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Abstract

An ultraviolet finite theory of quantum gravity has been elusive. Gravity coupled to higher
spin fields, described by the Vasiliev model, is one candidate for a finite theory of gravity
but it has no known action principle. This thesis presents a light-cone method to determine
interaction vertices, and hence Lagrangians, by demanding closure of the symmetry algebra of
the background spacetime. In particular, we discuss the derivation of cubic interaction vertices
for massless fields of arbitrary spin and quartic interaction vertices for spin-1 fields in four-
dimensional Minkowski spacetime. The requirement of antisymmetric constants for odd spin
fields is noted at the cubic level. It is observed that, at the quartic level, algebra closure forces
the Jacobi identity onto these constants and dictates the existence of a gauge group. Some of
the work being done to extend this method to higher spin fields in AdS4 is included.

In addition, this thesis describes certain features of the pure gravity Hamiltonian that may
point to hidden symmetries in the theory. We find that the Hamiltonian can be expressed as
a quadratic form and determine its residual reparametrization invariances. The transformation
properties of the quadratic form structure are studied.
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Chapter 1

Introduction

The Standard Model of particle physics classifies all known elementary particles and provides
a quantum description of their interactions through three of the four fundamental forces: the
electromagnetic, weak, and strong forces. On the other hand, the classical theory of general
relativity, described by the Einstein-Hilbert action, successfully explains all gravitational phe-
nomena. However, reconciling the quantum nature of matter with this classical description of
spacetime geometry, and obtaining a quantum theory of gravity runs into several problems. We
briefly discuss the divergence issues in quantizing the Einstein-Hilbert action to motivate work
done as part of this thesis.

Quantum gravity

With an accurate description of gravity provided by the general theory of relativity and no ob-
served quantum gravitational effects, one may ask why we need a theory of quantum gravity at
all. While several arguments motivate the need for a quantum theory such as the inconsistency
of having singularities inside black-holes (see [1] and the references therein), a simple way
to understand the requirement [2] is through the source term in the gravitational equations of
motion,

Rµν −
1
2

gµνR+gµνΛ = Tµν .
1 (1.1)

The R.H.S. depends on the dynamical variable of the theory, the spacetime metric gµν , while
the equations are sourced on the L.H.S. by the stress-energy tensor, Tµν , which depends on
other fields that are present, and the metric itself. Since the stress-energy tensor has a quantum
nature and the gravitational field has a dependence on this quantity, we need to be able to
quantize gravity.

Scattering amplitudes in quantum field theory are evaluated from quantizing a perturbative
expansion of the action. One of the issues with quantum general relativity are the divergences
produced in perturbatively quantizing the Einstein-Hilbert action. For example, the inclusion of

1For details of the notation in this equation, see Chapter 4.
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matter fields at the one-loop level introduces non-renormalizable divergences in quantizing the
gravity Lagrangian [3, 4, 5, 6, 7, 8]. Also, quantum effects from gravitons contribute at higher
orders [9, 10, 11]. The removal of divergences that occur in perturbative quantum general
relativity by renormalization requires the introduction of additional terms in the equations of
motion [12] but these extra degrees of freedom produce an unstable universe. Non-perturbative
approaches to quantizing gravity have also not been successful (for more details, see the re-
views [1, 2] and references therein).

Our approach to the problem involves searching for new symmetries that can help curb diver-
gences in the theory. A possible solution is the introduction of higher spin fields in a theory of
gravity.

Higher spin fields

Currently, all observed elementary particles have spin values of zero, half or one. The electro-
magnetic, weak, and strong forces are mediated by spin-1 particles that are described by quan-
tum Yang-Mills theory. The successful quantization of gravity would produce spin-2 gravitons
as mediators. Though they are not known to occur in nature, several forays have been made
into studying theories with higher integer spin fields (spin ≥ 3). In flat spacetimes, no-go theo-
rems forbid the consistent formulation of interacting higher spin theories [13, 14, 15], but this
is not true on curved spacetime backgrounds. In particular, self-consistent and gauge invari-
ant interacting equations of motion for massless higher spin fields in four-dimensional dS/AdS
spacetime exist as solutions to Vasiliev’s equations [16, 17, 18]. A property of these higher spin
systems is the existence of a higher spin symmetry algebra: consistent equations of motion for
a spin-3 field require the introduction of a spin-4 field and so on, creating an infinite higher
spin tower. With this enhanced symmetry, the theory is expected to have interesting divergence
properties. Coupling these spins to a spin-2 field may even provide an example of an ultra-
violet finite theory of gravity. This makes it worthwhile to study configurations that involve
fields with spin ≥ 2, even though no such fundamental particles have been observed thus far.
However, there is no known action principle Vasiliev’s equations, which prevents study of the
quantum properties of such systems.

We propose finding interaction vertices for higher spins in an AdS4 background using a method
in the light-cone formalism which is illustrated in this thesis. The Lagrangian for a theory re-
flects the isometries of the spacetime in which it resides and we impose closure of the light-cone
isometry algebra of the background as a first principles approach to constructing interacting
theories. The method was introduced in [19], where cubic interaction vertices have been de-
rived for arbitrary integer spin fields in four-dimensional flat spacetime. An extension of their
work to higher orders could lead to a Lagrangian for such fields that bypasses the covariant
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no-go theorems and whether this is possible is discussed in [20, 21, 22]. Since the existence
of such theories is uncertain, we choose to focus on higher spins in dS/AdS spacetimes, where
the Vasiliev model provides consistent equations of motion. As proof of concept, we have de-
rived spin-1 quartic interaction vertices in flat spacetime, thereby filling a gap in the literature.
The derivation also demonstrates the strength of the method in forcing certain properties onto
the Lagrangian. For related discussions about no-go theorems and higher-spin fields in the
light-cone formalism, see [23, 24, 25, 26].

Chapter 2 provides a brief overview of required light-cone concepts. The algebra closure
method is explained in Chapter 3, by reviewing the derivation of cubic interaction vertices
in flat spacetimes from [19], and is then applied to determine quartic interaction vertices for
spin-1 fields. Chapter 4 details ongoing work in AdS4 spacetimes.

In Chapter 5, we move away from the isometry algebra of the background spacetime and higher
spins, and focus once again on pure gravity. It was shown in [27, 28] that the light-cone Hamil-
tonians for pure Yang-Mills theory and N = 4 superYang-Mills theory can be expressed as
quadratic forms. N = 8 supergravity is also known to have this structure to quartic order [29].
We show that this is also a feature of the pure gravity Hamiltonian in four dimensions up to
quartic order in its perturbative expansion. Loop amplitude calculations of N = 8 supergravity
have shown that there are unexpected cancellations in divergences that render the theory finite
up to four loops in four dimensions [30]. Not all these enhanced cancellations can be explained
by supersymmetry alone and it is possible that they occur due to additional symmetries at the
pure gravity level itself. Special mathematical structures can be signatures to hidden symme-
tries and we hope that the quadratic form structure is an indicator of such a symmetry. We
also determine residual reparametrization invariances of the Hamiltonian to order one in the
coupling constant.
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Chapter 2

The light-cone formalism

The light-cone form of relativistic dynamics is based on a choice of coordinates that sets the
initial surface from which a system evolves to be a surface tangential to the light-cone. It was
first proposed by Dirac in 1949 [31] as an equivalent form of studying relativistic quantum
mechanics in which dynamical variables are expressed in terms of their values on the light-
front. Apart from light-cone field theory, literature that uses this form of dynamics also uses
the terminology light-front field theory, field theory in the infinite momentum frame, and null
plane field theory.

There are several advantages to working in the light-cone formalism. For our purposes, the two
most important aspects are that it allows one to work with only the physical degrees of freedom
of a field (absence of auxiliary fields) and leads to a reduction in the number of symmetry gener-
ators that are dependent on interactions. For example, in four-dimensional flat spacetime, only
three of the ten light-cone Poincaré generators are dynamical. These properties are illustrated
in this chapter which provides an introduction to notation, conventions and other information
about the light-cone gauge.

2.1 Coordinates

The light-cone formulation of field dynamics requires the introduction of light-cone coordi-
nates. For four-dimensional Minkowski spacetime, with metric signature (−,+,+,+), these
coordinates are given by

x± =
x0± x3
√

2
, x =

x1 + ix2
√

2
, and x̄ =

x1− ix2
√

2
, (2.1)

with the corresponding derivatives

∂
∓ =

∂ 0∓∂ 3
√

2
, ∂̄ =

∂ 1− i∂ 2
√

2
, and ∂ =

∂ 1 + i∂ 2
√

2
. (2.2)
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In this convention, the invariant spacetime interval

ds2 = ηµνdxµdxν =−(dx0)2 +
3

∑
i=1

(dxi)2, (2.3)

becomes
ds2 =−2 x+x−+2 x x̄ (2.4)

and

ηµν =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 . (2.5)

Thus, the scalar product of two vectors has the form

AµBµ = ηµνAµBν =−A+B−−A−B++A B̄+ Ā B, (2.6)

where Aµ and Bµ are redefined in the same way as the coordinates.

Either of the two null coordinates, x+ or x−, can be chosen as the time coordinate and the con-
vention we follow is to take x+ as the evolution parameter. The remaining coordinates represent
the three spatial directions, with x and x̄ termed as transverse directions. Redefining all vectors
and tensors in this fashion allow us the make the light-cone gauge choice as demonstrated for
electromagnetism in the next section.

2.2 Maxwell theory in the light-cone gauge

The Lagrangian density for Maxwell theory is

L =−1
4

FµνFµν , with µ,ν = 0,1,2,3, (2.7)

where, in terms of the electromagnetic four potential, Aµ ,

Fµν = ∂µAν −∂νAµ . (2.8)

The expression (2.7) is invariant under the transformation,

Aµ → Aµ +∂µΛ, (2.9)

where Λ is a scalar. Thus, the theory allows for one gauge choice. We make the light-cone
gauge choice,

A− =− A+ = 0, (2.10)
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and impose (2.10) in the equations of motion,

∂µFµν = 0, (2.11)

which results in two kinds of equations. Dynamical equations contain the time derivative, ∂−,
and carry information about the evolution of the system, while equations that do not involve
∂− give constraints on components of the field. In particular, when ν =−,

A− =
∂̄

∂+
A+

∂

∂+
Ā, (2.12)

where the operator 1
∂+ =− 1

∂−
is defined following [32, 33] as

1
∂−

f (x−) =
∫

∞

−∞

f (y−)ε(x−− y−)dy−, (2.13)

ε being the Heaviside step function.

Substituting for A+ and A− in (2.7) using (2.10) and (2.12) reduces the Lagrangian to an ex-
pression with only two independent components, A and Ā, with

L =
1
2

Ā�A, (2.14)

where �= 2 (∂ ∂̄ −∂+∂−). A photon has only two physical degrees of freedom and these are
captured in A and Ā. The absence of auxiliary fields is one of the advantages of working in the
light-cone formulation of dynamics. In general, any massless field of arbitrary integer spin, λ ,
has two physical degrees of freedom in four dimensions. Using a complex field, φ , to define the
particle, the representation is chosen such that φ and φ̄ are eigenstates of the helicity operator
with the eigenvalues, +λ and −λ respectively.

The following table lists the helicity and length-dimension of some of the commonly occurring
variables and operators since these values will be of use later.

Quantity Helicity Dim [L]

x +1 +1

x̄ −1 +1

∂ +1 −1

∂̄ −1 −1

A +1 −1

Ā −1 −1

∂+ 0 −1
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2.3 Light-cone Poincaré algebra

A relativistic quantum field theory in Minkowski spacetime has to have a Poincaré invariant
action. Generators of Poincaré symmetry satisfy the algebra,

[Pµ ,Pν ] = 0 ,

[Pρ ,Jµν ] = i (ηρµPν −η
ρνPµ) ,

[Jµν ,Jρσ ] =−i (ηµρJνσ −η
µσ Jνρ −η

νρJµσ +η
νσ Jµρ) .

(2.15)

A required ingredient in what follows are explicit expressions for generators of the Poincaré
algebra in light-cone coordinates. As differential operators acting on a free field with spin, λ ,
we find that the generators,

P =−i∂ , (2.16)

P̄ =−i∂̄ , (2.17)

P+ =−i∂+, (2.18)

P− =−i∂−, (2.19)

J = i (x∂̄ − x̄∂ − λ̂ ), (2.20)

J+− = i (x−∂
+− x+∂

−), (2.21)

J− = i (x∂
−− x−∂ − λ̂

∂

∂+
), (2.22)

J+ = i (x∂
+− x+∂ ), (2.23)

J̄+ = i (x̄∂
+− x+∂̄ ), (2.24)

J̄− = i (x̄∂
−− x−∂̄ − λ̂

∂̄

∂+
). (2.25)

satisfy the light-cone equivalent of (2.15) (see Appendix A) provided

∂
− =

∂ ∂̄

∂+
, (2.26)

which is the on-shell condition for a free field. The spin part of the Lorentz algebra, which
appears in the expressions for J, J−, and J̄− with the operator λ̂ , can be determined in two dif-
ferent ways [19, 34]. One option is to use the covariant formula for the variation of a field under
a Lorentz transformation, impose the light-cone gauge condition, and work out the compensat-
ing gauge transformation required to maintain the gauge. For example, for a spin-1 fields, Aµ ,
we would set A+ = 0 and work out the gauge transformation required to keep this component
zero after a rotation. The other method is to note that the spin part of J is an operator that
measures the helicity of the field (has egienvalue +λ for φ and −λ for φ̄ ), and use algebra
closure to derive the spin parts of the other rotation generators.
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Once (2.26) is substituted wherever ∂− appears, we can choose to work on the surface x+ = 0
since it simplifies calculations. Generators get classified as kinematical generators,

P+ , P , P̄ , J , J+ , J̄+, and J+−, (2.27)

which do not involve time derivatives and dynamical generators,

P− , J− , and J̄−, (2.28)

that do involve a substitution for ∂− and pick up corrections in interacting theories. The fact
that there are only three dynamical generators is another advantage of the light-cone formalism.
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Chapter 3

Adding interactions

Results in this chapter are reproduced from the publication: S. Ananth, A. Kar, S. Majumdar,

N. Shah, Nuclear Physics B 926 (2018).

With knowledge of light-cone coordinates, gauge choice, and Poincaré symmetry algebra, we
proceed to demonstrate how self-interaction vertices can be derived by requiring algebra closure
order-by-order in the coupling constant. The method and results that are discussed in this
chapter are based on the work in [19] and the publication: S. Ananth, A. Kar, S. Majumdar, N.
Shah, Nucl. Phys. B 926 (2018).

3.1 The method

As seen in section 2.2, the Lagrangian for a free massless field of arbitrary spin is given by

L =
1
2

∫
d3x φ̄ � φ =

∫
d3x (φ̄ ∂ ∂̄ φ − φ̄ ∂

+
∂
−

φ), (3.1)

with the corresponding Hamiltonian being

H =
∫

d3x (φ̄ ∂ ∂̄ φ). (3.2)

In terms of the infinitesimal variation caused by the Hamiltonian operator on a field,

H =
∫

d3x∂
+

φ̄δHφ . (3.3)

The variation δH is defined as

δH ≡ ∂
−

φ = iδP−φ = {φ , H}.1 (3.4)

1When writing infinitesimal variations, we leave out the infinitesimal parameter
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where
{A,B}= ∂A

∂q
∂B
∂ p
− ∂B

∂q
∂A
∂ p

, (3.5)

is the Poisson bracket and in our case, the dynamical variable q is the field φ and the corre-
sponding momentum, p = ∂L

∂q , is ∂+φ . Therefore, the dynamical information of the system is
carried in the expression for ∂−φ . For a free theory, the algebra closed provided (2.26), which
comes from the equation of motion for a free field,

� φ = 2 ( ∂ ∂̄ −∂
+

∂
−) φ = 0. (3.6)

A theory with self-interactions will have a Lagrangian density of the form

L =
1
2

φ̄�φ + f (φ , φ̄), (3.7)

leading to corrections to the expression for ∂−. Our goal is to determine these corrections by
demanding algebra closure order-by-order in the coupling constant of the theory, α , just as
(2.26) was found as an output of requiring consistent commutation relations at the free level. In
order to do so, we note that the generators that pick up corrections at higher orders, apart from
P−, are the other dynamical generators with

δJ−φ = δ
0
J−φ + ixδ

α
H +δ

α

S−+O(α2) , (3.8)

and
δJ̄−φ = δ

0
J̄−φ + ix̄δ

α
H +δ

α

S̄−+O(α2) . (3.9)

δ 0 represents the free level expressions of the generators and δ α represents corrections at the
next order in the coupling constant. The procedure to determine these corrections involves
making an ansatz for their general structure and using commutation relations among the various
generators to fix the ambiguities.

3.2 Cubic interaction vertices

We expect the Lagrangian density for a field with self-interactions to have the structure,

L =
1
2

φ̄�φ +αφ̄φφ +αφφ̄ φ̄ +O(α2), (3.10)

where α is the coupling constant and derivatives have not yet been inserted. The Hamiltonian
variation will therefore have the form,

δHφ =
∂ ∂̄

∂+
φ +αφφ +αφ̄φ +O(α2). (3.11)
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In this section, we review the derivation of cubic self-interaction terms for massless fields of ar-
bitrary integer spin, λ [19]. Beginning with an ansatz for the order α terms in the Hamiltonian
variation, we will demand closure of the Poincaré algebra. The restrictions imposed by these
commutation relations fix the form of the ansatz. Since the two types of terms that appear, φ̄φ

and φφ , do not mix, they can each be worked out separately. The ansatz for the latter kind is a
sum of terms of the form,

δ
α
H φ = α K ∂

+µ

[
∂̄

B
∂

C
∂
+ρ

φ ∂̄
D

∂
E

∂
+σ

φ

]
, (3.12)

where µ , ρ , σ B,C,D,E are integers, and K is a constant to be fixed by the algebra. Initially,
we obtain constraints on the values of these integers using the commutation relations of the
Hamiltonian variation with kinematical generators. The commutator [P−,J+−] =−iP−, when
acted on fields at order α ,

[δHφ ,δJ+−φ ]α = [δ 0
Hφ ,δ α

J+−φ ]+ [δ α
H φ ,δ 0

J+−φ ] =−iδ α
H φ , (3.13)

yields [19]
µ +ρ +σ =−1. (3.14)

Only the second commutator in (3.13) contributes since δ α

J+−φ = 0. From the commutator of
the ansatz with δJ , we find that

B+D−C−E = λ . (3.15)

Using (3.14), dimensional analysis and helicity, we further determine that

B+D = λ and C = E = 0 . (3.16)

The commutator of δH with δJ̄+ is trivial but that with δJ+ mixes terms with different derivative
structures and leads to a more complex constraint than the simple relations that are obtained
above. The constraint [19],

[δJ+,δH ]
α

φ = α K [ i B ∂
+µ

(∂+(ρ+1)
∂̄
(B−1)

φ∂
+σ

∂̄
D

φ)

+ i D ∂
+µ

(∂+ρ
∂̄

B
φ∂

+(σ+1)
∂̄
(D−1)

φ) ] = 0 ,
(3.17)

restricts the values of the coefficient, K, in the sum of terms. Taking the commutator with δJ−

or δJ̄− requires expressions for the spin corrections of (3.8) and (3.9). We follow [19] in making
a guess that

δ
α

S−φ = αφφ and δ
α

S̄− = αφφ̄ , (3.18)
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where derivatives have not yet been inserted. Since we are only looking at terms that have the
structure, φφ , we can take the commutator of δH with the orbital part of δJ̄− to get [19]

[δJ̄−,δH ]
α = i (µ +1−λ )

∂̄

∂+
α K ∂

+µ
[∂̄ B

∂
+ρ

φ ∂̄
D

∂
+σ

φ ]

+ α K
{

i (ρ +λ ) ∂
+µ

[∂̄ (B+1)
∂
+(ρ−1)

φ ∂̄
D

∂
+σ

φ ]

+ i (σ +λ ) ∂
+µ

[∂̄ B
∂
+ρ

φ ∂̄
(D+1)

∂
+(σ−1)

φ ]
}
= 0 .

(3.19)

It turns out that (3.17) and (3.19), along with (3.14) and (3.16), are sufficient to determine all
unkowns in (3.12). The general answer for arbitrary spin [19] was determined by identifying
the pattern across specific values of λ . For λ = 0, equations (3.17) and (3.19) are satisfied by
the solution µ =−1, ρ = 0, and σ = 0, resulting in the interaction vertex of the φ 3 theory,

δ
α
H φ = α

1
∂+

(φφ). (3.20)

λ = 1 admits a solution for µ = 0 but it is non-trivial only if antisymmetric structure constants,
f abc, are introduced such that

δ
α
H φ

a = α f abc
[

∂̄

∂+
φ

b
φ

c−φ
b ∂̄

∂+
φ

c
]
. (3.21)

The need for these constants is an indicator of the gauge group that is present for fields with
odd spins. When λ = 2, there exists a solution with µ = 1,

δ
α
H φ = α∂

+

[
∂̄ 2

∂+2 φφ −2
∂̄

∂+
φ

∂̄

∂+
φ +φ

∂̄ 2

∂+2 φ

]
. (3.22)

For λ = 3, a solution exists with µ = 2 and antisymmetric structure constants and the pattern
continues as λ is increased further. There is also pattern in the derivative structure of the terms,
and their coefficients follow Pascal’s triangle. A general solution can be written down for an
arbitrary λ value. For even spin [19],

δ
α
H φ = α

λ

∑
n=0

(−1)n
(

λ

n

)
∂
+(λ−1)

[
∂̄ (λ−n)

∂+(λ−n)
φ

∂̄ n

∂+n φ

]
, (3.23)

and for odd spin [19]

δ
α
H φ

a = α f abc
λ

∑
n=0

(−1)n
(

λ

n

)
∂
+(λ−1)

[
∂̄ (λ−n)

∂+(λ−n)
φ

b ∂̄ n

∂+n φ
c
]
. (3.24)

Equations (3.23) and (3.24) do not complete the process of determining interaction vertices
through algebra closure. Two steps remain: working out the φ̄φ pieces of the Hamiltonian vari-
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ation and determining expressions δ α
S and δ α

S̄ for which the algebra is consistent. Proceeding
in a way that is similar to that followed for the φφ terms, the φ̄φ terms can be found to be [19]

δ
α
H φ = 2α

λ

∑
n=0

(−1)n
(

λ

n

)
1

∂+(λ+1)

[
∂ (λ−n)

∂+(λ−n)
φ̄ ∂

n
∂
+(2λ−n)

φ

]
, (3.25)

with f abc inserted for odd spin. The spin correction, δ α

S− is determined by the relation,

[δJ−,δH ]
α

φ = 0. (3.26)

The unknown piece in (3.26) is δ α

S− , and demanding that the equation hold gives [19]

δ
α

S−φ =−2 i α λ

λ−1

∑
n=0

(−1)n
(

λ −1
n

)
∂
+(λ−1)

[
∂̄ (λ−1−n)

∂+(λ−n)
φ

∂̄ n

∂+n φ

]
. (3.27)

The expression for δ α

S̄− is obtained similarly from the commutator

[δJ̄−,δH ]
α

φ = 0 , (3.28)

giving [19]

δ
α

S̄−φ =−2 i α λ

λ−1

∑
n=0

(−1)n
(

λ −1
n

)
1

∂+(λ+1)

[
∂ (λ−1−n)

∂+(λ−n)
φ̄ ∂

n
∂
+(2λ−n)

φ

+3
∂ (λ−1−n)

∂+(λ−1−n)
φ̄ ∂

n
∂
+(2λ−n−1)

φ

]
.

(3.29)

Again, for odd spins, these expressions will involve f abc. A consistency check on (3.27) and
(3.29) comes from requiring

[δJ−,δJ̄−]
α

φ = 0, (3.30)

which does hold true.

Now that we have the expressions for δ α
H , we can write down the action upto this order. For

even spin [19],

S =
∫

d4x

(
1
2

φ̄�φ +α

λ

∑
n=0

(−1)n
(

λ

n

)
φ̄ ∂

+λ

[
∂̄ (λ−n)

∂+(λ−n)
φ

∂̄ n

∂+n φ

]
+ c.c.

)
, (3.31)

and for odd spin [19],

S =
∫

d4x

(
1
2

φ̄
a�φ

a +α f abc
λ

∑
n=0

(−1)n
(

λ

n

)
φ̄

a
∂
+λ

[
∂̄ (λ−n)

∂+(λ−n)
φ

b ∂̄ n

∂+n φ
c

]
+ c.c.

)
. (3.32)

The actions for λ = 1 and λ = 2 match those obtained from light-cone gauge-fixing the covari-
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ant Yang-Mills [35] and Einstein-Hilbert actions [36] respectively.

3.3 Quartic interaction vertices for spin-1 fields

The method outlined in the previous section can be extended to higher orders in the coupling
constant. This section describes the derivation of the quartic interaction vertex for spin-1 fields
in a four-dimensional Minkowski spacetime. When λ = 1, the states φ and φ̄ have helicity
eigenvalues +1 and −1 respectively and we denote them as the vector components, A and Ā.
2α is identified with the dimensionless coupling constant, g, of Yang-Mills theory. We make
an ansatz for δ

g2

H A as was done at order g. A generic structure is provided by a sum of terms of
the form,

δ
g2

H Aa = g2 K f abc f cde
∂
+µ

[
∂̄

B
∂

C
∂
+ρ

φ
b

∂
+σ

(
∂̄

D
∂

E
∂
+ηAd

∂̄
F

∂
G

∂
+δ Āe

) ]
, (3.33)

where the constant, K, and integers, µ , ρ , σ , η , δ , B, C, D, E, F , and G, will be determined
by the algebra. Notice the need for two antisymmetric constants to create a non-zero term
that contains three fields. The requirement that the Hamiltonian have zero helicity disqualifies
terms that have three A fields or three Ā fields. Other combinations with different positions of
the derivatives may be possible but these structures can be generated starting from (3.33).

The commutation relation , [δJ,δH ]
g2

Aa = 0 , yields

B+D+F =C+E +G = λ −1 . (3.34)

For λ = 1, (3.34) imposes that there will be no transverse derivatives. Therefore, (3.33) sim-
plifies to

δ
g2

H Aa =+g2 K f abc f cde
∂
+µ

[
∂
+ρ Ab

∂
+σ

(
∂
+ηAd

∂
+δ Āe

) ]
. (3.35)

We commute the ansatz with δJ+− to get

µ +ρ +σ +η +δ =−1 . (3.36)

Once condtions (3.34) and (3.36) have been imposed, the commutation relation that fixes δ
g2

H

is
[δJ− , δH ] Aa = 0 . (3.37)

At order g2, this commutator has three parts

[δ 0
J− , δ

g2

H ]Aa +[δ g
J− , δ

g
H ]A

a +[δ g2

J− , δ
0
H ]A

a = 0 . (3.38)

Two kinds of field structures, AAA and AAĀ, are present in [δ g
J− , δ

g
H ]A

a, which is composed of
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the orbital piece,
[δ g

L− , δ
g
H ]A

a , (3.39)

and the spin piece,
[δ g

S− , δ
g
H ]A

a. (3.40)

Thus, we require the result,

δ
g
HAa =+g f abc

{
−Ac ∂̄

∂+
Ab +

1

∂+2 (∂
+2Ab ∂

∂+
Āc)− 1

∂+2 (∂∂
+Ab Āc)

}
(3.41)

from the previous section, along with the spin generators at order g,

δ
g
S̄−Aa =−g f abc 1

∂+2

(
1

∂+
Āc

∂
+2Ab +3 Āc

∂
+Ab

)
, (3.42)

and
δ

g
S−Aa =+g f abc 1

∂+
Ab Ac . (3.43)

The following computation details the result for terms of the form AAĀ which, for [δ g
J− , δ

g
H ]A

a,
are given by

[δ g
L− , δH

g]Aa =−g f abc Ac 1
∂+

(δH
g Ab) , (3.44)

and

[δ g
S− , δ

g
H ]A

a = +g2 f abc
{

f bde 1

∂+2

(
∂
+2

(
1

∂+
Ad Ae)

∂

∂+
Āc
)
−f bde 1

∂+2

(
∂∂

+(
1

∂+
Ad Ae)Āc

)
− f cde 1

∂+2

(
∂
+2 Ab ∂

∂+3 (
1

∂+
Ae

∂
+2Ād +3Ae

∂
+Ād)

)
+ f cde 1

∂+2

(
∂∂

+Ab 1

∂+2 (
1

∂+
Ae

∂
+2Ād +3Ae

∂
+Ād)

)}
−g f abc

δ
g
HAc 1

∂+
Ab−g f abc Ac 1

∂+
(δ g

H Ab) . (3.45)

In order to satisfy (3.38),
[δ 0

J− , δ
g2

H ]Aa +[δ g2

J− , δ
0
H ]A

a , (3.46)

must produce these terms with a negative sign. Since (3.46) cannot produce terms with the
structure AAA, the ones obtained from [δ g

J− , δ
g
H ]A

a have to vanish. It can be checked that they
indeed do so.

The commutator of δ
g2

J− with δ 0
H has a spin part and an orbital part,

[δ g2

L−,δ
0
H ]A

a +[δ g2

S−,δ
0
H ]A

a . (3.47)
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It turns out that the spin correction to J− at order g2 vanishes as will be explained in the next
section.

Equation (3.38) is satisfied by the solution which has two terms with

(µ =−1;ρ =+1;σ =−2;η = 0;δ =+1)+(µ = 0;ρ = 0;σ =−2;η =+1;δ = 0) , (3.48)

and the explicit computation of (3.46) for these values gives

f abc f cde[− 1
∂+2 (∂

+
∂Ab 1

∂+2 (Ā
e
∂
+Ad))+

1
∂+2 (∂

+
∂Ab 1

∂+2 (∂
+ĀeAd))

+
1

∂+2 (
∂

∂+
AbĀe

∂
+Ad)+2

1
∂+2 (∂

+Ab 1
∂+2 (Ā

e
∂∂

+Ad))

− 1
∂+2 (∂

+Ab 1
∂+

(∂+Āe ∂

∂+
Ad))−2

1
∂+2 (∂

+Ab 1
∂+

(
∂

∂+
Āe

∂
+Ad))

+
1

∂+2 (∂
+Ab 1

∂+2 (∂
+

∂ ĀeAd))−2
1

∂+2 (∂
+2Ab 1

∂+3 (∂
+Āe

∂Ad))

+4
1

∂+2 (∂
+2Ab 1

∂+3 (∂ Āe
∂
+Ad))+2

1
∂+2 (∂

+2Ab 1
∂+3 (Ā

e
∂∂

+Ad))

− 1
∂+2 (∂

+2Ab 1
∂+2 (∂

+Āe ∂

∂+
Ad))− 1

∂+2 (∂
+2Ab 1

∂+2 (
∂

∂+
Āe

∂
+Ad))

− 1
∂+2 (A

b ∂

∂+
Āe

∂
+Ad)− 1

∂+2 (∂
+Ab 1

∂+2 (∂
+Āe

∂Ad))

+4
1

∂+2 (∂
+Ab 1

∂+2 (∂ Āe
∂
+Ad))] . (3.49)

We show these terms explicitly to point out that the calculation is not as straightforward as
simply crossing off terms across (3.44), (3.45) and (3.49). For (3.38) to hold true, the antisym-
metric constants, f abc, that were introduced at order g have to satisfy the Jacobi identity,

f abc f bde + f abd f bec + f abe f bcd = 0 . (3.50)

With this result, we now see that f abc are structure constants of a gauge group. The AAA terms
that appear in (3.40) also vanish if and only if (3.50) holds. Thus,

δ
g2

H Aa = g2 f abc f cde
[

1
∂+

(
∂
+Ab 1

∂+2 (∂
+ĀeAd)

)
−Ab 1

∂+2 (Ā
e
∂
+Ad)

]
. (3.51)

Though it has not been definitively shown that this solution is unique, it seems non-trivial to
identify a different set of values for the integer powers of the derivatives that will also satisfy
all commutators. It can be verified that (3.51) leads to the same quartic interaction vertex as
that obtained by light-cone gauge-fixing the covariant Yang-Mills Lagrangian [35].
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The spin generator at order g2

We determine that corrections to the spin generator at order g2 cannot exist for spin-1 fields
based on helicity and dimensions. The free field spin generator,

δ
0
S−Aa =− ∂

∂+
Aa , (3.52)

has length-dimension, -1, and helicity, +2 (see section 2.2). Therefore, at order g2, the generator
should have the form,

δ
g2

S−A ∼ g2 AAĀ∂
1

∂+3 , (3.53)

with the derivatives sprinkled on the fields. However, the commutator,

[δJ+−,δJ−]
g2

Aa =−iδ g2

J− Aa , (3.54)

works only if the number of ∂+ in the denominator is one greater than in the numerator, similar
to the condition (3.36) for the Hamiltonian variation. There is no combination of fields and
derivatives that allows for the correct helicity and dimension values. Therefore, it is not possible
to construct a valid expression for δ

g2

S−Aa. An expression for δ
g2

S̄−Aa is also ruled out by the
same argument. The fact the spin generator at this order vanishes is not surprising since the
commutator [P̄,J−] = −iP− implies that the spin generator has one less transverse derivative
than the Hamiltonian variation, and the spin one Hamiltonian at order g2 has zero transverse
derivatives.

Obtaining the order g2 pieces of the Hamiltonian and spin generators completes the construc-
tion of the entire light-cone Poincaré algebra for spin-1 fields in four-dimensional Minkowski
spacetime since the Lagrangian for Yang-Mills theory terminates at this order.

3.4 Structure of vertices for λ ≥ 2

Using helicity and dimensional arguments like in the previous section, we can put limits on the
structure of δH for spins greater than 1. For λ = 2, the dynamical variables are denoted h and
h̄ and

δ
0
Hh =

∂ ∂̄

∂+
h , (3.55)

has a length-dimension of −2 and a helicity of +2. Therefore, at order κ2, where κ is the
coupling constant for gravity, we expect

δ
κ2

H h ∼ κ
2 hhh̄ , (3.56)
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since, for a spin two field, κ has a length-dimension of 1. (3.56) has the correct helicity but the
wrong dimension. Using constraints like (3.36) and dimensional analysis,

δ
κ2

H h ∼ κ
2 hhh̄ (∂ ∂̄ )

1
∂+

. (3.57)

The actual expression for δ κ2

H will be a sum of terms of the form (3.57) with equal numbers of
∂+ and 1

∂+ fixed in by algebra closure to act on the various fields. This is in agreement with the
light-cone gauge-fixed gravity Lagrangian [36]. At order κ3, helicity and dimensions dictate
that

δ
κ3

H h ∼ κ
3 hhh̄h̄ ∂

2 1
∂+

+κ
3 hhhh̄ ∂̄

2 1
∂+

, (3.58)

which matches in structure with [37]. In principle, the exact expressions should be derivable
by our method but, due to the large number of terms involved at orders κ2 and κ3, algebraic
computations are tedious for spins ≥ 2.

In general, for spin λ ,

δ
α2

H φ ∼ α
2

φφφ̄ (∂ ∂̄ )
λ−1 1

∂+
, (3.59)

where α has length-dimension of λ −1.

Cubic interaction vertices for higher spin fields were found in [19] but this does not guarantee
the existence of consistent Lagrangians for higher spins in flat spacetime. The first step in
checking whether they do would involve determining the existence of higher order interaction
vertices. Dynamical commutators would be essential in checking whether vertices with the
structure (3.59) are valid.

Just like the analysis for δH , the analysis for the spin generator at this order yields

δ
α2

S− φ ∼ α
2

φ φ φ̄ ∂ (∂ ∂̄ )
λ−2 1

∂+
, (3.60)

which has one less transverse derivative than the Hamiltonian.
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Chapter 4

Curved spacetimes: dS/AdS

Cubic interaction vertices for spins ≥ 3 were found in flat-spacetime. This does not imply
the existence of a consistent Lagrangian for these fields since the algebra may not close at
higher orders. However equations of motion describing higher spin fields (spin ≥ 3) in curved
spacetimes are known to exist [16, 17, 18]. We therefore propose using the method illustrated
in the previous chapter to determine interaction vertices for higher spins in such spacetimes.
Since our universe has positive curvature, we would like to study theories in dS spacetimes.
However, AdS spacetimes are easier to work with and we therefore begin with such spacetimes
to understand modifications that occur when curvature come into play. This chapter lays out the
basics of AdS spacetimes and the light-cone generators that satisfy the corresponding isometry
algebra.

4.1 AdS spacetimes

The simplest way of moving from flat to curved spacetimes is by introducing a constant curva-
ture. AdS spacetimes are maximally symmetric solutions to Einstein’s equations,

Rµν −
1
2

gµνR+gµνΛ = 0, (4.1)

where the introduction of a negative cosmological constant, Λ, results in spacetimes with a
constant negative scalar curvature. The metric, gµν , is the dynamical variable of the theory
with the Ricci tensor, Rµν = Rρ

µρν , and the Ricci scalar, R = gµνRµν . The Riemann tensor, R

itself is defined in terms of the metric by the relations,

Rρ
σ µν = ∂µΓ

ρ

νσ −∂νΓ
ρ

µσ +Γ
ρ

µλ
Γ

λ
νσ −Γ

ρ

νλ
Γ

λ
µσ , (4.2)

where
Γ

ρ

νσ =
1
2

gρµ(∂νgµσ +∂σ gνµ −∂µgνσ ) . (4.3)
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AdS spacetimes can be thought of as being embedded in a higher dimensional flat spacetime
that has two timelike directions. In particular, AdS4 can be embedded in a (3,2) dimensional
flat spacetime. Given the metric of this spacetime,

ds2 =−X2
0 +

3

∑
i=1

X2
i −X2

4 , (4.4)

the AdS4 spacetime is the surface that satisfies the constraint,

−X2
0 +

3

∑
i=1

X2
i −X2

4 =−L2 , (4.5)

where L is the AdS radius. Each value of L corresponds to a particular value of the cosmological
constant through the relation,

Λ =− 3
L2 . (4.6)

In Poincare coordinates, the invariant interval for AdS4 is

ds2 =
1
z2 {−dt2 +dx2

1 +dx2
2 +dz2} , with z > 0 , (4.7)

where the cosmological constant has been set to unity. As in the case of flat spacetimes, light-
cone coordinates are introduced by defining

x± =
t± x2
√

2
, x = x1, and z = z . (4.8)

4.2 Isometry algebra and generators

AdS4 inherits the SO(3,2) symmetry of the higher dimensional flat spacetime in which it is
embedded. The commutation relations satisfied by the by the translation and rotation generators
of the AdS4 spacetime are not only equivalent to the rotations of this parent spacetime but also
equivalent to those of the three dimensional conformal algebra. We choose to work in this
conformal basis of generators in which the algebra is

[D,Pµ ] = Pµ , [D,Kµ ] =−Kµ , [Pµ ,Pν ] = 0 , [Kµ ,Kν ] = 0 ,

[Pµ ,Jρσ ] =−η
µρPσ +η

µσ Pρ , [Kµ ,Jρσ ] =−η
µρKσ +η

µσ Kρ ,

[Pµ ,Kν ] =−η
µνD+ Jµν , [Jµν ,Jρσ ] =−η

νρJµσ −3 terms ,

(4.9)

with µ,ν ,ρ,σ = 0,1,2. For the light-cone form of these relations see Appendix B. The dy-
namical generators are

P−, J−, and K−. (4.10)
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In order to derive explicit expressions for the light-cone generators, we begin by defining the
translation generators

P = ∂ , (4.11)

P+ = ∂
+, (4.12)

P− = ∂
−. (4.13)

We then assume the form of the generators J+−, J−, D, and K+, to be given by

J+− = x+∂
−− x−∂

+, (4.14)

J− = a (x−∂ − x∂
−)+B

∂z

∂+
, (4.15)

D = e (−x+∂
−− x−∂

++ x∂ + z∂z +1), (4.16)

K+ =−b
2
(x2 + z2−2x+x−)∂++ cx+D . (4.17)

The piece in J− with the coefficient B is the spin part of the generator. The constants a, b, c,
and e are fixed using commutation relations such as

[K+,P−] = J+−−D, [J+−,J−] =−J−, and [D,P−] = P−. (4.18)

We then proceed to derive the remaining generators. The expression for K is determined using

[J−,K+] =−K , (4.19)

and then used in the commutator
[J−,K] =−K−, (4.20)

to obtain K−. The relation
[K,P+] =−J+ (4.21)

determines J+.
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At the end of this process, we find that the complete set of generators given by

P = ∂ , (4.22)

P+ = ∂
+, (4.23)

P− = ∂
−, (4.24)

J+− = x+∂
−− x−∂

+, (4.25)

J− = x−∂ − x∂
−+B

∂z

∂+
, (4.26)

J+ = x+∂ − x∂
+, (4.27)

D =−x+∂
−− x−∂

++ x∂ + z∂z +1, (4.28)

K+ =−1
2
(x2 + z2−2x+x−)∂++ x+D (4.29)

K =−1
2
(x2 + z2−2x+x−)∂ + xD−Bz+ x+B

∂z

∂+
, (4.30)

K− =−1
2
(x2 + z2−2x+x−)∂−+ x−D+ xB

∂z

∂+
− zB

∂

∂+
−B2 1

∂+
. (4.31)

satisfies the AdS algebra at the free level provided

∂
− =

1
2

(
∂ 2

∂+
+

∂ 2
z

∂+

)
. (4.32)

The strucutre of these generators is in keeping with expressions derived in [38].

With these explicit forms, we are currently working on determining the interaction vertices for
a spin-2 field in this spacetime. The results will be compared against the known light-cone
Lagrangian [39] as a test of the generators. The unknown in these generators, B, depends on
the spin of the field and will be fixed in the same calculation. Once we verify these expressions,
they will be used to determine higher spin interaction vertices in AdS4.
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Chapter 5

An aside: hints of additional symmetries
in the gravity Hamiltonian

The work discussed in this chapter is part of the publication: S. Ananth, L. Brink, S. Majumdar,

M. Mali, N. Shah, Journal of High Energy Physics (JHEP) 1703 (2017).

Chapter 3 details the derivation of interaction vertices for fields with arbitrary spin using
Poincaré invariance. In this chapter, we move away from the symmetry algebra of the space-
time and study some properties of the gravity Hamiltonian, which is composed of spin-2 fields.
We demonstrate that the Hamiltonian has certain residual reparametrization invariances and an
interesting quadratic form structure that may be pointers to deeper symmetries.

5.1 Gravity in the light-cone gauge

In the absence of a cosmological constant, the Einstein-Hilbert action that describes gravitation
in four dimensions is given by

SEH =
∫

d4x L =
1

2κ2

∫
d4x
√
−g R , (5.1)

with the corresponding equations of motion,

Rµν −
1
2

gµνR = 0 . (5.2)

where g = det (gµν). The dimensionful coupling constant of the theory, κ , is related to New-
ton’s constant by the relation κ2 = 8πG. The Lagrangian has general coordinate invariance and
we are allowed four gauge choices. In the light-cone formulation, we initially make the three
choices [36, 40],

g−− = g−i = 0 , with i = 1,2 , (5.3)
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motivated by values of the Minkowski metric, η−−= η−i = 0. We further parametrize the
remaining components of the metric as

g+− = −eφ , and gi j = eψ
γi j , (5.4)

where φ and ψ are real parameters, and γi j is a two-by-two, symmetric matrix with determinant
equal to one. Like in the case of Maxwell and Yang-Mills theories, substituting using (5.3)
divides the equations of motion into dynamical equations and constraints. Out of the four
constraints, the one with µ = ν =−,

2∂−φ ∂−ψ − 2∂
2
−ψ − (∂−ψ)2 +

1
2

∂−γ
i j

∂−γi j = 0 , (5.5)

can be solved by making the allowed fourth gauge choice [36],

φ =
ψ

2
, (5.6)

to give

ψ =
1
4

1
∂ 2
−
(∂−γ

i j
∂−γi j) . (5.7)

The other constraints eliminate more degrees of freedom. For example, (5.2) with µ = i, and
ν =− , results in

g−i = e−φ 1
∂−

[
γ

i j eφ−2ψ 1
∂−

{
eψ

( 1
2

∂− γ
kl

∂ j γkl − ∂− ∂ j φ

−∂− ∂ j ψ + ∂ jφ ∂−ψ

)
+ ∂l

(
eψ

γ
kl

∂− γ jk

)}]
. (5.8)

With these constraints implemented, the action reads as [36]

S =
1

2κ2

∫
d4x eψ

(
2∂+∂−φ + ∂+∂−ψ− 1

2
∂+γ

i j
∂−γi j

)
−eφ

γ
i j
(

∂i∂ jφ +
1
2

∂iφ∂ jφ −∂iφ∂ jψ−
1
4

∂iγ
kl

∂ jγkl +
1
2

∂iγ
kl

∂kγ jl

)
−1

2
eφ−2ψ

γ
i j 1

∂−
Ri

1
∂−

R j , (5.9)

where

Ri ≡ eψ

(
1
2

∂−γ
jk

∂iγ jk−∂−∂iφ −∂−∂iψ +∂iφ∂−ψ

)
+∂k(eψ

γ
jk

∂−γi j) .

Since everything is now in terms of γi j, this light-cone action expresses gravity with only its
physical degrees of freedom. We now expand this action in orders of the coupling constant, κ ,
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by further rewriting γi j as

γi j = (eM)i j , (5.10)

where

M =

(
h11 h12

h12 −h11

)
, (5.11)

is a traceless matrix since det(γi j) = 1. We write the physical degrees of freedom as helicity
eigenstates,

h =
(h11 + ih12)√

2
, h̄ =

(h11− ih12)√
2

, (5.12)

with helicity being +2 for h and -2 for h̄. After the rescaling,

h → h
κ
, (5.13)

the Lagrangian density to order κ is given by [36]

L =
1
2

h̄�h+2κ

{
h̄∂

2
−

[
−h

∂̄ 2

∂ 2
−

h +
∂̄

∂−
h

∂̄

∂−
h
]
+ complex conjugate

}
, (5.14)

which matches the expression derived by algebra closure. We run into a problem at order κ2

where time derivatives appear in the expression for the Lagrangian. This is handled by a field
redefinition which replaces the ∂+ =−∂− with ∂ ∂̄

∂−
. Using the relation

H = ∂
+h ∂

−h − L , (5.15)

we get the Hamiltonian density up to order κ2 [36],

H = ∂ h̄ ∂̄h −2κ h̄∂
2
−

{
−h

∂̄ 2

∂ 2
−

h +
∂̄

∂−
h

∂̄

∂−
h
}
−2κ h∂

2
−

{
− h̄

∂ 2

∂ 2
−

h̄ +
∂

∂−
h̄

∂

∂−
h̄
}

−4κ
2

{
−2

1
∂ 2
−

(
∂̄

∂−
h∂

3
−h̄ − h∂

2
−∂̄ h̄

)
1

∂ 2
−

(
∂

∂−
h̄∂

3
−h − h̄∂

2
−∂h

)

+
1

∂ 2
−
(∂̄h∂

2
−h̄ − ∂−h∂−∂̄ h̄)

1
∂ 2
−
(∂ h̄∂

2
−h − ∂−h̄∂−∂h) − 3

1
∂−

(∂̄h∂−h̄)
1

∂−
(∂−h∂ h̄)

+
1

∂−
(∂̄h∂−h̄ − ∂−h ∂̄ h̄)

1
∂−

(∂ h̄∂−h − ∂−h̄∂h) + 3
1

∂−
(∂−h∂−h̄)

1
∂−

(∂̄h∂ h̄)

+

[
1

∂ 2
−
(∂−h∂−h̄) − hh̄

]
(∂̄h∂ h̄ + ∂h ∂̄ h̄ − ∂−h

∂ ∂̄

∂−
h̄ − ∂−h̄

∂ ∂̄

∂−
h)

}
. (5.16)
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5.2 Residual reparametrization invariances

Choosing to work in a particular gauge removes the gauge redundancy in a theory. However,
we find that certain transformations of the field still leave the gravity Hamiltonian invariant.
Under the coordinate transformation,

x→ x + ξ (x̄) , x̄→ x̄ + ξ̄ (x) , (5.17)

the field transforms as [41]

δh =
1

2κ
∂ξ + ξ ∂̄h + ξ̄ ∂h , (5.18)

up to order κ0, where ξ satisfies [41]

∂−ξ = 0 and ∂̄ ξ = 0 . (5.19)

Since, at order κ−1,
∂−(δh) = 0 , ∂̄ (δh) = 0 , (5.20)

the variation in the Hamiltonian to order κ−1 is zero. At order κ0,

δH(κ0) = δ (∂ h̄ ∂̄h)+ 2κ δ
κ−1

{
h̄ ∂−

2
(

h
∂̄ 2

∂−
2 h − ∂̄

∂−
h

∂̄

∂−
h
)

+ c.c.
}

. (5.21)

On substituting the appropriate variation for the fields, (5.21) turns out to be zero. Since δh

has terms of order κ−1, studying the variation of the Hamiltonian at order κ would involve the
quartic interaction vertex. The relevant terms are

δH(κ)
c,q = δ

κ0
(cubic terms) + δ

κ−1
(quartic terms) , (5.22)

which give a non-zero net contribution of

δH(κ)
c,q =

(
+2κ ∂̄ ξ̄ h ∂h ∂̄ h̄ − 2κh ∂̄ ξ̄ ∂−h̄

∂ ∂̄

∂−
h
)
+ c.c. (5.23)

The details of this calculation are provided in Appendix C. At this stage, the Hamiltonian is
clearly not invariant under δh. However, there is another possible source of order κ terms,

δH(κ)
k = δ

κ (kinetic terms). (5.24)

We determine new terms at order κ which, when added to (5.18), leave the Hamiltonian invari-
ant.

δh =
1

2κ
∂ξ + ξ ∂̄h + ξ̄ ∂h − κ ∂̄ ξ̄ h h + 2κ ∂ξ

1
∂−

(h̄ ∂−h) , (5.25)
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and
δ h̄ =

1
2κ

∂̄ ξ̄ + ξ ∂̄ h̄ + ξ̄ ∂ h̄ − κ ∂ξ h̄ h̄ + 2κ ∂̄ ξ̄
1

∂−
(h ∂−h̄) , (5.26)

result in
δH(κ) = 0 , (5.27)

proving invariance of the light-cone Hamiltonian, to order κ2, under the residual reparametriza-
tions (5.25) and (5.26).

5.3 Quadratic form of the gravity Hamiltonian to order κ2

Apart from the residual reparametrization invariance, we find that another interesting property
of the gravity Hamiltonian is that it can be expressed in the form,

H =
∫

d3x D h̄ D̄h , (5.28)

up to order κ2, with the derivative,

D h̄ = ∂ h̄ + 2κ
1

∂ 2
−

( ∂̄

∂−
h∂

3
−h̄ − h∂

2
−∂̄ h̄

)
+2κ

2 1
∂−
{∂ 2
−h̄

1
∂ 3
−
(∂ 3
−h

∂

∂−
h̄−∂

2
−∂hh̄)}+2κ

2 1
∂−
{ ∂

∂ 4
−
(h̄∂

2
−h)∂ 3

−h̄}

−2κ
2

∂
2
−h̄

1
∂ 4
−
(∂ 2
−h∂ h̄−2∂−∂h∂−h̄)+2κ

2
∂−h̄

1
∂ 2
−
(∂−h∂ h̄−2∂h∂−h̄)

+6κ
2 1

∂ 2
−
(∂−h∂−h̄)∂ h̄−6κ

2
∂−h̄

1
∂ 2
−
(∂−h∂ h̄)−2κ

2 1
∂ 2
−
(∂−h∂−h̄)∂ h̄

+4κ
2 hh̄∂ h̄+4κ

2 ∂

∂−
{∂−h̄(

1
∂ 2
−
(∂−h∂−h̄)−hh̄)}+2κ

2
∂

2
−h̄

1
∂ 4
−
(∂ 2
−∂hh̄)

−2κ
2

∂−{∂−h̄
1

∂ 2
−
(h̄∂h)}−2κ

2
∂{h̄ 1

∂ 2
−
(∂−h̄∂−h)}−2κ

2
∂

2
−h̄

1
∂ 3
−
(∂−∂hh̄)

+2κ
2
∂−∂{h̄ 1

∂ 3
−
(h∂

2
−h̄)}+2κ

2
∂{∂−h̄

1
∂ 3
−
(h̄∂

2
−h)}+2κ

2
∂

2
−{h̄

1
∂ 3
−
(∂−h̄∂h)}, (5.29)

and D̄h being the complex conjugate. For details of the calculation see Appendix D. Thus, the
pure gravity Hamiltonian to this order can be expressed as a quadratic form. Up to order κ0,
D h̄ transforms just like the field with

δ (D h̄) = (ξ ∂̄ + ξ̄ ∂ )D h̄ , (5.30)
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and is hence said to transform ’covariantly’. This is in keeping with the properties of Yang-
Mills theory. However, the property does not carry to order κ where

δ (D h̄)κ = +κ ∂ξ ∂{∂−h̄
1

∂−
h̄}

+2κ ∂̄ ξ̄ h∂ h̄ + κ ∂̄ ξ̄ ∂ ∂− h̄
1

∂−
h − κ ∂̄ ξ̄

1
∂−
{∂− ∂ h̄h} , (5.31)

does not transform like the field, h. At this point, it is unclear if the factorization of the Hamilto-
nian into D̄h and D h̄ is unique at order κ2. We therefore study the transformation properties of
D h̄ by making a general ansatz for the structure of δ (D h̄) based on helicity, (5.25) and (5.26),
and dimensional analysis. Thus, we have for δ (D h̄),

δ (D h̄) = 0 + (ξ ∂̄ + ξ̄ ∂ )D h̄− κ ∂ξ ∑
i

αi
¯̂Ai (

¯̂Bih̄ ¯̂Cih̄) + 2κ ∂̄ ξ̄ ∑
j

β j
¯̂Pj(

¯̂Q jh ¯̂R jh̄) . (5.32)

and for δ (D̄h)

δ (D̄h) = 0+ (ξ ∂̄ + ξ̄ ∂ )D̄h − κ ∂̄ ξ̄ ∑
i

αi Âi (B̂ih Ĉih) + 2κ ∂ξ ∑
j

β j P̂j(Q̂ jh̄ R̂ jh) , (5.33)

where αi and β j are constants and Âi, etc. are operators to be determined later. At this point we
note that, if the operators take the values,

α = 1 , Â = ∂̄ , B̂ = Ĉ = 1 ,

β = 1 , P̂ =
1

∂−
, Q̂ = 1 , R̂ = ∂−∂̄ , (5.34)

the derivative transforms covariantly. We know that the Hamiltonian is invariant under the field
transformations (5.25) and (5.26) and thus

δH = 0 =⇒
∫

d3x [δ (D h̄)D̄h + D h̄δ (D̄h) ] = 0 . (5.35)

At order κ0,

δH =
∫

d3x [ (δ (D h̄))κ0
∂̄h +∂ h̄(δ (D̄h))κ0

] , (5.36)

=
∫

d3x [ ξ̄ ∂
2h̄∂̄h + ∂ h̄ξ̄ ∂ ∂̄h ] . (5.37)

and integrating a ∂ from the h̄ in the first term yields (δH)κ0
= 0.
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At order κ ,

(δH)κ =
∫

d3x [ (δ (D h̄))κ
∂̄h+(δ (D h̄))κ0

(D̄h)κ +(D h̄)κ(δ (D̄h))κ0
+∂ h̄(δ (D̄h))κ ] ,

= κ

∫
d3x { [ ξ̄ ∂ (D h̄)κ + 2∂̄ ξ̄ ∑

j
β j

¯̂Pj(
¯̂Q jh ¯̂R jh̄) ]∂̄h + ξ̄ ∂

2h̄(D̄h)κ (5.38)

+ [ξ̄ ∂ (D̄h)κ − ∂̄ ξ̄ ∑
i

αi Âi (B̂ih Ĉih)] ∂ h̄ + (D h̄)κ
ξ̄ ∂ ∂̄h} . (5.39)

Integrating a ∂ from h̄ in the last term of (5.38) leads to a cancellation against the first term in
(5.39). The last term of (5.39) is cancelled against the first term of (5.38) by integrating a ∂ ,
and we are left with the expression,

(δH)κ = κ

∫
d3x [2∂̄ ξ̄ ∑

j
β j

¯̂Pj(
¯̂Q jh ¯̂R jh̄)∂̄h − ∂̄ ξ̄ ∑

i
αi Âi (B̂ih Ĉih)∂ h̄] . (5.40)

Substituting (5.34) into (5.40) , leaves us with

(δH)κ =+2κ

∫
d3x ∂̄ ξ̄

1
∂−

(∂−h∂ h̄) ∂̄h + c.c. 6= 0 (5.41)

Thus, derivative D̄h and its complex conjugate cannot be covariant. The exact form of D h̄, at
order κ2, is irrelevant to this analysis and shows that the derivative cannot be covariant even if
the factorization allows for a different expression at this order.
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Chapter 6

Conclusion and future work

Theories constructed in the light-cone gauge are not manifestly invariant under the symmetries
of the spacetime in which they reside, and have to be checked for this property. By using
the requirement of algebra closure as a method to determine interaction vertices, we invert the
process to obtain a first principles approach to construct Lagrangians. Chapter 3 outlines the
use of this method to derive cubic self-interaction vertices for massless fields of arbitrary spin
and quartic interaction vertices for spin-1 fields. The method has also been used to derive the
Hamiltonian for N = 4 superYang-Mills [28] and to obtain cubic interaction vertices for N = 1
supergravity [34], fields with three different spin values [42], fermions and bosons [43], and all
maximally extended supersymmetry multiplets where the maximum helicity is an integer [44].
For fields with spin values of one and two, the process serves as a proof of concept since the
solutions were already known from gauge-fixing the covariant Lagrangians. However, even at
this stage, there are some important aspects to be noted. The Yang-Mills Lagrangian is com-
pletely fixed by the method using only spacetime symmetries, with the gauge group emerging
as a necessity of Poincaré invariance. Cubic order algebra closure introduces antisymmetric
constants that are forced to satisfy the Jacobi identity at quartic order. (Similar results for the
structure constants are obtained using symmetry arguments in a covariant approach [45].)

With a constructive method for determining Lagrangians, the goal for us now is to apply it in
the context of higher spins in curved spacetimes. Having fixed the light-cone generators of the
AdS4 isometry algebra, we hope to work out cubic interaction vertices in this spacetime. The
benefit of doing so is twofold: there is no known Lagrangian for higher spins in AdS, and the
structure of the higher spin algebra is unknown. Like the introduction of the gauge group of
Yang-Mills theory, algebra closure could provide indications of this structure. It would also be
interesting to see whether a generalized series could be found for the cubic interaction vertex
of arbitrary integer spin fields similar to that in flat space.

However, the method has its limitations. It yields solutions for the Hamiltonian perturbatively
in the coupling constant of the theory with the process getting progressively more complicated.
In cases where an infinite expansion exists, the method is not ideal for determining the entire
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Lagrangian, nor is it possible to determine whether the Lagrangian will be consistent without
the full closed-form expression. At the same time, it still has its usefulness in determining
possible interaction vertices that can then be studied for their quantum properties.

The quadratic form structure of the gravity Hamiltonian and its residual reparametrization in-
variances, though unrelated to the algebra closure method, were studied with the same goal
of examining possible sources of enhanced symmetries in theories of gravity. It is interesting
to note that the quadratic form structure occurs only for pure and maximally supersymmetric
Yang-Mills and gravity. The reason for this property and its implications have to be studied fur-
ther. The residual reparametrization invariance calculation showed us that order κ corrections
to δh are necessary to maintain invariance of the Hamiltonian. A question this raises is whether
there is an infinite series in all orders that may be integrated to obtain a finite symmetry. The
cause of these symmetry structures that we have found are as yet unclear, but we hope that they
will point to hidden properties of the pure gravity Lagrangian.
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Appendix A

Light-cone Poincaré algebra in four
dimensions

In terms of light-cone generators, the non-vanishing commutation relations of the four-dimensional
Poincaré algebra are

[P−,J+−] = −iP− , [P−,J+] =−iP , [P−, J̄+] = −iP̄

[P+,J+−] = iP+ , [P+,J−] = −iP , [P+, J̄−] = −iP̄

[P, J̄−] = −iP− , [P, J̄+] = −iP+ , [P,J] = P

[P̄,J−] = −iP− , [P̄,J+] = −iP+ , [P̄,J] = −P̄

[J−,J+−] = −iJ− , [J−, J̄+] = iJ+−+ J , [J−,J] = J−

[J̄−,J+−] = −iJ̄− , [J̄−,J+] = iJ+−− J , [J̄−,J] = −J̄−

[J+−,J+] = −iJ+ , [J+−, J̄+] = −iJ̄+ ,

[J+,J] = J+ , [J̄+,J] = −J̄+ . (A.1)
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Appendix B

Light-cone AdS4 algebra

In terms of light-cone generators, the non-vanishing commutation relations of the three-dimensional
conformal algebra are

[J+−,J+] = J+, [J+−,J−] =−J−, [J+,J−] = J+−, [J+−,P+] = P+,

[J+−,P−] =−P−, [J+−,K+] = K+, [J+−,K−] =−K−, [J+,P] =−P+,

[J+,P−] =−P, [J+,K] =−K+, [J+,K−] =−K, [J−,P+] =−P,

[J−,P] =−P−, [J−,K+] =−K, [J−,K] =−K−, [K+,P] = J+,

[K+,P−] = J+−−D, [K−,P] = J−, [K−,P+] =−J+−−D,

[K,P+] =−J+, [K,P−] =−J−, [K,P] =−D, [D,P+] = P+,

[D,P] = P, [D,P−] = P−, [D,K+] =−K+, [D,K] =−K, [D,K−] =−K−.
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Appendix C

Detailed computation of δH(κ)
c,q

In this appendix, we provide the details of computing δH(κ)
c,q . We begin by varying the first

cubic term of the Hamiltonian,

δ
κ0
(first cubic term) = 2κ(ξ̄ ∂ h̄ + ξ ∂̄ h̄)∂−

2
(

h
∂̄ 2

∂−
2 h − ∂̄

∂−
h

∂̄

∂−
h
)

+ 2κ h̄ ∂−
2
(
(ξ ∂̄h + ξ̄ ∂h)

∂̄ 2

∂−
2 h + h

∂̄ 2

∂−
2 (ξ ∂̄h + ξ̄ ∂h) − 2

∂̄

∂−
(ξ ∂̄h + ξ̄ ∂h)

∂̄

∂−
h
)

,

= 2κ ξ̄ ∂ h̄ ∂−
2
(

h
∂̄ 2

∂−
2 h − ∂̄

∂−
h

∂̄

∂−
h
)

+ 2κ h̄ ∂−
2
(

ξ̄ ∂h
∂̄ 2

∂−
2 h + h

∂̄ 2

∂−
2 (ξ̄ ∂h) − 2

∂̄

∂−
(ξ̄ ∂h)

∂̄

∂−
h
)

+W (ξ ) ,

= X + Y + W (ξ ) ,

(C.1)

where

W = 2κ ξ ∂̄ h̄ ∂
2
−

(
h

∂̄ 2

∂ 2
−

h − ∂̄

∂−
h

∂̄

∂−
h
)

+ 2κ h̄ ∂
2
−

(
ξ ∂̄h

∂̄ 2

∂ 2
−

h + h
∂̄ 2

∂ 2
−
(ξ ∂̄h) −2

∂̄

∂−
(ξ ∂̄h)

∂̄

∂−
h
)

,

= 0 ,

(C.2)

by partial integrations. Thus, ξ -dependent terms vanish. In a similar fashion, there will be no
ξ̄ -dependent terms in the variation of the second cubic term (complex conjugate). We simplify
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X and Y further using partial integration to give

X = −2κ ξ̄ h̄ ∂−
2
∂

(
h

∂̄ 2

∂−
2 h
)
+2κ ξ̄ h̄ ∂−

2
∂

(
∂̄

∂−
h

∂̄

∂−
h
)

, (C.3)

and

Y = 2κ h̄ ξ̄ ∂−
2

∂

(
h

∂̄ 2

∂−
2 h
)
− 2κ h̄ξ̄ ∂−

2
∂

(
∂̄

∂−
h

∂̄

∂−
h
)

− 4κ ∂̄ ξ̄
∂

∂−
h

∂̄

∂−
h ∂

2
−h̄ + 2κ ∂̄

2
ξ̄

∂

∂ 2
−

h h ∂
2
−h̄ + 4κ ∂̄ ξ̄

∂ ∂̄

∂ 2
−

h h ∂
2
−h̄ .

(C.4)

The first two terms in (C.4) cancel against (C.3) and thus,

δ
κ0
(cubic terms) = −4κ ∂̄ ξ̄

∂

∂−
h

∂̄

∂−
h ∂

2
−h̄ + 2κ ∂̄

2
ξ̄

∂

∂ 2
−

h h ∂
2
−h̄ + 4κ ∂̄ ξ̄

∂ ∂̄

∂ 2
−

h h ∂
2
−h̄ .

(C.5)
In the κ−1 variation of the quartic vertex, we focus on the ξ̄ terms since the ξ -dependent terms
are simply complex conjugates.

δ
κ−1

(quartic terms) = A + B + C + D , (C.6)

where

A = − 4κ ∂̄ ξ̄ ∂h
1

∂−
2

(
∂̄

∂−
h ∂−

3 h̄ − h ∂−
2
∂̄ h̄
)

= 4κ ∂̄ ξ̄
∂

∂−
h

∂̄

∂−
h ∂

2
−h̄ − 4κ ∂̄

2
ξ̄

∂

∂ 2
−

h h ∂
2
−h̄ − 4κ ∂̄ ξ̄

∂ ∂̄

∂ 2
−

h h ∂
2
−h̄ ,

(C.7)

D = − 2κ
2

∂h ∂̄
2
ξ̄

(
1

∂−
2 (∂−h ∂−h̄) − h h̄

)
= − 2κ ∂̄

2
ξ̄

∂

∂−
h ∂−h h̄ + 2κ ∂̄

2
ξ̄

∂

∂ 2
−

h h ∂
2
−h̄ .

(C.8)

Taken together, the terms in (C.7) and the second term in (C.8) cancel the entire contribution
from the cubic vertex. We find that the term,

B =+ 2κ ∂̄
2
ξ̄ h

1
∂−

(∂ h̄ ∂−h − ∂−h̄ ∂h) , (C.9)

and the first term in (C.8) give

B− 2κ ∂̄
2
ξ̄

∂

∂−
h ∂−h h̄ =+κ ∂̄

2
ξ̄ hh∂ h̄ . (C.10)
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the third term has the form,

C = +2κh ∂̄ ξ̄

(
∂̄h ∂ h̄ + ∂h ∂̄ h̄ − ∂−h̄

∂ ∂̄

∂−
h − ∂−h

∂ ∂̄

∂−
h̄
)

= +2κ ∂̄ ξ̄ h∂h ∂̄ h̄ −κ ∂̄
2
ξ̄ hh∂ h̄− 2κh ∂̄ ξ̄ ∂−h̄

∂ ∂̄

∂−
h .

(C.11)

Thus,

δH(κ)
c,q =

(
+2κ ∂̄ ξ̄ h ∂h ∂̄ h̄ − 2κh ∂̄ ξ̄ ∂−h̄

∂ ∂̄

∂−
h
)
+ c.c. (C.12)
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Appendix D

Detailed computation of D h̄

At order κ0, it is trivial to note that

D h̄ = ∂ h̄ and D̄h = ∂̄h . (D.1)

The order κ term of the Hamiltonian will come from

H = D h̄(κ) ∂̄h + ∂ h̄D̄h(κ) , (D.2)

and it is easy to see that

(D h̄)κ = +2κ
1

∂ 2
−

( ∂̄

∂−
h∂

3
−h̄ − h∂

2
−∂̄ h̄

)
, (D.3)

with the complex conjugate giving (D̄h)κ . We now need to determine the contribution to D h̄

at order κ2 from the terms in the Hamiltonian density, (5.16). The product, D h̄(κ) D̄h(κ),
reproduces one-half of the first term of the Hamiltonian density at order κ2 (second line in
(5.16)). The remaining half of the second line and all the other terms at order κ2 have to come
from

D h̄(κ2) ∂̄h + ∂ h̄D̄h(κ2) . (D.4)

The contribution to D h̄ from line 2 of (5.16) is

+2κ
2 1

∂−
{∂ 2
−h̄

1
∂ 3
−
(∂ 3
−h

∂

∂−
h̄−∂

2
−∂hh̄)} (D.5)

+2κ
2 1

∂−
{ ∂

∂ 4
−
(h̄∂

2
−h)∂ 3

−h̄}, (D.6)

with terms that cannot immediately be written in the form X ∂̄h or Y ∂ h̄ (remaining terms) being

−2κ
2 h∂

2
−h̄

∂̄

∂ 4
−
(∂ 2
−∂hh̄)+ c.c. (D.7)
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From line 3, D h̄ gets

−2κ
2

∂
2
−h̄

1
∂ 4
−
(∂ 2
−h∂ h̄−2∂−∂h∂−h̄) , (D.8)

and the remaining term is

−4κ
2 1

∂ 2
−
(∂−h∂−∂̄ h̄)

1
∂ 2
−
(∂−∂h∂−h̄) . (D.9)

From line 4, the contribution to D h̄ is

+2κ
2

∂−h̄
1

∂ 2
−
(∂−h∂ h̄−2∂h∂−h̄) , (D.10)

and the remaining term is

−4κ
2 1

∂−
(∂−h ∂̄ h̄)

1
∂−

(∂h∂−h̄) . (D.11)

From line 5 - I, the contribution to D h̄ is

+6κ
2 1

∂ 2
−
(∂−h∂−h̄)∂ h̄ , (D.12)

and from line 5-II,

−6κ
2

∂−h̄
1

∂ 2
−
(∂−h∂ h̄) . (D.13)

Line 6 again has a contribution to D h̄,

−2κ
2 1

∂ 2
−
(∂−h∂−h̄)∂ h̄

+4κ
2 hh̄∂ h̄

+4κ
2 ∂

∂−
{∂−h̄(

1
∂ 2
−
(∂−h∂−h̄)−hh̄)} (D.14)

and the remaining term,

−4κ
2 1

∂ 2
−
(∂−h∂−h̄)∂h∂̄ h̄ . (D.15)

When taken together, all the remaining terms can again be written in the form X ∂̄h or Y ∂ h̄ and
add factors of X or Y to D h̄ or D̄h.
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