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Abstract

Parameterized Complexity offers an alternative perspective to deal with NP-hard problems.

For certain problems, when some additional structure (parameter) of the problem is given,

there exists efficient algorithms which give exact solutions in polynomial time in input size

by separating the combinatorial explosion to the given parameter. Such problems are called

Fixed Parameter Tractable and the main goal of the theory is to design such efficient algo-

rithms. Parameterized Complexity theory helps us to determine whether there exists such

efficient algorithms for a given problem and helps us to classify the problems in different

classes based on their complexity with respect to the parameter.

Covering problems are principal problems in complexity theory. Generally, a family of

sets over some finite universe along with an integer k is provided as an input, the goal is to

choose k sets from this family, such that the union of these k sets cover the whole universe.

A generalization of covering problems is partial cover problems where instead of covering the

whole universe, only a specified number of elements are covered with minimum number of

sets. Partial Vertex Cover, Partial Dominating Set, and Partial Set Cover are some of the

examples of partial cover problems.

A natural variation of such partial cover problem is instead of covering maximum number

of elements, the problem is to cover minimum number of elements of the universe by the

union of k sets. Minimum k Union is one of such problem, where we are given a family of sets

within a finite universe and an integer k and we are asked to choose k sets from this family

in order to minimise the size of the union of chosen k sets. Another variation of Minimum

k Union problem is Minimum Neighbourhood in Graph problem in which we are asked to

select k vertices from the graph such that the size of the neighbourhood formed by these k

vertices is minimum.

In this thesis, we study the Minimum k Union Problem, Hall Set Problem and Minimum

Neighbourhood Problem in the realms of parameterized complexity. We prove that all of

these problems are W[1]-hard.
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Chapter 1

Introduction

In this thesis we consider three optimization problems: Minimum k Union problem, Hall set

problem, and Minimum Neighbourhood in Graph. In Minimum k-Union problem (MkU), we

are given a set system, and we are asked to select k sets in order to minimize the size of their

union. We study MkU , Hall set problem in C4-free graph, and Minimum Neighbourhood

Problem and we prove that all these problems are W[1]-hard.

1.1 Parameterized Complexity

In classical computational complexity theory, the decision problems are broadly divided

into two classes P and NP . A decision problem is a problem that can be expressed as a

yes-no question of the input values. For example, does there exists a Eulerian trail in the

given graph G? or does there exist an independent set of size at most k in a given graph

G along with some given k ∈ N? If a decision problem can be solved in polynomial time

then it is contained in the class P . If the solutions of a decision problem can be verified in

polynomial time then it belongs to the class NP . The hardest set of these NP problems

belongs to the class NP -complete. If every problem in NP can be reduced to a problem

Π in polynomial time then Π belongs to the class NP -hard. If a problem is in NP and is

NP -hard then it is said to be NP -complete. Approximation algorithms and parameterized

algorithms are two ways of dealing with NP-hard problems. Approximation algorithms

are algorithms that find approximate solutions to NP-hard problems. While designing
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approximation algorithms, our goal is to design a polynomial time algorithm such that the

solution it returns is not necessarily optimal, but probably close to optimal solution. The

existance of efficient and deterministic algorithms for NP-hard or NP-complete problems is

considered unlikely. However, some NP-hard and NP-complete problems can be solved by

algorithms that are exponential in the size of a fixed parameter while polynomial in the size

of the input. Such problems are called fixed parameters tractable (FPT). The parameter is

some structure property of the problem or size of the solution.

Let Σ be a finite set of alphabets. Then Σ? is the set of all strings x defined over Σ.

For example, let Σ = {0, 1}, then Σ? = {0, 1, 00, 01, 10, 11, 000, 001, . . .}. A language L is a

subset of Σ?. For example, a language L = {01, 11, 1110, . . .}. Every decision algorithm for

a decision problem defines a language L

L = {x ∈ Σ? | A(x) = yes}.

If algorithm A determines if a given graph G has a Hamiltonian cycle, then the language L

for A is all Hamiltonian graphs encoded as strings over Σ.

Definition 1.1.1. (Parameterized Problem) [4] A parameterized problem is a language

L ⊆ Σ∗×N, where Σ is a finite set of alphabets. For an instance (x, k) ∈ Σ∗×N, k is called

the parameter.

A vertex cover of a graph G = (V,E) is a set of Q ⊆ V that contains at least one end

point of every edge. Given a graph G, finding minimum size |Q| vertex cover is a hard

problem. Given G and a positive integer k, the decision version of the vertex cover problem

asks, whether G has a vertex cover of size at most k. A pair (G, k) belongs to vertex cover

parameterized language L if and only if G is encoded into a string over Σ and G contains a

vertex cover of size k. We now recall the definition of fixed parameter tractable problem.

Definition 1.1.2. (Fixed-parameter tractable) [4] A parameterized problem L ⊆ Σ∗ × N
is called fixed-parameter tractable (FPT) if there exists an algorithm A such that given an

instance (x, k) ∈ Σ∗ × N, A decides whether (x, k) ∈ L in time bounded by f(k)|(x, k)|c.
f : N → N is a computable function, and c is a constant. The complexity class containing

all fixed-parameter tractable problems is called FPT.
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If one manages to isolate the exponential terms only to the specific parameter and keep

the running time of algorithm polynomial in the input size instance then one may be able to

computationally solve the problem for the small values of the parameter. Such algorithms are

known as fixed parameter algorithms, which manages to keep the running time polynomial

in the input instance by restricting the exponential part to the parameter. Even though the

problem is still hard, we are able to computationally solve the problems for small values of

parameter. The main goal of parameterized complexity theory is to find FPT algorithms for

NP-hard or NP-complete problems.

To determine whether graph G has a vertex cover of size at most k is a NP-complete

problem. It is known that there exists an O(n
√
m + 1.6181kkO(1)) algorithm to answer this

question where n is the number of vertices and m is the number of edges in the graph.

Now we recall one more complexity class called XP, the algorithms in XP class are less

efficient than FPT and have running time bounded by f(k)|(x, k)|g(k).

Definition 1.1.3. (XP) A parameterized problem L ⊆ Σ∗×N is called slice-wise polynomial

(XP) if there exists an algorithm A such that given an input instance (x, k) ∈ Σ∗ × N ,

the algorithm A correctly decides whether (x, k) ∈ L in time bounded by f(k)|(x, k)|g(k).
f, g : N → N are two computable functions. The complexity class containing all slice-wise

polynomial problems is called XP.

Example 1.1.4. A clique of a graph G = (V,E) is a subset of vertices C ⊆ V such that

every two distinct vertices in C are adjacent; that is, the subgraph induced by C, G[C]

is complete. In clique problem we are given a graph G, the task is to find maximum size

clique. Given a graph G and a positive integer k, the decision version of clique problem asks

whether G has a clique of size k. It is known that clique problem is NP-complete. Clique

problem has only an O(nk) algorithm where k is the fixed parameter and n is the size of the

input graph.

Parameterized complexity helps us in understanding the influence of the different choices

of parameters on the complexity of the problem. By classifying the NP-hard problems

into two different classes: problems that admit fixed parameter tractable algorithms, and

problems that do not admit fixed parameter tractable algorithms, one can determine whether

the problems have efficient solutions for given parameters. The parameterized complexity
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theory contains both positive set of techniques for developing FPT algorithms and negative

set of techniques also called as parameterized intractability to show non existence of such

FPT algorithms. One has to use both the instruments in order to classify the problems and

design efficient algorithms. For more details on the theory of parameterized complexity refer

to [3, 4]

1.2 Introduction to Minimum k Union Problem

Covering problems are classical problems in combinatorial optimization, computer science

and complexity theory. They have been widely studied using both optimization algorithms

and parameterized algorithms. Vertex Cover, Dominating Set, and Set Cover are few of the

variations of the covering problems. For example in the set cover problem, a family F of

sets over a universe U is given, the goal is to cover the whole universe U with the minimum

number of sets from F .

A natural generalizations to these covering problems is partial covering problem in which

instead of covering all the elements of the universe, the goal is to cover only a specified

number of elements with the minimum number of sets. In Partial Set Cover (PSC) the goal

is to cover at least t elements of U with minimum number of sets from F .

Another natural problem is to cover at most t elements of U with maximum number of

sets from F . In the Minimum k-Union problem (MkU), we are given a set system with m

sets and are asked to select k sets in order to minimize the size of their union.

Definition 1.2.1. (Minimum k Union) We are given an universe U of n elements, and a

collection of m many sets F ⊆ 2U , as well as an integer k ≤ m. The goal is to return a

collection T ⊆ F with |T | = k in order to minimize |
⋃

S∈T S|.

Let U = {1, 2, 3, 4} and F = {{1}, {2}, {3}, {4}, {1, 2}, {2, 4}, {1, 2, 4}, {2, 3, 4}} and

k = 3. Here n = 4 and m = 8. Then a minimum 3-union is {1, 2}, union of {1}, {2}, and

{1, 2}.

While different variations of partial set cover were studied intensively and their param-

eterized complexity results exist in the literature (for example Partial Set Cover is FPT

[5], partial vertex cover is W[1]-complete [8]), only few results are known about Minimum
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k Union problem. This may in part because Minimum k Union seems to be significantly

harder than Maximum Coverage. In this thesis we initiate parameterized complexity study

of Minimum k Union problem and its variations.

We refer to [5, 8] for further details on partial coverings, and minimum k union problem.

1.3 Organization of the thesis

This thesis is largely divided into following four components: Introduction; Fixed Parameter

Tractable Algorithms and Intractability; Main Results; and Conclusion.

Chapter 2 consists of introductory definitions, notations and a few algorithmic techniques

which will be useful for going through this thesis. Section 2.1 consists of description of Time

Complexity, Section 2.2 consists of some basic graph theoretic definitions and notations and

the final Section 2.3, consists of tree decomposition of a graph and tree-width.

In Chapter 3, we describe various techniques and algorithms related to parameterized

complexity. In Section 3.1, we describe the techniques to prove a parameterized problem is

fixed parameter tractable, such as Kernelization, Bounded Search Tree and Treewidth. In

Section 3.2, we give a brief description about fixed parameter intractability, parameterized

reductions and W-hierarchy.

In chapter 4, we present our solutions. In section 4.1, we show Minimum k Union problem

is W[1]-hard by giving a reduction from independent set. In Section 4.2, we study the Hall

Set Problem in C4 free bipartite graph and prove that it is W[1]-hard. In Section 4.3, we

study minimum neighbourhood in graph problem and prove that it is W[1]-hard.

In Chapter 5, we conclude the thesis with major contributions of this thesis and list some

open problems.
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Chapter 2

Preliminaries

In this chapter we recall some basic definitions and relevant results from graph theory used

in this thesis. For more details see [1, 2].

We use N to denote the set of natural numbers. We define [n] to be the set {1, 2, . . . , n}.
Let U be an universal set. We use 2U to denote family of all the subsets of U . For any two

subsets X and Y of the universe U , we use X−Y to denote the subset of X whose elements

are not in Y .

2.1 Time Complexity

The running time of an algorithm is the number of basic operations performed by the algo-

rithm on the worst case. The basic operations include assignment, comparison between two

variables, arithmetic operations, etc. For example, running time to multiply two n×n matri-

ces using classical technique is T (n) = n2(2n−1) = 2n3−n2. We mainly use Big-O notation

to represent the time complexity of an algorithm. Let g : N → N. We say T (n) = O(g(n))

if there exists positive constants c and n0 such that 0 ≤ T (n) ≤ cg(n) for all n ≥ n0. Thus,

to multiply two n× n matrices using classical technique, we require O(n3) time.
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2.2 Graphs

A graph G is represented by G = (V,E). Elements of the set V represents the collection

of the vertices of G and elements of the set E represents the collection of the edges of G,

satisfying E ⊆ V × V . uv denotes an edge joining vertices u and v in G. The vertices u and

v are said to be adjacent if there is an edge joining u and v otherwise they are said to be

non-adjacent.

The neighbourhood and closed neighbourhood of the vertex v in G are denoted by

NG(v)={u ∈ V (G) : uv ∈ E(G)} and NG[v] = NG(v) ∪ {v} respectively. The degree of

v, denoted by dG(v), is equal to |NG(v)|. If all the vertices of the graph have same degree,

suppose r then the graph is called r-regular graph.

For a graph H and G if V (H) ⊆ V (G) and E(H) ⊆ E(G) then graph H is subgraph of

G. For a S 6= ∅, subset of V (G), the subgraph induced by elements of S is denoted by G[S].

The elements of the set S represents the vertex set of G[S] and the edge set of G[S] is all

the elements of E(G) whose both endpoints lies in S.

An edge of the form uu is called a loop. Parallel edges are two or more edges with the

same endpoints. If a graph has no parallel edges and it has no loops, then it is called simple.

A multigraph is a graph where we allow parallel edges and loops. Unless otherwise specified,

all the graphs considered are simple in this thesis.

An undirected graph is where uv = vu, that is, the orientation of the edges doesn’t matter.

Whereas in a directed graph, each edge has a direction. We denote an edge of directed graph

as (u, v) and it is said to be directed from u to v.

A walk in G is an alternating sequence v0, e1, v1. . . . , ek, vk of vertices and edges such that

ei = vi−1vi ∈ E(G). A walk is called a path if all the vertices vi’s are different. If v0 = vk

and all the vertices are distinct then it is called a cycle. Cn represents a cycle graph with n

vertices. The number of vertices and the number of edges in Cn are same with each vertex

having its degree = 2; Cn is also called the cycle of length n.

If vertices of a graph G can be partitioned in two subsets (A,B), such that all the edges

of G have one endpoint in A and other in B, then the G is said to be a bipartite graph. It is

known that if a graph does not contains any odd cycles (cycles of odd length), only then it
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is bipartite.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), then the union of these two graphs

is represented by G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

If there exists a path between every pair of the vertices in G, then G is connected graph.

A connected graph without cycles is called a tree. A forest is graph without cycles which

need not necessary to be connected.

If a graph G can be embedded into a plane then it is called a planar graph , in other

words, a planar graph can be drawn on a plane in such a way that the edges intersect only

at their endpoints.

If in a set of edges M , every vertex of G is incident to at most one edge in M , then M

is called Matching.

We give below some definitions of the problems which are used in this thesis.

• In a given graph G, a subset C of V(G) is a clique if all the vertices of C are pairwise

adjacent.

• In a given graph G, a subset I of V(G) is an independent set if all the vertices of I are

pairwise non-adjacent.

• In a given graph G, a subset S of V(G) is a vertex cover if all the edges of G have at

least one endpoint in S. (In a graph G if S is a vertex cover of G, then G − S is an

independent set.)

• In a given graph G, a subset D of V(G) is a dominating set if all the vertices not in D

have at least one neighbour in D.

• In a given graph G, a set H is a hall set if G is a bipartite graph with bipartite classes

(A,B), and for a set H ⊆ A, |N(H)| < |H|

2.3 Crown Decomposition

Definition 2.3.1. (Crown Decomposition) A crown decomposition of a graph G is a partition

of the vertex set V (G) into three parts C,H and R, such that

9



1. C is a nonempty, independent set.

2. There are no edges between vertices of C and R. That is, H separates C and R.

3. Let E ′ be the set of edges between vertices of C and H. Then E ′ contains a matching

of size |H|.

We give an example to illustrate a crown decomposition of a graph.

d

e

f

g

i j k

lm n

Figure 2.1: Graph G and its Crown decomposition

Figure 2.3.1 shows a graph G and its tree decomposition. The crown decomposition of G

is into sets C,H and R such that the set C = {l,m, n} is an independent Set, set H = {i, j, k}
seperates C and R = {d, e, f, g}. And, there is a matching M of H into C given by the edges

M = {mi, lj, nk}.

2.4 Tree Decomposition of a Graph

Definition 2.4.1. (Tree Decomposition) Let G = (V,E) be a graph. A tree decomposition of

G is a pair ({Vi|i ∈ I}, T = (I, F )) with {Vi|i ∈ I} a family of subsets of V (G) and T a tree

(note that Vi are the vertices of T ), with the following properties:
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1. ∪i∈IVi = V (G)

2. For every edge e = (u, v) ∈ E(G), there is an i ∈ I with both the vertices u and v ∈ Vi

3. for every v ∈ V (G), the set {i|v ∈ Vi} forms a connected subtree of T .

The treewidth of a tree decomposition {Vi|i ∈ I} is maxi∈I(|Vi| − 1). The treewidth of

G denoted by tw(G) is the minimum treewidth, taken over all possible tree decomposition

of G. We give an example to illustrate tree decomposition of a graph and treewidth.

a b

c

e f

g

h

d i

a,b b,c,e

c,e,h

c,g,h

c,d

e,f,h

d,i

Figure 2.2: Graph G and its tree decomposition

Figure 2.4.1 shows a graph G and its tree decomposition. The tree decomposition of

G is V1 = {a, b}, V2 = {b, c, e}, V3 = {c, d}, V4 = {d, i}, V5 = {c, e, h}, V6 = {c, g, h}, V7 =

{e, f, h}. The endpoints of each edge lie in one of the Vi’s. Consider a vertex, say, c ∈
V (G); c lies in V2 = {b, c, e}, V3 = {c, d}, V5 = {c, e, h}, V6 = {c, g, h}. Now the subgraph

induced by vertices V2, V3, V5, V6 is a connected subtree of the tree T . The width of this tree

decomposition is 2. It is easy to verify that the treewidth of G is 2.
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Chapter 3

Parameterized Complexity

3.1 Techniques to prove FPT

Parameterized algorithms are broadly classified into two categories fixed parameter tractable

and fixed parameter intractable. The problems which have algorithms with a running time

bounded by f(k).nO(1) (k is some parameter of the problem and n is input value) are called

fixed parameter tractable, whereas the rest of the problems who have less efficient algorithms

belongs to fixed parameter intractable class. There are various techniques to design fixed

parameter tractable algorithms. In this section we study three most popular techniques:

Kernelization, Bounded Search Tree and Bounded Treewidth.

3.1.1 Reduction to Kernel

There are various preprocessing algorithms which efficiently solves the easy part of the

problem instance and reduces it to its computationally difficult core structure - the kernel of

the instance. Kernelization algorithms are a type of preprocessing algorithms that reduces

(but not necessarily solve) the given problem instance to an equivalent smaller sized instance

in polynomial time in the input size. The size of the output instance given by kernelization

algorithm is finite and bounded by a computable function of the parameter.
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In this section, we study formal definitions of kernelization and then move on to study the

polynomial-time preprocessing algorithms such as crown decomposition lemma, expansion

lemma, and linear programming.

Definition 3.1.1. (Kernelization, Kernel) An algorithm A is called a kernelization algorithm

for a parameterized problem Q, if given an instance (x, k) of Q the algorithm A returns an

equivalent instance (x′, k′) of Q in polynomial time. Moreover, it is required that |x′|+ k′ ≤
g(k) for some computable function g : N→ N.

We state the following theorem without proof.

Theorem 3.1.2. [4] A parameterized problem Q is FPT if and only if admits a kernelization

algorithm.

We now illustrate a simple example of kernlization algorithm used to reduce vertex cover

problem to its kernel. We first formally define a vertex cover problem in the realms of

parameterized complexity.

Definition 3.1.3. (Parameterized Vertex Cover) In the parameterized version of vertex cover

problem, as input we are given a graph G and a positive integer k, and the goal is to decide

whether there exists a vertex cover of size at most k.

Theorem 3.1.4. [4] Vertex Cover Problem admits a kernel with O(k2) vertices and O(k2)

edges.

Proof. Given an instance (G, k) of the vertex cover problem, we apply following two reduc-

tions repeatedly until none of these can be applied anymore on G:

1. If v is an isolated vertex in G, then delete v and get a new instance (G− v, k).

2. If for some v, d(v) > k then add v to the vertex cover and get a new instance as

(G− v, k − 1).

Suppose (G, k) is the reduced yes-instance and none of 1 and 2 can be applied anymore.

Then G has no isolated vertices, thus every vertex in G is adjacent to at least one vertex of

vertex cover. Moreover, each of the vertices has degree at most k. Hence, if S is a vertex

cover of G then |V (G − S)| ≤ k|S|. If G contains a vertex cover of size at most k then
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|V (G)| ≤ (k + 1)|S| ≤ k(k + 1). Moreover, as every edge is covered by some vertex of vertex

cover E(G) ≤ k|S| ≤ k2.

Let (G, k) be an input instance such that reduction 1 and 2 are not applicable, then if

k < 0 and |V (G)| ≤ (k + 1)k or E(G) ≤ k2 , then we conclude that we are dealing with a

no-instance. Thus, we have successfully managed to reduce the vertex cover problem to a

kernel of O(k2) vertices and O(k2) edges.

Next, we discuss Edge Clique Cover problem and see that this problem does not admit

polynomial kernel.

Definition 3.1.5. (Edge Clique Cover) Given a graph G and a non-negative integer k, the

goal is to decide whether G can be covered by at most k cliques.

Theorem 3.1.6. [4] There exists a kernel with at most 2k vertices for edge clique cover.

Proof. Given an instance (G, k) of the Edge Clique Cover problem, we apply following three

reductions repeatedly until none of these can be applied anymore on G:

1. Delete isolated vertices.

2. Delete isolated edge and decrease k by 1.

3. If N [u] = N [v] and there is an edge between u and v, then delete v.

We claim that if G has an Edge Clique Cover of size k and none of the reduction rules are

applicable, then G has less than 2k vertices. Suppose C1, C2, ..., Ck are k cliques that cover

G. Assume G has more than 2k vertices. We assign a vector bv of length k to each vertex v

of G. The ith bit of bv is set to 1 if and only if v is present in the i th clique, 0 otherwise.

As there are only k positions and each position can take only two values, there can be only

distinct 2k vectors. For the sake of contradiction, suppose there are more than 2k vertices

in G. That means, there are two distinct vertices u and v with the same associated vector.

If two vertices have the same associated vector with them, then there can be following two

cases: (1) both the vectors are zero vector, in this case both the vertices are isolated and

there cannot be isolated vertices in G because of the 1st reduction rule; (2) both the vertices

u and v have the same non-zero vector associated with them, in this case u and v are in the
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same clique. That means u and v are adjacent and have the same closed neighbours. Hence

by reduction rules 3, v has been deleted. Hence, there can be maximum 2k vertices in G.

We now give another very useful technique in kernelization known as Crown’s Lemma.

Lemma 3.1.7. (Crown Lemma). Given a graph G with no isolated vertices and |V | ≥ 3k+ 1.

Then, there is a polynomial-time algorithm that either finds a matching of size k+1; or finds

a crown decomposition of G.

We skip the proof of Crown Lemma and illustrate the use of this technique using Vertex

Cover problem.

Theorem 3.1.8. Vertex Cover admits a kernel with at most 3k vertices.

Proof. GIven (G, k) an instance of vertex cover problem, we deleter all the isolated vertices

from G and name this process as reduction rule 1. Now, If V (G) > 3k, we apply Crown

lemma on G and find either a k + 1 size matching or divide vertex sets V (G) = C ∪H ∪ R

representing a crown decomposition.

If a matching of size k + 1 exists in G, to obtain a vertex cover of size k + 1, from each

edge of the matching we have to choose one vertex. Thus, the vertex cover size will be more

than k, therefore we conclude that it’s a no instance.

In the latter case, if M is matching of H into C. To cover the edges of M , from H ∪ C

we must choose at least |M | = |H| vertices in each vertex cover . Set H covers all the edges

of G that are incident to H ∪ C. Hence, the minimum vertex cover of G must contain H

and thus (G, k) is reduced into (G−H, k − |H|).

Hence, unless H = ∅ Crown Lemma can be always applied and the graph can be reduced

as long as V (G) > 3k. Therefore, G admits a kernel of size at most 3k vertices.

3.1.2 Bounded Search Trees

The idea here is to identify some search spaces whose sizes are bounded by a function of the

parameter. Thus the algorithm effectively branches into number of sub-problems that are

solved one by one. This can be viewed as a search tree where branching algorithm branches

16



on the leaves and discovers the solution. If depth of such a recursion tree is bounded by

k and polynomial time is spent on each node, then the resulting branching algorithm runs

in FPT time. Let I be an instance of a minimization problem. In a branching step we

generate simpler instances I1, ..., Il (l ≥ 2) from I of the same problem. We recursively

apply branching step on I1, ..., Il (l ≥ 2) until they become simple or trivial.

We illustrate the bounded search tree technique using vertex cover problem. We base

our algorithm on following two observations in the vertex cover problem:

1. Any vertex cover in a graph G must contain either a vertex v or all of the vertices of

N(v). Otherwise, all the edges won’t be covered.

2. If the maximum degree of the vertices in the graph is 2 then one can solve the Vertex

Cover problem in polynomial time.

Now, we generate a recursive algorithm as following: First, find a maximum degree vertex

v in the graph. If d(v) ≤ 2, the instance can be solved in polynomial time and if d(v) > 2,

the algorithm recursively branches on two cases: either v or N(v) are in vertex cover. When

v is in vertex cover, we can decrease our parameter by 1, and when N(v) ≥ 3 is in vertex

cover, we decrease our parameter by at least 3.

Hence, we obtain following two subtrees: T (k − 1) and T (k − 3) for a given tree T (k).

Our recursive relation is represented as follows:

T (i) = T (i− 1) + T (i− 3) if i ≥ 3 or else

T (i) = 1 if i < 3

The above relation not only bounds the size of the search tree but also the time spend

at each node of the tree. Using standard mathematical techniques, it can be proved that

T (k) < 1.466k. Hence, the running time of the algorithm which solve’s parameterized vertex

cover is O(1.466knO(1))
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3.1.3 Bounded Treewidth

A tree decomposition of a graph G is a mapping of G into a tree that can be used to define

the treewidth of G. See Section 2.4 for details. If a graph G has a smaller treewidth, then

many NP-completer problems which are intractable become efficiently solvable for G.

For a parameterized problem, if a treewidth is bounded by some function of the given

parameter, then fast dynamic programming or MSO formula along with the Courcelle’s

theorm can be used to obtain fixed parameter tractable algorithm. We illustrate the dynamic

programming technique through the example of weighted independent set problem:

Definition 3.1.9. (Weighted Independent Set) Given a graph G with real valued vertex

weights w, w : V (G) → R, the goal is to find an independent set in G with maximum

possible total weight.

Theorem 3.1.10. Given a weighted graph G = (V,E), |V | = n along with it’s tree decompo-

sition of width at most k. The time required to find a maximum Weighted Independent Set

in G is 2kkO(1)n.

Proof. In this thesis, we just provide an outline of the proof.

It is well known that, a nice tree decomposition of a graph of at most same width can

be constructed in polynomial time, if a tree decomposition of the graph is given. Hence, we

assume the given tree decomposition is nice.

Let T = (T, {Xt}t∈V (T )) represents a nice tree decomposition of G with width at most k,

with root r.

Let t be a node in T , Vt be the bag asssociated with t and Lt ⊃ Vt contains all the vertices

of the union of all subtrees of T which are rooted at t.

Due to the border condition, the induced subgraph by Lt is only connected by the vertices

of Vt to the rest of the graph. Hence, we can generate a dynamic programming algorithm to

solve this problem in smaller subgraphs and by giving a bottom up approach, find out the

solution in the given T .

We define the terms of the algorithm as c[t, S] for all nodes t and set S, such that S ⊆ Vt

the following way:
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c[t, S]=Max weight set {Se : S ⊆ Se ⊆ Lt, S
e ∩ Vt = S and Se is independent. }

Note that c[t, S] = −∞ if no such Se exists. We are looking for c[r, ∅] as Lr = V (G) and

Vr = ∅,in the given graph G the term represents maximum weighted independent set.

We now describe the recursive formulas for computing the values of nodes from previously

computed node:

• Leaf node: As all leaf nodes are empty, hence the independent set is empty, thus in a

leaf node t, c[t, ∅] = 0.

• Introduce node t with child t′ with some introduced vertex v /∈ Vt′ : Thus, given any

independent subset S of Vt, we get two cases: if v /∈ S then c[t, S] = c[t′, S] and if

v ∈ S then c[t, S] = c[t′, S\v] + w(v).

• Forget node t with child t’ with some forgotten vertex w ∈ Vt′ : Thus, given any

independent subset S of Vt, we choose maximum of the following two cases: c[t, S] =

max{c[t′, S], c[t′, S ∪ w]}

• Join node t with children t1, t2 with Vt = Vt1 = Vt2 : Let S be any independent subset

of Vt; Then c[t, S] = c[t1, S] + c[t2, S]− w(S).

As treewidth of the graph is at most k, for each node t, |Vt| ≤ k + 1. We compute

2|Vt| ≤ 2k+1 values of c[t, S] at node t. And, each c[t, S] term can be computed in kO(1)n.

Hence, the at each node t, the running time to compute all values of c[t, S] is 2kkO(1)n, as

the number of nodes of is of the order O(kn). Thus, the total running time is 2kkO(1)n.

On planar graphs, Shifting Technique can be used to give a tree decomposition with

treewidth of linear bound.

Corollary 3.1.11. For a planar graph G, consider a vertex v in G. Let Li be a set of vertices

of G at distance exactly i from v. Then for any i, j ≥ 1, a tree decomposition of subgraph

Gi,i+j−1 = G[Li∪Li+1∪, ..., Li+j−1] of treewidth at most 3j + 1 can be obtained in polynomial

time.

We now give the algorithm for the Shifting Technique:
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1. Given a input planar graph G, select a vertex u in the graph G. Starting at u, run

Breadth First Search (BFS) in G.

2. For any choice of l,m ≥ 1, consider the levels l, l+1, ..., l+m−1 of BFS, the treewidth

of the subgraph Gl,l+m−1 induced by these vertices does not exceed 3m + 1 because of

the above mentioned corollary.

3. For solving some problem in G, let us assume a set S is a solution of size k that has

some property in G. We further assume that S exists.

4. As our set S is of size k, taking m = k+1, we can make sure that out of every k+1 layers

of BFS, there exist one layer that do not contain any vertex of S. We consider these

layers which do not contain S as a(k + 1) + q for some particular q ∈ {0, 1, ..., 3k + 2}
and for a = 0, 1, 2, . . ..

5. By removing these above layers from G we get a new disjoint graph Gq which

still contains all the elements of set S. Such Gq is a disjoint union of graphs

G(k+1)a+q+1,(k+1)(a+1)+q−1 for a = 0, 1, 2, . . . plus possibly Gq−1
v if q > 0.

6. Even by not selecting any vertices of S from the levels of the form a(k + 1) + q, a tree

decomposition of Gq of width bounded by 3k + 1 can be still constructed.

7. To find whether there exists a solution S in Gq, on its obtained tree decomposition we

run a dynamic-programming algorithm. If a solution S exists in G, then the solution

will survive in at least one of the graphs Gq for some q ∈ {0, 1, ..., k} and iterating

through all possible q, a solution can be uncovered.

We now Illustrate the Shifting Technique using the Subgraph Isomorphism Problem.

Definition 3.1.12. (Subgraph Isomorphism) Given graphs G and H, the goal is to find

whether there exist a subgraph of G which is isomorphic to H.

Theorem 3.1.13. [4] Given planar graphs G and H, an instance (G,H) of Subgraph Isomor-

phism can be solved in f(|V (H)|).|V (G)|O(1) time.

Proof. Let k = |V (H)|. Using Shifting Technique, one can partition V (G) into k + 1

subsets V0 ∪ V1 ∪ ...∪ Vk in such a way that the graph G− Vj for all j ∈ {0, ..., k} has a tree

decomposition bounded by treewidth 3k + 1.
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By using a lemma which shows that in f(|V (H)|, t).|V (G)|O(1) time, an instance of sub-

graph isomorphism can be found out (t is the treewidth). As t = 3k + 1 for each G−Vj, the

running time will be f(k).nO(1) on every graph G− Vj.

As the vertices of G are divided into k + 1 sets, there exists at least one set among

V0 ∪ V1 ∪ ... ∪ Vk which is disjoint from set H of size k. Suppose, Vj is that disjoint set.

Hence, the subgraph H is contained in G − Vj. Thus, by trying out each of the G − Vi for

all i ∈ {0, ..., k}, and then solving the subgraph isomorphism problem in them, one solves

subgraph isomorphism problem in G.

3.2 Fixed Parameter Intractability

To rule out certain problems are not FPT, there is a notion of lower bound. This lower

bound theory is is similar to the NP-completeness theory. But there is one difference that in

parameterized complexity, there are different hardness classes, unlike in classical complex-

ity where all the NP-hard problems are reducible to each other. The hardness classes in

parameterized complexity are represented by W [1],W [2], . . ..

The primary assumption here is FPT 6= W [1] which is a stronger assumption than

P 6= NP .

For our purposes, we mainly try to rule out the existence of an FPT algorithm for MkU

problem. It is known that CLIQUE parameterized by solution size is W [1]-complete. This

means that W [1] is the set of all problems that can be obtained through a parameterized

reduction from CLIQUE parameterized by solution size.

3.2.1 Problem Reductions

Definition 3.2.1. (Parameterized reduction) Suppose A,B ⊆ Σ ∗ ×N are two parameterized

problems. An algorithm is called a parameterized reduction from A to B, if given an instance

(x, k) of A, it outputs an instance (x′, k′0) of B such that

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,
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2. k′ ≤ g(k) for some computable function g, and

3. the running time of this algorithm is f(x).|x|O(1) for some computable function f .

Note that not all polynomial time reductions are parameterized reductions due to above

mentioned second property and the functions f and g are non-decreasing.

The following theorems holds for parameterized reduction which we state without the

proof.

Theorem 3.2.2. [4] Let parameterized problem B be FPT. If there is a parameterized reduction

from A to B, then A is also FPT.

Theorem 3.2.3. [4] If there are parameterized reductions from A to B and a parameterized

reduction from B to C, then there is a parameterized reduction from A to C.

We now proceed with the illustration of reduction technique by giving an example of

reduction from Clique to Hall Set Problem. We first define a Hall Set Problem and then give

a reduction.

Definition 3.2.4. (Hall Set Problem) In a bipartite graph G with bipartite classes (A,B) and

given a positive integer k, does there exists a Hall Set of size at most k?

Theorem 3.2.5. [4] There is a parameterized reduction from Clique to Hall Set on general

bipartite graph.

Proof. Given a graph G, we construct a bipartite graph H with bipartition (A,B) as follows.

The vertices of the class A correspond to the edges e = (uv) of G, the vertices of the class

B correspond to the vertices v of G. The vertex e = (u, v) of A is adjacent to the two

vertices u, v ∈ B. Moreover, an additional set of
(
k
2

)
− k − 1 vertices are introduced into B.

These additional vertices are made adjacent to every vertex of A. Thus |A| = |E(G)| and

|B| = |V |+
(
k
2

)
− k − 1.

Suppose there exists a Clique of size at most k in the graph G. The corresponding
(
k
2

)
edges of G that forms Clique are the chosen vertices of the Set S in A. The vertices of set

S has k neighbours (the vertices of clique) in Set B, along with the constructed
(
k
2

)
− k − 1

neighbours. Hence, the size N(S) is
(
k
2

)
− 1. As |S| ≥ |N(S)|, the set S formed by the edges

of Clique is a Hall Set in the bipartite graph H.
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Conversely, let S be a Hall set in H. We first determine the possible choices for the

size of S. Every vertex of S has at least
(
k
2

)
− k + 1 =

(
k−1
2

)
neighbours in B (from the

construction). Hence, the size of S must be greater than
(
k−1
2

)
. If |S| =

(
k−1
2

)
, then it is

easy to observe that |N(S)| ≥ (k− 1) +
(
k
2

)
− k− 1 =

(
k
2

)
− 2. For S to be a Hall set its size

must be
(
k
2

)
− 1 or

(
k
2

)
. If |S| is

(
k
2

)
− 1 or

(
k
2

)
, then |N(S)| is

(
k
2

)
− 1. Thus the minimum

possible size of a Hall set is
(
k
2

)
. Let S be a Hall set of size

(
k
2

)
. As |N(S)| ≤

(
k
2

)
− 1, the

nodes in S are the edges of a clique of size k in G.

3.2.2 Complexity Classes

The hard parameterized problems have different levels of complexities unlike the NP-

complete problems in which all problems are equivalent and can be reduced to each other

in polynomial time. For example, Clique can be reduced to Dominating Set but there is no

parameterized reduction in other direction as per our current knowledge. Thus, there is a

hierarchy in hard parameterized problem, where Dominating Set is harder than the Clique.

To capture the exact complexity of hard parameterized problems, Downey and Fellows in-

troduced the concept of the W-hierarchy.

We introduce the terms used for describing W-hierarchy in the following section.

Definition 3.2.6. (Boolean Circuit) A boolean circuit is a directed acyclic graph where the

nodes are labeled in the following way:

• every node of indegree 0 is an input node,

• every node of indegree 1 is a negation node,

• every node of indegree ≥ is either an and-node or an or-node.

Additionally, exactly one of the nodes with outdegree 0 is labeled as the output node (in

addition to being, for example, an or and node).

The input nodes are assigned value 0-1, the value of other nodes can be determined

subsequently. We say the assignment satisfies the circuit if the value of the output node is 1

for the given input values. The weight of the assignment is the number of input gates that

receives value 1.
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Verifying the given assignment satisfies the circuit can be done in polynomial time, but

it is an NP-complete problem to find whether a circuit has a satisfying assignment or not.

Definition 3.2.7. (Weighted Circuit Satisfiability (WCS) Problem) Given a Boolean circuit

C and a positive integer k, the goal is to decide whether C has a satisfying assignment of

weight exactly k.

The depth of the circuit is the maximum length of the path from an input node to the

output node and the weft of a circuit C is the maximum number of large gates on an input-

output path in C. The class of the circuits with weft at most t and depth at most d are

denoted by Ct,d

If there exists a parameterized reduction from WCS [C1,d] to some problem, then the

problem is W[1]-hard. Hence, by giving a parameterized reduction from WCS [C1,d] to a

problem, whose complexity is unknown, we can find out a lower bound of complexity of the

problem.

Definition 3.2.8. (W-hierarchy) For t ≥1, a parameterized problem P belongs to the class

W [t] if there is a parameterized reduction from P to WCS[Ct,d] for some d ≥1.

If a problem is W[1] hard and there exists a other way reduction from the problem to

WCS [C1,d] then the problem is W[1]-Complete.

Similar to P ⊆ NP , in parameterized complexity FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [P ].

WCS [C1,d], Clique, Independent Set, Partial Vertex Cover are W[1]-complete problems

whereas WCS [C2,d], Dominating Set, Set Cover are W[2]-complete problems.

We illustrate the W-hierarchy reduction technique by giving an example of a graph and

generating an equivalent circuit diagram to find Independent Set and Dominating Set in the

given graph.
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Theorem 3.2.9. [4] Independent Set is in W [1].

We give an example to illustrate a parameterized reduction from Independent set to

WCS[C1,3] problem. Given an instance (G, k) of Independent Set problem we construct an

Instance of WCS[C1,3] problem. We construct a depth-3, weft-1 boolean circuit from the

graph G shown above. Each or-node corresponds to an edge of G and has in-degree 2. Note

that graph G has an independent set of size at most 2, for example {A,F} is an independent

set in G. We assign value 1 to the nodes correspond to vertices A and F , and 0 to rest of

the vertices in the Boolean circuit. This is a input instance of weight 2 for the circuit; and

its a satisfiable instance. Thus, given an independent set of size 2 in G, we get a satisfiable

instance of weight 2 in the circuit. Similarly, it is easy to observe that if the boolean circuit

has a satisfiable instance of size 2, then the graph has an independent set of size 2.

A B C D E F

¬ ¬ ¬ ¬ ¬ ¬

V V V V V V V V

∧

Theorem 3.2.10. [4] Dominating Set is in W [1].

Given an instance of Dominating set we will see how to construct an instance of WSC

problem, using an example. Consider the graph G shown above as an instance of Dominating
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Set problem. We will construct construct a depth-2, weft-2 boolean circuit. Correspond to

each node in G there is a or-node in the circuit and it is adjacent to all its closed neighbours.

Closed neighbours of A in G are A,B,C. The or-node corresponds to node A is just below

the node A in the circuit and it is adjacent to A,B,C. The graph G has a dominating set

{B,D} of size two. We assign value 1 to the nodes B,D in the circuit and rest of the nodes

get value 0. Conversely, assigning values 1 to A and F and 0 to rest of the vertices, gives the

output 1 in the graph, therefore {A,F} form a dominating set in the given graph. It is easy

to verify that G has a dominating set of size 2 if and only if the circuit C has a satisfiable

instance of weight 2.

A B C D E F

V V V V V V

∧
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Chapter 4

Main Results

Approximation algorithms and parameterized algorithms are two ways of dealing with NP-

hard problems. Approximation algorithms are algorithms that find approximate solutions

to NP-hard problems. While designing approximation algorithms, our goal is to design a

polynomial time algorithm such that the solution it returns is not necessarily optimal, but

probably close to optimal solution. The existance of efficient and deterministic algorithms

for NP-hard or NP-complete problems is considered unlikely. However, some NP-hard and

NP-complete problems can be solved by algorithms that are exponential in the size of a

fixed parameter while polynomial in the size of the input. Such problems are called fixed

parameters tractable (FPT). The primary goal of parameterized complexity is to understand

the qualitative difference between fixed-parameter tractable problems, and problems that do

not admit such efficient algorithms.

4.1 Minimum k Union Problem

We give formal definition of Minimum k-Union problem:

Definition 4.1.1. (Minimum K-Union problem (MkU)) In the MkU problem, we are given a

universe U = {1, 2, ..., n} of n elements and a collection of sets S ⊆ 2U , as well as an integer

k ≤ |S|. The goal is to return a collection T ⊆ S with |T | = k in order to minimize
⋃

S∈T S.

Theorem 4.1.2. [7] The MkU problem is NP-hard.
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The MkU problem is equivalent to SSBVE (Small Set Bipartite Vertex Expansion Prob-

lem). In SSBVE, we are asked to select k vertices from one partition of the bipartite graph

such that their vertex expansion on other part is minimum. As this problem has received

less attention, the only known approximation algorithm is of approximation ratio O(
√
n)

where n is the input size due to Chlamtac et. al. APPROX 16. The other problems closest

to MkU problems are Set Cover and Maximum Coverage. These two problems have been

studied in the realm of parameterized complexity.

We now recall the notion of parameterized reduction. If we can find a parameterized

reduction from CLIQUE or some other problem X , then we can say that X cannot have an

FPT algorithm unless FPT = W [1].

We now prove that MkU is at least as hard as CLIQUE and INDEPENDENT SET on

regular graphs.

Definition 4.1.3. (CLIQUE problem on regular graph) Given a regular graph G and a positive

integer k, does the graph G contain a clique of size at least k?

Theorem 4.1.4. There is a parameterized reduction from CLIQUE on regular graphs to MkU

problem.

Proof: Let (G, k) be an instance of CLIQUE where G be a r-regular graph, r > k. We

construct an instance of MkU problem, the following way:

Let G = (V,E) and the set of vertices V = {1, 2, ..., n}. Set U = V = {1, 2, ..., n}
and Si = N [i], the closed neighbourhood of the vertex i and S = {S1, S2, ..., Sn}. Clearly,

|Si| = r + 1.

To prove the correction of the reduction, we prove that G has a k-clique if and only if

there is a collection T ⊆ S with |T | = k such that |
⋃

S∈T S| ≤ rk + 2k − k2.

If G has a clique C = {v1, v2, ..., vk} of size k, then considering the sets correspond to

the vertices in C, we get |
⋃k

i=1 Svi| ≤ rk + 2k − k2. Note that C ⊆ Svi for all i and there

are atmost (r + 1− k) elements in each Svi \ C. Therefore,
⋃k

i=1 |(Svi \ C)| ≤ k(r + 1− k).

Hence, |
⋃k

i=1 Svi | ≤
⋃k

i=1 |(Svi \ C)|+ |C| ≤ k(r + 1− k) + k = rk + 2k − k2.

Conversely, suppose we have a collection T ⊆ S with |T | = k and |
⋃

S∈T S| = rk+2k−k2

then we get a clique of size k in G. Consider a set Sv = {v1, v2, ..., vr} in T . The graph
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corresponds to Sv, denoted by G[Sv], is shown below:

The graph corresponds to T , denoted by G[T ], is union of the graphs G[Sv], Sv ∈ T .

Clearly, G[T ] is a subgraph of the graph G. The number of vertices of G[T ] is rk + 2k − k2

and there are at least k vertices of degree r each. We claim that k of these vertices of degree

r form a k-clique.

Definition 4.1.5. (Independent Set on Regular Graph) Given a regular graph G and a positive

integer k, does the graph G contain a Independent Set of size at least k?

Theorem 4.1.6. There is a parameterized reduction from Independent Set on regular graphs

to MkU problem.

Proof: Let (G, k) be an instance of Independent Set, where G is an r-regular graph.

We construct the instance of MkU problem the following way: Let G = (V,E) where V =

{1, 2, .., n} and E = {e1, e2, ..., em}. We set U = {e1, e2, ..., em} and Si = {el|el is incident on

the vertex i }, the set of edges incident on the vertex i; and S = {S1, S2, . . . , Sn}. Clearly,

|Si| = r for all i as G is a r-regular graph. We claim that G has an independent set of size

k if and only if (U,S, k, rk) is a yes-instance of Minimum k Union.

If G has an independent set L = {v1, v2, ..., vk} of size k, then every edge of G appears in

at most one of the sets Sv1 , Sv2 , ..., Svk . That is, the sets Sv1 , Sv2 , ..., Svk are pairwise disjoint.

Hence |
⋃k

i=1 Svi | = rk.

Conversely, suppose there is a collection of k sets Su1 , Su2 , ..., Suk
∈ S such that

|
⋃k

i=1 Sui
| = rk. As |Sui

| = r for all i and |
⋃k

i=1 Sui
| = rk, this implies Sui

are pairwise

disjoint. Thus, the set {u1, u2, ..., uk} form an independent set of size k in G.

The following theorem follows from Theorem 4.1.6.

Theorem 4.1.7. The MkU problem is W [1]-hard.
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4.2 Hall Set on C4-free bipartite graph

Let G be an undirected graph. Then G is said to be C4 free if it does not contain cycles of

length 4. Here we study the Hall Set on C4 free bipartite graphs and prove that the problem

is also W[1]-hard similar to Hall Set on general bipartite graph. We recall the definitions of

Hall Set problem and Clique problem.

Definition 4.2.1. (Hall Set) In a bipartite graph G with bipartite classes (A,B), set S is a

Hall set in G if S ⊆ A and |N(S)| < |S|.

Definition 4.2.2. (Hall Set on C4-free bipartite graphs) Given a C4-free bipartite graph G

with bipartite classes (A,B) and a positive integer k, does there exists a set S ⊆ A of size

at most k such that |N(S)| < |S|?

We now prove that Hall Set problem on C4-free bipartite graphs is at least as hard as

Clique problem.

Theorem 4.2.3. There is a parameterized reduction from Clique to Hall Set on C4-free bipar-

tite graph.

Proof. Let (G, k) be an instance of CLIQUE where G = (V,E). We construct an instance

of Hall Set problem on C4-free bipartite graph, the following way:

Given a graph G = (V,E), we construct a bipartite graph H with bipartition A,B, where

A = A1 ∪ A2 and B = B1 ∪ B2. The vertices in A1 are the edges of G; so A1 has |E(G)|
vertices. The vertices in B1 are the vertices of G, so B1 contains |V (G)| vertices. Vertex

uv ∈ A1 is adjacent to vertices u and v in B1. Additionally, corresponds to each vertex

uv ∈ A1, we add a vertex u′v′ in B2. That is,

B2 = {u′v′ : uv ∈ A1} and |B2| = |A1| = |E(G)|.

We make uv ∈ A1 adjacent to u′v′ ∈ B2. Finally we add k + 1 isolated vertices in A2. Thus,

|A| = |E(G)|+ k + 1 and |B| = |V (G)|+ |E(G)|. Note that H is C4 free.

We claim that there exists a Hall set of size
(
k
2

)
+ k + 1 in H if and only if there exists a

k-clique in G.
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Suppose H has a Hall Set S of size
(
k
2

)
+ k + 1. The size of neighbourhood of the Hall

Set is less than the size of the Hall Set. Hence,
(
k
2

)
+ k + 1 > |N(S)|.

We choose k+1 isolated vertices of A2 (as they do not have any neighbours) and remaining(
k
2

)
vertices from A1 in the Hall Set S. That is,

S = A2 ∪ S1 where S1 ⊆ A1 and |S1| =
(
k

2

)
.

Note that S1 has exactly
(
k
2

)
neighbours in B2 and at least k neighbours in B1; so S1 has at

least
(
k
2

)
+ k neighbours in B. Hence |N(S)| ≥

(
k
2

)
+ k. As

(
k
2

)
+ k + 1 > |N(S)| ≥

(
k
2

)
+ k,

only possible value of |N(S)| is
(
k
2

)
+ k. Thus, S1 has exactly k neighbours {v1, v2, . . . , vk}

in B1. These k vertices {v1, v2, . . . , vk} are adjacent to
(
k
2

)
vertices in A1. Therefore, these k

vertices {v1, v2, . . . , vk} forms a k-clique in graph G.

Conversely, suppose there is a k-Clique in G. We construct a Hall set S of size
(
k
2

)
+k+1

as follows. We include in S,
(
k
2

)
vertices of A1 correspond to

(
k
2

)
edges of the k-clique. We

also include in S another r vertices from A1 and remaining k + 1 − r vertices from A2 for

some positive integer r. It is easy to verify that S has
(
k
2

)
+ k + r neighbours. For S to be

Hall Set,
(
k
2

)
+ k + 1 >

(
k
2

)
+ k + r. This implies r = 0. Thus

(
k
2

)
vertices of A1 correspond

to
(
k
2

)
edges of the k-clique and k + 1 vertices of A2 for a Hall Set of size

(
k
2

)
+ k + 1 in H.

The following theorem follows from Theorem 4.2.3.

Theorem 4.2.4. The Hall Set problem in C4 free graph is W [1]-hard.

4.3 Minimum Neighbourhood Problem on General

Graph

Definition 4.3.1. (Minimum Neighbourhood Problem) We are given a graph G = (V,E) with

n vertices and two positive integers k ≤ n and l. The goal is to choose a set S ⊆ V of size

k from the graph G such that |NG[S]| ≤ l.

We now prove that Minimum Neighbourhood Problem is at least as hard as Minimum-

k-Union Problem.
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Definition 4.3.2. (Minimum-k-Union Problem) Given a family of sets S over a Universe U

and positive integers k and l, the goal is to find out whether there exists k sets in S such

that their union is at most l

Theorem 4.3.3. There is a parameterized reduction from Minimum-k-Union to Minimum

Neighbourhood Problem in general graph.

Proof. Let (U,S, k, l) be an instance of Minimum-k-Union problem. We construct an

instance (G, k, k + l) of Minimum Neighbourhood problem, the following way: Let U =

{u1, u2, . . . , un} and S = {S1, S2, . . . , Sm}. In graph G, we

• add a vertex si corresponds to each set Si of S; set V1 = {s1, s2, . . . , sm}.

• add a vertex uj corresponds to each element uj of U ; set V2 = {u1, u2, . . . , un}

• if an element uj ∈ Si, then make the vertex si adjacent to uj.

• additionally, add l+ k vertices to the graph G and make them adjacent to each uj; set

V3 = {x1, x2, . . . , xk+l}.

The vertex set of G, V = V1 ∪ V2 ∪ V3. We claim that there exists a Minimum-k-Union of

size l in (U, F, k, l) if and only if there exists a Minimum-k-Neighbourhood of size at most

l + k in G.

Suppose there is a collection of k sets Su1 , Su2 , ..., Suk
∈ S such that |

⋃k
i=1 Sui

| = l. We

choose the vertices su1 , su2 , ..., suk
correspond to Su1 , Su2 , ..., Suk

. As the size of the union

of these k sets is l, the closed neighbourhood of su1 , su2 , ..., suk
will contain su1 , su2 , ..., suk

and l vertices u, where u ∈
⋃k

i=1 Sui
. Hence, the size of the closed neighbourhood of

{su1 , su2 , ..., suk
} in G is k + l.

Conversely, suppose there is a collection L ⊆ V (G) of k many vertices in G that have a

closed neighbourhood of size at most k + l. L cannot contain any vertex from V2 as each

vertex in V2 has k + l + 1 closed neighbours. L cannot contain any vertex from V3 as each

vertex of V3 has |U | + 1 closed neighbours. Thus L ⊆ V1 and let L = {su1 , . . . , suk
}. We

consider the k sets Su1 , Su2 , ..., Suk
correspond to these k vertices. As L has k + l closed

neighbours, |
⋃k

i=1 Sui
| = l.
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We proved that there is a parameterized reduction from CLIQUE on regular graphs to

MkU problem and there is a parameterized reduction from MkU to Minimum Neighbourhood

Problem in general graph. Thus, there is a parameterized reduction from CLIQUE on

regular graphs to Minimum Neighbourhood Problem in general graph. Therefore, we have

the following theorem:

Theorem 4.3.4. The Minimum Neighbourhood Problem in general graph is W[1]-hard.
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Chapter 5

Conclusions

This dissertation looks into three different variants of the Minimum k Union Problem in

the realm of Parameterized Complexity. In Section 4.1 we showed that the Minimum k

Union Problem in general graph is W[1]-hard by giving parameterized reductions from Clique

and Independent Set, and hence we do not expect an FPT algorithm for the same (unless

FPT=W[1]). We also showed that the Hall Set Problem in C4-free graph is W[1]-hard by

giving a reduction from the Clique and hence no FPT algorithm is possible in this case too.

Moreover, in Minimum Neighbourhood Problem, we give a reduction from MkU Problem

and show that it is too W[1]-hard.
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