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Abstract

The theory of modular forms is very rich. Modular forms for SL2(Z) and it’s congruence

subgroups have very interesting properties which we will explore. We will also focus on

studying some comutational aspects of the modular forms along with the theory. We will

see why fourier expansion of modular forms exits and why it plays an important role.
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Chapter 1

Modular Forms

1.1 Fourier expansion of modular forms

Let f be a modular form of weight k. U
y1 = {z 2 H : Im(z) > y1} is mapped via z ! e2⇡iz

into the punctured open disc centered at zero of radius e�2⇡y1 .

A := {z : 0 < |z| < 1}

We define F : A ! C by F (q) = f(z) 8 q 2 A, where z 2 H , q = e2⇡iz.

Here, F (q) = f(log(q)/(2⇡i)). F is well defined since f(z + 1) = f(z). f is holomorphic and

logarithm function can be defined holomorphically on A. Since composition of holomorphic

functions is a holomorphic function, F (q) will be holomorphic on A.

Thus, F will have a Laurent expansion centered at q = 0,

F (q) =
n=1
X

n=�1
a
n

qn 8 q 2 A, a
n

2 C

Now, we have q = e2⇡iz. Let’s take z = x + iy. By substituting this value of z, we get

q = e�2⇡y · e2⇡ix. So, |q| = e�2⇡x. This gives us q ! 0 as y ! 1. Therefore, we define

f to be holomorphic at 1 if F extends holomorphically to the point q = 0, which means

the Laurent series sums over n 2 Z for n � 0.
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This implies that Fourier expansion of f will be as follows:

f(z) =
1
X

n=0

a
n

e2⇡izn

This expansion is called the Fourier expansion of the function f .

1.2 Modular forms for SL2(Z)

Definition 1.2.1. SL2(Z) =
⇢

"

m t

h a

#

: a, h,m, t 2 Z , ma� th = 1

�

Now we denote S =

"

0 �1

1 0

#

and T =

"

1 1

0 1

#

.

These two matrices generate the modular group SL2(Z).

We define the upper half plane as H = {z 2 C : Im(z) > 0}.

We denote the Riemann sphere by C̃. For an element � =

"

a b

c d

#

2 SL2(Z)

and a point z 2 C, we define

�z :=
az + b

cz + d
, �1 :=

a

c

This map is also known as fractional linear transformation of the Riemann sphere. We

can easily note that this defines a group action on C̃. However more interestingly this also

defines a group action on the upper half plane H .

Firstly note that for any � 2 SL2(Z), Im z > 0 implies Im �z > 0. This is because

Im �z = Im
az + b

cz + d
= Im

(az + b)(cz + d)

|cz + d|2 =
Im(adz + bcz)

|cz + d|2 =
Im z

|cz + d|2

So, it makes sense to talk about the group action on H .

Now take �1 =

"

a1 b1

c1 d1

#

and �2 =

"

a2 b2

c2 d2

#

(�1�2)(z) =

"

a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

#

(z) =
(a1a2 + b1c2)z + a1b2 + b1d2
(c1a2 + d1c2)z + c1b2 + d1d2

,
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�1(�2(z)) = �1(
a2z + b2
c2z + d2

) =
a1(

a2z+b2
c2z+d2

) + b1

c1(
a2z+b2
c2z+d2

) + d1
=

(a1a2 + b1c2)z + a1b2 + b1d2
(c1a2 + d1c2)z + c1b2 + d1d2

.

We can see that I(z) = z and (�1�2)(z) = �1(�2(z)) 8 �1, �2 2 SL2(Z).

Definition 1.2.2. For an integer k, a meromorphic function f : H ! C is weakly modular

of weight k if

f(�(z)) = (cz + d)kf(z) 8 � 2 SL2(Z) and z 2 H

Now we will show that if this transformation law holds for S and T then it holds for all

� 2 SL2(Z).

Proposition 1.2.1. f is weakly modular of weight k if

f(z + 1) = f(z) and f(�1/z) = zkf(z)

Proof. First we prove that if �1 and �2 satisfy this transformation then �1�2 also satisfies the

transformation.

Since by assumption f is weakly modular of weight k for �1 and �2, we have

f(�1(z)) = (c1z + d1)
kf(z) and f(�2(z)) = (c2z + d2)

kf(z)

f(�1�2(z)) = f(�1(�2(z))) = f(�1(
a2z+b2
c2z+d2

)) = (c1(
a2z+b2
c2z+d2

) + d1)kf(
a2z+b2
c2z+d2

)

Thus,

f(�1�2(z)) = ((c1a2+d1c2)z+c1b2+d1d2)
k · f(�2(z))

(c2z + d2)k
= ((c1a2+d1c2)z+c1b2+d1d2)

kf(z).

This shows that �1�2 satisfies the given transformation. Since SL2(Z) is generated by

matrices S and T , any element in SL2(Z) can be written in the form as a combination of

products of S’s and T ’s.

Hence, it implies that if S and T follow the transformation law then f is weakly modular of

weight k.

3



Definition 1.2.3. f(z) is called a ”Modular form of weight k” for SL2(Z) if

1. f(�z) = (cz + d)kf(z) 8 � =

"

a b

c d

#

2 SL2(Z)

2. f(z) is holomorphic on H and at infinity.

As �I 2 SL2(Z), there are no modular forms of odd weight for SL2(Z). Now we will

look at some examples of modular forms for SL2(Z).

Eisenstein Series . Let k be an even integer which is greater than 2 and let z 2 H .

The function

G
k

(z) =:
X

m,n 2 Z
(m,n) 6=(0,0)

1

(mz + n)k

is a nonzero modular form of weight k for SL2(Z).

Proof. For k � 4, G
k

(z) converges absolutely and uniformly in any compact subset of H .

But we know that a limit of an uniformly convergent sequence of holomorphic functions is

holomorphic. Thus, G
k

(z) is a holomorphic function on H .

Now we look at the holomorphicity of G
k

(z) at i1.

lim
z!i1

G
k

(z) = lim
z!i1

X

m,n 2 Z
(m,n) 6=(0,0)

m=0

1

(mz + n)k
+ lim

z!i1

X

m,n 2 Z
(m,n) 6=(0,0)

m 6=0

1

(mz + n)k
=

X

n2Z, n 6=0

1

nk

= 2⇣(k) < 1

This is because,

lim
z!i1

X

m,n 2 Z
(m,n) 6=(0,0)

m 6=0

1

(mz + n)k
= 0 and

X

n2Z, n�1

1

nk

= ⇣(k) < 1

So, G
k

(z) is holomorphic at i1 as limit of G
k

(z) as z ! i1 exists and is finite.
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Now it remains to show that G
k

(z) is weakly modular function, that is G
k

(z+1) = G
k

(z)

and G
k

(�1/z) = zkG
k

(z).

G
k

(z + 1) =
X

m,n 2 Z
(m,n) 6=(0,0)

1

(m(z + 1) + n)k
=

X

m,n 2 Z
(m,n) 6=(0,0)

1

(mz + (m+ n))k

Let m0 = m, n0 = m+ n.

We get,

G
k

(z + 1) =
X

m

0
,n

0 2 Z
(m0

,n

0) 6=(0,0)

1

(m0z + n0)k
= G

k

(z)

G
k

(�1/z) =
X

m,n 2 Z
(m,n) 6=(0,0)

1

(m(�1/z) + n)k
=

X

m,n 2 Z
(m,n) 6=(0,0)

zk

(nz + (�m))k

Let m00 = n, n00 = �m.

We get,

G
k

(�1/z) = zk ·
X

m

00
,n

00 2 Z
(m00

,n

00) 6=(0,0)

1

(m00z + n00)k
= zk ·G

k

(z)

Note that we were able to interchange the summation because G
k

(z) is absolutely and

uniformly convergent in compact subsets of the upper half plane. Also it is important to see

that as (m,n) runs through Z2 � {(0, 0)}, so do (m0, n0) and (m00, n00).

Thus, G
k

(z) is a nonzero modular form of weight k for SL2(Z).

Fourier expansion of Eisenstein series

First we define Bernoulli numbers.

The Bernoulli numbers B
k

are defined using the following power series expansion.

x

ex � 1
=

1
X

k=0

B
k

xk

k!

It is worth noting the fact that Bernoulli numbers are rational.
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Proposition 1.2.2. The modular form G
k

(z) has following q-expansion.

G
k

(z) = �(2⇡i)kB
k

k!
+ 2

(2⇡i)k

(k � 1)!

1
X

n=1

�
k�1(n)q

n,

where q = e2⇡iz, �
k�1(n) =

X

d|n,d>0

dk�1.

Proof. We know,

sin⇡z = ⇡z
1
Y

n=1

(1� z2

n2
)

Taking ln on both sides, we get

ln(sin⇡z) = ln(⇡z) +
1
X

n=1

ln(1� z2

n2
)

Now di↵erentiating w.r.t. z gives,

⇡
cos⇡z

sin⇡z
=

⇡

⇡z
+

1
X

n=1

1

1� z

2

n

2

· �2z

n2
=

1

z
+

1
X

n=1

2z

z2 � n2
=

X

n2Z

1

z + n
(1.1)

But we also have,

⇡
cos⇡z

sin⇡z
= ⇡i · e

i⇡z + e�i⇡z

ei⇡z � e�i⇡z

= ⇡i
q + 1

q � 1
= ⇡i� 2⇡i

1� q
= ⇡i� 2⇡i

1
X

n=0

qn (1.2)

as |q| < 1. Equating (2.1) and (2.2) and di↵erentiating k-1 times w.r.t. z, we obtain

X

n2Z

1

(z + n)k
=

(�2⇡i)k

(k � 1)!

1
X

n=1

nk�1qn

We have,

G
k

(z) =
X

m,n 2 Z
(m,n) 6=(0,0)

m=0

1

(mz + n)k
+

X

m,n 2 Z
(m,n) 6=(0,0)

m 6=0

1

(mz + n)k
=

X

n2Z, n 6=0

1

nk

+ 2 ·
1
X

m=1

X

n2Z

1

(mz + n)k

6



So,

G
k

(z) = 2⇣(k) + 2 · (�2⇡i)k

(k � 1)!

1
X

m=1

1
X

n=1

nk�1qmn

And we can observe that the coe�cient of qx in this double series expansion is nothing but

�
k�1(x). Thus, it only remains to show that 2⇣(k) = � (2⇡i)kBk

k! .

From (2.1), we get

⇡zcot⇡z = 1� 2 ·
1
X

n=1

z2

n2 � z2
= 1� 2 ·

1
X

n=1

1
X

k=1

(
z

n
)2k = 1� 2 ·

1
X

k=2, even k

⇣(k)zk (1.3)

From (2.2) and the definition of Bernoulli numbers, we get

⇡zcot⇡z = i⇡z +
1
X

k=0

B
k

(2⇡i)k

k!
zk (1.4)

Equating (2.3), (2.4) and comparing the coe�cient of zk for an even k gives 2⇣(k) = � (2⇡i)kBk

k! .

This gives us the desired Fourier expansion of Eisenstein series G
k

(z).

Now we normalize this Eisenstein series by dividing it by the constant 2⇣(k). Thus, E
k

(z)

has rational coe�cients.

E
k

(z) = � k!

B
k

· (2⇡i)kGk

(z)

E
k

(z) = 1� 2k

B
k

1
X

n=1

�
k�1(n)q

n.

Now we will look at Fourier expansions of some Eisenstein series. The command used to

calculate these Fourier expansions in SAGE is

eisenstein_series_qexp(4, 10, normalization=’constant’).

E2(z) = 1�24⇤q�72⇤q2�96⇤q3�168⇤q4�144⇤q5�288⇤q6�192⇤q7�360⇤q8�312⇤q9+O(q10)

E4(z) = 1 + 240 ⇤ q + 2160 ⇤ q2 + 6720 ⇤ q3 + 17520 ⇤ q4 + 30240 ⇤ q5 + 60480 ⇤ q6 + 82560 ⇤
q7 + 140400 ⇤ q8 + 181680 ⇤ q9 +O(q10)

E6(z) = 1 � 504 ⇤ q � 16632 ⇤ q2 � 122976 ⇤ q3 � 532728 ⇤ q4 � 1575504 ⇤ q5 � 4058208 ⇤
q6 � 8471232 ⇤ q7 � 17047800 ⇤ q8 � 29883672 ⇤ q9 +O(q10)
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E8(z) = 1+ 480 ⇤ q+ 61920 ⇤ q2 + 1050240 ⇤ q3 + 7926240 ⇤ q4 + 37500480 ⇤ q5 + 135480960 ⇤
q6 + 395301120 ⇤ q7 + 1014559200 ⇤ q8 + 2296875360 ⇤ q9 +O(q10)

E10(z) = 1 � 264 ⇤ q � 135432 ⇤ q2 � 5196576 ⇤ q3 � 69341448 ⇤ q4 � 515625264 ⇤ q5 �
2665843488 ⇤ q6 � 10653352512 ⇤ q7 � 35502821640 ⇤ q8 � 102284205672 ⇤ q9 +O(q10)

E12(z) = 1+65520/691⇤q+134250480/691⇤q2+11606736960/691⇤q3+274945048560/691⇤
q4 + 3199218815520/691 ⇤ q5 + 23782204031040/691 ⇤ q6 + 129554448266880/691 ⇤ q7 +

563087459516400/691 ⇤ q8 + 2056098632318640/691 ⇤ q9 +O(q10)

E14(z) = 1 � 24 ⇤ q � 196632 ⇤ q2 � 38263776 ⇤ q3 � 1610809368 ⇤ q4 � 29296875024 ⇤ q5 �
313495116768⇤q6�2325336249792⇤q7�13195750342680⇤q8�61004818143672⇤q9+O(q10)

E16(z) = 1+16320/3617⇤q+534790080/3617⇤q2+234174178560/3617⇤q3+17524001357760/3617⇤
q4 +498046875016320/3617 ⇤ q5 +7673653657232640/3617 ⇤ q6 +77480203842286080/3617 ⇤
q7 + 574226476491096000/3617 ⇤ q8 + 3360143509958850240/3617 ⇤ q9 +O(q10)

Eisenstein series of weight 2 is not a modular form as it is not a weakly modular function.

Proposition 1.2.3. For z 2 H,

E2(�1/z) = z2 · E2(z)�
6i

⇡
z

8



1.3 Congruence subgroups of SL2(Z)

For N 2 N, the principal congruence subgroup of level N is

�(N) =
n

"

a b

c d

#

2 SL2(Z) :
"

a b

c d

#

⌘
"

1 0

0 1

#

(modN)
o

Definition 1.3.1. A congruence subgroup of SL2(Z) is a subgroup of SL2(Z) which contains

�(N).

1.3.1 Examples and properties of congruence subgroups

�0(N) =
n

"

a b

c d

#

2 SL2(Z) : c ⌘ 0(mod N)
o

�1(N) =
n

"

a b

c d

#

2 SL2(Z) : a ⌘ 1(mod N), c ⌘ 0(mod N) and d ⌘ 1(mod N)
o

Now we will state some properties of these congruence subgroups and the relations between

them.

We have,

|SL2(Z/NZ)| = N3
Y

p|N

(1� 1

p2
)

So,the index of congruence subgroup �(N) in SL2(Z) is finite.

[SL2(Z) : �(N)] = N3
Y

p|N

(1� 1

p2
) < 1

Since �(N) ⇢ �1(N) ⇢ �0(N) ⇢ SL2(Z), �1(N) and �0(N) will have finite index in SL2(Z).
In particular,

[SL2(Z) : �1(N)] = N2
Y

p|N

(1� 1

p2
)

and

[SL2(Z) : �0(N)] = N
Y

p|N

(1 +
1

p
)

9



Definition 1.3.2. Let � be a congruence subgroup of SL2(Z) and let k 2 Z. A function

f : H ! C is a ”Modular form of weight k” for � if

1. f(�z) = (cz + d)kf(z) 8 � =

"

a b

c d

#

2 �

2. f(z) is holomorphic on H

3. f(z) is holomorphic at the cusps.

We have seen that Eisenstein series of weight 2 is not a modular form for SL2(Z). But

interestingly it can be made into a modular form for �0(N).

We define,

EN

2 (z) := E2(z)�NE2(Nz)

This EN

2 (z) is a modular form for �0(N). We only have to check that it is a weakly modular

function 8 � =

"

a b

c d

#

2 �0(N).

We need to show that EN

2 (�z) = (cz + d)2EN

2 (z), that is (cz + d)�2EN

2 (�z) = EN

2 (z).

(cz + d)�2EN

2 (
az + b

cz + d
) = (cz + d)�2E2(

az + b

cz + d
)�N(cz + d)�2E2(N · az + b

cz + d
)

We can write,

(cz + d)�2EN

2 (
az + b

cz + d
) = (cz + d)�2E2(

az + b

cz + d
)�N((c/N)(Nz) + d)�2E2(

a(Nz) + bN

(c/N)(Nz) + d
)

Using the fact that (cz + d)�2E2(
az + b

cz + d
) = E2(z)�

1

4⇡i
· c

cz + d
,

we get,

(cz + d)�2EN

2 (
az + b

cz + d
) = E2(z)�

1

4⇡i
· c

cz + d
�N(E2(Nz)� 1

4⇡i
· c/N

(c/N)(Nz) + d
)

So,

(cz + d)�2EN

2 (
az + b

cz + d
) = E2(z)�NE2(Nz) = EN

2 (z)

This concludes that EN

2 (z) is a weakly modular function 8 � =

"

a b

c d

#

2 �0(N).

10



Chapter 2

Modular Curves as Riemann Surfaces

Modular curve Y (�) for a congruence subgroup � is defined as follows:

Y (�) = {�z : z 2 H }

We define local coordinates on the modular curve Y (�) to make it into a Riemann surface

which can be further compactified. In order to compactify the modular curve Y (�), we take

the extended quotient by H 0, where H 0 = H [Q [ {1}.
We have,

X(�) = �\H 0

Theorem 2.0.1. The modular curve X(�) is connected, Housdor↵ and compact.

2.1 Fundamental domain

Definition 2.1.1. Let � be a subgroup of SL2(Z) and F ⇢ H be a closed set which is simply

connected. We say F is a fundamental domain for � if

1. every z 2 H is �-equivalent to a point in F ,

2. no two distinct interior points of F are �-equivalent.

11



F =: {z 2 H |� 1

2
 Re z  1

2
and |z| � 1}.

This defined region F is a fundamental domain for SL2(Z). Now we will look at some

fundamental domains for congruence subgroups of SL2(Z). For a congruence subgroup G of

SL2(Z), the command used to calculate these fundamental domains in SAGE is

FareySymbol(G).fundamental_domain()

Figure 2.1: Fundamental domain for SL2(Z)

12



Figure 2.2: Fundamental domain for �(2)

Figure 2.3: Fundamental domain for �(3)
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Figure 2.4: Fundamental domain for �0(2)

Figure 2.5: Fundamental domain for �0(3)
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Figure 2.6: Fundamental domain for �0(4)

Figure 2.7: Fundamental domain for �1(2)
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Figure 2.8: Fundamental domain for �1(3)

Figure 2.9: Fundamental domain for �1(5)

It is important to note that if F is a fundamental domain then �F is also a fundamental

domain for SL2(Z).

16



Proposition 2.1.1. Let � be a congruence subgroup of SL2(Z), written in the form of

disjoint union of cosets as

SL2(Z) =
n

[

i=1

↵
i

�.

Then F 0 :=
S

n

i=1 ↵
�1
i

F is a fundamental domain for �.

2.2 Elliptic points

Definition 2.2.1.

�
z

:= {� 2 � : �z = z}

�
z

is known as the isotropy subgroup of z.

Definition 2.2.2. Let � be a congruence subgroup of SL2(Z). A point z 2 H is an

elliptic point for � if the isotropy group of z is nontrivial as a group of transformation.

Proposition 2.2.1. The elliptic points for SL2(Z) are i, e⇡i/3 and e2⇡i/3.

2.3 Cusps

Cusps of a congruence subgroup � are the �� equivalence classes of Q [ {1}.

2.3.1 Examples

The command used to calculate these cusps in SAGE is

G.cusps() for some congruence subgroup G of SL2(Z).

Cusps for �0(12) are [0, 1/6, 1/4, 1/3, 1/2, Infinity].
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Cusps for �(10) are [0, 1/5, 1/4, 3/10, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1, 5/4, 4/3, 3/2,

5/3, 7/4, 2, 9/4, 7/3, 5/2, 8/3, 3, 10/3, 7/2, 4, 13/3, 9/2, 5, 16/3, 6, 19/3, 7, 8, 9, Infinity].

Cusps for �1(10) are [0, 1/5, 1/4, 3/10, 1/3, 2/5, 1/2, Infinity].

Cusps for �0(10) are [0, 1/5, 1/2, Infinity].

Cusps for �(4) are [0, 1/2, 1, 2, 3, Infinity].

Cusps for �1(4) are [0, 1/2, Infinity].

Cusps for �0(4) are [0, 1/2, Infinity].
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Chapter 3

Dimension formulas

3.1 Dimension formula for modular forms for SL2(Z)

Theorem 3.1.1 (The valence formula). Let f(z) be a nonzero modular function of weight k

for SL2(Z). For z 2 H, let v
z

(f) denote the order of zero (or minus the order of pole) of f(z)

at the point z. Let v1(f) be the index of the first non vanishing term in the q � expansion

of f(z). Then

v1(f) +
1

2
v
i

(f) +
1

3
v
!

(f) +
X

z2SL2(Z)\H
z 6=i,!

v
z

(f) =
k

12
. (3.1)

Let M
k

(�) denote the vector space of modular forms for congruence subgroup �.

Using this valence formula we can deduce that M
k

(SL2(Z)) = {0} 8 k < 2 and k = 2. Also,

we can write M
k

(SL2(Z)) = CE
k

for k = 4, 6, 8, 10.

Proposition 3.1.2. M
k

(SL2(Z)) = CE
k

� S
k

(SL2(Z)) 8 k � 4.

From this proposition it is easy to see that dim M
k

(SL2(Z)) = 1+ dim S
k

(SL2(Z)).
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Theorem 3.1.3.

dim M
k

(SL2(Z)) =

8

<

:

b k

12c+ 1, if k 6⌘ 2 (mod 12)

b k

12c, if k ⌘ 2 (mod 12)
(3.2)

dim S
k

(SL2(Z)) =

8

<

:

b k

12c, if k 6⌘ 2 (mod 12)

b k

12c � 1, if k ⌘ 2 (mod 12)
(3.3)

Thus, the spaces S
k

(�) and M
k

(�) are finite-dimensional complex vector spaces.

3.2 Dimension formula for modular forms for congru-

ence subgroups of SL2(Z)

Theorem 3.2.1 (The valence formula). Let f be a nonzero modular function of weight k for

the congruence subgroup � of SL2(Z)).Then

X

z2�\H0

v
z

(f)

|�
z

| =
k

2
· (✏2

2
+

2✏3
3

+ ✏1 + 2g � 2) (3.4)

where, �
z

is the isotropy subgroup of z, g is the genus of �\H0, ✏2 is the number of elliptic

points of order 2, ✏3 is the number of elliptic points of order 3, and ✏1 is the number of

�-inequivalent cusps.

Theorem 3.2.2 (The dimension formula). For a congruence subgroup � of SL2(Z)) and an

even non-negative integer k, We have,

dim M
k

(�) =

8

<

:

(k � 1)(g � 1) + bk

4c✏2 + bk

3c✏3 +
k

2✏1 , if k � 2

1 , if k = 0
(3.5)

and

dim S
k

(�)) =

8

>

>

>

<

>

>

>

:

dim M
k

(�)� ✏1 , if k � 4

g , if k = 2

0 , if k = 0

(3.6)
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