Example 4.1.10. If M = Z2, then Q⊗ Z2 = Q2 and hence rk(M) = 2.

4.2 Normal and seminormal monoids

In this section we recall few standard properties and examples of affine monoids.

Definition 4.2.1. Let M be an affine monoid of N = gp(M). We define normalisation of
M in N (in additive notion) to be

M̃N := {x ∈ N | nx ∈M for some n ∈ N}.

Example 4.2.2. Normalisation of Z over Q is Q itself as we can get rid of denominators,
by choosing a suitable n to be the value of denominator.

Definition 4.2.3. A monoid M is called normal if M̃N = M .

We now give an example of a normal monoid.
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Example 4.2.4. Consider the monoid M = {x} and G = {x, x−1} under multiplication.
Then if x−1 ∈ M̃ implies x−k ∈M for some k. But that is not possible. Hence x−1 /∈ M̃ . In
general every free monoid with no non-trivial units is normal.

Infact, normalisation of M can also be thought of as the intersection of all normal monoids
containing M .

Normalisation has a nice geometric picture for affine monoids as the next proposition shows
(whose proof can be found in ([4], 2.22):

Proposition 4.2.5. Given M and N = gp(M), let C = R+M . Then M̃N = C ∩M .

Following is an important consequence of Proposition 4.2.5 which we will use in the later
chapter.

Corollary 4.2.6. LetM be integrally closed in N . If rk(M) = rk(N), then gp(M) = gp(N).
In particular, gp(N?) = gp(N). (see definition 5.1.5).

In a similar manner we define seminormalisation of M over gp(M) as

sn(M) = {x ∈ gp(M) | x2, x3 ∈M}.

Definition 4.2.7. A monoid M is called seminormal if sn(M) = M .

Definition 4.2.8. Let M be an affine monoid and G = gp(M), then

sn (M) := {x ∈ N | x2, x3 ∈M}.

Example 4.2.9. A free monoid with no non-trivial units is seminormal.

Just like normal monoids, it can be inferred that sn(M) is the intersection of all seminormal
submonoids which contain M .

From definition it follows that every normal monoid is seminormal. However, the converse
is not true. There exists seminormal monoid which are not normal. For more details cf. ([4]
2.56a).

Inspite of the previous example, we can still obtain a correspondence between normal and
seminormal monoids. Let M? =Int(M) ∪ {0}.
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Proposition 4.2.10. An affine monoidM is seminormal if and only if (M ∩F )? is a normal
monoid for every face F of R+M . Hence M̃ = M̃?.

Proof. If M is seminormal, then M ∩ F is seminormal for each face F of R+M . Hence it is
enough to show that M? is normal. By corollary 4.2.6, gp(M?) = gp(M). If x ∈ gp(M?),
x 6= 1 and w = xn ∈ M?, then w ∈ Int(M). Rewriting x = yz−1 for y, z ∈ M?. Since w ∈
Int(M), we have wmz−r ∈ M for some m > 0 and r = 0, 1, . . . , n − 1. Then wmxr ∈ M for
same range of r. Let s ≥ 0, s = nq + r, then xnm+s = wmxs = wqwmxr ∈ M and hence
xt ∈M for a large t. Since x ∈M it is obvious that x ∈ Int(M) since xn ∈ Int(M).

4.3 Monoid algebras

In this section, we discuss about monoid algebras and some its properties. As we know
monoid algebras is the ring under consideration in Anderson’s conjecture.

Definition 4.3.1. Let R be a commutative ring and M be a monoid, and consider the set

R[M ] := {Σi∈I rimi | ri ∈ R,mi ∈M}.

If we define addition and multiplication in a natural way, we see that R[M ] forms ring and
since R ⊂ R[M ], it is a R-algebra which is also known as monoid algebra. It follows that
R[M ] is an R-module with basis from M .

Example 4.3.2. Some examples of monoid algebras are:

1. Polynomial ring R[X1, . . . , Xn] is a monoid algebra whereM is a free monoid generated
by {X1, . . . , Xn}.

2. Group ring R[G] (like Laurent’s polynomial) is a monoid algebra where M = G.

Remark 4.3.3. If M is a free monoid with n generators {m1, . . . ,mn}, then there is a
natural isomorphism R[M ]→ R[X1, . . . , Xn] given by mi 7→ xi.

Lemma 4.3.4. Let M be an affine monoid. Then R[M ] is finitely generated as an R-
algebra. If R is Noetherian, then using Hilbert basis theorem, we conclude that R[M ] is also
Noetherian.
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Proof. If M is finitely generated (with generators {m1, . . . ,mn}), then R[M ] is finitely gen-
erated (with same generators) as a R algebra. Let N be a free monoid with n generators
ei. Then from remark 4.3.3 we have R[N ] ' R[X1, . . . , Xn], where ei 7→ Xi. Since R is
Noetherian, it implies R[X1, . . . Xn] ' R[N ] is Noetherian. Let ψ : N →M be the surjective
monoid homomorphism, where ei 7→ mi, then this ψ can be extended to a surjective ring
homomorphism φ̂ : R[N ] → R[M ] given by ψ̂(rm) = rψ(m). Hence it follows that R[M ] is
a Noetherian ring.

We know that Laurent polynomial is an example of monoid algebra. Now the next lemma
gives a deeper relation between these two.

Lemma 4.3.5. Let M be an affine monoid with gp(M) = Zr for some integer r ≥ 0, then
there is an injective R-algebra homomorphism R[M ] → R[X1, X

−1
1 , . . . , Xr, X

−1
r ] mapping

element of M to monomial in variable X1, . . . , Xr.

Proof. Clearly R[Zr] → R[X1, X
−1
1 , . . . , Xr, X

−1
r ] is an isomorphism given by ei 7→ Xi. So

if we show that R[M ] → R[gp(M)] is an embedding, then we get the required map. We
already know that there exists monoid homomorphism f : M → gp(M), so we extend f to
fR : R[M ]→ R[gp(M)], where fR(rimi) = rif(mi) induces a R-algebra homomorphism.

A simple corollary of the above lemma is the following:

Corollary 4.3.6. Let M be an affine monoid. Then R[M ] is integral domain if R is an
integral domain.

Proof. Let gp(M) = G, then M ⊆ G ⊂ Zd, hence R[M ] ⊆ R[G] ⊆ R[Z+
d]. By applying

Lemma 4.3.5, we reach our conclusion.

A result of general interest is the sharpening of the corollary 4.3.6:

Proposition 4.3.7. Let R a domain andM (not affine) a cancellative and torsionfree. Then
R[M ] is a domain. Conversely, if R[M ] is a domain, then R is a domain andM is cancellative
and torsionfree.

Proof. Let f, g ∈ R[M ], then f =
∑n

i=0 rimi and g =
∑k

i=0 simi for some ri, si ∈ R,mi ∈M
(assume n < k). Consider the submonoid N = 〈m1, . . . ,mk〉. Then fg ∈ R[N ] ⊂ R[M ].
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Since N is finitely generated, by corollary 4.3.6, R[N ] is a domain, hence fg 6= 0 if f, g 6= 0.
As f and g are arbitrary , result follows.

To prove the converse, observe that R is a domain if R[M ] is a domain. If M is not
cancellative, then xy = xz would imply x(y − z) = 0 which would give contradiction to the
fact that R[M ] is a domain. If M is not torsionfree, then

xn − yn = (x− y)(xn−1 + xn−2y + · · ·+ yn−1).

Since none of the term is 0 on RHS (because all elements of M are basis for R[M ]), we again
arrive at a contradiction, hence M is torsionfree.

4.4 Grading of monoid algebras

The aim of these section is show some non-trivial grading on R[M ]. We begin with a basic
lemma.

Lemma 4.4.1. (Gordan’s lemma) Let M be finitely generated monoid and let ψ : M → Z
be a homomorphism. Then N := {x ∈M |ψ(x) ≥ 0} is finitely generated.

Outline of proof. We will show that N is finitely generated by choosing a finitely generated
submonoid K and showing N/K ' L is finitely generated (in fact a finite set).

Proof. LetM be generated bym1, . . . ,mn. Then their exists a free monoid F and a surjective
monoid homomorphism f : F → M such that basis of F maps to generators of M . Hence
if image of ψ ◦ f ≥ 0 is finitely generated, then image of ψ ≥ 0 is finitely generated. Hence
we may assume that M is free. It follows immediately that N is a submonoid because if
x, y ∈ N then ψ(x+ y) = ψ(x) + ψ(y) ≥ 0 and hence x+ y ∈ N .

Let {ei , fj , gk}, where i, j, k ∈ N, are basis of M such that

ψ(ei) ≥ 0 , ψ(fj) ≤ 0 and ψ(gk) = 0.

We rearrange the index such that {ψ(ei) = ai} is in descending order and {ψ(fj) = −bj} in

40



ascending order. Let K be a submonoid of M generated by

K := 〈ei , gk , aifj − bjei〉.

Observe that ψ(aifj)− ψ(bjei) = 0. Since it is closed under multiplication and ψ(K) ≥ 0 it
is a submonoid of N . Let

L = N/K.

Then we can choose each representative element u such that ψ(u) < a1 (due to presence
of e1 in kernel K). Similarly, if u = Σxiei + Σyjfj then either xi < bj or yj < ai (due to
presence of aifj − bjei in K) . Hence only finitely many possible values of u is possible and
therefore L is a finite set. Now the result follows.

We now prove the main proposition of the section, whose conclusion will establish the grading
on R[M ].

Proposition 4.4.2. LetM be an affine monoid with set of units U(M) = 1. LetG = gp(M).
Then their is a group homomorphism ψ : G → Z such that ψ(x) > 0 for all x ∈ M − {1}.
Hence R[M ] can be graded.

Proof. If rk (M) = 1, then M = Z+ (because if x is the least positive and −y is the highest
negative members of M , then x − y violates the either minimality of x or maximality of y,
and hence the only way out is to have only positive or negative elements) and hence we have
the natural inclusion map to satisfy the above theorem.

We now use induction on rk (G). Let G = Z×H (by structure theorem of G) and consider
the submonoid N = M ∩ (0×H) and the projection map π : G→ Z restricted to M . Then
N is finitely generated by Lemma 4.4.1 and hence by induction there exists a map φ : H → Z
such that φ(x) > 0 for x ∈ N − {1}. If ψ(1, 0) = λ, such that if the map ψ : G→ Q is well
defined in a natural way, then we are done. So the only non-trivial part in the proof is show
that such a λ exists. To do so, we divide the generators of G into three parts namely (a, u),
(−b, v) and (0, w). So now λ is constrained by these equations

aλ+ φ(u) > 0 and − bλ+ φ(v) > 0.
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Now observe that b(a, u) + a(−b, v) = (0, bu − av) ∈ N . This element cannot be 0 because
then b(a, u) + a(−b, v) = 0 and hence U(M) = 1, a contradiction. Therefore φ(bu− av) > 0

or bφ(u)− aφ(v) > 0. Since the inequality is strict, the interval is non-empty and hence we
can find a λ in between, and therefore the extension map ψ : G → Q is well defined. Now
we multiply λ by k to get rid of denominator. Hence we finally have kψ : G→ Z.

Grading: From the above argument, we can grade R[M ] as follows, let (R[M ])n = ψ−1(n)

for n ≥ 0 and (R[M ])n = 0 for n < 0.

Proposition 4.4.3. Let G be a finitely generated free group and let M be a submonoid
of G. If ψ : M → Z is a homomorphism, then we can find a k such that kψ : G → Z is
homomorphism.

Proof. We extend the map ψ to H = gp(M). Let G = T × F where T/H is the torsion
part of G/H. Let k be chosen such that kT/H = 0 or kT ⊂ H. Hence kψ : T → Z is the
extension of ψ to T . Hence we compose this map with the projection map, to get a map
from G→ Z.
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Chapter 5

Some properties of monoids and monoid
algebras

5.1 Extremal submonoids

In this section we look at a particular submonoids of M called extremal submonoid and list
out some of its properties.

Definition 5.1.1 (Extremal submonoids). A submonoid E ⊂M is called extremal if xy ∈ E
implies x, y ∈ E.

Notation 5.1.2. The set of all extremal monoids of M will be denoted by EM .
Remark 5.1.3. If M is an affine monoid, then C = R+M is a cone. Let F be a face of C,
then M ∩ F is a submonoid which is the geometrical realisation of the extremal submonoid.

Example 5.1.4. In the monoid M := 〈x1, x2〉, submonoid 〈x1〉 is extremal.

Definition 5.1.5. The interior of M denoted by Int(M) := {x ∈M | for all y ∈M we can
find n > 0 with xn = yz, z ∈M}.

Remark 5.1.6. If z ∈ Int(M), then mz ∈ Int(M) for every m ∈M .
Notation 5.1.7. Let x ∈ Int(M), then mx ∈ Int(M) from the above definition. Hence if
M? := {1}∪ Int(M) is a submonoid.
Remark 5.1.8. Infact M? is a normal monoid because if x ∈ gp(M?) − {1} and xn ∈
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M? − {1}, then
(xn)m = yz = xmn = yz

and hence x ∈M? − {1}.
Remark 5.1.9. If M is an affine monoid, then C = R+M is a cone. Let Int(C) denote
the interior of C in topological sense. Then M∩ Int(C) := is the geometric realisation of
Int(M).

Example 5.1.10. In the monoid M := {〈x1, x2〉, Int(M) = xiyi | i, j 6= 0}.

Lemma 5.1.11. If E is a maximal submonoid of M− Int(M), then E is extremal.

Proof. If E is not extremal, then there exists y /∈ E such that xy ∈ E. Consider the monoid
{E, y}. This should intersect Int(M). Let z ∈ Int(M), such that z = eyr for some e ∈ E.
Now xrz ∈ Int(M) and xrz = e(xy)r ∈ E which implies E ∩ Int(M) 6= ∅, which is a
contradiction. Hence E is an extremal submonoid.

Lemma 5.1.12. Let E be extremal submonoid of M and let N be any submonoid of M . If
E meets Int(N), then N ⊂ E.

Proof. Let x ∈ E∩ Int(M) and y ∈ N . Therefore we have xn = yz for some n > 0 and some
z ∈ N . Since x ∈ E, we have xn = yz ∈ E. Since E is extremal, it follows that y, z ∈ E.
Hence N ⊂ E.

Corollary 5.1.13. For extremal submonoids E and E ′ of an affine monoid, if Int(E)∩
Int(E ′) 6= ∅, then E = E ′.

Proof. Using Lemma 5.1.12, we have E ′ ⊂ Int(E) and E ⊂ Int(E ′). Hence E = E ′.

Using a combination both Int and extremal submonoids, we have a nice structure of M in
terms of the former as illustrated in the next lemma:

Lemma 5.1.14. If M is finitely generated then M =
⊔
iInt(Ei), Ei ∈ EM i.e. M can be

expressed as a disjoint union of extremal submonoids.

Proof. Using 5.1.13, we know that Int(Ei) are disjoint. To see why E〉 covers M , observe
that if x ∈ M is not covered by any Int(Ei), then maximal submonoid containing x of M−
Int(Ei) is extremal, a contradiction and hence x is covered by some Int(Ei).
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The following proposition is the generalisation of Proposition 4.4.2.

Proposition 5.1.15. Let M is an affine monoid with no non-trivial units.. Then a sub-
monoid E of M is extremal if and only if their exists a homomorphism ψ : M → N with
E = ψ−1(0).

Outline of proof. To prove the converse, we move from monoid homomorphism to group
homomorphims, and see M and E as subset of gp(M) and kernel respectively.

Proof. If such a ψ exists, then if follows that the kernel E is extremal. Indeed, let a+ b ∈ E,
then ψ(a+ b) = ψ(a) + ψ(b) = 0 implies ψ(a) = ψ(b) = 0.

To prove the converse let G = gp(M) and let H ′ ⊂ G be the subgroup generated by E. Let

H = {g ∈ G | gn ∈ H ′ for some n ∈ N}

and let ν : G→ G/H be the natural surjection.

Now we claim G is torsionfree because if gn = 0 for some n then gnm ∈ H ′ for some m, which
implies gnm ∈ E or g−nm ∈ E. Hence g ∈ E implying g = 1.

Let M = ν(M). If x ∈ E, then ν(x) = 1. Conversely, if ν(x) = 1 implies x ∈ H ′ and using
the above reasoning x ∈ E. Hence M has no non-trivial units. Therefore using Proposition
4.4.2, we have µ : G→ Z such that µ(M) ≥ 0. Hence µ ◦ ν is the required map.

Corollary 5.1.16. If an extremal submonoid E ( M , then by using Proposition 2.3.1, we
can infer that rk E < rk M (strict inequality).

5.2 Homothetic submonoids

We know that if M is finitely generated cancellative torsion free monoid with no non trivial
units, then their exists a homomorphism ψ : M → N with ψ−1(0) = {1} from Proposition
4.4.2. Now for z ∈ Int (M) and m > 0, we define a map θm with centre z as

θm(x) = xmzψ(x).
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If M is normal, define M (m) as normalisation of θm(M) in gp(M). Now it follows that
M (m) ⊂ Int(M) ∪ {1}. Indeed, if y ∈ M (m), then yn ∈ θm(M) and since every term of
θm(M) has the form xmzψ(x), we have yn ∈ M? (because z ∈ M?). Since M? is a normal
monoid containing M , we have M (m) ⊂M? by remark 5.1.3.

Definition 5.2.1. Let M be an monoid with no non-trivial units and z ∈ Int(M) and ψ as
above. Then M (m) is called the homothetic submonoid of M with centre z.

Remark 5.2.2. Homothetic transform corresponds to the homothetic transformation of
Φ(M) in an affine space (see appendix 2).

Lemma 5.2.3. If θm is defined as above, then it is injective.

Proof. Suppose θm(x) = 1, then θm(z)ψ(x) = z(m+ψ(z))(ψ(x)) = 1. Since M ha no non-trivial
units, therefore ψ(x) = 0. Hence θm(x) = xm implies x = 1 because M is torsionfree.

Lemma 5.2.4. If M (i) is defined as above, then M (1) ⊂M (2) ⊂ . . ..

Proof. Observe that θm(x)m+1 = θm+1(x)mzψ(x) ∈ M (m+1), hence θm(x) ∈ Mm+1 due to
normal property of Mm+1 and hence Mm ∈ Mm+1 again due to normal property of Mm+1.

Lemma 5.2.5. Let M be a monoid. Then M? =
⋃
M (m)

Proof. Clearly M? ⊇ ∪Mm follows immediately because z ∈ Int(M). For the converse,
consider x ∈ Int(M). This implies xk = yz for some y, z ∈ M . Let l = ψ(y). Now
x(kl) = ylzl = ylzψ(y). Hence x(kl) ∈M (l).

In general if M ⊂ N , no inclusion relation is observed between Int(M) and Int(N), but the
next lemma show under specific circumstances, we can obtain such a relationship:

Lemma 5.2.6. LetM be a monoid and N a finitely generated submonoid ofM . If rank(M)
= rank(N), then Int(M) ⊇ Int(N).

Proof. If N∩ Int(M) = ∅, then N is a submonoid ofM− Int(M), hence is contained in some
extremal submonoid E. By Proposition 5.1.15 we can find an homomorphism φ : M → Z
such that φ−1(0) = E. Hence rank N ≤ rank E < rank M which is a contradiction. Hence
N∩ Int(M) 6= ∅. Let z ∈ N∩ Int(M). If y ∈ Int(N), then yn = zw. Hence ym ∈ Int(M)
which implies y ∈ Int(M).
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Lemma 5.2.7. If z ∈ Int(M), then {z−1,M} = gp(M).

Proof. Let x/y ∈ gp(M). Write zr = yt with t ∈M . Then x/y = tx/zr.

Lemma 5.2.8. Let M be an affine monoid, and N be a finitely generated submonoid of M
such that gp(M) = gp(N). Then by fixing z ∈ Int(N) and m > 0, let θm : M → M be the
homothetic transformation. For large enough s, we have θsm(M) ⊂ N?.

Proof. Let x1, . . . , xn generateM . By Lemma 5.2.8, 〈z−1, N〉 = gp(N) = gp(M). Therefore,
for some t, zt−1xi ∈ N and hence ztxi ∈ Int(N) for all i. Hence (θm)s(x) = xa(s)zb(s)ψ(x),
where a(s) = ms and b(s) = c−1[(m+c)]s−ms] with c = ψ(z) > 0. Therefore, b(s) ≥ sms−1.
Suppose that s ≥ tm. Then b(s) ≥ tms = ta(s) so (θm)s(x) = (xzt)a(s)zd with d ≥ 0. It
follows that (θm)s(xi) ∈ Int(N) ⊂ N?. Since the xi generate M, we have our result.

5.3 Graded Weierstrass preparation theorem

This section deals with a technical lemma which will be useful in the next section.

Proposition 5.3.1. Let d = δ(v) and A = A0 ⊕ A1 ⊕ · · · be a graded commutative ring
and let v be an element of Ad. Let M0 ⊕M1 ⊕ · · · be a graded A-module satisfying

ν : Mi →Mi+δ(v) given by mi 7→ vmi is an isomorphism for i ≥ 0. (5.1)

Let f ∈ A with f ≡ a0 + · · ·+ and−1 + vn mod nil(A) (nilpotent elements of A), with ai ∈ A.
Then if z ∈M , we can write z = fq + r with q ∈M and r0 ∈M0 + · · ·+Mnd−1. Moreover,
r and q are unique.

Proof. Let f = f0 + · · · + fm. Then fnd, . . . , fm and fnd − vn are nilpotent and therefore
generate a homogeneous nilpotent ideal J . Let Jh = 0 for some h. If h = 0 then the usual
division algorithm applies. Hence we use induction on h.

Let
N := { x ∈M | vkx ∈ Jh−1 for some k ≥ 0 } =

⋃
k≥0

(Jh−1M : vk).
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Then ν1 : Ni → Ni+d satisfies the equation (5.1) and hence ν2 : (M/N)i → (M/N)i+d satisfies
(5.1). Also M/N has a A/Jh−1-module structure (since Jh−1M ⊂ N) and N has a A/J-
module structure (since vkJM = 0 and v doesn’t annihilate M). Therefore, by induction
the proposition holds to the residue class of f in A/Jh−1 and A/J for the modulesM/N and
N respectively.

Writing z = fq + r in M/N , and lifting it back to M , we get z = fq + r + w,w ∈ N . Now
writing w = fq′ + r′ in N , we have

z = fq + r + fq′ + r′ = f(q + q′) + (r + r′).

To show uniqueness, let z = 0, then we have q = r = 0 in M/N . Hence q and r lie in N and
so q = r = 0 when induction is applied to N .

Corollary 5.3.2. Let A = A0 ⊕ A1 ⊕ · · · be a graded ring and let v be an element of Ad
satisfying the condition

ν : Ai → Ai+d given by x 7→ vx

is an isomorphism for i ≥ 0.

Let f ∈ A with f ≡ f0 + f1 + fnd−1 + vn mod (nil(A)). Then
f = (1 + µ)(vn + r), where µ ∈ nil(A) and r ∈ A0 + · · ·+ And−1.

Proof. Using Proposition 5.3.1 for M = A and z = vn, we have vn = fq + r.

Then Proposition 5.3.1 can also be applied to M = A/nil(A). To see why observe that
surjectivity follows because v : Ai → Ai+d is surjective and injectivity follows because if x is
nilpotent only if vx is nilpotent.

Hence we have
v = f − (f0 + f1 + f2 + · · ·+ fnd−1) = qf + r.

Thus uniqueness of q implies q = 1 or q = 1 + µ1 with µ1 being nilpotent. Therefore, q is
invertible and q−1 = 1 + µ with µ ∈ nil(A).
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5.4 Pyramidal extension

In this section we study one of the important tools to solve Anderson’s conjecture viz.
pyramidal extension.

Definition 5.4.1. An extension of monoids N ⊆ M is called integral if for every x ∈ M ,
xn ∈ N for some n. An extension is called a pyramidal extension if the following conditions
hold:

1. M is torsionfree, cancellative, finitely generated, normal and has no non-trivial units.

2. There is a homomorphism (not unique) δ : M → Z such that N = {x ∈M | δ(x) ≤ 0}.

3. There is an element v ∈M −N such that 〈v,N〉 is integral over M . The element v is
also called as vertex. This means that for x ∈M , there exists m > 0 and y ∈ N such
that xm = yva.

Remark 5.4.2. In geometric terms, N = M ∪∆, where ∆ is a pyramid with vertex v and
M is a polytope such that they intersect in the facet opposite to v (see Appendix ).

Statement (3) actually says that for x ∈ M , xn = vay for some y ∈ N . Before proving the
main proposition on pyramidal extension, we first prove a couple of lemmas.

Lemma 5.4.3. If x ∈M and δ(x) ≥ δ(v), then x = vy for some y ∈M .

Proof. Using the condition (3) of definition 2.4.1, we have xn = vay for some a. Under the
image of δ we have nδ(x) = aδ(v) + δ(y). Since δ(y) ≤ 0, we have nδ(x) ≤ aδ(v). But since
δ(x) ≥ δ(v), we have n ≤ a. Hence (v−1x)n = va−ny ∈ M . Since M is normal, we have
v−1x ∈M and hence the result.

Remark 5.4.4. Let H be the integral closure of 〈v〉 in gp(M). Then H = 〈v〉.

Lemma 5.4.5. If v is the vertex of the pyramidal extension N ⊆ M , then 〈v〉 is extremal
in M .

Proof. Let xy ∈ 〈v〉, then xy = va for some a > 0. Using (3) of definition 5.4.1, we have (for
common m), xm = vbs and ym = vct with b, c ≥ 0. Now xy = vb+cst = va forces b = c = 1,
as M has no non-trivial units. Since 〈v〉 is integrally closed it follows x, y ∈ 〈v〉.
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Now we move towards the main theorem of this section:

Let x1, . . . , xd generateM . Let us fix m > 0 such that xim ∈ 〈N, v〉 for all i. Hence xm = vay

for all x ∈M .

Definition 5.4.6. Let deg(x) denote the least a in the expression xm = vay for fixed m.

Remark 5.4.7. deg(va) = am.

Lemma 5.4.8. If x ∈ M and deg(x) ≥ deg(va), with a ≥ 0, then x = vay for some y ∈ N
with deg(y) ≤ deg(x) − deg(va).

Proof. Let xm = vay for some y ∈ M and b > am. Hence (v−ax)m = vb−amy ∈ M and
therefore v−ax ∈M as M is normal.

Definition 5.4.9. Let f ∈ A, we write def(f) < d, if f = r1w1 + · · ·+ rnwn for some n > 0,
where ri ∈ L and wi ∈ M and deg(wi) < d. An element g ∈ A is monic if g = va + f with
deg(f) < deg(va). Then we put deg(g) = deg(va) = am.

Remark 5.4.10. Let g be a monic polynomial and f ∈ A. Then we can write f = gq + r

with deg(r) < deg(g).

Proposition 5.4.11. Let N ⊆M be a pyramidal extension with vertex v. Let (R,MR) be
a local ring and letM be the maximal ideal of R[N ] generated byMR and N −{1}. Let P
be a finitely generated projective R[M ]-module. If Pv is free, then PM is free.

Proof. Let L = R[N ]M and A = R[M ]M. Let

S := { set of all monic polynomial }

and
B := {α + (f/g) : α ∈ L, g ∈ S, f ∈ A, deg (f) < deg (g)}.

Let P be a projective R[M ]-module. We now apply Proposition 3.4.8. To do so, we first
check the following condition which are:

(1) A/fA is a finitely generated L-module for all f ∈ S.

By using Lemma 5.4.3, we have A/fA generated by monomial miv
k, where mi is the gener-

ating set of M . Since deg(miz
k) < deg(f), we have only finitely many such monomials and

hence A/fA is finitely generated.
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(2) GLn(S−1A) = GLn(S−1A)/GLn(A). where GLn is the set of all n×n invertible matrices.
The proof of this statement is bit lengthy and hence we postpone it to after this proposition.

(3) There is an L-algebra B ⊂ S−1A with S−1A = A + B and mB ⊂ J(B), where m is the
maximal ideal of the local ring R and J(B) denotes the Jacobson radical of the ring B.

Every element in S−1A has the form f/g, where g is a monic polynomial. Writing f = gq+r

and using Lemma 5.4.3, it follows f/g = q + r/g ∈ A+B. Hence S−1A = A+B.

If mi ∈M and αi + fi/g ∈ B, then u = 1 +
∑
mi(αi + fi/g) = e+ f/g, where f =

∑
mifi.

Therefore, u = e(g + e−1f)/g which is a unit in S−1A, as g + e−1f is monic (because
deg(e−1f) < deg(f) < deg(g)) . Hence MB ⊂ J(B).

(4) PS ' (AS)n and P̄ ' Ān for some n.

Since Ared = k[v] where k is a field, P̄ /nil(Ā)P̄ if free by Lemma 1.4.5 and so is P . If v ∈ S
is such that Pv is free, the PS is free . Also since R[M ] is a domain, it has a constant rank
and therefore rank PS = P̄ .

Let I be an ideal in R[M ] generated by N − {1}. Then I as an R-module is a free module
over R with basis X = {yz | y ∈ N−{1}, z ∈M}. Then the R-algebra C = R[M ]/〈N−{1}〉
is a free R-module with basis Y = M −X. In C, the multiplication is defined in a natural
way i.e. R-linear extension of:

x.y =

xy if xy ∈ Y

0 if xy ∈M −X

Let Yn := { x ∈ Y | δ(x) = n} and Cn = R[Yn]. Then Cn = 0 for n < 0 as N − {1} ⊂ X.
Hence C = C0 ⊕ C1 ⊕ · · · is Z-graded (positively graded) with C0 = R.

Lemma 5.4.12. If i ≥ 0, then ν : Ci → Ci+δ(v) given by c 7→ vc is an isomorphism.

Proof. It is sufficient to prove that vYi is bijective to Yi+δ(v). Let yi ∈ Yi, suppose yiv /∈
Ci+δ(v), then yiv ∈ N − {1}. Hence yiv = xz for x ∈ N − {1}. Since δ(yi) > 0 and and
δ(x) ≤ 0, therefore δ(v) < δ(z). From Lemma 5.4.8, we have z = sv for some s ∈ N .
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Therefore, by cancellation y = xs implies y ∈ N − {1}, a contradiction.

The map is injective because it is a domain. To check for surjectivity, let y ∈ Yi+δ(v). Then
by Lemma 5.4.3, we have y = vx for some x ∈ M . Hence x must lie in Yi, otherwise
x ∈ N − {1}. But then y ∈ N − {1}, which is a contradiction.

Now we tackle the case (2) of Proposition 5.4.11.

Proposition 5.4.13. Let A be a L-algebra and S be a closed set as defined in Proposition
5.4.11, then GLn(S−1A) = GLn(S−1A)/GLn (A).

Proof. Let L/M = R/MR = k (a field). Then

A = A/MA = R[M ]/〈m,N − {1}〉 = k[M ]/〈N − {1}〉.

If x ∈ M , then xm = vay by 5.4.1 for some m > 0, y ∈ N . Hence either x ∈ vZ+ , where
vZ+ := {1, v, v2 . . .} or x is nilpotent modulo N −{1}. By Lemma 5.4.5, 〈v〉 is extremal and
hence R[M − 〈v〉] is an ideal. Therefore R[M ]/〈M − 〈v〉〉 ' R[v]. Hence

(R[M ]/〈N − {1}〉) red ' R[v] and A red ' k[v]

because 〈M − 〈v〉〉/〈N − {1}〉 is nilpotent as discussed above.

Since S was a closed set in A, let us look its image in A red = k[v]. If f ∈ S, then
f = va + Σsimi for some si ∈ L,mi ∈ M with deg(mi) < a deg(v). Since we are going
modulo 〈M − vZ+〉, only those mi such that mi = vj will survive. Since deg(mi) < a deg(v),
we have j < a. Furthermore, si will go to its residue class in k. Hence S goes to monic
polynomials in k[v]. Conversely, every monic polynomial can be trivially lifted (identify the
coefficient as si). Hence

(S−1A) red ' k(t).

Therefore it follows that S−1A red is a local ring, and hence SLn(S−1A) = En(S−1A) and
SLn(S−1A) → SLn(S−1A) is onto. Hence we only need to prove U(S−1A) ⊕ U(A) →
U(S−1A) is surjective (Here SLn means n× n matrix of determinant 1 and En mean group
of elementary matrix generated by 〈I + λeij〉, where i 6= j and eij is the matrix units. See
[11] for more details).
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From above we know that C = R[M ]/〈N − {1}〉 has a graded structure. Hence

A = C/MC = A0 ⊕ A1 ⊕ · · ·

where Ai = Ci/MCi and a modification of Lemma 5.4.12, we have Ai → Ai+δ(v). An unit of
S−1A has the form f/s where s ∈ image of S ⊂ U(S−1A) and f ∈ A divides some element
of the image of S. Since A red = k[v], implies that upto a factor of k∗, f maps to a monic
polynomial in k[v]. Hence by Proposition 5.3.1 f = (1 + µ)g, where µ is nilpotent and
g = vm + amδ(v)−1 + · · · + a0 with ai ∈ Ai. Since (1 + µ) ∈ U(A), it will be sufficient to
prove that g lies in image of S. We lift g to h where h = vm + bmδ(v)−1 + · · ·+ b0 where bi’s
are linear combination of L and Yi. Since the element of Ci have smaller degree that tm for
i < me, we have lifted g to a monic element (here Yi is the same Yi we defined above the
Lemma 5.4.12.

The next lemma will show that our assumption of Pv free is true under certain conditions.

Lemma 5.4.14. Let M be a finitely generated, normal affine monoid with no non-trivial
units. let v be an element of M with 〈v〉 extremal. Then 〈M, v−1〉 ' Z ×M1 where Z is
generated by v and M1 has no non-trivial units.

Proof. Let G = gp(M). If v = wn, with w ∈ G, then by normality of N , w ∈ M . Since
〈v〉 is extremal, would imply w ∈ v which would contradict the fact that v is the generator
of 〈v〉. Hence v is an unimodular element of G (see [11] chapter 1 4.12) for the definition
of unimodular element). Since G is a free group, we can find a homomorphism φ : G → Z
such that φ(v) = 1 (because of unimodularity). Let M1 = {x ∈ 〈M, v−1〉|φ(x) = 0}. To
check the surjectivity assume x ∈ 〈M, v−1〉 with φ(x) = n. Then φ(v−nx) = 0 which would
imply v−nx ∈ M1. To check for injectivity let vax = vby, x, y ∈ M1, then under the image
of φ, a = b which in turn imply x = y. Hence 〈M, v−1〉 ' M1 × Z. If z ∈ M1 is invertible,
then z = v−ax and z−1 = v−by with x, y ∈M . Then xy = va+b and so x, y ∈ 〈v〉 since 〈v〉 is
extremal. Therefore z = 1.

Induction

Let the main theorem (stated in next chapter) holds true for any monoid of rank less than
that of rank M .

Corollary 5.4.15. Assume the induction hypothesis. Let N ⊂M be a pyramidal extension
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with vertex v. Let R be a local ring with maximal idealMR andM be the maximal ideal of
R[N ] generated byMR and N−{1}. Let P be a finitely generated projective R[M ]-module,
Then PM is free.

Proof. If we show Pv is free, then by Proposition 2.4.1, we would conclude PM is free. Now
Pv is a R[Mv]-module, but by Lemma 5.4.14,

R[Mv] = R[M, v−1] = R[Z×M1].

By Induction, R[M1] satisfies the Anderson’s conjecture (studied in next chapter), then by
Lemma 5.4.14, R[M × Z] satisfies the main theorem, hence Pv projective R[M × Z]-module
is free.
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Chapter 6

Swan’s proof of Anderson’s conjecture

D. Anderson in 1980’s conjecture a problem for monoid algebra analogue to the Serre’s
problem for projective modules. In 1988, the conjecture was proved by J. Gubeladze. His
method was based on convex geometry of affine monoids. Following Gubeladze’s technique,
in 1991 R.G. Swan came up with an algebraic version. This chapter deals with the algebraic
version of Anderson’s conjecture. To see the original proof of this theorem see [7]. This
chapter deals with the resolution of Anderson’s conjecture:

Main Theorem

Let R be principal ideal domain (PID) and M be an affine seminormal monoid. Then all
finitely generated projective R[M ]-modules are free.

6.1 Preliminary reductions

In this section, we will simplify the hypothesis of the main theorem. We first start by
simplifying hypothesis on M .

Lemma 6.1.1. It is sufficient to prove the main theorem for M with no non-trivial units.

Proof. Let K ′ = M − U(M) and K = K ′ ∪ {1}. Now Consider the following commutative
diagram:
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R[K] R[M ]

R R[U(M)]

f

g

(6.1)

under the maps:

1. The vertical map sends K ′ to 0 and is identity on N .

2. The horizontal map are the inclusion map.

We now claim that:

1. K is a submonoid and MK ′ ⊂ K ′.

Let x, y ∈ K. Since x, y are non-invertible, their product should also be non-invertible,
hence its closed under multiplication. Since {1} ∈ K, K has an identity element and
therefore K is a submonoid of M .

2. The Diagram 6.1 is a milnor square of type A.

In Diagram 6.1, the map f : R[M ]→ R[U(M)] is surjective. Since

f(r0 + r1k1 + · · ·+ rnkn) = f(r0) = g(r0),

the pullback of the diagram i.e.

{(x, y) ∈ R[M ]×R : f(x) = g(y)}

is R[K]. Hence the diagram satisfies the condition of type A Milnor square

3. K is seminormal.

If x2, x3 ∈ K and x ∈ M − K, then x is invertible, hence x2, x3 are invertible, a
contradiction. Therefore, x ∈ K and hence K is seminormal.

Now if P is finitely generated projective module over R[M ], then by Proposition 1.5.3 is
extended from R[K]. Hence without loss of generality, we can assume M to have no non-
trivial units.
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Having simplified the assumption on M , we now simplify the assumption on ring R.

Lemma 6.1.2. It is enough to prove the main theorem for the case when R is local.

Proof. Using Proposition 4.4.2 , we can non-trivially grade the ring R[M ]. Hence we can now
apply graded Quillen’s patching Theorem 3.5.1, and hence we can assume R to be local.

Let M be a finitely generated monoid and M1, . . . ,Mn be the set of extremal submonoids
labelled in such a way that Mi ⊇ Mj if i ≤ j. Hence M1 = M and Mn = U(M) = 1. Let
Ui = Int(Mi) for i = 1, 2, . . . , n and Wi = U1 ∪ · · · ∪ Ui. By Lemma 5.1.14, Ui partitions M .
Also, we have W0 = ∅ and Wn = M . Now this Wi satisfies an important property.

Lemma 6.1.3. Let Wi be defined as above. Then MWi ⊂ Wi for each i.

Proof. Let x ∈ M and y ∈ Wi (and hence in some Uk, k ≤ i). Since Ui partitions M , we
have xy ∈ Uj. But Uj ⊆ Mj, and since Mj is extremal, we have x, y ∈ Mj. Using Lemma
5.1.12, we have Mk ⊆Mj, hence j ≤ q and hence xy ∈ Wj ⊆ Wi.

Having simplified M and R, we now simplify the hypothesis of ring R[M ].

Lemma 6.1.4. Let M be the monoid in the hypothesis of the main theorem. If the main
theorem holds for all R[N ], where N is a submonoid of rk(N0 < rk(M), then every projective
R[M ]-module is extended from R[M∗].

Proof. Let Ji be an R[M ]-submodule generated by Wi. Using Lemma 6.1.3, Ji becomes an
ideal. Let R[M ]/Ji = Ai. Then there is a natural map between Ai−1 → Ai, whose kernel is
R[Ui]. Let M∗

i = {1} ∪ Ui for i < n. Then we make the following claim:

Following diagram is a Milnor square of type A:

R[M∗
i ] Ai−1

R Ai

(6.2)

where horizontal maps are natural and vertical maps takes M∗
i − {1} to 0.
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The natural map Ai−1 → Ai is surjective and arguing the same as we did in Lemma 6.1.1,
we see that this is indeed a Milnor square of type A.

SinceMi (M , rk(Ei) < rk(M) andM∗
i is filtered union of normal monoids by Lemma 5.2.5,

hence all projective R[M∗
i ]-modules are extended from R[M ], which by induction hypothesis

are free. Since An−1 = R, using Proposition 1.5.3, we have An−1 is extended from R[Mn−1]

and since R[Mi] is free, An−2 is extended from R. Now using decreasing induction, and
noting that A0 = R[M ], we arrive at the conclusion that R[M ] is extended from [M∗].

Lemma 6.1.5. If rk(M) = 1, then the main theorem holds true for R[M ].

Proof. If rk(M) = 1, then R[M ] ' R[X] and from the classical result of Serre’s conjecture,
we reach our conclusion.

Combining all the above the result, we have the final simplification as:
Remark 6.1.6. It is sufficient to prove the main theorem under the following assumption

1. R is local and M has no non-trivial units.

2. M = Int(N) ∪{1}, where N is a finitely generated, cancellative, torsionfree, normal
monoid with no-non trivial units (see Proposition 4.2.10).

3. (Induction hypothesis) Main theorem hold for monoids of rank < rk(M) and is true
for rk(M) = 1.

6.2 Non-degenerate pyramidal extension

In the previous chapter, we have discussed the notion of pyramidal extension of N over M .
In this section we use pyramidal extension as a tool to prove the main theorem. Since we are
using induction to prove our theorem, we now require pyramidal extension to be such that
δ(w) < 0 so that this gives rk(N) = rk(M) (the next lemma). Such a pyramidal extension
is called non-degenerate extension. This turns out to be the general case scenario, since we
have reduced the size of the monoid without decreasing the rank.

Lemma 6.2.1. If N ⊂ M be a pyramidal extension with δ : M → Z such that δ(w) < 0,
then gp(M) = gp(N), where gp(M) is generated by w and wnx for large enough n for
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wnx ∈ N and x ∈ gp(M).

Proof. If x ∈ gp(M), then (w−1)n.wnx = x ∈ gp(N). Other way inclusion is obvious.

We start with a lemma which says normalisation preserves pyramidal extension.

Lemma 6.2.2. Let G be a finitely generated free abelian group and let N ⊂ M be a non-
degenerate pyramidal extension of finitely generated normal submonoids of G. Then the
normalisation of G also forms a non-degenerate pyramidal extension Ñ ⊂ M̃ .

Proof. Let δ : M → Z be the given map. Using Proposition 4.4.2, we can extend this map
to kδ : G→ Z, where G = gp(M). So, without the loss of generality, we replace δ with kδ.
Now let N = {x ∈ M̃ |δ(x) ≤ 0}. Thus if x ∈ N , then xn ∈ M and xn ∈ N , hence xn ∈ N
and therefore x ∈ Ñ . Other way inclusion is obvious.

Let (R,MR) be a local ring and M∗ denote the submonoid Int(M) ∪ {1} and M∗ denote
the maximal ideal of R[N∗] generated byMR and N∗−{1}. The next proposition proves a
result similar to Proposition 5.4.11.

Lemma 6.2.3. Let R be a local PID. Let N ⊂M be a non-degenerate pyramidal extension.
If P is a finitely generated projective R[M∗]-module, then PM∗ is free.

Proof. Since P is finitely generated R[M∗] module, and M∗ is a filtered union of homothetic
submodule M (m) with centre at z (which we choose to lie in Int(M)). By Lemma 5.2.5,
all generators m1, . . . ,mr lie in some M (m). So using Lemma 1.4.5, we have a projective
R[M (m)]-module Q such that P ' Q⊗R[M ].

Now we claim the following:

1. Let θm be same entity as defined in 5.2.1, then θm(N) ⊂ θm(M) is a non-degenerate
pyramidal extension and hence N (m) ⊂M (m) is a non-degenerate pyramidal extension.

Since θm is injective by Lemma 5.2.3, θm(M) ⊂ θm(N) is a pyramidal extension. Using
Lemma 6.2.2, it’s normalisation is also pyramidal extension, i.e. M ⊂ N is a pyramidal
extension.
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2. M∗ ∩R[N (m)] =M′ (HereM′ is the maximal ideal of R[N (m)] generated byMR and
N (m) − {1}).

One way is obvious. For the other way we knowM∗ ∩R[N (m)] is an ideal in R[N (m)].
SinceM′ is a maximal ideal andM∗∩R[N (m)] ⊆M′, it impliesM∗∩R[N (m)] =M′.

By Proposition 5.4.11, QM′ is free. Since N (m) ⊂ N∗ andM∗ ∩ R[N (m)] = M′, so PM∗ is
extended from QM∗ and hence is free.

Proposition 6.2.4. Let R be a local PID. If N ⊂M is a non-degenerate pyramidal exten-
sion, then P(R[N∗])→ P(R[M∗]) is onto.

Proof. If the diagram
R[N∗] R[M∗]

R[N∗]M∗ R[M∗]M∗

(6.3)

is Milnor square of type B, then we are done. To show that we take S = R[N∗]−M∗. Now
we must show that R[N∗]/(f) → R[M∗]/(f) isomorphism for all f ∈ S. It is sufficient to
check this locally on R[N∗] (using a variant of the result that Mm = 0 for all m in max R
for a R-module M implies M = 0). AtM∗, the localisation makes both side 0 (because f ,
an invertible element becomes a zero-divisor).

Lemma 6.2.5. Let p be the prime ideal in R[N∗] not contained inM∗, then p ∩N ∗ = ∅.

Proof. Let x ∈ N∗ ∩ p. As x 6= 1, it follows that x ∈ Int(N). Let y ∈ Int(N). Hence yn =

xw ∈ N for some q or y2n = x(xw2) ∈ Int(N), and hence y ∈ p. Therefore, p ⊇ N∗ − {1}.
Since R[N∗]/(N∗ − {1}) = R is local, we have p ⊆M∗.

Observing that N∗ ⊂ R[N∗]N for some maximal ideal N in R[N∗]. The next lemma says
that R[N∗] is locally equal to R[M∗] at all maximal ideals other than M′ and hence the
Diagram 6.3 would be Karoubi square or Milnor square of type B.

Lemma 6.2.6. Let N = {x ∈ M |δ(x) ≤ 0} have the same rank as M . Then N−1N =

N−1M = M−1M .
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Proof. One way inclusion is obvious. For other way, let x/y ∈M−1M . Since N and M have
same rank, hence their exists w such that δ(w) < 0. Let x′ = wnx and y′ = wny. Hence
x/y = x′/y′. If we make n large enough, then x′, y′ ∈ N . Hence the N−1N = M−1M .

Using Lemma 6.2.6, we have R[N∗]N
f−→ R[M∗]N as an isomorphism for a maximal ideal

N in R[N∗] because N∗−1N∗ = N∗−1M . and hence N∗−1R[N∗] ' N∗−1R[M∗]. Further
localisation gives R[N∗]N ' R[M∗]N and hence the result follows by taking quotient with
(f).

6.3 Admissible sequence

The previous section relied on the existence of non-degenerate pyramidal extension. In this
section we show the existence of such a pyramidal extension.

Definition 6.3.1. A sequence of submonoids M = M0,M1, . . . ,Mn is called an admissible
sequence if each Mi is torsionfree, cancellative, finitely generated and normal in M and has
no non-trivial units, and for each i, either of these happens:

1. Mi ⊂Mi+1

2. Mi ⊃Mi+1 is a non-degenerate pyramidal extension.

It is called weakly admissible if (2) is only pyramidal extension.

Since rank(Mi) = rk(Mj) for all i, j, by Lemma 5.2.6 we have, Int(Mi) = Int (Mj) for all
i, j.

Now we will try to show that M in the main theorem has an admissible sequence such that
Mn is free and Mn ⊂M∗.

Lemma 6.3.2. If M is an affine monoid and has no non-trivial units, then there is a free
monoid F ⊂M∗ with gp(F ) = gp(M) = G.

Proof. We first claim that:

If z ∈ Int(M) and u ∈ gp(M), then for some m, zmu ∈M and hence zm+1u ∈ Int(M).
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Proof of the claim: If u = x/y, then take zm = yw, then zmu = wx ∈M .

Using this, if G has free generators t1, . . . , tn, then for some common r, xi = zrti ∈ Int(M).
Let x0 = zr and N be a submonoid of M generated by 〈x0, . . . , xn〉. Now it easily follows
that gp(N) = gp(M) (because of x0, we can invert zr and hence show that ti’s ∈ gp(N)).
Since rk(N) = d, all the relation between xi’s (since i runs from 0 to d i.e. it has d + 1

elements), will be of the form

a0x0 + a1x1 + · · ·+ asxs = as+1xs+1 + · · ·+ adxd

where all ai ≥ 0. If a0, a1 > 0, and a0 ≤ a1, replace x0 by x0x1 getting a new relation

a0x
′
0 + a′1x1 + · · ·+ asxs = as+1xs+1 + · · ·+ adxd

where a′1 = a1 − a0. This decreases the sum of the ai. Repeating the process (without
disturbing the group it generates), we eventually replace x0, . . . , xd with y0, . . . , yd which
generate gp(M) and satisfy a relation of the form ay0 = byd. The normalisation N ′ of
〈y0, yd〉 is isomorphic to N (because normal rank 1 monoid is isomorphic to N) and lies in
M∗. Let w be the generator of N ′. Then F1 = 〈y1, . . . , yd−1〉 is a free monoid as yi’s have no
relation. Hence 〈w,F1〉 is also a free monoid with the required properties because there is
no relation among generators. Note that gp(N) ⊂ gp(F ) ⊂ gp(M) so gp(F ) = gp(M).

Proposition 6.3.3. Let M be torsionfree, cancellative, finitely generated, normal monoid
with no non-trivial units. Let F ⊂ M∗ be a free monoid with gp(M) = gp(F ). Then there
is an admissible sequence M = M0, . . . ,Mn = F .

To prove this proposition, we will require the following result. But before that we shall
discuss the following consequences of this proposition:

Corollary 6.3.4. Let M be a finitely generated, normal, affine monoid with no non-trivial
units. Then there is a weakly admissible sequence M = M0, . . . , F, . . . ,Mn = {1}.

Proof. We already have sequence till F due to previous proposition. Now we claim that:
there exists a sequence of monoid generated by removing one free basis of F at a time

So let x1, . . . , xn be generators of F and let δ : F → Z by δ(x1) = 1 and δ(xi) = 0 for i 6= 1.
This would show that 〈x2, . . . , xn〉 is pyramidal over F and we can continue this process to
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reach 1.

Lemma 6.3.5. LetM be finitely generated, normal affine monoid with no non-trivial units.
Let E be an extremal monoid of M . Let N ⊂ M be finitely generated and normal in M ,
and let N ∩E ⊂ E ′ ⊂ E with E ′ finitely generated and normal in E. Then there is a finitely
generated submonoid N ′, normal in M , with N ⊂ N ′ ⊂M and N ′ ∩ E = E ′.

Proof. Let us take N ′ to be normalisation of 〈N,E ′〉 in M and verify the above claim.
Clearly, E ′ ⊂ N ∩ E. Let x ∈ N ′ ∪ E, then for some n, xn = yz, where y, z ∈ N and E ′

respectively. Now x ∈ E and since E is extremal implies y ∈ E and hence y ∈ N ∪ E ⊂ E ′.
This shows xn ∈ E ′. Since E ′ is normal, we have x ∈ E ′ and hence the proof.

Lemma 6.3.6. LetM be finitely generated, normal affine monoid, with no non-trivial units.
Let E 6= M be an extremal monoid. Let E ′ ⊂ E be a pyramidal extension, then there is a
non-degenerate pyramidal extension N ⊂M with N ∩ E = E ′.

Proof. Since E ′ ⊂ E is pyramidal extension, we have E ′ = {x ∈ E|δ(x) ≤ 0} and δ(v) > 0

for some v ∈ E and E integral over 〈v, E ′〉. By Proposition 4.4.3, we can extend this to
δ′ : M → Z. Since E is extremal, we have φ : M → N with E = φ−1(0). Now define
δk : M → Z as δk(x) = δ′(x)−kφ(x). Hence δk also extends E toM . Let T be the generator
of M . If k is large enough, then δk < 0 for all T − E. Hence N = {x ∈M |δk(x) ≤ 0} is the
required submonoid which give pyramidal extension. To see it satisfies the integral property,
observe that if x ∈ M , then x = yz, for y ∈ E and and z ∈ T − E. Now let zm = vaw with
w ∈ E ′ ⊂ N (because E ′ integral over E), hence xm = vawym ∈ 〈v,N〉. Finally T − E 6= ∅
as E 6= M , hence there exists u ∈ T − E such that δk(u) < 0 which proves the extension is
non-degenerate.

We now use the above lemma’s to construct a new admissible sequence for a given weak-
admissible sequence.

Corollary 6.3.7. Let M be finitely generated, affine normal monoid with no non-trivial
units. Let E 6= M be an extremal submonoid of M . Let E = E0, . . . , En be a weakly
admissible sequence. Then there is an admissible sequence M = M0, . . . ,Mn with Mi ∩E =

Ei.
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Proof. Suppose inductively, we have constructed M = M0, . . . ,Mi. Now if Ei+1 ⊃ Ei, then
Lemma 6.3.5 gives us the required Mi+1 ⊃ Mi. Now suppose Ei+1 ⊂ Ei is a pyramidal
extension, since Mi 6= Ei (because gp(Mi) = gp(M) but gp(Ei) = gp(E)), and Ei = M ∩Ei
is extremal in Mi, we can now apply Lemma 6.3.6 to Ei ⊂ Mi, to have a non-degenerate
pyramidal extension Mi+1.

Corollary 6.3.8. Let M be a torsionfree, cancellative, finitely generated, normal, with no
non-trivial units. Let E1, . . . , Em be proper extremal submonoid of M . Assume Proposition
6.3.3 holds for monoids of rank less than that of M , then there is an admissible sequence
M = M0, . . . ,Mn with M ∩ Ei = {1} for all i.

Proof. We use induction onm . Since Proposition 6.3.3 holds for E1, so does the corollary6.3.4,
hence by corollary 6.3.7 there is an admissible sequenceM = M0, . . . ,Mk withMk∩E1 = {1}.
By induction hypothesis onMk and extremal submonoidsMk∩Ei for i ≥ 2, so we can extend
it.

In lieu of Corollary 6.3.8 if we take all extremal submonoids, it would follows that we have an
admissible sequenceM = M0, . . . ,Mn withMn ⊂M∗. Using Lemma 5.2.4, we knowMn will
lie in some homothetic submonoid M (m). Here we choose our centre z to lie in Int(F ), which
in turn would lie in Int(M) be Lemma 5.2.6. Hence it follow that there is an admissible
sequence from M to Mm by setting Mn+1 = M (m) (we apply the condition (1) of 6.3.1 ).

Since as construction θm is injective by Lemma 5.2.3, applying Lemma 6.2.2 on the sequence

θmM = θmM0, . . . , θmMn

gives an admissible sequence M (m), . . . ,M
(m)
n where M (m)

n ⊂ (M (m))(m). Hence combin-
ing this sequence with the original sequence we get a new admissible sequence from M to
(M (m))m. Now for any homomorphism θ, θ(M̃) is integral over θ(M), hence normalisation
of θ(M̃) is same as that of θ(M). Therefore M (m)(m) is the normalisation of θm2(M). Now
we repeat this process till normalisation of θms(M). By Lemma 5.2.8, θms(M) lies in some
F ∗ for some large s and hence its normalisation too lies in that F ∗. Choose the next element
of the sequence to be F . Hence we have an admissible sequence from M to F .
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6.4 Final proof

To prove the final theorem we need the following lemma.

Lemma 6.4.1. Let M has an admissible sequence M0, . . .Mn, Then

P(R[M∗
n])→ P(R[M∗])

is onto.

Proof. We prove it by induction of i, i.e. P(R[M∗
i]) → P(R[M∗]). If case (1) of 6.3.1

happens and if Q ∈ P(R[M∗
i)], then construct Qi+1 as Qi ⊗ R[M∗

i+1] ∈ P(R[M∗
i)]. This is

clearly projective and by induction the map P(R[M∗
i+1])→ P(R[M∗)) is onto. In case (2)

of 6.3.1, we use Proposition 6.2.4 to conclude the result.

Main proof

If Mn ⊂ M∗, then P(R[M∗
n]) → P(R[M∗]) is onto. Since Mn is free and Mn ⊂ M∗, we

have R[M∗
n] ⊂ R[Mn] ⊂ R[M∗] and since R[M∗] in extended from R[M∗

n] it is extended
from R[Mn]. Since Mn is free, we have P(R[Mn]) = Z and therefore P(R[M∗]) = Z. This
completes the final algebraic proof of Gubeladze’s theorem due to R.G. Swan (cf. [15]).
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Chapter 7

Converese and application of
Gubeladze’s theorem

In previous chapter we have stated and discussed the Anderson’s conjecture. It turns, it
admits a converse as follows:

7.1 Converse of Anderson’s conjecture

Theorem 7.1.1. Let M be a cancellative monoid. If Pic(R[M ]) = 1 for every PID R of
characteristics 0, then M is seminormal.

Proposition 7.1.2. Let G be an abelian group. Then the ring R[G] is seminormal for every
PID R of characteristics 0 if and only if G is torsionfree.

Using Proposition 7.1.2 we give a proof of 7.1.1.

Proof. From [4] (lemma 8.1) we know that R(X) is a PID if R is so. Since every projec-
tive R[X]-module P is free, its extension onto R(X) is also free and hence Pic(R[X]) →
Pic(R(X)) is injective. Hence it follows that

Pic (R[M ][X]) = Pic (R[X][M ])→ Pic (R(X)[M ])→ Pic (R[M ](X)) = 0.
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Since R(X) is a PID we have Pic(R[M ]) = Pic(R(X)[M ]) = 0 and hence Pic(R[M ][X]) = 0.
By ([4]-theorem 4.74), we have R[M ] to be seminormal and hence R[ gp(M)] is seminormal.
Hence gp(M) is torsionfree and therefore M is torsionfree as desired in the theorem.

To prove Proposition 7.1.2, we need the following lemmas:

Lemma 7.1.3. Let R be a commutative ring and G be an abelian group. Let T be the
torsion subgroup of G. Then if R[G] is seminormal so is R[T ] is seminormal.

Proof. Using the structure theorem of G, we have G = T ⊕ F , where T and F are torsion
and free part respectively. Let z2, z3 ∈ R[T ], z ∈ R[G]. Since there exists a natural
homomorphism between G π−→ T , we assume w = π(z). Then w satisfies w2 = z2, w3 = z3

and hence R[T ] is seminormal.

Lemma 7.1.4. Let T be an abelian torsion group with infinite number of distinct residue
characteristics. Let H be a finite subgroup of T of order n. Then R[H] is seminormal if R[T ]

is seminormal.

Proof. Let H ⊂ T and z2, z3 ∈ R[H], z ∈ R[T ] and |H| = n. Consider H ′ = 〈H, z〉 and
choose a maximal ideal m such that R/mR = k has characteristics co-prime to n. Using
Maschke’s theorem (see [10]), we have k[H] and k[H ′] as a reduced ring and hence they are
seminormal. Now consider the diagram

R[H] R[H ′]

k[H] k[H ′]

(7.1)

Let z2 and z3 be the image of z2, z3 ∈ k[H]. Hence z ∈ R[H] + mR[H ′]. Now R[H ′] =

R[H] ⊕ F , where F = H ′ − H. Hence z ∈ R[H] + mF . Since we have infinite supply
of m hence z ∈ ∩m(R[H] ⊕ mF ) and because F is finite set, we have ∩mF = ∅ or z ∈
∩m(R[H]⊕ 0 = R[H]). Hence R[H] is seminormal.

Lemma 7.1.5. Let R be a domain of characteristics 0. Let H be a finite group of order n
such that R[H] is seminormal and n 6∈ U(R), then R/nR is a reduced ring.

Proof. cf. [14]
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Now we give the proof of Proposition 7.2.2

Proof. Let G be a group with non-zero torsion subgroup T such that R[G] is seminormal.
Choose H to be subgroup be of order n and consider the ring of integers A = Q[

√
n]. Let

R = A[s−1] be a PID with s ∈ A prime to n. Hence R[T ] is seminormal, but R/nR is
not reduced, hence R[H] is not seminormal, a contradiction to Lemma 7.1.4. Hence G is a
torsion‘free group.

7.2 A question of Hartmut Lindel

As an application of Gubeladze’s theorem, we can now answer a question raised by H.Lindel:

Proposition 7.2.1. Let R be a PID andM be a monoid generated byXij for 1 ≤ i ≤ m and
1 ≤ j ≤ n following the relation: XijXkl = XilXkj. Then all finitely generated projective
module over R[M ] is free.

It follows that:
R[M ] ' R[X1, . . . , Xm+n]/ ∼ .

If we could prove that M is finitely generated, seminormal and affine monoid, then by
Gubeladze’s theorem, we could conclude the Proposition 7.2.1. We already know that M is
finitely generated by Xij. We will show that M is a submonoid of Zm+n. This submonoid
will turn out to be normal (and hence seminormal).

Proposition 7.2.2. Their exists an isomorphism ψ : M → N ⊂ Zm+n such that

N := {(r1, . . . , rm, c1, . . . , cn)}, where ri, cj ≥ 0 and
m∑
i=1

ri =
n∑
j=1

cj.

Corollary 7.2.3. N is a normal monoid.

Proof. Observe that gp(N) = {(r1, . . . , rm, c1, . . . , cn)}, where
∑m

i=1 ri =
∑n

j=1 cj.

Let x ∈ gp(N). If nx ∈ N implies (nr1, . . . , nrm, nc1, . . . ncn) ∈ N implies nri, ncj ≥ 0

implies ri, cj ≥ 0 and hence x ∈ N therefore N is a normal monoid.
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Now we give a proof of Proposition 7.2.2

Proof. Let M be a monoid of all m × n matrices with entries in N under addition. Let
ν : M→ M be given by eij 7→ Xij where eij is a unit matrix and ψ : M → Zm+n is given
by Xij 7→ ei + fj. Then we have the following map:

M ν−→M
φ−→ Zm+n where eij 7→ xij 7→ ei + fj.

1. ψ ◦ ν is surjective.

If m = n = 1. Then inverse image of (r1, c1), r1 = c1 is the matrix[
r1

]
We now use induction on m and n. Let (r1, . . . , rm, c1, . . . rm) be a given element of
Zm+n. Consider the element (r1 − c1, . . . , rm, c2, . . . , cn) ∈ Zm+n−1. By induction their
exists a matrix A′ as a pre-image. Now consider the matrix

A =



c1

0

...

0

A′



then ν(A) = c1x11 + ν(A′) and hence

ψ(c1x11 +ν(A′)) = ψ(c1x11)+(r1−c1, . . . , rm, 0, c2, . . . , cn) = (r1, . . . , rm, c1, c2, . . . , cn).

Hence A is the required map.

2. The map ν is injective.

If define equivalence relation inM as follows:

A ∼ B if and only if A = B + eij + epq − eiq − epj or A = B + ε(i, j, p, q).
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(for cpj, ciq > 0). The motivation for such choice of equivalence relation is ψ(A) = ψ(B)

or (M/ ∼) ' M . To show that ν is injective, we will show that two matrices have
same image under ψ ◦ ν if and only if they are similar. Let us choose a matrix A in
the equivalence class (A) as representation whose (a11) is maximum in its class. Let
(r1, . . . rm, c1, . . . , cn) ∈ Zm+n. Since ψ ◦ ν s surjective, we have its pre-images {Ai}.
We will say Ai’s are similar. For simplicity let us consider two pre-images A and B.
Now both (a11) and (b11) are bounded by r1. If a11 is maximal for A, and ai1 6= 0 for
some i, then A + ε(1, 1, i, j) will exceed A at (1, 1) term, unless a1j = 0 for all j > 1.
Similarly for a1j 6= 0 and B. Hence the following happens:

(a) ai1 = 0 for all i > 1. This would imply r1 ≥ c1.

(b) a1j = 0 for all j > 1. This would imply r1 ≤ c1.

Using the above observation we have

A =



a11

0

...

0

A′


, B =



b11

0

...

0

B′


Now observe that first a11 = b11, since no other term from column contributes and
their images are equal. Secondly note that by induction we can assume A′ ∼ B′.
Since the ε(i, j, p, q) involved doesn’t contain the 1 column, we can repeat the same
transformation to move from A to B i.e. A ' B. Repeating this process we will have
Ai ' Aj and hence ν is injective.
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Chapter 8

Appendix

In this chapter we discuss about LPA and convex geometry of monoids

8.1 Leavitt path algebras

We first star with Leavitt path algebras

Leavitt path algebras

Definition 8.1.1 (IBN). A ring R is to said to have IBN property if Rm = Rn implies
m = n.

Rings which have IBN property are used quite often and most of rings we encounter have
these properties. Some of them are:

Lemma 8.1.2. The following rings have IBN property:

1. R is a commutative ring.

2. R is a local ring.

3. R 6= 0 is a noetherian ring.

Proof. 1. Let Rm ' Rn. Let m be a maximal ideal of R. Then R/m = k is a field. Using
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the fact that direct sum commutes with tensor product, we have

km = (R/m)m ' (R/m)n ' kn.

Since isomorphic vector spaces have same dimension, we have m = n.

2. Let Rm ' Rn. If (R,m) be a local ring, then R/m is a division ring D, and since
division rings have IBN property, we use the same trick as above to have Dm ' Dn

and hence m = n.

3. Let π : Rm → Rn (m ≥ n) be the natural projection. If Rm ' Rn under f , then
f ◦ π : Rm → Rm is a surjective endomorphism, and since R is noetherian Using the
fact that surjective Endomorphism is bijective for noetherian rings, ker(f ◦ π) = 0.
This implies ker(π) = 0 and hence m = n.

The above classification may suggest that there might exist rings which are does not have
IBN property. Indeed, there are rings which does not have IBN property as the next lemma
shows.

Lemma 8.1.3. Let V be a infinite dimension vector space overK, Then the ringB =End(V )

is a ring which doesn’t have IBN property.

Proof. Let B =End(
⊕∞

i eiK). Then B = 〈f1, f2〉 generate B where f1(ei) = e2i and f2(ei) =

e2i−1. Now we will show that f1, f2 are free-generators of B and hence B2 ' B will follow.

In Lemma 8.1.3 we have observed that B ' B2 and hence it follows that

Bm = Bn for all m,n.

But this conclusion is not always true for a ring which does not have IBN property. Hence
we have the following definition:

Definition 8.1.4. Let R be a ring which does not have IBN property with m ∈ N being
the minimum for which Rm ' Rm′ . For this m, let n denote the minimal such m′. Then R
is have a module type (m,n). In Lemma 8.1.3, B is a (1, 2) module type.
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For the rest of the appendix, we will be concerned about the properties and structure of
rings of module type (1, n). To generate ring of type (1, n), we first analyse the isomorphism
R ' Rn. If R ' Rn implies their exists φ ∈Hom(R,Rn) and ψ ∈Hom(Rn, R) such that
φ ◦ ψ = 1Rn and ψ ◦ φ = 1R. Writing in term of row and column vectors we have :

[
x1 x2 · · · xn

]

y1

y2

...
yn

 or
n∑
i

xiyi = 1 (8.1)

and,


y1

y2

...
yn


[
x1 x2 · · · xn

]
= (1)Rn or yjxi = δij1R (for all 1 ≤ i, j ≤ n) (8.2)

∑n
1 xiyi = 1R and YjXi = δij1R (for all 1 ≤ i, j ≤ n). Motivated by above observation we

define a free associative K-algebra

S = K(X1, X2, . . . Xn, Y1, . . . Yn),

where K is a field and an ideal

I = 〈
n∑
1

XiYi − 1, YjXi − δij1〉.

It now follows that A = S/I is a ring of module type (1, n). Such a ring is also denoted as
Lk(1, n).

Definition 8.1.5. Let K be any field, and n > 1, then the Leavitt K-algebra of type (1, n)

denoted as Lk(1, n), is the K-algebra

S = K(X1, X2, . . . Xn, Y1, . . . Yn)/〈
n∑
1

XiYi − 1, YjXi − δij1〉.
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Leavitt path algberas

Motivated by the example of Lk(1, n) we generalise it to a broader class of rings called Leavitt
path algebras also known as LPA. To do so, we first recall directed path and path algebras.

Definition 8.1.6 (Directed graph). A directed graph E = 〈E0, E1, r, s〉 consists of two sets
E0, E1 along with two function r, s : E1 → E0. The element of E0 are called vertices and
elements of E1 are called edges.

a

b

c

d

e

m

n

o

p

f

k

g

l

z

q

r

s
t

u

v (8.3)

Remark 8.1.7. Given E1, we define ghost edges (E1)∗ = {e∗ | e ∈ E1} where r(e∗) = s(e)

and s(e∗) = r(e).
Remark 8.1.8. A path µ is a sequence of edges µ = e1, e2, . . . , en such that r(ei) = s(ei+1).

Definition 8.1.9 (Path algebras). Let E be an arbitrary graph and K be a field, then the
path algebra KE is defined as the free associative K-algebra generated by the set 〈E0, E1〉
quotient the following relation:

(V ) vv′ = δv,v′v.

(E1) s(e)e = r(e)e = e.

Remark 8.1.10. If we extend the graph to include the ghost edges in a natural way, we get
another path algebra LK(Ê) which is the path algebra over (〈E0, E1, E1∗〉).

Definition 8.1.11 (Leavitt path algebras). Let E be an arbitrary graph and K be any
field. Then we define Leavitt path algbera to a free associative K-algebra generated by the
set 〈E0 ∪ E1 ∪ E1∗〉, modulo the following relations:

1. (V ) vv′ = δv,v′v.

74



2. (E1) s(e)e = r(e)e = e.

3. (E2) r(e)e∗ = e∗s(e) = e∗.

4. (CK1) e∗e′ = δe,e′ for all e, e′ ∈ E1.

5. (CK2) v =
∑

e∈E1|s(e)=v ee
∗.

Remark 8.1.12. LK(E) is a the quotient of KÊ under the relation (CK1), (CK2).

Intuitively the operation between symbols in first four relation is concatenation whereas the
fifth relation give a weighted value to every vertex v depending upon it role as source.

Example 8.1.13 (Graphicall decription of LPA). Cosider the graph E,

a

b

c

d

e

f

k

g

l

z

(8.4)

We now do some computation in LK(E), and compare it with our intuition of path concate-
nation and relative value of a vertex as source and emitter.

1. ab = δ(a, b)a = 0a = 0 and aa = δ(a, a)a = a by (V ).
Remark 8.1.14. Concatenation of two disjoint point is 0 and of same point is the
point itself.

2. af = f = fb by (E1).
Remark 8.1.15. Concatenation of a line and its endpoint is the line itself.

3. ck? = a = k? = k?a by (E2).
Remark 8.1.16. Since ghost edges are also edges with opposite direction, using 8.1.15
to arrive at the same intuition.

4. f ?f = δ(f, f ?r(f) = b and f ?k = δ(f, k)r(f) = 0b = 0 by (CK1).
Remark 8.1.17. Concatenation of two path is non-zero if the r(f) = s(e). Since one
of the paths is a ghost-path is derived from the other path.
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5. a = zz? + ff ? + kk?.
Remark 8.1.18. This part gives relative weightage to a vertex depending on number
of source and edge it contributes to a graph.

Three examples of LPA

As seen from 8.1.11, the ring LK(E) depends upon the structure of graph E. In this section
we calculate the ring LPA for few simple graph. Before doing, that we introduce those simple
graphs.

Example 8.1.19 (Rose with n-petals). Let Rn denote the rose with n-petals as shown:

aen−1 e1

en

e2 (8.5)

Example 8.1.20 (oriented n-line graph). Let An denote the following LPA of the following
graph:

v1 v2 v3 vn−1 vn
e1 e2 en−1

(8.6)

Proposition 8.1.21. Let n ≥ 2 and K be any field. Then

LK(1, n) ' LK(Rn).

Proof. Since LK(E) is quotient of Lk(1, n), all we need to verify is the the 5 relation (see
8.1.11) are trivial. Identify the elements in the following way:

1 7→ v, xi 7→ ei, and yi 7→ ei
?.

Calcualting the 5 relation (see 8.1.11):

1. vv′ = vv = 1 = δvv′v = v = 1.

2. s(ei)ei = 1xi = xi1 = eir(ei) = xi = ei.

3. r(ei)ei? = 1yi = yi1 = ei
?s(ei) = yi.
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4. ei?ej = yjxi = δi,j1 = δei,ejv.

5. v = 1 =
∑n

1 xiyi =
∑
eiei

?.

Hence the conclusion follows.

Corollary 8.1.22. Let K be a field, then

K[X,X−1] ' LK(R1).

Proof. For n = 1 in Proposition 8.1.21, we have CK1 : xy = 1 and CK2 : yx = 1 and rest
all relations are trivial. Hence y = x−1 and therefore LK(R1) ' LK(1, 1) ' R[x, x−1].

Proposition 8.1.23. Let K be a field, and n ≥ 1 any positive number. Then

Mn(K) ' LK(An).

Proof. cf. [1]-Proposition 1.3.5.

Grading of LPA

Before we will give a grading to LPA, we first introduce another path algebras called Cohn
path algebras which lies in between KG and LK(E). More formally:

Definition 8.1.24. Let E be a directed graph and K be a field. Let CK(E) denote the free
associativeK-algebra generated by 〈E0, E1, E1∗〉 quotient the relation (V ), (E1), (E2), (CK1).

It follows from the above definition that CK(E)/CK2 = LK(E).
Remark 8.1.25. CK(E) has an IBN property as proved in [9].

Z-grading on some specific LK(E).

Example 8.1.26 (Z-grading on LK(An):). Since we have established that F : LK(An) →
Mn(K), is an isomorphism we instead find a grading on Mn(K) and confirm that the iso-
morphism F is graded. Consider the subspace

At = {A | (A)i,j = 0, for i− j 6= t}.
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Now it’s clear that Mn(K) =
⊕

At (set At = 0 if t > n or t < 0). The map F defined in
Proposition 8.1.23 turns out to a graded homomorphism (by considering the pre-image of
homogeneous component, see Proposition 8.1.30), hence we have grading on LK(An).

Example 8.1.27. Z-grading on LK(R1).

Since we have established that
F : LK(R1) ' K[X,X−1] is an isomorphism and since K[x, x−1 has a natural grading, we
take the pre-image of homogeneous component and verify that it induced a graded structure
(see Proposition 8.1.23).

Remark 8.1.28. Let A be a graded ideal, if X ⊆ A0, then I(X) is an graded ideal.

We show that KÊ is a Z-graded K-algebra and I(CK1) is it’s graded ideal, hence it will
follow that CK(E) is a Z graded K-algebra. Using the same argument, we will show that
LK(E) is a graded Z-module.

Definition 8.1.29. Let E be a graph. For any v ∈ E0, let deg(v) = 0, and e ∈ E1,
deg(e = 1) and deg(e?) = −1. For any monomial kx1 . . . xm, deg(kx1 · · ·xm) =

∑m
i=1

deg(xi). Let

An := spanK{x1 · · ·xm | xi ∈ E0 ∪ E1 ∪ E1?with deg(x1 · · · xm) = n}.

Proposition 8.1.30.

1. KÊ =
⊕

n∈ZAn as a K-subspaces and this defines a Z-grading on the path algebra
KÊ.

2. CKE =
⊕

n∈ZCn, where

Cn := span K{γλ? | γ, λ ∈ En and l(γ)− l(λ) = n}.

Hence this defines a Z-grading on CK(E).

3. LK(E) =
⊕

n∈Z Ln, where

Ln := span K{γλ? | γ, λ ∈ En and l(γ)− l(λ) = n}.

This defines a Z-grading on LK(E).
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Proof. 1. The free algebra KE, where E is 〈E0, E1, E1?〉 is Z-graded where homoge-
neous component is given by deg (see 8.1.29. We now observe that I(V,E1, E2) are
graded ideals and from 8.1.25 and hence the quotient of free algebra with the relation
(V ), (E1), (E2) is again a graded ring.

2. Using Proposition 8.1.30(1), and observing that I(CK1) is a graded ideal, we infer
KÊ/I(CK1) is a graded ring with homogeneous component being its deg.

3. Using Proposition 8.1.30(2), and observing that I(CK2) is a graded ideal, we infer
CK(E)/I(CK2) is a graded ring and homogeneous component being its deg.

Motivation for further studies

LPA is a concrete example of a non-commutative graded algebra without IBN property. As
it is well known that many problems related to Quillen-Suslin theorem have been studied for
graded rings and for non-commutative rings separately, it is natural to ask whether analogue
results holds for LPA. For example it will be interesting to deduce analogue of Quillen’s L-G
principal and Suslin’s K1-analogue of Serre’s conjecture for LPA.

8.2 Convex geometry and monoids

The content of this appendix is independent of the thesis. The only aim of this appendix is
motivate the abstract algebraic construction through intuitive geometric pictures.The prin-
cipal object of study here is the property of cone and polytopes. They are defined in terms
of halfspaces Hα

+. For more information see [6] and [4].

Consider a affine space An and map ψ : An → A where ψ(x) = λ(x) + c where λ is a linear
map. The the of x ∈ An such that ψ(x) ≥ 0 is denoted as Hψ

+ and is called closed halfspaces.
The set ψ(x) = 0 is called hyperplane and is denoted as Hψ.

Definition 8.2.1 (Polytopes). Let Hi be a hyperplane and Hi
+ be its halfspace. Then P

is a polytope if P =
⋂
i∈I Hi

+ for finitely many i and is bounded in An.

Example 8.2.2. Any polygon in R2 is a polytope.
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Definition 8.2.3 (Cones). If the Hi are all linear affine subspace (i.e. vector subspace),
then the polytope is called a cone.

Example 8.2.4. A cone shaped figure in 2-dimension is a cone in R2.

Similar to cones, we call a set X conical if it is closed under nonnegative linear combination
of its elements. One such set is R+X (which is also the smallest conical set containing X).
It becomes evident that a cone C is conical. But the converse in also true under a mild
condition.

Proposition 8.2.5. Let C be a conical set in V . Then the following are equivalent:

1. C is finitely generated.

2. C is a cone

Proof. cf. ([4] (1.15)).

Lemma 8.2.6 (Gordan’s Lemma). Let C be a rational cone in Rd, then

M = Zn ∩ C

(n ≤ d) is an affine monoid.

Proof. Since C is a cone, it is finitely generated by v1, . . . , vn (we can assume vi ∈ Zd) over
R+. Let m ∈M , then m =

∑n
i=1 aivi, for some ai ∈ R+. Now if we rewrite the sum as

m =
n∑
i=1

baicvi +
n∑
i=1

qivi = m′ +m′′

where ai = baic+ qi (baic implies the highest integer less than ai). Since m,m′ ∈M we have
m′′ ∈M .

Let B = {y | y = qivi, 0 ≤ qi ≤ 1}. Then B is a bounded subset of Rd. Now B ∩ Zd ∈ M
and is finite set and m′′ ∈ B ∩ Zd. Therefore {v1, . . . , vn} ∪ (B ∩ Zd) is the generator of M
and hence M is affine.
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Corollary 8.2.7. Let M be a affine monoid, C = R+M . Then

M̂ = C ∩ Zn

is an affine monoid and C is a cone.

Proof. C is cone because C is finitely generated and proposition Proposition 8.2.5. Now C

is a cone, then by lemma Lemma 8.2.6 M̂ is an affine monoid.

Corollary 8.2.8. Let M and N be an affine monoid, then M ∩N is an affine monoid.

Proof. By corrolary 8.2.8, R+M and R+N are cones, hence R+M ∩ R+N is also a rational
cone (see [4], 2.11). Now if,

R+M ∩ R+N = R+(M ∩N)

then again using corollary 8.2.7 we conclude that M ∩N is affine monoid.

Now we prove that R+M ∩ R+N = R+(M ∩ N). Clearly, R+M ∩ R+N ⊆ R+(M ∩ N)

is obvious. For the converse, let x be a ration element in R+M ∩ R+N . Then their exists
α, β ∈ Z such that αx ∈M and βx ∈ N . Hence αβx ∈M∩N , therefore x ∈ R+(M∩N).

Corollary 8.2.9. Let W be a polytope, then M | W = M ∩ R+W is an affine monoid.

Proof. Using corollary 8.2.8 it follows that M | W is an affine monoid.

Remark 8.2.10. Given an affine monoid M , we form a cone C = R+M . If λ ∈ C? (dual
cone), then Φ(M) := Hλ(x)=a ∩ C is a polytope and plays an important role in the structure
of R[M ] and is called cross-section of M .

Let P be a polytope and x 6∈ aff(P ) (smallest affine subspace containing P ). Then the
conv(P, x) (smallest convex set containing P and x) is called a pyramid over base P and
vertex v.

Definition 8.2.11 (Pyramidal Extension- Combinatorial viewpoint). A polytope P have a
pyramidal decomposition if P = ∆ ∪ Γ such that ∆ is a pyramid with apex v and Γ meets
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∆ in a facet opposite to v. If dim(P ) = dim(Γ) (here dim means the dimension of aff(Q) for
a polytope Q), then the pyramidal decomposition is called non-degenerate decomposition.

We can alternatively proof Gubeladze’s theorem using the next two results (Infact, R.G.
Swan translated this results in algebraic terms).

Theorem 8.2.12. Let v ∈ Φ(M) be a vertex of Φ(M) = ∆∪Γ- a nondegenerate pyramidal
decomposition of Φ(M). Then every projective module over R[M ] is extended from R[M | Γ].

Remark 8.2.13. Compare this theorem with proposition Proposition 6.2.4.

Proof. cf. ([4], 8.6).

Theorem 8.2.14. Let P be a polytope and z ∈ Int(P ) a rational point. Then there exists
a sequence (Pi)i∈N of polytopes with the following properties

1. For all i ∈ N we have:

(a) Pi ⊂ P ,

(b) Pi ⊂ Pi+1 or Pi+1 ⊂ Pi,

(c) if Pi ⊂ Pi+1, then Pi is a nondegenerate pyramidal extension of Pi+1,

2. For every ε > 0 there exists an i ∈ N such that Pi ⊂ Uε(z) ∩ P .

Remark 8.2.15. Compare this theorem with proposition Proposition 6.3.3.

Consequences of Theorem 8.2.12 and Theorem8.2.14 are as follows:

Let Q be a projective R[M ]-module. The extension P1 ⊂ P is pyramidal and hence their
exists a projective R[M | P1]-module Q1 such that Q is extended from Q. Now we recursively
define R[M | Pi]-module as follows:

1. If Pi+1 ⊂ Pi, then Qi+1 = Qi ⊗R[M | Pi+1].

2. If Pi ⊂ Pi+1 be a non-degenerate pyramidal extension, then using theorem 8.2.12 we
have Qi+1 extended from Qi.

Since M is noraml if follows that R+M has a unimodular triangulation (cf [4], 2.74).
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Choose an ε > 0. Then there exists j ∈ N such that Pj ⊂ Uε(z) ∩ P for z ∈ interior
of Φ(M) ∩ D, where D is a unimodular cone of triangulation. Consider the extension
Q′ = Qk ⊗ R[D ∩ Zd]. Since D is unimodular D ∩ Zd ' Z+

d (see [4], Section 2-D for more
details) and hence Q′ is a free module over R[D ∩Zd] by Quillen-Suslin theorem. Since Q is
extended from Q′, it follows that Q is free R[M ]-module.

8.3 Definition of Pic(R[M ]) and K0(R[M ])

We know discuss the K-theoretic aspect of R[M ] in the language of K-theory i.e K0-group
and Picard group to state the original result of J. Gubeladze [7].

Definition 8.3.1. Let R be a commutative ring and let (P ) denote the isomorphism class
of projective R-module P . Then the Grothendieck group K0R is an additive abelian group
generated by (P ) under the following relation:

1. Let G be a free abelian group generated by (P ).

2. Let H := subgroup generated by (P ⊕Q)− (P )− (Q).

3. Let K0R = G/H and [P ] image of (P ) in K0R.

Example 8.3.2. Let R be commutative PID. Since every projective R-module P is free,
from above we have K0(R) = Z.

Definition 8.3.3. Pic(R) or Picard group is defined as the abelian group whose elements are
isomorphic class of rank 1 projective modules [P ] and multiplication is defined as [P ].[Q] =

[P ⊗Q].

Example 8.3.4. Let R[X] be a ring where R is a PID. Since every projective R[X]-module
is free, we have Pic(R[X]) = 1

Remark 8.3.5. Anderson’s conjecture written in the language of K-theory is essentially
equivalent the following statements:

1. Pic(R[M ]) = 1,

2. K0(R[M ]) = Z.

3. Finitely generated projective R[M ]-module is free.
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4. Monoid M is seminormal (This is actually the converse of Gubeladze’s theorem).

For more information on this section, we refer [11] and [4] .
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