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Abstract

We give three results concerning the distribution of eigenvalues of Hecke operators acting on
spaces of modular cusp forms of weight & with respect to I'o(N) by attaching some weights
to them. These results extend some classical results. In the 1960s, M. Sato and J. Tate
made a conjecture regarding the distribution laws for the Fourier coefficients at primes of a
fixed Hecke eigenform. In 1997, J-P Serre considered a vertical analogue of the Sato-Tate
conjecture: he fixed a prime p and considered the set of p-th Fourier coefficients of all Hecke
eigenforms of weight k& with respect to I'o(N). He then derived a distribution law for such
families as NV + k — oo. Serre’s theorem was made effective by M. R. Murty and K. Sinha,
who found explicit error terms in Serre’s theorem. His theorem was also generalized by C.
C. Li in 2004 to derive an equidistribution law for Serre’s families by attaching some suitable
weights to the elements. In our first theorem, we extend the work of Murty and Sinha and

find the error term in Li’s weighted equidistribution theorem.

In 2006, H. Nagoshi proved two theorems. In his first theorem, he showed that by
varying the primes p and the weights k, the Sato-Tate distribution law holds and in his
second theorem, he proves a type of central limit theorem for the Fourier coefficients at
primes of Hecke eigenforms with respect to I'g(1) and weights & — oo. Our second and third
results are the weighted analogues of Nagoshi’s first and second theorems respectively, with
the weights as defined by Li.
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Notations

N,Z,Q and R denote the sets of natural number, integers, rational numbers and real

numbers respectively.

C denotes the set of complex numbers given by {z € C : z = x+iy,z,y € R,i = /—1}.
For a complex number z, Re(z) will denote the real part, that is, x, Im(z) will denote

the imaginary part, that is, y, |z| its absolute value and Z its complex conjugate.
H denotes the upper-half complex plane.
Let S be a finite set. |S| or #5 will denote the cardinality of S.

Let a,b € Z, alb denotes that a is a divisor of b. The greatest common divisor of a and

b is denoted by ged(a,b).
7(x) denotes the number of primes less than equal to x.

7wn(z) denots the number of primes coprime to N and less than equal to x, that is,
mn(z) ={p <z :(p,N) =1}

ord,r denotes the highest power of p which can divide r.

Let f and g be real valued functions with g(x) # 0 for |z| > a.

denotes

Let g(x) be a positive function. We say

[ =0k(g) or f <k (9)

if there exists a non-negative real number a and a positive constant C' = C(K), de-
pending on some quantity K, such that, |f(z)| < C(K)g(x) for all z such that |z| > q;
if the constant C'(K) is absolute then we simply say

f=0(g) or f(z) < g(x).
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o We write

if

e Let n be a positive integer. The Euler-¢ function is given by
1
o(N)=N]](1-=
pIN b
where the product runs over primes p dividing V.
e Let n be a positive integer. Then
1
v(N)=N]] (1 + —)
p
pIN

where the product runs over primes p dividing N.
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Organization of chapters

In the first chapter, we describe the concepts related to equidistribution. In the second

chapter, we define fundamental notions in the theory of modular forms.

In Chapter 3, we state classical results about the distribution of families of Hecke
eigenvalues. We also state the primary results of this thesis which constitute original

research, namely Theorems 3.3.1, 3.3.2 and 3.3.3.

In Chapter 4, we describe the Kuznietsov trace formula which forms a primary tool in

the proofs of the new theorems mentioned above.

In Chapter 5, we prove Theorems 3.3.1, 3.3.2 and 3.3.3. Lemmas 5.1.1, 5.1.2, 5.2.4 and

5.2.5 are subsidiary results that are required to prove the main theorems.
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Chapter 1

Equidistribution

Let = be any real number. Let {x} denotes the fractinal part of x, that is, {z} = = — [],

where [z] represents the greatest integer less than equal to z.

1.1 Uniform distribution modulo 1

1.1.1 Definitions

[ee)
n—

Definition 1.1.1. A sequence of real numbers (x,,)3 ; is uniformly distributed (u.d.) mod

1 if, for every a,b € [0, 1] with a < b, we have

SN {md e}, "

N—oo N

(This condition tells us that the proportion of the fractional part of the sequences {z,}

lying in the interval [a, b] is asymptotic to the length of the interval [a, b], b — a.

Remark 1.1.2. Without changing the above definition, [a,b] could be replaced by (a,?],
la,b) or (a,b).

For convenience, we will assume that each term of the sequence (z,)52; lies between 0

1



and 1, that is, 0 <z, < 1.
Let X[q be the characteristic function of an interval [a,b] C [0,1).

Then, equation (1.1) can be written as:

N 1

) 1

lim _ZX[aJ)](xn) —/ Xlab) (¥)dz (1.2)
=1 0

N—ooo [V
n

Lemma 1.1.3. Let the sequence of real numbers (x,)>2, be uniformly distributed mod 1.

Then, for any a € [0,1), we have

#{n < N : {2} = a} = o(N)

Proof. Let us take b = a + € for € > 0.

Now,

{n < N :{z,} € [a,b]}| <2N(b—a) =2Ne (1.3)

for all N > Ny(e).

[hus,
< N:
i {n {z,} € [a,b]}] <

N—oc0 N - 2

and as € can be arbitrarily small, we get the desired result. []

We now let T denote the unit circle R/Z.

Theorem 1.1.4. The following are equivalent:

(a) The sequence of real numbers (x,)5, is uniformly distributed mod 1.

(b) For any real valued, continuous functions f : T — R, we have

N—o0

lim %;f(xn):/?rf(x)dx (1.4)

Proof. We first show that (a) implies (b).



Let us now consider a partition 0 < ag < a; < ... < ax < 1 and define a step function

k—1

S<x) = Z SiX[ai,aiJrl](x)) Si e R (15)

By (a), we have

Now, let us take some ¢ > 0. We can always find step functions f; and f; such that

fi(x) < f(z) < folx) for all z € T and [ (fo(z) — fi(z)) < e
Thus,
/0 Fa)ds — e < / f () — / (folz) — fula))de
- / (F(@) — o) + fi(w))da

< /1 fi(x)dzx (since f(z) < fo(zx) for all x € T)
0

But, f; is a step function, hence applying (1.5), we have

But, again f, is a step function, hence we can apply (1.5) and get,
]\}l_fgo N Z fo(xn) / fa(x

/<f2< dx+/ e
g/o F@)de + ¢



So, finally we have

N—oo

1 L .
/0 f(z)dx —e < lim W;f(xn)g/o f(z)dx + €

Since this is true for any € > 0, we have,

/0 f(z)dxr = lim lz:f(xn)

N—ooo N
n

Conversly, assuming (b) we need to show that the sequence (x,) is uniformly distributed
mod 1. Let us consider the interval [a,b] C T. Let € > 0. Then there exists two continuous
functions f; and fo on T such that fi(z) < xpeg(x) < fo(z) for 2 € T and fol(fg(x) —
fi(x))dz < e.
Now, by (b),

Thus,

N N
1 1
= — < lim —
Jim, 3 2 filem) < i 5 D Xedi (o)
N 1
< lim —
< iy 2 ) = f el

1
g/ filzx)dr+e<b—a+e
0

As € is arbitrary, we have

N
. 1
lsz—)ooN Z Xla,b] (ﬁn) =b—a
n=1

Therefore (z,,)%; is uniformly distributed mod 1. OJ



We can more generally consider a continuous, complex valued function f : T — C.

Applying Theorem 1.1.4 to real and imaginary parts of f, we deduce the following theorem.

Theorem 1.1.5. The following are equivalent:

1. The sequence of real numbers (x,)5, is uniformly distributed mod 1.

2. For any complex valued, continuous functions f: T — C, we have
| XN
dm oy 3 s = [ e (1.6

Now, we would like to state Weyl’s Criterion which allows us to reduce equidistribution
questions to bounds on exponential sums. Before that, we would like to recall a theorem

from analysis which will be required in proving Weyl’s Criterion.

1.1.2 Weierstrass approximation theorem

Let us first recall what Fourier series are.
Let f: R — T be a continuous function. Then, the Fourier coefficient of f for any integer s

is given by

f(s) = / f(t)e 2ty

The Fourier series of f is given by 3__ f(s)e?™s*.
Now, let us state and prove Fejér’s Theorem which will eventually lead us to the Weierstrass

approximation theorem.

Theorem 1.1.6. (Fejér) If f: T — C is continuous, then

n

malfit) = 32 S fe)en )

S=—nN

uniformly as n — oo.



Before proceeding further, we first prove some properties of Fejér’s kernel which would
help us in proving Fejér’s theorem.

Fejér’s Kernel is expressed in either of the following two equivalent ways:

1—s ..
K,(t) = Z %e%”t for any real t. (1.7)
1 sin(n + 1)t
K,(t) = for t ¢ 7Z. 1.8
®) n+1 < sin(mt) ) ort ¢ (18)

Properties of Fejér’s Kernel

i [ K.(t)dt =
i K,(t) >0
iii For any fixed 0 < § < 1/2,

lim K,(t)dt=0

i.e. K,(t) — 0 uniformly outside [—4, d].

Proof. (i) Using 1.7 , we have

n+1-—s
K dt 27rzstdt
/ /Zn ntl
1
. 27mist
_n+1 E (n+1—5)/oe dt

S=—n

1
= 1 —
n+1;("+ s)

The inner integral takes the value 1 only when s = 0 and is zero for rest all values. Thus we
get the desire result.
(ii) It follows from equation 1.8 directly.
(iii) For 0 < t < 1, |sin(wt)| > 2t. Thus
1 1

Kall) < 0@ ~ e DD

6



Thus,

1/2 1/2 1 00 1 1
K,(t)dt < ——dt < ———dt = ——
/5 (t)dt < /5 (n + 1)(4t?) /5 (n 4 1)(4¢2) 4(n+1)o0
Since, K, (t) = K, (—t), we have,
K,(t)dt < ———.
~1/2 ) 4(n +1)o
Thus, f5<|t‘<1/2 K, (t)dt < —Q(nil)d = f5<|t| K,(t)dt < —Q(H}H)é
So, as n — 00, f6<|t| K, (t)dt converges to 0 uniformly.
O
We observe that as n — oo,
Sl s g
on(f,t) = s:z—n n—Hf(S)@
n 1_ 12 . .
= Z De%m (x)e”***dx( by definition of f(s))
s=—n n+ 1 —1/2
1/2
= f(z)K,(t — x)dx
~1/2
1/2
= flt —2)K,(x)dx
~1/2

5
~ / f(t —x)K,(x)dz (for large n and small § and using property (iii))
-5

5

~ f(t)/ K, (x)dx (as f is continuous)
-5

— £(t) (using property (i)

Thus, o,(f,t) =~ f(t) for large value of n.

Proof of Theorem 1.1.6: As f is a continuous and periodic function, it is bounded. Let

us say |f(z)| < M for all z. Now, for any € > 0 there exist § > 0 depending on € such that
|f(z) — f(t)] < €/2 whenever |x —t| < §. Also, there exist a positive N depending on ¢ by

7



property (iii), such that for all n > N,

K,(x) <€e/4M for all x & [, ].

Then, we have

o100~ 501 = | [ 1t~ ) (a)as ~ f(t)‘

_ /Olf(t _ ) Ko (2)dr — f(1) /01 K, (2)dx

_ /Olf(t—x)Kn(x)dm— /lf(t)Kn(:p)dx

- / (F(t — ) — FO)Kn(2)de

0

IN

/ (F(t— ) — F(£) Kola)da| +
z€[—6,9]

o | =0 - o)K@
T Jag[-5,6

Now, we will use property (i) and the fact that (f(t — z) — f(t)) < €/2 so that the first
integral is bounded by €/2. And, in the second integral, we bound (f(t — x) — f(t)) by 2M
and the fact that K,(z) < e/4M, the second integral too is bounded by €/2.

Thus |0, (f,t) — f(t)| < e and our proof is complete.

Now, let us state and prove Weierstrass approximation theorem.

Theorem 1.1.7. Weierstrasss theorem :
Let f: T — C be continuous and periodic with period 1. Then, for every e > 0, there exists

a trigonometric polynomial ¢ such that

sup [f(t) — @(t)] <€ (1.9)

te(0,1]

Proof. We observe that o,(f,t) = f1/2 flt —2)K,(v)dx = fol f(t —z)K,(x)dx (as f is a

~1/2
periodic function of period 1, we can change the limit from (-1/2 to 1/2) to (0 to 1)). K,(t)

is a trigonometric polynomial. Hence, taking ¢(t) = o, (f,t), we get the desired result. OJ

Thus, we see that, any periodic, continuous function f : R — C can be approximated by

8



a sequence of trigonometric polynomials.

Now, we are ready to state and prove Weyl’s Criterion.

1.1.3 Weyl’s Criterion

Theorem 1.1.8. [Weyl, 1916] A sequence (x,)52, is uniformly distributed mod 1 if and
only if

N
. 1 2milxy, :
]\Hnw — z; e =0, for all integers I # 0 (1.10)

Proof. Let (z,)°°, be a sequence which is u.d. mod 1. Let us take g(z) = >  then using

Theorem 1.1.5 we have,

N

1 _ v
A}iinoo N ; eZmilen — /o X dy =0, for 1 € Z and [ # 0.

For the converse, let (z,,)0%, satisfy (1.10). Let g : T — C be a complex valued continuous
function. We need to show that limy_,« N ij:l g(xy,) = fol g(z)dz. Now let us take some
arbitrary € > 0. So, by Weierstrass approximation theorem, there exists a trignometric
polynomial ¢(x) that is, a finite linear combination of functions of the type e*** | € Z,

with complex coefficients, such that

sup o) — 0] < (111)
Thus,
[ st = 5 S oten)| <| [ (060) = otanaa] | [ otwrae = 53 gto
<| [ @) = ot@nas| + | [ otwrte =5 3 ot
|y 200 — gto)

But by 1.11, the first term and the last term are < e.

9



1 .
Now, as we have limy_, ¥ ZnN:1 e?™ilzn — (), so if we take N large enough then we would

have 2milay,

1
N Zgzl e less than arbitrarily small number. By choosing this arbitrarily small

number suitably, we can have ¥ Zf:[:l ¢(x,) less than € as ¢ is a finite linear combination

of functions of the type e?™* [ € Z, with complex coefficients. Therefore, the second term
is less than e. Therefore, by Theorem 1.1.5, (x,,)2%; is u.d. mod 1. [

Now, we would like to introduce an important branch of trigonometric polynomials which
provide a good approximation to the characteristic functions of intervals on R, known as the

Selberg-Beurling Polynomials.

1.2 Selberg-Beurling Polynomials

Selberg-Beurling Polynomials reduce the estimation of counting functions to evaluating finite
exponential sums. Interested reader may look for detailed exposition by Montgomery (see

[6], Chapter 1) or may look into the paper of Vaaler [16].

27 2
polynomials S;;(z) and S}, (x) of degree less than or equal to M, respectively called the

Let I = [a, ] C [— —] and M > 1 be an integer. One can construct trigonometric

minorant and majorant Beurling-Selberg Polynomials for the interval I,

Si(x) = Y §y(m)e(ma),

|m|<M

such that

e For 0 < |m| < M,

(1.12)



Henceforth, we will use the following notation: for an interval I = [A, B] C [-2, 2|, we choose

a subinterval

1
I = [ayﬁ] C |:07 _:|
2
such that
6 el, < 2cos(2m0) €I
For M > 1, let

Sj\i4,1(35) = Z SJj\E/[,l(m)e(mx)

denote the majorant and minorant Beurling-Selberg Polynomials for the interval I;.

With view towards calculation in later sections, we denote, for 0 < |m| < M,

Sii(m) = 537, (m) + Siga(=m).

We have, for 1 < |m| < M,

Siualm) = xylm) + () = T AT oLy
Thus,
Ay . . 1 _ sin(2mmf) — sin(2rma) 1
855m) = Xr(m) + Xr(=m) + Ol ) = — FO(gr ) (113

1.3 van der Corput’s Inequality

We now review an important inequality which is useful in the study of uniform distribution.
It was introduced by Weyl and van der Corput.

In order to prove van der Corput’s Inequality, we would need the following lemma:

Lemma 1.3.1. (Cauchy-Schwarz inequality) Let aj,as,...,a, € C and by, bs,...,b, € C
, then,

n

Z aibi

i=1

2 n n
2 2
<> a*D 1yl
k=1 =1

11




Proof. Let us expand the term > 71" | 37", (aib; — a;b;)*. We get

ZZ(aibj —CLJ Z Zb2+2b22a QZaibiijaj
=1 j=1

i=1 j=1 i=1

s <z ) (Z b?) -2 <Z b)

The left hand side of the above equation is greater than 0. Hence,

(&) <(54) (£2)

Theorem 1.3.2. (van der Corput, 1931) Let N be a positive integer and y, be a complex
number for 1 < n < N and let y, = 0 if n < 1 orn > N. Let H be an integer with
1< H<N. Then

H
N+H ) N+H
S zw i (1 HH)

Proof. Let us try to expand the term (H +1)2 |3 y,|?. Clearly,

2
(H+1)°

2 H
=222 vner

n r=0

- S

r=0 n

ey

r=0 n

Since 0 <r < Handy, =0ifn <1ormn > N, then when r = 0,9,,, =0ifn < 1 or
n > N and when r = H,y,., =0if n <1 — H or n > N — H. Thus the interval for n such
that y,., # 0 for 0 <r < H isn € [-H + 1, N]. Thus, using Cauchy-Schwarz inequality by
taking a; = 1 and b; = Zf:o Yiyrr we have

H
Z Yn+r

r=0

N
= (N+H) z:

n=—H+1

ZZ

—H+1 n=-H+1

Z Yn+r

r=0

N H
Z Z Yntr

=—H+1 r=0

12



Zyn

(N + H) Z

H

E n+r

N + H) Z (Z Yntr Z ynJrk)

n

H H
N+H ZZZ n+rm
B H
= (N+H) )] Z |yn+r!2+ZZyn+ryn—+k]
L n r=k=

=(N+H) |(

n  r#k

Z |yn|2 + Z Z yn-i—ryn—i-k]

n  r#k

Now, let us combine the terms corresponding to (r, k) and (k,r) to get second term in the

inner sum as

Z Z yn+ryn+k = 2Re Z Z Z ynJrrynJrk

n  r#k

n  r=0 (rk);k<r

Now, taking m = n + k, the above term can be written as

e (zizym_wy—m) “one (ziym+hy—m 5 1)

m r=0 k<r

m  h=1 k<ryr—k=h

But, the innermost sum is H + 1 — h. Hence,

<(N+H)

=(N+H)

(N+H)
(H+1)?

(N + H) o
T (H+1) Z' ynl” +

N+H .y

2
>

n

= <

(H+1)Z\ynl2—l—2

(H+1))_ |yal® + 2Re (Z > YmenTm(H + 1 - h))]

m  h=1

(H+1)) " [yal* +2 (ZZym+hym (H+1 —h)>]

1

Zym+hym H +1- h))]

N+H)ZH:

(H+1)

13



Thus we get the desired result. [

Corollary 1.3.3. (van der Corput, 1931) Let h be any positive integer. If the sequence

Tptr — Ty 18 u.d. mod 1, the the sequence x,, is uniformly distributed mod 1.

Proof. Let us take y,, = €™ m # 0. By using Theorem 1.3.2, we have

N—-h

2 eQﬂ'im(xn_»,_fon)
n=1

s HN N+ H) & h
S +N2(H+1);(l_(H+1)>

N
1 2mimx
DL
N
n=1

The second term in the above equation can be written as:

H N—h

2<N+ H) Z 1 — Z 627mm Tytr—Tn,)

N2(H +1) — —

_2(1+H/N)i<1 ) lN h€27rzmxn+r xn

(H+1) Z\ #H N=

We are given that xn+r — z, 1s ud. mod 1. Thus, the inner-
most term, that is, |% ZnN 1h eZrim@nir=an)| 0 as N — oo, Hence
szy;fl) Zh 1( — H oy ) ‘fo 1h emim(@nsr=an) | vanishes as N — oo. Therefore, for

sufficiently large N, we have,

<<1
H

N 2
1 2mima
DI
N

n=1

Thus, taking H large enough, we get the desired result. [

1.4 Examples of uniformly distributed sequences

Ezxample 1.4.1. If 6 is an irrational number, the the sequence x,, = n# is u.d.
This can be seen easily using Weyl’s criteria. We need to show that

limy 00 7| ZnNzl eZrimnd| () for m = 1,2, 3,... We can see that

N 2mim(N+1)0

2 eZﬂ'imnO _ € —1
627rim9 -1

n=1
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which is bounded by 2/|e*"™?|. The denominator is nonzero as @ is irrational. Thus,
N yo0 o | Son, 28| —
Ezxample 1.4.2. If 0 is a rational number, the the sequence x,, = nf is not u.d.

a
Let 0 = 7 with a, b coprime integers. Then for m = b, we have

N
Z eZTrib(na/b) - N
n=1

Thus Weyl’s criterion fails in this case.

)
n=1

oo

Ezample 1.4.3. If the sequence (x,,) o0, is u.d.

is u.d. mod 1, then the sequence (mz,,)

mod 1 for a non-zero integer m.

This is a simple consequence of Weyl’s Criterion. We have , for [ # 0, and m # 0
N XN

: 2milmxy, 1 2mikTy o

hmﬁg e —hmﬁg € for k =1Im #0

N—o0 N—oo
n=1 n=1

: oo ; : 1 N 2mikT,
Since (z,);2; is u.d. mod 1, imy_e0 5 D _,,_q €77 = 0.

Thus, we are done.

Ezample 1.4.4. If the sequence (z,)%°; is u.d. mod 1, then the sequence (x,, + ¢)22; is u.d.

mod 1 for some constant c.

This is again a consequence of Weyl’s Criterion. We see that

1 N 1 N
. 2mil(xn+c) . 2miley
]\}lm —Ngle _th—gle C

where C' = e2mi¢,
As (2,)22; is ud. mod 1, Climy o0 & SOV e2milen — 0. Hence, (x, + ¢)22, is u.d. mod 1

for some constant c.

Ezample 1.4.5. If the sequence (z,)%, is u.d. mod 1 and (y,) — ¢ as n — oo, then
(Tn + Yn)22, is u.d. mod 1.

Let us assume that ¢ = 0. As for any other case we can refer to example 1.4.4. Let [a, b]

15



be any interval. Let us now take € > 0 such that 2¢ < b —a and |y, | < € for all n > Nj.
Then,

[n < N (@ +yn) € [a,b]] 2 [n < N2 (2n) € late,b—¢]| = No

and
In < N:(zp+yn) €la,0]] <|n<N:(x,) €lat+eb—e]|+ N
Since (z,) is u.d. mod 1, limy_yoo [0 < N2 () € [a+€,b—€]| =b—a— 2¢
Thus
Ny Ny
—a—2— < —In< <b—a-— -0
b—a—2e A}l_lgoN ]\}g}noo |n N:(zp+yn) €a,b]| <b—a 26+1\}1_I>IC1>ON

=b—a—2¢< lim —\n<N (Tn + Yn) € la,b]| <b—a—2¢

N—oco N
Therefore, imy_o0 7 < N : (2, 4+ yn) € [a,b]| = b — a.
Hence, (2, + yn)5; is u.d. mod 1 for (y,) — c.

Example 1.4.6. The sequence (m?0)>°_, is u.d. mod 1 for @ irrational.

Let us consider the sequence (m + k)*0 — m?0 = 2km0 + k*@. Here we see that the first
term 2km#@ is mod 1 by example 1.4.3. Also, k26 is a constant term, hence by example 1.4.4,

2km0 + k%0 is u.d. mod 1. Therefore, using corollary 1.3.3 we get the desire result.

1.5 Equidistribution

While many sequences are uniformly distributed with respect to the Lebesgue measure, we

do come up with important sequences which are not distributed with respect to the Lebesgue

measure but are distributed with respect to a different probablity measure dpu.

Definition 1.5.1. Let X be a compact Hausdorff space with a measure du. Let Sy, Ss, . ..

be a sequence of finite nonempty subsets of X, such that each subset S; has cardinality |.S;].

We say that {S;} is equidistributed in X with respect to du (or p-equidistributed) if for any

16



continuous complex-valued function f on X,

lim &=2e5i Laes, /(@) /f Ydu(z (1.14)
ivoo|S]]

Remark 1.5.2. If we take a sequence {z,}32, in X and denote S; to be the set

{z1, z3,...2;}, then Definition 1.5.1 gives us a notion of equidistribution for a sequence
Skin X.

Note: For the families of interest to us, we will take X = [0, 1].

Let (z,,) be a sequence which is not uniformly distributed mod 1( that is not equidis-
tributed with respect to the Lebesgue measure), then the Weyl’s Criterion would fail for the

given sequence. Therefore,

lim — 262””’”” # 0 for some m € Z, m # 0.

N—ooo N
n=1

1 ,
If imy_yoo N 25:1 e?™men exists, then let us denote it by ¢,,, known as the Weyl limits.

N

: 1 2TIMI
cm—]\}l_rgoﬁzle (1.15)

Let us suppose ¢, exists for every integer m. Then, a theorem of Schoenberg and Wiener
(see [4], Theorem 7.5) gives us a technique to construct a measure p such that the sequence
(x,) is equidistributed with respect to u. We have the following theorem which help us to

find the measure p.

Theorem 1.5.3. If the limits c,, exist for every integer m and

M
I 2=
Afg£k>§E:|CWA
m=1
then the sequence (x,,) is equidistributed with respect to the measure

du(x) = g(—z)dz, where g(x) = Z cme%"m”’,

meZ
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1.6 Weighted equidistribution

In this section, we introduce the concept of weighted equidistribution. We attach some

positive weights to each element in the sequence and see how the sequence is distributed.

1.6.1 Definition

Definition 1.6.1. Let X be a compact Hausdorff space with a measure du. Let Sy, S, ...
be a sequence of finite nonempty subsets of X, such that each subset S; has cardinality |S;|.
Suppose each z in S; has a real, positive weight w;, assigned to it. The sequence {S;} is

w-distributed with respect to a measure du if for any continuous complex valued function f

on X,
lim Z"”ES wirf (@ / flx)du(x (1.16)

1—00 xGS Wiz

By taking w;, = 1 for each x, we recover Definition 1.5.1 without weights.

Proposition 1.6.2. Let X = [0,1]. For any interval A C X, let xa(x) denote the charac-
teristic function of A. With the same notation as above, the sequence {S;} is w-distributed

with respect to the measure dy if and only if for every interval I = [a,b] C X,

lim 2aess Xt (@) _ / dp(z). (1.17)

Theorem 1.6.3. [Weighted version of Weyl’s criterion| For an integer m, let us define
the weighted m-th Weyl limits, C,, as

1— 00 ersl wl$

A sequence of finite nonempty subsets Si, Sa, ... in [0,1] is w-distributed with respect to a
measure dy if and only if the limit C,, exists for all integers m and
ZmGS wime(mx)

Cip o= lim 2=2E5: - /0 ' e(ma)du(z).

1—00 ersz wll‘
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In this case, the sequence {S;} is w-distributed with respect to the measure

du(x) = g(—z)dz, where g(x) = Z Cme(mx).

MEZ
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Chapter 2
Modular forms

In this section, we review some basic properties of modular forms and Hecke operators. The
family of sequences for which we study the distribution properties in this thesis arises using
the concept of modular forms. Thus, these form the backbone of the problems in this thesis.

This chapter is based on ([7], chapter 2-6).

2.1 Modular group

Definition 2.1.1. (General Linear Group) Let R be a commutative ring with 1. Then
the set GLy(R) denotes the ring of 2 x 2 matrices which are invertible.

Definition 2.1.2. (Special Linear Group) Let R be a commutative ring with 1. Then the
b
set SLy(R)= “ d] ca,b,c,d € R;ad — be = 1} forms a group with matrix multiplication
c

called the special linear group.

There is an action of SLy(R) on C, given by

az+b
cz+d

vz = ;v € SLa(R)

Definition 2.1.3. (Full Modular Group) Let us take R = Z in the Special linear group.

21



Then, the set

b
SLQ(Z):{[a d] :a,b,c,dEZ;ad—bc:l}
c

forms a group with matrix multiplication called the full modular group.

11
01

-1
Let us define two matrices S and T as S = [(1) 0 ] and T =

We have the following theorem:

Theorem 2.1.4. The matrices S and T generates SLy(Z).

a b
Proof. We see that whenever S or T is multiplied to any matrix [ d]’ we get the
c

following:

b —c —d
S [a ] = [ ¢ ] , the rows get interchanged with some sign change

b b+ nd
Ak “ d] — | e b the first row gets added by n times the second row
c c
a b . . .
Now, let 4 € SLy(Z). Let us assume |a| > |c|, if not then using S, we can interchange
c

the row with a sign change. Now, using division formula, we have a = cq+r, where 0 < r < c.

So, we have,

a bl |eg+r b
c d c d|’
o _ , .| b—dg o
Now multiplying 779 to the above matrix we get the matrix . Again using S,

c
we interchange the rows and follow the above steps till we get the lowermost left entry as 0

and get a matrix of the form [](j q] € SLo(Z). So, we have pg =1 = p = ¢ = £1. But,
r

22



then S? = 1. Hence,
+1 ¢
0 =1

=T or S?T71

b q
0 r

Thus, S and T' generates SLy(Z). O

2.1.1 Subgroups of the modular group

In this section, we define some important subgroups of SLy(Z).

Definition 2.1.5. (Principal congruence subgroup)

A principal congruence subgroup of level N is the group given by :

P(N) = { [Z Z] € SLy(Z) - [Z Z] _ [(1) (1)] ( mod N)} (2.1)

We see that it is a group of matrices in SLy(Z) which are congruent to the identity matrix
modulo N.

Definition 2.1.6. (Congruence Subgroup)

A subgroup I' C SLy(Z) is called a congruence subgroup if I'(N) C T' for some N. Since
['(N) is of finite index in SLy(Z), it follows that any congruence subgroup is also of finite
index in SLy(Z).

Definition 2.1.7. (Level of a Congruence Group)
Let N be the smallest positive integer such that I'(V) C I. Then, I' is said to be of level N.

Let us now define two special subgroups of SLy(Z).

Definition 2.1.8. (Hecke Subgroup)
Hecke subgroup is defined as a subgroup of SLy(Z)of the form

To(N) = { [“ Z] € SLy(Z) : ¢ = 0 (mod N)} (2.2)

C

for some N > 1. It can be seen that, this is a group, and T'(N) C T[o(V), so these are

congruence subgroups.
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Another special subgroup of SLy(Z)is given by:
b
[(N) = { [a d] € SLy(Z) : ¢c=0 (mod N) and d = 1 (mod N)} (2.3)

b
We note that I'1(N) C TI'o(V). The function I'o(N) +— (Z/NZ)* sending ¢ y >
c

d (mod N) is a surjective group homomorphism with kernel I';(N). Therefore, I';(N) is
a normal subgroup of I'y(N) and I'o(N)/T'1(N) = (Z/NZ)*.

Lemma 2.1.9. For any given N, T'(N) is a normal subgroup of I'1(N) and T'1(N) is a

normal subgroup of T'o(N). The following inclusion is satisfied:
['(N) CTy(N) CTh(N) C SLy(Z)

We also have

o [[\(N):T(N)] =N

o [[o(N) : I'(N)] = ¢(N) where ¢(N) = N ][, n(1 - Il)) is the Fulers totient function,

and

o [SLy(Z) : To(N)] = NI, n (1 + %) where the product is taken over all primes p
dividing N.

For proofs one can refer to ([7], Section 2.2 and 2.3)

Definition 2.1.10. (Upper half plane)
The upper half plane denoted by H is the set given by

H={zeC:Im(z) >0}

It is an open subset of C with usual topology.

The action of the group

b
GL;(R):{[“ d] ca,b,c,d € R, ad — be => 0}

c
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on H is given by

[b b] az+b
z =

c d cz+d

Definition 2.1.11. (Extended Upper half plane)

The extended Upper half plane (H*) is given by

H* = HUQU {ico}

That is, by adjoining all rational points and {ioco}, known as the cusps, to the upper half

plane we get the extended upper half plane.

Let I be a congruence subgroup. A cusp of I' is a I'—equivalence class of elements in
Q U {ioco} under the action of I". There is only one cusp of SLy(Z)as it acts transitively on
QU {icc}. There are only finitely many cusps of I" as every congruence subgroup has finite
index.
The topology on H* is given in the following way. For z € H, the usual fundamental system
of neighborhoods is taken. For any cusp y # ioo, all the sets given by {y} U C? is taken,
where C? is the interior of the circle in H, which is tangent to the real axis at y. Finally, for
y = 100 the set {ico} U {z € H: Im(z) > ¢} is taken as a fundamental open neighborhood
of 100 for all ¢ > 0.
If v € SLy(Z) and z € QU {ioo} then vz € QU {ioco}.

2.2 Fundamental Domain

Definition 2.2.1. Let I" be a subgroup of SLy(Z) and F C H be a closed set with connected

interior. Then, F is said to be a fundamental domain of I if

1. any z € H is I'-equivalent to a point in F;
2. no two interior points of F are I'-equivalent;

3. the boundary of F is a finite union of smooth curves.
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Theorem 2.2.2. The fundamental domain for the action of SLy(Z)on H is given by

,|z\>1}

Before proving the theorem, let us state and prove the following lemma which we will be

F= {ZGH:| Re(z) |<

N —

required in proving above theorem.

Lemma 2.2.3. The set of (a,b) € Z x Z such that (a,b) # (0,0) and for some z € H if
laz + b| < 1, then the set is finite and non empty.

Proof. The second condition, i.e. the set is non empty can be seen easily by taking
(a,b) = (0,1).

Now let us write z = x 4+ iy. Then we have
laz +b] <1 (ax +b)*+a*y* < 1= |a] < 1/y

Hence a can only take finite values.
Again, for [az +b| < 1= —-1<(ar+b) <1= —1—ax <b <1+ ax. Hence, b can also

take only finitely many values. [

Proof of Theorem 2.2.2 : In order to prove this, we need to show that the given F

satisfies all the three condition which are there in the definition of fundamental domain.

c cz+d T |ez+d]2.

b
(1) Let v = [a d] € SLy(Z). Then vz = =+ and Im(yz) = 2240 From the above

lemma we know that there are only finite values of (¢, d) such that |cz + d| < 1. Hence, let

us choose v € SLy(Z)such that |cz + d| would attain a positive minimum value and thus,

Im('yz) = ‘Z’_L,_(sﬁz

We can adjust any z € H by translationg by:

1 n
01

Thus we can normalize z such that |Re(z)| < 1/2
Now, we will show that vz € F.

would attain the maximal value.

z=z+nforncZ
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If not, then we have |yz| < 1 and S(yz) = ;—Zl Thus, Im(S(yz)) = Iﬁiﬂ"f) > I'm(vyz), which

contradicts the fact that I'm(yz) was maximal. Hence |yz| > 1. Therefore, every element of

Z is SLy(Z)-equivalent to some points in F.

(2) Now we have to show that if z,w € interior of F, then ther does not exist any v €
SLs(Z)such that vz = w.

b
Let us prove this by the method of contradiction. So let v = [a d] € SLy(Z)such that

c
vz = w. We may assume that I'm(w) > Im(z). Therefore,

Im(z)
Im(w) > Im(z) = et dP > Im(z)

= lez+d| <1
= Im(cz+d) = |c[Im(z) <1

Now, since for any z = x +iy € F, x can take maximum value of [1/2| so |y| > v/3/2. Hence
lc| <2/4/3. Thus, ¢ = 0 or 1. Without loss of generality let us assume ¢ = 1. Now,

lcz+d* <1

= (z+d?+y* <1
= (z+d)?+3/4<1
= (z+d)?<1/2

and as || < 1/2, we have d = 0. Hence |cz + d| = |z| < 1, which contradicts the fact that

z € F. Therefore, no two interior points of F are I'—equivalent.

(3) The boundary of F is clearly union of smooth curves.

2.3 Modular forms

Let us define few of the following concepts which will be later required in our section.
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Definition 2.3.1. (Holomorphic and Meromorphic function):
Let T be open subset of C, then a function f : T — C is a holomorphic function if f is
complex differentiable for all point z € T, i.e. if
h) —
o) = i LW =IO

h—0

exists, and h — 0 from any direction.
A function f : T — CU {oo} is a meromorphic function if f is holomorphic at all except
(possibly) at a discrete set D C T, and at each w € D there is a positive integer n such that

(z —w)" f(z) is holomorphic at w. We call n the order of f at w and is denoted by v, (f).

For example, f(z) = €* is a holomorphic function on C and f(z) = - is not holomorphic

but is meromorphic.

Definition 2.3.2. (j function):

C

b
Let v = [a d] € GLy(R)and z € H, then

Jj(v,2) =cz+d (2.4)

Slash notation”:

b
Let v = [a d] € GLy(R)and for any holomorphic function f € H, we have
c

(fIV)(2) = (det)*2j (v, 2) ™ f(v2) (2.5)
where k is the is related to the function f and we will get to know about it soon.

Definition 2.3.3. Weakly modular function:
It is is a holomorphic function f(z) : H — C such that

az+0b & a b
f (cz—l—d) = (cz+d)"f(2), for all L d] € SLy(Z) (2.6)

We will use the topology on the extended upper half plane H*.
Fourier expansion:
Let z = 2 + iy € H and ley y be fixed, then the function e?™* = e=?™¢2™@ takes the line
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Im(z) = y in H to a circle centered at 0 of radius e *™. We can extend this map by
sending ico to 0. Thus, we see that the fundamental neighborhoods of ioco are mapped to

the fundamental neighborhoods of the origin.

11
We see that from definition 2.6 f(z+ 1) = f ([0 )

a well defined map f from the unit disc to C such that e*™ s f(z) where z € H. Therefore,
if f(z): H — C is holomorphic, then f(q) is holomorhic on punctured unit disc.

] z) = f(2)Vz € H. Thus, there exists

Therefore we obtain a Laurent series expansion f(q) = > a,q" where a, € C. This is

n=-—00
called the g-expansion, of f.

o 2mizn

We can write the Fourier series at ico as f(z) =) > aue

The function f is said to be holomorphic at ioco if a, = 0 for all n < 0. And, we say f

vanishes at 700 if a,, = 0 for all n < 0.

Definition 2.3.4. (Modular forms of weight k):
A modular form of weight k € Z for the full modular group SLy(Z)is a holomorphic function
f(2) : H — C such that

o [(ZE) = (cz+d)"f(z), for all [a
¢

Z] € SLy(Z).

e it is holomorphic at {ico}, that is, v (f) > 0.

The set of all modular forms of weight & on SLy(Z)is denoted by Mj(SLo(Z)).

Definition 2.3.5. (Cusp forms of weight £):
It is a modular form of weight k& € Z for the full modular group SLy(Z)such that the constant

term ag is 0 in the Fourier expansion of the function at {ico}.

The set of all cusp forms of weight k on SLy(Z)is denoted by Si(SLa(Z)).

Proposition 2.3.6. If f : H+— C is holomorphic which satisfies

for all z € H, and is holomorphic at ico, then f is a modular form of weight k of SLy(7Z).
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Lemma 2.3.7. For k € Z and odd M (SLy(Z)) = {0}.

Proof. By using equation 2.6, we have

£ =1 ([‘01 _01] ) — (“1H(2) =~ (2

Hence, we get My (SLy(Z)) = {0} for k odd. O

2.3.1 Examples of modular forms

Definition 2.3.8. Eisenstein series of weight k£ > 4:

The Eisenstein series of weight £ > 2 and k even integer is a function on H as

Ge(2) =) (;,z cH (2.7)

< (mz + n)*

where summation is over all (m,n) € Z?, with (m,n) # (0,0).

Lemma 2.3.9. Let B(m,n) = am? + 2bmn + cn?;a,b,c € R be a binary quadractic form
which is positive definite i.e. a > 0 and ac—b* > 0. Then B(m,n) > pu(m*+n?) for p € RT.

C n C

b b
Proof. We see that B(m,n) = (m,n) [Z ] [m] and we can diagonalize [Z ] as it is a

real symmetric matrix. Thus there exist a matrix P such that
pr 0
0 125

. So B(m,n) = pu1x* + poy? and puq, o are real and positive as B

a b
b ¢

P P! =

—p|"

x
Let us put [
n

Y
is positive definite.

Let g = min(p, u2) > 0. Then, B(m,n) > p(x® + y?). But (22 + y?) = (m? + n?) since P
is orhtonormal. Hence, B(m,n) > pu(m? +n?). O
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Lemma 2.3.10. For any z € H, equation 2.7 is absolutely convergent and converges uni-

formly on compact subsets of H. Therefore, Gy is a holomorphic function on H.

Proof. Let z = z + iy = |mz + n|> = |m(z + iy) + n|*> = (22 + y*)m? + 2zmn + n?.

. : : : @4y =z

We see that this is a binary quadractic form with respect to the matrix .
x

and since z € H,y > 0, so this is a positive definite. Thus, using above lemma we have

Imz + n|? > u(m? + n?) for some positive 1 € R. Therefore,

/ / o0

1 1 _ 7a(s)
2 G = 2 Tl g 2

s=1

where 75(s) counts the number of ways s can be written as sum of two squares. Thus,
ro(s) = O(s) for € > 0. Thus the series converges. Therefore, by Weierstrass M-test the

series i.e. Gg(z) is a holomorphic function. [J

Lemma 2.3.11. The holomorphic function Gy satisfies Proposition 2.3.6.

Proof. We need to prove that Gi(z + 1) = Gi(z) and Gi(—1/2) = 2*Gi(2). Also, Gy(z) is
holomorphic at ioo.

Now,
/ /

1 1
Gule 1) =D e - mz (mz+ (m+n))F

m,n

and since (m, n) € Z?, with (m,n) # (0,0), so (m, m+n) # (0,0). Hence Gi(z+1) = Gi(2).
Now again,
/ /

Gr(-1/2) =3 (; — Y (_; — Gy(2)

—m/z +n)k

as (m,n) € Z*\ {(0,0)} = (n,—m) € Z*\ {(0,0)}.

Now, the behavior of G (z) at z = ico come from the term when m = 0. So,

_ 1
Gy(ioo) = Z v
n€ezZ\0

Thus, for all odd values of k, G (ico) = 0 as we can pair up the summands corresponding to
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(m,n) with (—m, —n). And, for k even we have Gy(ico) = 2((k), where ( is the Riemann

zeta function. [

Thus from lemma 2.3.10 and lemma 2.3.11, we see that G(z) is a modular form of weight

k. Hence it will have a Fourier expansion, which is given by the following proposition.

Proposition 2.3.12. For every even k > 4, the Fourier expansion for Gy(z) is given by

Gi(z) = 20(k) + % > ou (2.8)

where ¢ = ™% and o4(n) =3, d°.
Before going into the details of the proof let us first state and prove Lipschitz formula.
For kK > 1 and z € H, we have

1 (_QWi)k - k—1 2minz
Z(z+n)’“:(k‘—1)!;n e (2.9)

neL

The above formula can be derived by using the definition of wcotmz. We know that mcotmz =
ER D (@i—n) + ﬁ) =Y nez oy Also,

COST 2 .eiﬂ'Z + efiwz .627riz + 1
Teotmz = m— = mi— — = T—— (2.10)
sinmz eIz _ p—inz e2miz _
2miz ; OO
esmE — 142 , 2mi _ , ;
=Ml——— =T — ————— = T — 27 E e?minz (2.11)
e2miz | 1 — e2miz
n=0
1 _ . . o0 27F’L7’LZ . . . . . .
Thus, Y,z T = ™~ 2mi Yoo € and the successive differentiation of this equation

gives us the Lipschitz formula.
Proof of Proposition 2.3.12:
We have

Gk(z)zzm:24(]“)+sz:2<(k)+222(mz:—n)k

m#0 n€Z m=1 n€Z
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We use Lipschitz formula in the inner sum to get

Gk(2)22<(k’)+222 k Z k 1 27rzmnz_2c( k 'Zznk 1 _mn

m=1n=1 m=1 n=1

Now, let us collect the term such that mn = s. Thus, the coefficient of ¢* is op_1(s).

Therefore,

Now, to make the coefficient of G (z) equals to 1, we need to divide G (z) by 2¢(k) and we
get

Gr(2) 27rz 2k(—27i)F &
E = = 1 — 1 I A _ mn
k(2) 2 () + ZUk 1(n)q" + 2 ()R ;Uk 1(n)gq
But, 2¢(k) = —(7%]31“3’“, where By, is the Bernoulli number. Therefore,
2k
Ek(Z) =1— B_k ;O’k1<n)q

which is a modular form of weight k for the full modular group SLy(Z). Also, Ej(ico) = 1.

We see that,

Now, we prove the following lemma.
Lemma 2.3.13. Fork > 4, M(SLy(Z)) = CEy®Sk(SL2(Z)). Therfore, dim My(SLy(Z)) =
14+ dim Sk(SLs(Z)).

Proof. Let g € dimM;(SLy(Z)) and p = g(ico) be the constant term in the Fourier

expansion of g.
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Now, g = pEy — pEy + g = puEy + (9 — pEy). As the g(ico) = p and constant term of

pEy = p, (9 — pEy) € Sp(SLa(Z)).
Therefore, My (SLo(Z)) = CEy & Si(SLa(Z)) and dim M (SLy(Z)) = 1+ dim S, (SLy(Z)). O

Definition 2.3.14. Tha Ramanujan delta function is given by

Ei(z) — E3(z >
A(z) = il )1728 0(2) =q—24¢" +252¢° + ... = ZT(n)q” (2.12)
n=1

A(z) is a non trivial cusp form of weight 12 for SLy(Z).

2.3.2 Eisenstein series of weight k = 2

1

For k = 2,Gy(z) does not satisfy Proposition 2.3.12 since Z;nn 1 )
™ (m(z n

5 fails to

converge. But for k£ = 2, we have the following Proposition.

Proposition 2.3.15. The function Gy and Es satisfy the following:
Go(—1/2) = 2°Go(2) — 2miz (2.13)

and
6z

Ey(—1/2) = 22Ey(2) + —

(2.14)

To prove the proposition, we need the following lemma.

Lemma 2.3.16. For all z € H,

> 1 1 —27ri
> (- )- 219
mz+n mz+n-+1 z

n=—o0 m#0

and

2 i (mz1+n T me +1n—|— 1) =0 (2.16)

m#0 n=—o0
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Proof. Since, mcotrz = £+ 3, <(zin + 1 1 )),

i 2 (mz1+n B mz—|—1n+1> :é i (mOt (W(nz_ 1)) N nil st (%> +§)

n=—00 m#0

=

n#£0,1
1 1 1 1
() 2 ()
z0 mz — mz z0 mz mz -+
We have
1 1 1 1 1 1
Z(mz—l_ﬁ>+z(%_mz+l):Z(mz—l_mz—i-l)
m##0 m70 m##0
1 ( 1 1 )
i (1/z)+m  (1/z) —m
T 27 T
= —— (7TCOt (—) —z) = ——cot (—) + 2
z z z z
and

n_;é01
N
1 m(n—1) z z
— = lim ¢ . t(-) Z_
ZNl—I}éon__N(WCO( z > Teo z +n n—l)
n#£0,1

zllim 27rcot<z>—7rcot M — 7 cot ﬂ +Z & — 2z
2z N—oo z z z N+1

27 T 21 TN
= —cot <—> —2— —cot | —

z z z V4

=

As, z € H, by (2.10) we have

A ot Z) =00 v — 1 = 2, e g

Putting everything together, we have

- 1 1 —2mi
Z Z (mz+n_mz~|—n+1) Tz

n=—o00 m#0
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Now,

[e'e) N
1 1 1 1
E E — = lim g —
mz+n mz+n+1 N—oo mz+n mz+n+1
m##0 N

m#0 n=—o00 n=—

=) 0=0

m=#0

Proof.of Proposition 2.3.15 Let us first observe that,

1 1 1 —1
(mz+n)? <mz+n_mz—|—n—|—1) ~ (mz+n)2(mz+n—1)

The series,

(m,n)# (0,0),(0,1)

converges absolutely. Therefore,

G +ZZ mz+n

m#0 n=—00

1 1 1 1
+Z Z { (mz +n)? _<mz+n_mz+n+1)+<mz—|—n_mz—|—n+1)}

m#0 n=—o00

Using (2.16), we have,

1 1
G +ZZ {mz—l—n _(mz—irn_mz—irn—l—l)}

m#0 n=—o00

We can interchange the double summation as it is absolutely convergent. Thus we get,

G (2) Z 2 { (mz +n)? (mzl—i—n  mz +1n + 1)} (2.17)

n=—00 m#0
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Now,

Ga(~1/2)=2¢(2) + Y Z T

m#0 n=—o0

= 2¢(2)(1 + 2?) +ZZ =

m##0 n=%#0

Z+ZZM_

m=—00 n7£0

HZZM_

n=—00 m;éO

By (2.17), we have

Ga(2) = 2(2) + (Ga(=1/2) — 2(2) Zz(mz—l—n mz+1n—|—1)

n=—00 m#0

Using (2.15), we get Go(—1/2) = 22Ga(z) — 2miz
(G2(2) is not a modular form, but ia an example of quasi-modular form.)
By definition of Ey(z) and by equation (2.13), we get the desired value for Fy(1/z). O

Theorem 2.3.17. The cusp form A = EiB ¢ S12(SLe(Z)) is Ramanujan’s infinite product

For proof one can refer to ([7], Theorem 5.1.4).
The Fourier coefficients of this series are denoted by 7(n), so A =" 7(n)q¢".

Remark 2.3.18. Ramanujan in 1916 conjuctured the following properties of 7

e 7(mn) =7(m)r(n) for (m,n) =1 and m,n € Z*

) =) (*) —p"r(p*7"), @ €N

e if p is prime, then 7(p
e if p is a prime, then |7(p)| < 2p'!/2
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The first two properties were already proven by Mordell in 1917 and the last by Deligne in
1974.

2.4 Valence Formula

Let f be a modular form of weight k for SLy(Z). Then for any v = [a
c

Z] € SL(Z),

V() = vy (f), since f(2) = (cz+d)Ff (%j—:?), where v,,(f) is the order of f at w.
We note that v, (f) depends only on the orbit of w under SLy(Z), so we need to study order

of f,v,(f) only for z in fundamental domain of SLy(7Z).

Theorem 2.4.1. Let 0 # f be a modular function of weight k for the full modular group
SLy(Z). Then,

1 1 k
Viso () + 50i(f) + z0o(F) + Y vulf) =
2 3 = 12
wH£i,p
where p = %1 + %g
For proof one can refer to ([7], Section 4.3).
2.5 Dimension Formula
It is an immediate application of valence formula.
Theorem 2.5.1. For, k > 0,
£ if k =2 mod 12
dimMy(SLy(Z)) = Sel /
[ £]+1  ifk#2 mod 12

To prove this, we need the following lemma.

Lemma 2.5.2. The following statements are true.
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(i) My(SLa(Z)) = 0 for all k <0 and k = 2;

(11) My (SLo(Z)) is one-dimensional for k = 0,4,6,8, and 10 and is spanned by 1, Ey, Es5, Ex
and E1y respectively;

(111) Multiplication by A gives an isomorphism of My_12(SL2(Z)) onto Sk (SL2(Z)) for all
ke Z.

Proof.

(i) By applying valence formula, we get that for f whose weight is £ < 0 and k = 2, is

identically zero.

(ii) We see that for k£ < 10 the right hand side of valence formula is less than 1. Thus,
if there was a non trivial cusp form of weight £ < 10, then there would have been
a contribution 1 from the zero of 700, which is not possible as right hand side is less
than 1. Therefore, S(SL2(Z)) = 0 for £ < 10. Now by using lemma 2.3.13, we have
My (SLy(Z)) = CE), for k < 10.

(iii) Let f € Ej_12(SL2(Z)), then fA € Si(SLy(Z)). Now for the converse, let g €
Sk(SL2(Z)). Since, A(z) is a non trivial cusp form of weight 12 which does not vanishes
on the upper half plane, we can define an analytic function f(z) = g(z)/A(z) which is
of weight k& — 12. Therefore, this proves (iii).

O

Proof.of Theorem 2.5.1: The dimension formula is true for & < 10 by (i) and (i7) of
Lemma 2.5.2. By part (4i7) of Lemma 2.5.2 and Lemma 2.3.13, for & > 12 we have

dimMj,(SLy(Z)) = 1 + dimSy(SLa(Z))

Thus, by induction, we get the dimension formula. [J

Corollary 2.5.3. For k > 4, we have

| =1 if k=2 mod 12

k.
dimSy(SLy(Z)) = { 2
mSe(5L2(2) K if k # 2 mod 12



2.6 Hecke operators of level 1

A family of operators mapping each space M} of modular forms onto itself are called Hecke
operators. We define the m — th Hecke operator T,, for f € My (SLy(Z)) as

To(f) =m0y Y f\[ ] (2.18)

ad m b(mod d)

An eigenform is a modular form which is an eigen vector for all the Hecke operators.

Properties of Hecke operator:

(i) Let m be any positive integer. Let f € My(SLy(Z)), then T,,(f) € Mi(SLy(Z)).
Similarly for g € Si(SLa(Z)), then T,,(g) € Sk(SL2(Z)).

(ii) Let f € My(SLy(Z)) has a Fourier expansion as

_ Zﬂ<n)€2mnz
n=0

at 100, then the Fourier expansion of T,,(f) at ioo is given by

o0

Tu(f() = | D2 d () | e

n=0 \d|m,n
(iii) For any prime p and r € N,
Tpr’r — Tpr+1 + pk_lTprfl

and
T, T, = T,,, whenever (m,n) = 1

In particular, we note that all Hecke Operator commute.

Remark 2.6.1. If f is a normalized eigenform we have :

T.(f) = \uf for some A,
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but

an(f) = ar(Tu(f)) = ar(Anf) = Anaa(f) = An

since a;(f) = 1.

Hence we can recover the Fourier coefficients of a normalized eigenform by considering
the associated eigenvalues of Hecke Operators : A, = a,(f). Thus, we see that for our

previous example,

2.7 Modular forms of level N

So far we have discussed modular forms of level 1. Now in this section, we will generalize
the concept of modular forms to a higher level.

For more detail, the reader can look at ([7], Chapter 6-8).

For the purposes of this thesis, we will be concerned with Hecke congruence subgroup (I'g(N))

of level N, so our definition would be with respect to I'g(N).

Definition 2.7.1. (Modular forms of level N)
A modular form of weight k& with respect to I'((/V) is a function f : H — C, such that

e f is holomorphic on H.
o fly=fforall y€Tly(N).

e f is holomorphic at the cusps, that is if a is a cusp then v,(f) > 0.

f is called a cusp form of weight k& with respect to ['o(IV), if f vanishes at the cusps.
The space of modular forms of weight & and level N is denoted by M (N, k) and the space
of modular forms of weight k and level N is denoted by S(N, k).

We now define the Petersson Inner Product for f,g € S(N, k).

Definition 2.7.2. (Petersson Inner Product)
Let f,g € S(N, k). The Petersson inner product of f and g is given by

o= | /3 o (2 B
41
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where z = x + iy.

2.8 Hecke operators of level N

Hecke operators are family of linear operators that preserve the spaces M (N, k) and S(N, k)
for each weight k£ and level N. We will study the distribution of eigenvalues of these operators.
Let us define,

won-{o |

Now, let us define the n — th Hecke operator for level N.

GGLQ(Z):a,b,dGZ,O§b<dad:n,gcd(a,N):1}.

Definition 2.8.1. Let f € M(N,k) and n be a positive integer. The, the n — th Hecke
operator 7}, is given by:

T(f)=n"" > Iy

YEA™(N)

Definition 2.8.2. Let f € M(N,k). We say f to be a Hecke eigenform if, for each n

such that ged(n, N) = 1, there exists a complex number \,, such that

To(f) = An-f
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Chapter 3

History and Motivation of the

problem

3.1 Introduction

Let S(N, k) be the space of cusp forms of weight k£ (k > 2 is an even integer) with respect to
['o(N) and for any integer n > 1, let T,,(N, k) be the n-th Hecke operator acting on S(N, k).
Let s(N, k) be the dimension of S(N, k). Let p be a prime such that (p, N) = 1. Let E(N, k)
denote a basis of Hecke eigenforms of S(N, k). An eigenform h € E(N, k) will have a Fourier
expansion of the form
Wz) = an(h)e(nz).
n=1
where e(x) = e*™7.

Let T) denote the normalised Hecke operator

1,

, —
Tn T opk=1)/2

and A\,(n), an eigenvalue of h(z) corresponding to 7}..
Let r be a fixed positive integer. Let p be a fixed prime and r, = ord, r. For h(z) € E(N, k),

we define the weight
r o lac(R)Pe

T TR
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where ||h|| denotes the Petersson norm of h.

Let p be a prime number such that ged (p, N) = 1 By a theorem of Deligne [2], the
eigenvalues Ap(p) lie in [—2,2]. We consider the following families formed by these Hecke

eigenvalues:

(a) (Sato-Tate family) Let N and k be fixed and h € E(N, k). We consider the sequence
{An(p)} as p — oo.

(b) (Vertical Sato-Tate family) For a fixed prime p, we consider the families {\,(p) : h €
E(N,k)} as N — oc.

(c¢) (Average Sato-Tate family) We consider the families {\n(p) : p < x,h € E(N,k)} as
N — o0,z — 00.

We can also study the distribution of these family by attaching weights wj .

3.2 Equidistribution theorems for Hecke eigenvalues

The Sato-Tate conjecture (now proved by the work of Richard Taylor et al) states that for
h(z) € E(N, k), the sequence {)‘h@)}(fﬁfil is equidistributed in [—2, 2] with respect to the
measure

1—Zde  if v € [-2,2]

1
dpoo(z) = ¢ "
0 otherwise.

That is, by Definition 1.5.1, for any continuous function f: [-2,2] — R,

i X i) = [ i)
(p,N)=1

Equivalently, for any interval I = [A, B] C [-2, 2],

B

lim. le(a;) ; X1(Au(p)) = /A dhioo ().
(p,N)=1
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Here, my(x) denotes the number of primes p less than or equal to x such that (p, N) = 1.

In 1997, Serre [14] proved a vertical analogue of the Sato-Tate conjecture by fixing a
prime p and varying the Hecke eigenforms. Let p be a fixed prime. He showed that as
N + k — oo with the restrictions that (p, N) = 1 and k > 2 is an even integer, the sequence

of multisets
Sy = {M(p), h € E(N,k)}

is equidistributed with respect to the measure

p+1
dﬂp(m) = (p1/2 +p_1/2)2 . xQdum(x)
That is, for any continuous function f: [-2,2] — R,

i 1 = ’ T T
Jdm TR, 2 ) - [ s@in@

(p,N)=1
k even

Equivalently, for any interval I = [A, B] C [-2,2],

1 B
s, o e = [ i)

(p.N)=1 €E(N,k)

k even

In 2004, Charles Li [5] obtained an interesting generalisation of Serre’s equidistribution
theorem. He observed that by attaching suitable weights to each element in the multiset
Sy, one can derive a weighted distribution measure for the sequence {Sy}. He proved the

following theorem:

Theorem 3.2.1. Let k > 3 be an even integer. Let r be a fived positive integer. Let p be a
fized prime and r, = ord,r. Define, for h(z) € E(N,k), the weight

L lamPe
P RE

where ||h|| denotes the Petersson norm of h. The family of sets {Sn : (p,N) = 1} is wj-

distributed with respect to the measure
ZXQZ Ydpso (), as N — oo
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where X, (x) is the n-the Chebychev polynomial defined by

sin(n + 1)¢
X, (2 i S
(2 cos @) o
That is, for a continuous function f: [—2,2] — R,
1 2 Tp
fm s W) = [ @) (3 Xae) ) dino)
(p,N)=1 " heB(Nk) —2 i=0

FEquivalently, for any interval I = [A, B] C [-2,2],

: > wia(n(p) :/ (ZX%(@) dptoo ().

oz SV E) heE(N,k)

Remark 3.2.2. We note that in Serre’s theorem, we may vary N as well as k. However, in

the above theorem, the weight k is fixed and the levels IV vary.

This gives us the corollary:

Corollary 3.2.3. Ifp does not divide r, the family of sets {Sn : (p, N) = 1} is w} -distributed
with respect to the Sato-Tate measure djoo(x), as N — oo.

In 2009, the error terms in Serre’s theorem were obtained by M. R. Murty and Sinha
([9]). They proved the following theorem which describes the rate of convergence to the

measure dy,(z) effectively:

Theorem 3.2.4. Let N be a positive integer, k be a positive even integer and p be a prime

number coprime to N. For an interval [a,b] C [-2,2],

b
#{h € BV o) € a8} = [ dipla) +0 ( logp ) ,

s(N, k) log kN

where the implied constant is effectively computable.

In 2006 Nagoshi [10] investigated the following and proved two theorems which tell us
the following:
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Theorem 3.2.5. Let k = k(x) such that fg?gg — 00 as x — o0o. Then for any continuous

real valued function g on [—2,2], we have

Sorme 2 sulo) = 5 [ sV P
heE(1,k)

as r — OQ.

The second main result is the following:

Theorem 3.2.6. Let k = k(x) such that ﬁgigg — o0 as © — oo. Then for any bounded

continuous real valued function g on R, we have

1 2 _p<e An(P) 1> e
0w, “’( }<x>p>%ﬁf_mg“)“dt

heE(1,k)

as r — OQ.

Cho and Kim in their paper ([1], Theorem 4.1) generalized Nagoshi’s theorem for higher

level N and proved the following theorem.

Theorem 3.2.7. Suppose that ZZZ%((]Z)) — 00 as x — o0. For a continuous real valued function

1 Do MY e
SN > g( —r) %m/_mg(t)e dt

REE(N, k)

g on R,

as r — OQ.

3.3 Overview of new results.

We now state the new results proved in this thesis.

3.3.1 Weighted analogue of Murty and Sinha’s theorem

Let W (N, k) = > e pvr) Whe
We prove the following theorem which is the weighted analog of Theorem 3.2.4.
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Theorem 3.3.1. Let k > 3 be a fized even integer. Let p be a fized prime. Then for any

interval I = [a,b] C [—2,2]| and with notations as defined above, we have,

log p
—W(Nk; thxl (An(p /ZXzz x)dx +O<logN>

3.3.2 Weighted analogue of Nagoshi’s Theorems
We also prove the following two theorems which are the weighted analogues of Nagoshi’s
theorems 3.2.5 and 3.2.6.

Theorem 3.3.2. Let N = N(x) such that lffgf — 00 as v — 00. Let p be prime such that

(p, N) = 1.Then for any continuous real valued function g on [—2,2], we have

WN(x)VII/T(N k) Z wrg(An(p)) — 217r/ g(t)V4 — t2dt
he%%lg\gl,k)

as r — OQ.

The second theorem is the following:

Theorem 3.3.3. Let N = N(x) such that lﬁ)ggZ;/ — 00 as © — 00. Then for any bounded

continuous real valued function g on R, we have

1 o < AP 52
AN > wig (—WN() ) \/%/ t)e > dt

hEE(N,k)

as r — OQ.
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Chapter 4

Trace Formula

4.1 Introduction

The Hecke eigenvalues carry a lot of important and interesting arithmetical information.
However, it is difficult to get these eigenvalues directly. Thus, we study the trace of Hecke
operators. In this chapter, we study about two important class of Trace formula mainly the

Eichler-Selberg trace formula and Kuznietsov trace formula.

4.2 The Eichler-Selberg Trace Formula

Eichler-Selberg trace formula gives the formula for the trace of n'® Hecke operator 7T}, in
terms of class numbers of binary quadratic forms. For level N = 1, it was discovered
by Selberg in the year 1956 on the trace formula for SLy(Z). In the same year, Eichler
obtained a formula for £ = 2 and square free level. Hijikata gave the trace formula for 7,
for the level N, such that ged(n, N) = 1. Oesterlé in his thesis [11], gave a more generalized
formula for the space S(V, k) and Nebentypus y, where x is a Dirichlet character mod (V)
valid for all n and N. This formula is known as the Eichler-Selberg trace formula. When we

take x as the trivial character in this formula, we get a formula for the trace of T,, on S(N, k).
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For a negative integer A congruent to 0 or 1 (mod 4), let

B(A) = {az® + bry + cy* s a,b,c € Z,a > 0,b* — dac = A}.

Let b(A) denotes the set of primitive forms, that is,

b(A) ={f(x,y) € B(A): gcd(a,b,c) = 1}.

The right action of the group SLy(Z)on B(A) is given by,

f(z,y) [3 ?] = flax + By, vz + dy), for f(x,y) € B(A).

It is known fact that this action has only finitely many orbits. Let the number of orbits of
b(A) be given by h(A). Let h,, be defined as follows :

hw(g) = 1/37

hw(4) = 1/2>

ho(A) =bH(A) for A < —4.

Theorem 4.2.1. (Eichler-Selberg Trace Formula)

Let n be a positive integer coprime to N. The trace Tr of T, acting on S(N, k) is given by

4
Tr T, =Y Ain),
=1

where A;(n)'s are as follows:

kE—1 N n®2=0 " if nis a square,

0 otherwise

k-1 _ Ak~
Ay(n) = 5 Z %

1 9
S, (tf—“”) ult, f,n)
f

tEZ,t2<4n Q

20



and

Asz(n) = — Z a5t qu (gcd (c, %))

d|n,0<d<y/n c|N

a0t UR=2,

0 otherwise

A4<Tl) =

In the above terms,

Q and Q are the complex zeroes of the polynomial x> — tx + n.

The inner sum for Ay(n) runs over all positive divisors f of t>—4n such that @ S/

is congruent to 0 or 1 (mod 4).

We have H(N)
wu(t, fin) = ———=—<M(t,n, NNy;),
O(N/Ny) !
where Ny = ged(N, f) and M(t,n, NN¢) denotes the number of elements of (Z/NZ)*

which lift to solutions of * —tx +mn =0 mod N Ny.

In Az(n), in the first summation, if there is a contribution from the term d = +/n,
it should be multiplied by 1/2. In the inner sum, we also need the condition that
gcd(e, N/c) divides ged(N,n/d — d).

Now we state some results involving estimates of the trace formula.

For any general N, Serre [14] proved the following:

Proposition 4.2.2. If n is a square,

k—1
Tr T, — Tn’f/Hw(N) < nFPENY2A(N)

where d(N) is the number of positive divisors of N.

Corollary 4.2.3. The Eichler-Selberg trace formula to the case n = 1 gives us a formula
for the dimension of s(N, k). Thus,

s(N, k) = %ww) + O(N'2d(N)),

o1



where d(N) is the number of divisor of N.

In order to prove Theorem 3.2.1, the primary tool used was the Kuznietsov trace formula.

We now state a consequence of this formula as derived by Li ([5], Thm. 4.8).

4.3 Kuznietsov Trace Formula

Bessel functions are defined as solutions y(x) of the differential equation

Py | dy
xgﬁ + T + (@ —a?)y =0

for a complex number «. Bessel functions of the first kind J,(z) have the following series

expansion around x =0 :

Jal2) = mZ:O m!r(i;lgz 1) @)M& '

For positive integers r, n and u, the Kloosterman sums are defined as follows:

Kl,(n,r) == Z et (rsutrsz)

51,50€Z/ul
s1sg=nmodu

Using the above defined notation, we are now ready to state a consequence of the Kuznietsov

trace formula as derived by Li ([5], Theorem 4.8):

Theorem 4.3.1. Let k be an even number > 3. Let n, N, r be positive integers such that

(n, N) = 1. Suppose n can be factorized as n =[], p". With the above notation,

p|n

S IE) %

heE(N.k) \ p|n

%w(]\f) if n is a square and n'/?|r

0 otherwise.
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e (4qri) Rk =1 =1 Arnt/?y
N — Ty Klyn(n,r).
+ 2(k —2)! ¥ )ZNka ! ( Nuv ) w(m7)

v=1

For \y(p) € Sy, we choose 07 € [0, 7] so that 2cos 6 = \,(p). We consider the families

eh
Fy = {iQ—p (mod 1) : h e SN}.

(e

In order to calculate the weighted m-th Weyl limit with the weight wj,, we first observe that
for m > 2,

Ze(mt): Z QCos(mQI’;)

teFy heE(N,k)

B sin(m +1)0%  sin(m — 1)0
N Z sin Gh B sin Qz];

hEE(N,k)

= > X)) = Xna(M(p)
REE(N,k)

= > @™ = ™).
REE(N,k)

From this, we deduce that for m € Z,

zheE(N,k) wj(2 cos(mQZ))

T
ZheE(N,k) Wh,

1, if m =0,
2 ohe BE(N,k) Wh R (P) )
- YheB(NmWh , if |m| =1,
wy A (P™)=An(p™— .
ZheE(N,k) h( h(P™)=An( ))7 lf |m| Z 2

s
ZhEE(N,k) “h

To simplify our expressions, henceforth, we denote

= D

heE(N k)
From Theorem 4.3.1, we deduce that for a prime power p” with m > 2,

|ar<h)|2674m‘ 67471'7‘ (4,”.7,)]971

heE(N,k)

23



where
—1 if m is even, me_2||7",
Ay(m) = )
0, otherwise

and

m/2—1

=1 4p™ 2y 47p r i
Ag(m) =213 — {Jk_l ( ) Kl,n (p™,7) — Je1 <— Kln(p™%,7) ¢
— Nv Nv Nv

Now, we state the following lemmas which would be required later in our calculation.

Lemma 4.3.2. From ([3], equation (5.16)), we have
Jie(z) < min{a*, =1/%}

where Ji(x) is the Bessel function of first kind.

Lemma 4.3.3. ([5/, Lemma 5.1)
Kl (n,r) <un
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Chapter 5
Proofs of the main theorems

In this chapter we prove Theorems 3.3.1, 3.3.2 and 3.3.3.

5.1 Proof of Theorem 3.3.1

Now, we use the technique used by Murty and Sinha in their paper ([9]) to derive similar
results by attaching weights.

For h € E(N,k) and (p, N) = 1 we choose 8} € [0, 7] so that 2cos 0! = A\y(p). For a positive
even integer k£ > 3 and for N > 1, we define the family

Jalg
Fyy = {iQ—I’ (mod 1): h e E(N,k)} :

™

Let I = [a,b] be a fixed subinterval contained in [—2,2]. We choose a subinterval

so that
h

L el <« 2cosb" e .
2T P

We also denote Iy = («, f].
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We define
Ni(NE) = > wixa(n(p)-

REE(N,k)

We observe that, for h € E(N, k),

wix1(An(p)) = wy, [Xh (%) + X1, (;—f:)] .

Let S]j\; L(x) be the Selberg-Beurling approximating polynomials for x;, (z). We have

or or (9"
Z Wh | Sha # + 51 _ﬁ < Z W o
heE(N,k) hEE(N,k)
i oh oh
Z W, SJJ\F41<2P>+SJJ\F41<_2_Z)>]
REE(N,k) L

We observe, for any M > 1,

" 9
Ni(NE) < Z W) [S]TM (ﬁ) + S <— )]
heE(N,k)

o
"Rz ed) ()
heE(Nk)  |m|<M (5.2)

Z wh Z Sy 1(m)(2cosm OF)

heE(NE)  |m|<M
M
= E wy + E E wy (2 cosm 9;‘).
heE N.k) heE(N,k)

By considering the lower bound for N7 (N, k), we have

M
SuO) D wit Y Sulm) Y wieosmO) < Y wixi(n(p))
heE(N k) m=1 heE(N k) heE(N k)
u (5.3)
§A;§[71(0) Z w;—i—ZAKZ(m) Z wh(2cosm O7).
heE(N,k) m=1 heE(N,k)
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We observe that for h € E(N, k), if m = 1, then
2cos(m0£) = A\n(p),

and if m > 2,

QCOS(mQZ) _ Sin(??.l +h1)9£ B sin(n‘z —hl)eg
sin 6 sin 6 (5.4)
= Xon(An(p)) = Xm—2(Mn(p)) = An(p™) = An(p™ ).
From Theorem 4.3.1, we deduce that for a prime power p™ with m > 2,
o wh (™) = ™)
heE(N,k)
(5.5)
6—47r'r’(47.m,.)k—1 e—47rr<47m')k7,k—1
=—— - —Y(N)A N)A
o gy VA ) (N (),
where
—1 if mis even, p"=" ||,
Ar(m) =
0, otherwise
and
=1 Amp™/ 2y Arpm/2=1y
As(m) = QWE o {Jkl ( ZU > Kl,n (p™, 1) — Jy1 (pN—U) Kl n(p™ 2, r)} .

Let m > 2 be an even integer. In equation (5.5), we observe that there is a non-zero

contribution from the first term on the right hand side if and only if
m
E =Tp + 1.

This contribution is
e Arr

(k—2)!

—47rr( )k—l

$(N).

o7



We now choose a positive integer M > 2(r, + 1). Thus, from equation (5.2), we deduce

67471'7“ (47.”,)1471

Ni(N. k) < SHOW(N, k) = &2, +2)—7——v(N)
6747rr(47.m)k k—1 (56)
N =g Zs+ m)+SH1) Y @),
heE(Nk)
By ([5], Corollary 5.3), we have
e~ 4T (4arr)k- 1 N
(k(— 2)>! he%k o <¢( )> o0

Substituting equation (5.7) in (5.6), we have

Ni(N, k) < S’J\—Z,](O)WT(N’ k) — Al\J/r[(2rp +2) [ Z wy, +0 (?]ﬂ\f(lfvl))]
(5.8)

heE(N,k)

)T S o) A

We recall, from Section 1.2,

Sii(0) =2(8 —a) £

and for m > 1,

§% (m) = sin(2mm ) —sin(2mma) | < 1 ) |

mm

Thus, by (5.8),

sin(2m(2r, + 2) ) - sin(27r(27“p + 2)0[):|

S shutn) - 20— a) -

:o(—’W’“(j\jj’k)')+o<‘S QT}”VﬁW >+o W, (N, k) + %ﬁ)) (5.9)
e <w< M > > 18iim |>

o8



But,

sin(27(2r, 4+ 2)3) — sin(27(2r, + 2)a)
28— )= (2r, + 2)7

P (5.10)
= 2/ (1 — cos2m(2r, + 2)t)dt.
Also, with the substitution x = 2 cos 2mt,
ZX%('%.)/LOO(:B)
' (5.11)

(2 1)(2mt
42 sin( SZHTQW mt) sin? 27t = 2(1 — cos 27 (2r, + 2)t).

We deduce

thXI >\h /ZXQZ luoo

_0 (W(_J{;W) L0 <|31\j51(27“§v—:j)|¢(1\7)> 10 <% (WT(N, k) + %ﬁf)) (5.12)

=47 (4 Ykyk=1 M "
+0 (wuv) s Z\SM<m>A2<m>r).

We now state the following two lemmas:

Lemma 5.1.1. With the notations as above, we have

pk+D(3)
|As(m)| < TNk
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Proof. Using Lemma 4.3.2 and 4.3.3 we have,

k—1 k—1
Ap™/ 2y Ap™/ >y 9
=92 Npm— [ 222 ° Np™—
7TZNU {( Nv ) VAP ( Nv vap
Ay k-1 oo p2(kz+1) p(%—1)(k+1)
=27 (W) > { = }
v=1
(k1)
p2
<(%r)

Thus Az(m) = O (p%(k_ﬂ)) O

Nk—1

Lemma 5.1.2. With the same notations as used above, we have

DY it =0 ()

1
Proof. Using the fact that Si(m) < —, we have
m
M M (k+1) M | M (1)
p 2
WS 185 m x| < o) 3| (B )| < o) 3 e
m=1 =1 m=1

Thus, ¥(N) Zn]\le \Sﬁ(m)Ag(mﬂ =0 (%(pk-i—l)]\g) O

Thus, by using Lemma 5.1.2 and (5.12) , we are now ready to prove Theorem 3.3.1.

Proof. Using (5.12) we have,

Z%XI (An(p /ZXzz ) poo (2 ]
o (@ ro(7)

Now taking p*+D(3) ~ N*3" we have ElMlogp ~ 55t log N.
blogN

Thus M ~ 1%

“=Mlogp’

(5.13)
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k-1
5= log N
%Mlogp

Therefore, taking M = L J, we get the desired result. [

Thus, we found a bound for the weighted analog of Murty and Sinha’s work ([9], Theorem
2).

5.2 Proof of Theorem 3.3.2 and 3.3.3

Before going into the proof of Theorems 3.3.2 and 3.3.3, we state the following lemmas.

Lemma 5.2.1. (Corollary 5.3, [5])
Let r be a fized integer and wj, be the weight as defined before. Let k > 3 and h € E(N, k).

e “am) O (Y(N)
aoa o ()-

W, (N, k) = Z wy, = ¢P(N)
)

fEE(Nk

Lemma 5.2.2. Let n = p{lp§2... Ju 1 be a fized integer and wj, be the weight as defined
before. Let h € E(N,k), then

o , 7 N
Z wy A (P oy ...ple) = True (jés are even,% < rpi) W,.(N,k)+ O (%ﬁ?)
heE(N,k)
Lemma 5.2.3. (Lemma 2, [10])
Suppose p is prime. For any n > 1, we have
An(@)™ = b))
5=0
where,
2n+1 ™
bn(j) == / cos” Osin(j + 1)0 sin 6db (5.14)
T Jo

Also, b,(j) =0 if n is odd and j is even or if n is even and j is odd.
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5.2.1 Proof of Theorem 3.3.2

We use the technique used by Nagoshi ([10], Section 3).

By Weierstrass approximation theorem there exists polynomial function p(t) such that for
a given continuous real valued function g(¢) on compact set [—2,2] and for € > 0, we have
lg(t) — p(t)] < €. So, it will be sufficient to prove Theorem 3.3.2 for g = X,,, that is, the n®
Chebychev polynomial. Then, X,,(An(p)) = An(p™). Thus,

Z th )‘h ) N(ZL‘)V;T(N,]{?) Z WZ(Ah(pn»

p<z p<z
h€E(N,k) hEE(N,k)

()

We note that in the summation we take all primes p less than equal to x such that (p, N) = 1.

Now, we need to show

1
An( X, (t)V4 — t2dt
(@)W, (N, k) Z “ha(p /
heE(N,k)

as r — OQ.

Let us change the variable t — 2 cos(27z), then, for n > 1.

L[ x VI Pt = /1/2 sin((n + 1)212) o o 2(9mp)do = 0 (5.15)

o sin(2mx)

Now, using Lemma 5.2.2, we have, for n > 1,

1 ) L 1 | n
wn ()W, (N, k) he%;k) wy(An(p")) = N (2)W,. (N, k) Z; <T1"11€ <n is even, o) < Tp> WL(N, k))
+O< (N, k) Z Nk 1 )
P<x
1 | "
< () ; (True (n is even,g < Tp>> L0 (f\[k 1)
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7p is equals to the highest power of p dividing the fixed integer 7. So, as p increases, after
a certain point 7, would be zero for all p greater than some particular value. So, as x — 00,
the first term would be zero in the above equation.
Now, for the second term to tend to zero as x — oo, we need to have N > xn%.

Thus, for 11“5—N — 00,
ogx

1

nX 1

@R 2 ) =0 (5.16)
heE(N,k)

as r — OoQ.

Now, for h € E(N, k), we choose 0 € [0,7] so that 2cos 6 = X,(p). For a positive even
integer k£ > 3 and for N > 1, we define the family

eh
Fny = {:I:2—p (mod 1): h e E(N,k)}

™

as in Section 5.1.

Now, we calculate the weighted Weyl’s limit for m € Z, that is,

1
= li § w2 "
On = 0 S W (N ) . cos(mé )

psT
heE(N,k)

Thus, for m = 0,

1
Co = li 2 = 1.
0 e 2w (@)W (I, K) D %4

p<zx

hEE(N,k)
For |m| =1,
Cp = 1i . > widi(p) =0
m = lim W
T—00 QWN(Z‘)WT(N, k) - hoRP
he%@v,k)
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For |m| = 2,

C,, = li ") = 1) = —1/2
lim 2 ()WL (N, ) ; wh (An(p7) ) /
heE(N,k)

AlLso, for |m| > 2, C,, = 0. Thus, by Theorem 1.6.3, we obtain the following measure:

p(x) = Z Cre(mz) =1-— %(6(21‘) + e(—27)) = 2sin®(27z)

MEZ

Thus, by using Equation (5.15) and (5.16), we have the following:

( )mlfr(zv,k) > whXa(n(p) = %/_;{Mamdt

TN (T oo

heE(N,k)

as xr — 00.
Thus, Theorem 3.3.2 is proved, that is, for any continuous real valued function g on [—2, 2],

N = N(z) such that % — oo and for primes p such that (p, N) = 1, we have

1 1 /2
Tg(A — t)v4 — t3dt
WN(x)WT(N, /{Z) pgzx whg( h(p>> - ot /_29( )
heE(N,k)

as r — OoQ.

5.2.2 Proof of Theorem 3.3.3

We use the technique used by Nagoshi ([10], Section 4).

By Weierstrass approximation theorem there exists polynomial function p(¢) such that for
a given continuous real valued function g(¢) on compact set [—2,2] and for € > 0, we have
lg(t) —p(t)| < €. So, it is sufficient for getting Theorem 3.3.3 to prove for each positive integer
1>0,

1 3 e M) ) 1 [
r xT h ;752
W Wy, <p<—> — \/—2_7T /_OO tle 2 dt as © — 00. (517)

heE(N,k) TN (2)
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We note that in the above equation and in what follows, the sum »_ __ runs over ptimes p

p<z
which are coprime to N.

By the multinomial formula,

2)

wh (Z/\h(p)) =i Z AN lliv 2 )" M2) M (pa)

p<z u=1 (Iy,l2,....lu) (p1,P2;---,P3)

where ZEZDlQ 77777 ,,) neans sum over u-tuples (ly,ls,...,0,) of positive integer satisfying
ll+l2+ +l _l andzpm _____ Pu)
which are not greater than = and (p;, N) =1fori=1,2,...,u

is the sum over u-tuples (py, p2, ..., p3) of distinct primes

Since, Ap(mn) =30 An() and by using Lemma 5.2.3, we have,

Do @) M) M) = Y LZ bzl(jl)Ah(P{I)] [Zu bzu(ju)Ah(Pi“)]

hEE(N,k) REE(N,k) ju=0

= Z Wy, Z b, (1) ---bu, (Gu) M (P71 ple) (5.19)

heE(N,k) 0<j1<l

0<ju<ly
= Y b ()b Gy D whalplt ) (5.20)

0<51<l; heE(N,k)

0<ju<lu
We have the following lemmas under this setting.
Lemma 5.2.4. Let k be fized and N > (m% (logx)é)j. Assume the u-tuple
(1,1, ..., 1) such that l,, is odd for some m. Then

1 1 l
Z Z Wi A (p1) " M (p2) 2. A (pu)™ = 0

x () Wo(NE)

(p1,p25---p3) REE(N,k)

as T +— OQ.

Proof. Let 2(3 be the sum of wu- tuples (j1, -, ju) of integers satisfying j;’s even and
0 <3 <2r, for each 0<i<wu. Letn —p1 ...pu.
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Using Lemma 5.2.2 in equation (5.20), we have

(3)
Z Wi AL (D) A (p2)2. A (po)™ = Z {bll(jl)...blu(ju)WT(N, k) + O (wn(%lv]

NE-1
heE(N,k) (J1---Ju)

The first term in the left hand side is zero since, each j!s are even and [, is odd for some

m. Thus,
) . . & W (N k) (o,
D ) )= = Y O (ot
heE(N,k) (J1---Ju)
Now,

(2) (3)
W.(N,k) k1
Z Z wpAn(p1) )\h<p2) -Ah(pu)l“ = Z Z 0] (%n( + )>

(p1,p2,--p3) REE(N,k) (p1,p2,-,3) (J1---Ju)
(2)
WT(N, k) wl kL
- Nkl Z Oy(a"")
(p17p2 7777 pd)
WT<N’ k) U ul kL
< Nk—l 7TN($) Ol(xl 2 )
W,.(N, k ka1l W.(N, k [
< ]\Ek—1 )WN(m)lxlz P < ]\Ek—1 >$l+lz 3
Thus,
]_ : 1 Wr(i\i,lk) xl+l2% _ 1 : i_lle’»lQ%
mn(z)2 We(NKk) N mn(z)s N

Therefore, for N > (x%—i_ﬂ%(log Ji)é>m,

1 1 .
T Z > W) A (p2) An(pa) > 0
ﬂN(m) : WT(N’ k) (p1,p2,---,p3) hREE(N,k)

as x — oo.

Lemma 5.2.5. Let k be fized. Let N = N(x). Assume that an u-tuple (Iy,ls, ..., 1) such
that l,, is even for each 0 < m < u. If l,, =2 for all m, then we have,
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1 1
TN Z Z Wi A (p1) " M (p2) 2 A (pu)' = 1
()2 WrldV, (p1,p2,-,p3) REE(N, k)

TN

12 (k+1)
as x — oo and N > x4¢-1 ;

if not then, we have,

(2)
1 1
) S > W) M) Anlpa) 0
)

A
WN(x)Q WT(N’k (p1,p2;---p3) REE(N,k

1

as x — oo and N > <log:1: x(%)l(%)_l) =

Proof. Let us first consider the case when [,,, = 2 for all m. Since [; + ... + [, = [, we have,

As by(0) = b2(2) = 1, it follows that

Z Z thh ]1 blu(]“))\h Z Z Wh)\h . )

heE(N,k) 11_02 heE(N,k)

<i<u 1§u

@ -

= > wMmD+ D> DY vt el

heE(N,k) (J15e-sJu) REE(N k)

@ W,(N, k) 5o

W,.(N, k) Z True(% <7, )W,.(N,k)) + O A "
(]1 ~~~~~ ]u)

where n = pjllp” and 281) i) is the sum over wu-tuple (ji, ..., j,) satisfying j; = 0 or 2

~~~~~

and that (1, ..., 74) # (0, ..., 0).
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Now,using ([10], equation (25)), we have

(2)

(4)

Z W,.(N, k) + Z {True(% <1, )Wo(N, k) + O(wn%)

(P1,P2;--,P3)

Now,

1
W, (N, k)mn(x)
1

|~

W,.(N,

S~—

N~
1
o
VR

12(k+1)

Thus, for N > z4Gk-1 |

1
) T

(2)

(Pl ,P2»--~:P3)

@ 0 .
B [mn@)? + Omn@r H+ Y Y True(%STpi)

(P15P25+-5P3) (J15e+-55u)

D heB(Nk) WAL (P1) AR (p2) 2. A (pu) = 1 as &+ 0.

Now coming to second case (I, 1la, ..., 1) # (2,2, ...,2). We have

u< ——1.

N | =~
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Now,

> W) Ma(p2) - An(p)' Z by (7)) Y wh (e pl)

REE(NK) (e Ju) heE(N,k)

(5)
Wr Nak E+1
by, (j1)---b1, (Ju) {True(‘y2 <71y )Wy (N, k)) +O(—]\§k1 )nkg )}
Ju)

(15005

where 283 ju) denotes the sum over the u—tuple (71, .-+, Ju) of even integers satisfying

~~~~~~

0 <yj; <l for each i =1, ..., u. Hence,

(2) (5)

Z > @) M) M) = >0 DT b bmu)(True(Q<rp>WT<N,k>>

(P1,p2;---,p3) hEE(N,k) (P1,P2;--,P3) (J15--25u)
G W, (N, k)
P(NLE) ke
+ ) Z bh J1)--b(7u) O (W” : )
(p1,p2,--,p3) (J1,-)

Here the first part will vanish as x +— oo. Therefore we need to consider only the second

. , , W, (N, k) ru
2 5 T ) k+1
part, that is, > S2 by (ji)-bi, () O <Wn ; )

Using steps from ([10], first equation in page number 305), we have,

W Nk 1 Wr N’k 1kl

Nk*l
(P1,02,-,03) (J1;0+57u)

Therefore,

Thus for N' > <logm x(%)l(%)A)ﬁ’

1 1 .
T Z Z Wi A (P1)" A (p2)" - A (pu)™ = 0
mn(z)2 W (N, k) (p1,p2,...,p3) hEE(N, k)

as T +— 0Q.
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From Lemma 5.2.4 and 5.2.5, for an u—tuple (I, 1, ...,1,), we have

(2) -
1 1 1 (b la) = (2,...,2)
T (N & S wdnp) Malp)" An(pl) ,
mn(x)z WiV, ) (rpas) hEBNR) 0 otherwise,
(5.21)
for lﬁ)ggN—>ooasx—>oo

Let = be a positive integer and [ be odd. Then by l; + Iy + ... + {3 = [ and (5.21) all the

terms of

1 l
@, 2 (Z W))

heE(N,k) p<z
1) (2)

! 1 1 l
=2 2 Lol 1 ul 7y (2)72W, (N, &) D2 wm) alp) e Anp)

u=1 (I1,lz,...lu) (P1,p2,..,p3) hEE(N k)

goes to zero as r — 0.

Now, let [ be even. Then by (5.21), as x — oo, all terms of

1 l
O, 2 (Z W”)
)

heE(N,k p<z

go to 0 except for u = % and [y = ly = ... = 1, = 2, which goes to I!/([;!...[,!u!) = ZL(Z;/Q)'.
2 !

1
. !
Therefore, m ZheE(N,k) wy, (Zpgx /\h(p)> goes to 2%(11/2)!.

But then it is known that

1 /oo l _tzd L(l/2)" if [ is even, (5.22)
— te2 dt =< 22 5.22
V2T J oo 0, otherwise
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Thus Theorem 3.3.3 is proved.
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Chapter 6
Conclusion

In this thesis, we proved the weighted analog of Murty and Sinha’s work [9] as well as
Nagoshi’s work [10].

6.1 Future Goals

In future, we would like to investigate the following related questions. Following some recent
results of Prabhu and Sinha [12], we would like to answer the following questions in the
context of Li’s weighted equidistribution theorem. Let I be a fixed subinterval of [—2,2].

For such an 1,

e What does the asymptotic variance

LATEDY [wzxfuh(p» -/ ngi<s>duoo<w>]

heE(N,k)

converge to as N + k — oo?

e If the asymptotic variance exists, then let it be denoted by Var(l). Our next goal
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would be to find how does the following expression

1 wixr(ay) — [; 22 Xoi(s)dpioo (2)
2 9( Var(l) )

hEE(N, k)

behave for any bounded, continuous, real valued function g on R. That is, does there

exist a distribution measure p(t) such that

1 wixr(@y) = [; 221 Xoi(s)dpoo(7)
mheg’k)!J( Var(D) ) = [Rg(t)dﬂ(t)?
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