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Abstract

Bimodality in the distribution of tropical tree cover at intermediate environ-
mental conditions is cited as evidence for the presence of bistability in the
forest-savanna system. However, bimodality can also emerge because
of human activities that cause changes in tree cover, such as the defor-
estation resulting from expansion in settlements, agricultural and pasture
lands. Also, the impact of such activities on tree cover can persist beyond
the site of disturbance. Here, I study the relation between human influence
and tree-cover bimodality in sub-Saharan Africa, in order to draw conclu-
sions regarding the vegetation dynamics prevalent in the region. I divide
remote-sensed vegetation data into regions with low and high degree of
human influence. In addition, I devise an environmental predictor of tree
cover using relevant climatic and edaphic variables. It is hypothesized that
a higher extent of bimodality will be observed in regions with high human
influence, because of bimodality arising from human activities, as opposed
to bistability. The results show that bimodality is found in regions with both
high and low human impacts. However, the extent of bimodality is lower
in the regions with low human influence. This indicates that while bista-
bility is restricted to smaller spatial extents than previously assumed, it is
common across sub-Saharan Africa, regardless of the presence of human
influence.
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1 Introduction

Environmental conditions, such as climate, nutrient levels, grazing pres-
sure, etc., can change over time. Many ecosystems show a smooth re-
sponse to such trends in environmental conditions (Fig. 1a). However, in
certain cases, when environmental conditions exceed a particular thresh-
old, an ecosystemmay undergo an abrupt shift to a contrasting state (Schef-
fer et al., 2001) (Fig. 1b). Such shifts in the state of an ecosystem are
termed ’catastrophic regime shifts’ or ’critical transitions’. Critical transi-
tions are difficult to predict, as the system registers little to no change in
response to altered environmental variables prior to the threshold, or the
’tipping point’. Additionally, such ecosystems demonstrate hysteresis, i.e.,
the tipping point for a transition from one state (P1) to another is not the
same as the tipping point for a transition in the opposite direction (P2).
Ecosystems that demonstrate such dynamics are said to be bistable, i.e.,
they can occur as two alternative stable states.

Figure 1: Possible responses of an ecosystem to changes in environmental
conditions. In (a), the ecosystem system responds linearly, while in (b),
it undergoes a sudden shift in state when environmental conditions are
beyond certain thresholds

The presence of bistability has been demonstrated in a number of ecosys-
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tems. For instance, based on changes in nutrient loads, shallow lakes can
shift between two alternative stable states - an oligotrophic state charac-
terised by dominance of aquatic vegetation, and a eutrophic state charac-
terised by algal dominance (Scheffer et al., 1993). In addition, it has been
reported that much of the area that now constitutes the Sahara desert had
significantly higher vegetation cover, which underwent a critical transition
to deserted state approximately 5000 years ago, precipitated by changes
in climate-vegetation feedbacks (Hoelzmann et al., 1998; Jolly et al., 1998;
Brovkin et al., 1998). Similar dynamics have been reported to be found
in coral reefs (Knowlton, 1992), oceans (Hare and Mantua, 2000), tropical
forests and savanna (Staver et al., 2011a).

Since transitions between alternative stable states can lead to signifi-
cant losses in ecosystem services (Scheffer et al., 2001), it becomes im-
portant to recognise ecosystems where bistability is present. It is possible
to ascertain the existence of bistability by observing shifts between the
alternative stable states as environmental conditions change over time.
This approach has helped establish bistability in multiple cases, such as
in shallow lakes (Scheffer et al., 1993) and marine ecosystems (Hare and
Mantua, 2000). However, this approach requires long-term temporal data,
which can often present a challenge, especially for large-scale studies. In
such cases, temporal data can be substituted with spatial data to study
changes in the ecosystem state with environmental conditions. In bistable
systems, both the alternative states co-occur in the range of environmental
conditions spanning the tipping points. Thus, over this range of environ-
mental conditions, the state variable (e.g., turbidity of lake, or vegetation
cover) has a bimodal distribution (Fig. 2). Since it is difficult to directly
demonstrate the presence of bistability in most ecosystems, bimodality in
the spatial distribution of a state variable is often presented as evidence of
bistable dynamics.

Recent analyses of remote-sensed tree cover data at continental scales
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Figure 2: Co-occurence of alternate states over environmental conditions
ranging from P1 to P2 gives rise to bimodality in the state variable over that
range

have yielded a bimodal distribution of tree cover over intermediate ranges
of rainfall, which has been claimed to suggest the presence of alternative
stable states in tropical vegetation, i.e., forest and savanna (Hirota et al.,
2011; Staver et al., 2011b). This bistability has been linked to fire-tree cover
feedbacks in the tropics (Staver et al., 2011a,b). Fire can spread across
a connected grassy layer below a certain threshold of tree cover, typically
found in savannas. Below this tree-cover threshold, fire leads to opening of
the canopy, which promotes even greater spread of fire. No such positive
feedback can exist above the threshold, as high tree cover acts to limit
fire spread. These feedbacks act to maintain tree cover levels against a
climatic backdrop - low rainfall supports savanna, while high rainfall results
in forests. At an intermediate range of rainfall, forests and savanna co-
exist, which manifests as bimodality in the distribution of tree cover.

However, simulations of dynamical models of vegetation have shown
that the rainfall range for which hysteresis occurs can be inflated by spatial
heterogeneity in the environment (Nes et al., 2014). Spatial heterogeneity
in external variables, such as soil properties, topography and degree of
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human influence can lead to expansion in the range of rainfall for which
bimodality in tree cover is observed. Thus, the inferred range of bimodality
might be higher than bimodality resulting from bistability in vegetation dy-
namics. In such a case, bistability could be restricted to lower extents than
previously claimed.

Humans directly impact vegetation patterns through deforestation, which
can introduce bimodality in regions with previously unimodal tree cover.
While previous studies acknowledge the effect of anthropogenic factors on
tropical vegetation dynamics, most have sought to establish bistability by
directly excluding sites of human activities, such as settled areas and agri-
cultural lands (Staver et al., 2011b; Staal et al., 2016). However, human
influence can persist beyond the site of such activities (Fig. 3) and lead to
changes in tree cover. Not accounting for such human impacts can lead
to erroneous inference of bistability in regions where the bimodality arises
from anthropogenic disturbances, rather than hysteresis. In addition, this
could also hinder the correct estimation of tipping points for critical transi-
tions between alternative states.

In a 2017 study, Wuyts et al. sought to determine the impact of humans
in relation to forest-savanna bistability in the Amazonian region. They anal-
ysed vegetation data separately for regions affected by human presence
and regions that are relatively unperturbed by humans. The extent of bi-
modality was found to be higher in the regions close to human presence,
which implies that human activities can give rise to bimodality. In such a
case, bistability in Amazonia is restricted to a smaller spatial extent than
previously thought.

In Africa, forest and savanna have been claimed to represent alternative
stable states, based on the observation of bimodal tree cover distribution
within an intermediate range of rainfall (Staver et al., 2011b; Hirota et al.,
2011). However, the forest-savanna system supports a large section of
the African population. It is likely that human activities have introduced bi-
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modality in the region, independent of bistability in the system. If this is
indeed the case, regions with a high degree of human influence can be ex-
pected to have a larger range of environmental conditions for which forest
and savanna co-exist, as compared to regions with low human influence.

This study aimed to examine the influence of humans on bimodality
and bistability in the African forest-savanna system. The study area of
sub-Saharan Africa, was broadly divided into human-affected and natural
regions, corresponding to high and low degree of human influence, respec-
tively. Using spatial data for a number of environmental variables that are
thought to influence tree cover at continental scales, such as mean annual
rainfall, seasonality, temperature and soil properties (Greve et al., 2011;
Oliveras and Malhi, 2016), a composite environmental predictor (CEP)

Figure 3: Impacts of humans on tree cover can persist beyond the site of
their presence. As an example, the human influence index (a measure
of human impact) remains high even as one moves 44 km away from the
highly-populated Pretoria-Johannesburg region in South Africa
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of tree cover was derived. Following this, the extent of bimodality in the
human-affected and natural regions were compared, in order to ascertain
the influence of humans on tree cover. While bimodality in tree cover was
observed to exist in both natural and human-affected regions, the extent
of bimodality was lower in the natural regions. These results are in agree-
ment with the hypothesis that human impacts would cause bimodality to
be more frequent in the human-affected areas. Therefore, bistability is
arguably restricted to smaller extents than previously assumed. However,
the existence of bimodality in both natural and human-affected regions sug-
gest that bistability is ubiquitous in the forest-savanna system of Africa.
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2 Methods

2.1 Study Area

The study was restricted to the region spanning sub-Saharan Africa (Fig.
4). Using Globcover 2010, a global dataset on land cover, regions corre-
sponding to land cover classes such as water bodies and wetlands (Bon-
temps et al., 2011) were excluded from the analysis.

Figure 4: Map of Study Area

2.2 Tree Cover

Vegetation indices are widely used as proxies for tree cover. For this study,
data regarding vegetation indices for the study region was obtained from
the satellite-derived MODIS VI (MOD13) product suite (Huete et al.), via
the Google Earth Engine (Gorelick et al., 2017). The MODIS (Moderate
Resolution Imaging Spectrometer) VI products provide gridded vegetation
maps at each 16-day interval. Two separate products are derived globally
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- NDVI (Normalised Difference Vegetation Index) and EVI (Enhanced Veg-
etation Index). This analysis was based on the EVI products, since EVI
is more sensitive to differences in high tree-cover regions and also incor-
porates corrections for aerosol concentration levels, which can introduce
significant noise to the signal. The study utilised EVI data from the year
2010. Additionally, in order to mitigate any systematic errors in measure-
ment caused by cloudiness, only the data corresponding to the dry months
of June-July was considered.

2.3 Environmental Variables

Environmental variables that have previously been reported to be relevant
large-scale determinants of forest-savanna distribution were considered in
the analysis (Greve et al., 2011; Oliveras and Malhi, 2016; Murphy and
Bowman, 2012; Lehmann et al., 2011). Apart from mean annual rainfall,
which has been the most frequently used environmental variable in pre-
vious studies, the variables included were Markham’s Seasonality Index
(MSI) for rainfall, mean annual temperature, soil bulk density and the clay,
sand and silt content of soil. Through resampling in R, data for each of
these variables was adjusted to have a common resolution of 0.25 degrees
x 0.25 degrees (approximately 27 sq. km).

2.3.1 Mean Annual Rainfall

Mean annual rainfall is considered to be most important determinant of
tree cover (Murphy and Bowman, 2012) and has been used widely in stud-
ies of bistability in tropical vegetation (Hirota et al., 2011; Staver et al.,
2011a). Thus, it was included among the environmental variables used in
the study. Rainfall data was obtained from TRMM (Tropical Rainfall Mea-
suring Mission) 3B42, which is a product derived from merged satellite and
rain-gauge estimates of precipitation (Huffman et al., 2007). The 3B42 rain-
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Variable Reference Original Resolution
Mean Annual Rainfall (MAR). Huffman et al., 2007 0.25’ x 0.25’
Rainfall Seasonality (MSI) Huffman et al., 2007 0.25’ x 0.25’

Mean Annual Temperature (MAT) Fick and Hijmans, 2017 1 km x 1 km
Subsoil Clay Fraction Hengl et al. 2017 1 km x 1 km
Subsoil Sand Fraction Hengl et al. 2017 1 km x 1 km
Subsoil Silt Fraction Hengl et al. 2017 1 km x 1 km
Topsoil Clay Fraction Hengl et al. 2017 1 km x 1 km
Topsoil Sand Fraction Hengl et al. 2017 1 km x 1 km
Topsoil Silt Fraction Hengl et al. 2017 1 km x 1 km
Topsoil Bulk Density Hengl et al. 2017 1 km x 1 km

Table 1: Names, references and original resolutions of environmental vari-
ables used in the study.

fall estimates have a temporal resolution of 3 hours and spatial resolution
of 0.25 x 0.25 degrees. Mean annual rainfall (MAR) is defined as

MAR =
1

y2 − y1

y2∑
y=y1

12∑
m=1

py,m (1)

where y1 and y2 represent the initial and final years of measurement,
while py,m represents rainfall in month m of year y. Since the temporal
extent of this analysis was from year 2000 to 2010, TRMM rainfall maps
were obtained for this period and processed via Google Earth Engine to
estimate MAR.

2.3.2 Seasonality

In addition to the annual mean, seasonality in rainfall can also influence
tree cover in a region. A high seasonality in rainfall can have twofold con-
sequences - it can reduce tree growth and also encourage fire spread in
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the intervening dry months (Lehmann et al., 2011). This study incorporated
seasonality in rainfall, estimated as Markham’s Seasonality Index (MSI)
(Markham, 1970). MSI assumes mean rainfall for each month to be a vec-
tor, whose direction is the month in arc units and magnitude is the monthly
mean of rainfall. The monthly vectors are then summed and normalised
to yield MSI. MSI can take values from 0 to 1, with higher values denoting
higher seasonality.

For this analysis, MSI was calculated according to the method formu-
lated by Scheiter et al. (2015):

MSI = 100
1

R

√
(Hx)2 + (Hy)2 (2)

where Hx =
12∑
i=1

ri cos 2παi

360
, Hy =

12∑
i=1

ri sin 2παi

360
and αi is direction of the

vector, i.e., α1 = 15, α2 = 30 and so on. Mean rainfall was calculated for
each month and added vectorially according to this formulation to yield an
estimate of rainfall seasonality.

2.3.3 Temperature

Data on annual mean temperature was obtained from WorldClim Version
2 (Fick and Hijmans, 2017), which includes spatially interpolated tempera-
ture data from 1970-2000.

2.3.4 Soil Properties

Soil properties such as texture and nutrient availability form another basis
of differences between forest and savanna (Murphy and Bowman, 2012).
Heterogeneity in nutrient and textural variables could contribute to observed
patterns tree cover. However, due to the lack of data on soil nutrient vari-
ables at continental scales, only textural variables were incorporated into
the study. The soil properties considered for the analysis included bulk
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density, clay fraction, sand fraction and silt fraction. Each of these proper-
ties were estimated separately for topsoil (0-30 cm) and subsoil (30-100).
Data was obtained from SoilGrids (Hengl et al., 2017), a global gridded
soil database built from automated compilation of soil profile and remote-
sensed data. The SoilGrids database has data on soil properties only at
certain standard depths - 0 cm, 5 cm, 15 cm, 30 cm, 60 cm, 100 cm and
200 cm. To derive an average estimate of the soil properties for the en-
tirety of topsoil and subsoil, the trapezoidal method of definite numerical
integration was used:

1

b− a

∫ b

a
f(x)dx ≈ 1

2(b− a)

N∑
k=1

xk+1 − xk

f(xk) + f(xk+1)
(3)

where N = number of depths, xk = kth depth and f(x) = value of soil
property at kth depth. From the original resolution of 1 sq. km, the final
data was resampled to a resolution of 0.25 x 0.25 degrees (approximately
27 sq. km).

2.4 Composite Environmental Predictor

Most studies rely on the effect of mean annual rainfall on the distribution
of tree cover to infer forest-savanna bistability. However, there exist multi-
ple other environmental determinants of tree cover, including edaphic and
other climatic variables. Spatial heterogeneity in these variables can en-
large the range of rainfall for which bimodality in tree cover is observed,
leading to an overestimation of rainfall-related bimodality. In an effort to
minimize this effect of spatial heterogeneity, a composite variable was de-
vised using several climatic and edaphic variables. The climatic variables
included mean annual rainfall (MAR), Markham’s seasonality index (MSI)
for rainfall and mean annual temperature (MAT). Edaphic variables used
were bulk density, clay fraction, sand fraction and silt fraction. With the ex-
ception of bulk density, each variable was estimated separately for topsoil
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and subsoil.
The data for each of these variables was processed as described in

the previous section. Each pair of environmental variables were subjected
to Pearson’s correlation tests. Many variables were found to be highly
correlated and inclusion of such correlated variables in the analysis could
lead to erroneous inferences.

The composite variable was derived from the mentioned environmental
variables using principal component analysis (PCA), performed in R using
the RStoolbox package (Leutner and Horning, 2016). A PCA takes in a
dataset of multiple linearly correlated variables and transforms them into
a new coordinate system, yielding a set of uncorrelated ’principal com-
ponents’. The procedure reduces the dimensionality of a dataset, while
retaining the variation within the data. Thus, a PCA would allow the the set
of multiple, correlated variables to be reduced into a few, linearly uncorre-
lated components. The principal component with the highest variance was
then used as the composite variable, henceforth referred to as the ’Com-
posite Environmental Predictor’ of tree cover (CEP). Instead of examining
the relationship between mean annual rainfall and tree cover, as in previ-
ous studies, the effect of CEP on tree cover was analysed in order to draw
conclusions about vegetation dynamics in the study area.

Finally, to discern which of the environmental variables contribute most
of the variance to the CEP, Pearson’s correlation tests were conducted
between the CEP and each variable.

2.5 Division of study area into natural and human-affected
regions

The Human Footprint (HFP) maps provide information about the pressures
exerted by humans in terrestrial regions across the globe (Sanderson et al.,
2002; Venter et al., 2016). The maps are compiled with information from
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both remote-sensing and bottom-up surveys measuring eight variables,
each representing various direct and indirect human pressures on the envi-
ronment. The eight pressure variables include the following: (1) the extent
of built environments, (2) population density, (3) electric infrastructure, (4)
crop lands, (5) pasture lands, (6) roads, (7) railways, and (8) navigable wa-
terways. These variables are combined to yield a cumulative indicator of
human pressures (Fig. 5), termed the Human Influence Index (HII). High
values of HII correspond to areas where anthropogenic impacts are high.
Such areas are likely to be undergoing changes from their original state
as a result of the human pressure. Conversely, regions with low HII are
relatively unaffected by the pressure variables and likely to be in their nat-
ural states. Information from most recent Human Footprint dataset, HFP
2009, was used to divide the study area into regions of high and low human
influence. The HFP map was truncated to the spatial extent of the study
area. Since the original dataset has a resolution of 0.0028 x 0.0028 de-
grees (approximately, 0.3 sq. km), it was adjusted to a lower resolution of
0.25 x 0.25 degrees, common to the resolution of the other spatial datasets
used in the analysis. In addition, the dataset was transformed to the WGS
84 projection, from its original Mercator projection.

The value of Human Influence Index corresponding to the 25th per-
centile was chosen to be used to separate the study area by degree of hu-
man impacts. The value of HII which covers 25 percent of the area under
the density curve for was estimated through a Reimann sum (a numerical
method of approximation of finite integrals). This value of HII was then
used as a threshold to broadly divide the study area according to degree
of anthropogenic influence. Pixels with an HII greater than this threshold
were designated to be ’human-affected’, while those with HII less than or
equal to the threshold were included in the ’natural regions’.
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Figure 5: Calculation of a cumulative Human Influence Index from individ-
ual human pressure variables

2.6 Spatial data

All datasets obtained were in the WGS 84 projections. Each dataset was
adjusted to have a common spatial resolution of 0.25 x 0.25 degrees, along
with a spatial extent corresponding to the study area of sub-Saharan Africa.
Analysis of the data was performed through R (Team, 2000) and qGIS.

2.7 Tree Cover versus CEP Plots

EVI was plotted against CEP separately for natural and human-affected
regions, in order to study changes in tree cover with human impacts. For
this, the maps corresponding to EVI and CEP were divided into the human-
affected and natural areas. Following this, both natural and human-affected
areas were divided into multiple ”bins”, or segments, each spanning 50
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PC1 units, i.e., -1550 to 1500, -1500 to -1450, and so on. For each seg-
ment, the density plot of tree cover was obtained. The nature of the tree
cover distribution in the segments was established according to the follow-
ing set of rules:

1) The distribution was designated to be bimodal if the modes were
separated by more than 1000 units of EVI and were at least 25 percent of
each other’s height.

2) In case of the occurrence of more than two modes, a mode is dis-
regarded if its height is less than 10% of the height of the largest mode.
However, if such a mode is separated by less than 1000 units of EVI and
is comparable to the height of the closest mode, a weighted average of the
two closely-occurring modes is considered.

3) In case two modes are separated by more than 1000 units of EVI,
but are less than 25% of each other’s height, the two modes are depicted
in the final plot if they are at least 10% of each other’s height. However,
such a distribution is not designated to be bimodal.

4) In case neither of conditions (1) and (2) are satisfied, the distribution
is designated to be unimodal.

The values of the modes were obtained and the nature of the distribu-
tion was decided based upon the above rules. Following this, the value
of the tree cover modes were plotted for each bin of CEP, i.e., each seg-
ment spanning 50 PC1 units. Such plots are henceforth called ’state dia-
grams’. State diagrams were constructed separately for both natural and
human-affected areas. The range of CEP corresponding to bimodality was
obtained by estimating the number of segments that continuously have a
bimodal distribution of tree cover. This range was then compared for the
natural and human-affected regions.
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Figure 6: Flowchart of methods used in the analysis.

2.8 Sensitivity Analysis

Any differences in the extent of tree-cover bimodality can potentially be at-
tributed to the the value of HII chosen to separate sub-Saharan Africa into
two distinct regions by degree of human impact. To ascertain the role of
the choice of this threshold in the results of the study, sensitivity analysis
was conducted using two different values of HII to assess any difference
in the outcome. The value chosen originally corresponded to the 25th per-
centile of HII. Values of HII at 15th and 35th percentile were chosen for
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the sensitivity analysis. Using Riemann sum, HII was estimated at these
percentiles. By taking the value of HII thus obtained as the threshold, the
study area was divided into natural and human-affected regions. The ex-
tent of bimodality in each was then compared in order to discern any effect
of HII on the observations.

In order to further test the efficacy of dividing the study area by the HII
at the 25th percentile, a frequency distribution of GlobCover classes was
obtained for the ’natural’ areas. If the 25th percentile cutoff is sufficiently
stringent, the natural areas would have low frequency of occurrence of
land cover classes associated with human presence, such as croplands
and urban areas.
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3 Results

3.1 Division of study area into natural and human-affected
regions

The value at the 25th percentile of HII for the study area was found to be
4.3, given the spatial resolution used in the study. As a result, regions
with HII ≤ 4.3 were designated as ’natural’, while regions with HII > were
designated to be ’human-affected’ (Fig. 7).

GlobCover land classes linked to high human influence were found to
have a low frequency in the regions deigned to be ’natural’ using the above
criterion. The frequencies of human-associated land cover classes are
listed below in Table 2.

Figure 7: Study area, divided into natural and human-affected regions us-
ing an HII of 4.3 as the threshold.
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GlobCover Class Frequency
Croplands (Irrigated) 0
Croplands (Rainfed) 0.0050

Mosaic cropland (50-70%) / vegetation 0.3830
(grassland/shrubland/forest) (20-50%)
Mosaic vegetation (50-70%) / cropland 1.7049
(grassland/shrubland/forest) (20-50%)

Urban areas (>50%) 0.0059

Table 2: Frequency of human-associated GlobCover land classes in the
natural areas, delineated using an HII threshold of 4.3

3.2 Pairwise correlations between environmental variables

Multiple environmental variables of the same class (i.e., climatic or edaphic)
were found to be significantly correlated with each other (Table 3).

MAR MSI MAT Subsoil Subsoil Subsoil Topsoil Topsoil Topsoil
clay fraction sand fraction silt fraction clay fraction bulk density sand fraction

MSI -0.0898
MAT -0.1464 0.6565

Subsoil clay 0.6231 -0.1014 -0.0532
fraction

Subsoil sand -0.5013 0.0074 -0.1248 -0.9351
fraction

Subsoil silt 0.1289 0.1583 0.3936 0.5210 -0.7897
fraction

Topsoil clay -0.7413 0.2401 0.0796 -0.6788 0.6436 -0.3754
fraction

Topsoil bulk 0.5327 -0.0673 0.0054 0.9765 -0.9258 0.5394 -0.6512
density

Topsoil sand -0.4361 -0.0212 -0.1804 -0.9048 0.9890 -0.8155 0.6253 -0.9265
fraction

Topsoil silt 0.1716 0.1468 0.3902 0.5467 -0.8071 0.9972 -0.4130 0.5596 -0.8303
fraction

Table 3: Pearson’s correlation coefficient between environmental variables
used in the analysis
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3.3 Principal Component Analysis

The first principal component (PC1) accounted for a large fraction of the
variance, at 99.4 per cent. Therefore, it was seen fit to be used as the
Composite Environmental Predictor (CEP).

Among all the environmental variables considered in the PCA, mean
annual rainfall had the highest correlation with the first principal component,
i.e., the CEP. Mean annual rainfall correlates highly with CEP (Pearson’s
correlation coefficient = 0.99, p < 0.05). The correlation coefficients for the
other climatic and soil variables are listed in Table 4.

Environmental Pearson’s
variable correlation
MAR 0.9998
MSI 0.1452
MAT 0.0913

Subsoil clay fraction -0.6298
Subsoil sand fraction 0.5108
Subsoil silt fraction -0.1412
Topsoil clay fraction -0.5408
Topsoil bulk density 0.7512
Topsoil sand fraction 0.4468
Topsoil silt fraction -0.1837

Table 4: Pearson’s correlation coefficient between environmental variables
and the composite environmental predictor (CEP)
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3.4 Bimodality in natural and human-affected regions

The scatterplots of tree cover versus CEP were generated separately for
both natural and human-affected regions (Fig. 8). The incidence of low
tree cover was observed to overlap with high tree cover for an intermediate
range of CEP in both regions. However, the degree of overlap appears
to be larger in the human-affected parts of the study area. The degree of
overlap, i.e., the range of CEPwith bimodality, was quantitatively estimated
through state diagrams, generated through steps described in section 2.7.

Figure 8: Scatterplots of tree cover versus CEP for natural and human-
affected regions. The overlap between high and low tree cover is greater
in human-affected regions.

A comparison of state diagrams shows that the range of CEP associ-
ated with bimodality is higher for human-affected regions. Natural regions
show bimodality across 15 segments, i.e., 750 PC1 units, while human-
affected regions have a range of bimodality spanning 20 segments, i.e.,
1000 PC1 units (Fig. 9).

26



Figure 9: State diagrams for natural and human-affected regions. Bimodal-
ity in tree cover occurs over a greater span of CEP values in the human-
affected areas.

3.5 Sensitivity Analysis

The study area was divided using HII at 15th, 25th and 35th percentile as
threshold and state diagrams were obtained for the natural and human-
affected regions, using steps in section 2.7 (Figs. 10-12). Sensitivity anal-
ysis indicates that the degree of overlap between high and low tree cover
is unaffected by changes in the threshold of HII used to separate the study

Percentile HII Range of bimodality in Range of bimodality in human-
of HII threshold natural regions (PC1 units) affected regions (PC1 units)
15 3.1 700 1000
25 4.3 750 1000
35 5 700 1000

Table 5: Results of Sensitivity analysis. The range of value of CEP as-
sociated with bimodality remains largely unchanged even as one changes
the criterion for division of the study area into natural and human-affected
regions.
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Figure 10: Sensitivity analysis at 15th percentile of HII. The value of HII
associated with the 15th percentile of the distribution was found to be 3.1.
The study area was divided into natural and human-affected areas using
HII = 3.1 as the cut-off. State diagrams were then plotted for both, to deter-
mine the range of CEP that shows bimodality. At 15th percentile, bimodal-
ity spans 700 and 1000 units of CEP, for the natural and human-affected
regions, respectively
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Figure 11: Sensitivity analysis at 25th percentile of HII. The cut-off for divi-
sion of the study area into natural and human-affected regions, estimated
as the HII at 25th percentile, was found to be at HII = 4.3. Bimodality was
found to span 750 and 1000 units of CEP, for natural and human-affected
regions, respectively. 29



Figure 12: Sensitivity analysis at 35th percentile of HII. The cut-off for divi-
sion of the study area into natural and human-affected regions, estimated
as the HII at 35th percentile, was found to be at HII = 5. Bimodality was
found to span 700 and 1000 units of CEP, for natural and human-affected
regions, respectively.
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area into natural and human-affected regions. The values of CEP corre-
sponding to bimodality showed no significant changes across different cri-
teria for separation of study area into natural and human-affected regions.
The range of CEP for bimodality at the different thresholds are listed here
in Table 5.
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4 Discussion

In this study, I aimed to discern the relation between human impacts and
vegetation patterns in sub-Saharan Africa. Studying this relation is cru-
cial because the observed large-scale patterns in the distribution of tree
cover have been used as evidence for bistability in the vegetation dynam-
ics. In Africa, continental-scale bimodality in tree cover has been cited in
support of bistability (Staver et al., 2011b; Hirota et al., 2011). However,
the forest-savanna complex in sub-Saharan Africa is subject to very high
levels of human activity, which needs to be taken into account in studies of
vegetation dynamics of the region.

A composite environmental predictor (CEP) of tree cover was devised
from relevant environmental variables. Mean annual rainfall was found to
be the most highly correlated with the CEP, with the loading of other envi-
ronmental variables being lower. The study area, sub-Saharan Africa, was
divided into two parts - highly impacted ’human-affected’ areas and ’natural’
areas with low human impacts, with the help of information from the Hu-
man Footprint Map dataset. Analysis of spatial tree-cover data revealed an
overlap in the occurrence of forest and savanna states at intermediate val-
ues of the composite environmental predictor. This overlap, or tree-cover
bimodality, was found in regions subject to both high and low degrees of
human influence. The overlap was observed to be higher in the human-
affected regions, in keeping with the expectation that human activities can
inflate the presence of bimodality in tree cover. This result is consistent
even as the criterion for division into human-affected and natural areas is
changed.

The results of the study show that there exists bimodality in forest and
savanna states of African tropical vegetation, even after accounting for the
confounding effect of spatial heterogeneity in multiple environmental vari-
ables. However, the range of environmental conditions that support bi-
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modality is larger in regions that are affected to a greater extent by human
activities. This is in agreement with previous theoretical findings, which
contend that spatial heterogeneity in variables such as human impact can
give rise to bimodality (Nes et al., 2014). This implies that the bimodality
observed in rainfall-tree cover plots generated from remote-sensed spa-
tial vegetation data (Staver et al., 2011b; Hirota et al., 2011) is at least
partly associated with anthropogenic phenomena, as opposed to hystere-
sis caused by large-scale bistability in the vegetation. This can be inter-
preted as bistability being restricted to smaller regions than assumed ear-
lier. Nevertheless, the presence of significant bimodality in both natural and
human-impacted regions indicates that bistability is pervasive throughout
the forest-savanna system studied here.

The results obtained through this analysis are similar to the observa-
tions reported by Wuyts et al. (2017), in a study regarding the relation be-
tween human impacts and forest-savanna distribution in Amazonia. Based
on the observation that bimodality is largely limited to regions close to
human-inhabited areas, the authors claimed that a significant portion of
bimodality in Amazonian vegetation is attributable to changes in tree cover
resulting from human actions, such as logging, or clearing of forests for
agricultural or pasture lands. Contrary to this study, however, our results
show that even in the ’natural’ regions, bimodal tree cover occurs over a
fairly large range of environmental conditions. This could be a reflection
of the differences in the distribution of human population between Ama-
zonia and sub-Saharan Africa. Population densities, and accordingly, hu-
man impacts, increase in a gradient, beginning from the low densities of
the forested Amazon basin to high densities in the drier regions, known
as cerrado. Contrastingly, human impacts occur in a more scattered man-
ner in sub-Saharan Africa, with significant population densities found even
near forested areas.

The differences in the extent of bimodality between the natural and
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human-affected areas could arise from direct changes to tree cover caused
by deforestation or afforestation. In addition, the difference could arise from
anthropogenic changes in important determinants of forest-savanna distri-
bution, such as changes in variables related to fire and herbivory. Humans
can manipulate fire regimes, potentially altering the vegetation-fire feed-
backs crucial for maintaining the vegetation patterns found in a landscape
(Oliveras and Malhi, 2016; Archibald et al., 2012). Humans have been
known to influence vegetation patterns through fire since prehistoric times,
with the record of anthropogenic fire in Africa going back to nearly a million
years (Bird and Cali, 1998). It has been reported that the rise in human
presence and the accompanying shifts in fire ignition or suppression can
result in changes in the key characteristics of fire, such as fire size, inten-
sity, frequency and season (Archibald et al., 2013). Such anthropogenic
alterations in fire characteristics could be a reason for the difference in bi-
modality observed between the natural and human-affected regions. In ad-
dition to fire, grazing can significantly shape vegetation patterns in a land-
scape (Murphy and Bowman, 2012). Introduction of livestock by humans
could modify tree cover patterns, either directly, or through fire-herbivory
(Archibald et al., 2005), or soil-herbivory feedbacks (Rietkerk et al., 2000).
Thus, higher grazing activity could also be a reason for the difference in ex-
tent in bimodality between the two classes of human impact. Indeed, pre-
dictable differences in fire characteristics and herbivory have been found
between the natural and human-affected areas (Tamma et al., in prep).

The study was conducted at a relatively coarse resolution of 0.25’x
0.25’, which could have affected the results. Soil properties are known
to be relevant at smaller, regional scales (Lehmann et al., 2011). Thus,
it is likely that a similar study, done at a higher spatial resolution would
have results that better reflect the effect of soil properties on vegetation.
In addition, the study relied on spatial vegetation data obtained for a par-
ticular year. However, vegetation cover may show changes over time. It
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is possible that the results could be affected by such temporal variation in
vegetation cover.

Nevertheless, the results suggest that there exists significant bimodality
in vegetation cover in the study region, regardless of the presence or ab-
sence of humans. Hence, at least for Africa, previous studies that claimed
forest-savanna bistability based on the presence of bimodality in tree cover
seem to hold true. However, human influence needs to considered along-
side tree cover data in order to draw further inferences regarding the nature
of vegetation dynamics in an area.
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