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Abstract

The complexity of several systems is a confluence of the intricate structure of their inter-

actions and the intrinsic dynamics of its constituent elements. Complex network framework

can be used to study such systems effectively. Several recent studies indicate that under-

standing of the complex systems may be better achieved by using both the nodal dynamics

and the interaction topology synergetically to alter the behaviour of the system.

We discuss properties of individual nonlinear systems and the dynamics displayed in

collective behaviour including synchronization,phase-synchronization, amplitude and oscil-

lation deaths, chimera state behaviour etc. We explore the emergent dynamics especially

synchronization, by investigating control strategies where: i) strategic rewiring brings system

toward desired synchronization dynamics and ii) the system dynamics drives changes in the

interaction topology leading to an emergent stable network structure.

We observe the formation of synchronization in clusters where the clusters either remain

or coalesce into larger clusters. We are also able to change the number of clusters by varying

control parameters. For dynamics driven control of topology, we observe resultant networks

showing characteristics of scalefree type networks. Finally, we identify possible improvements

to control procedures studied and propose a method involving externally driven control to

extend the study further.
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Chapter 1

Introduction

Complex systems are studied using the framework of complex networks [1] [2] [3] .

Simple networks such as lattices have found use in describing many physical systems, for

example, the Ising models [4] and many other solid state models [5]. Similarly, the star and

ring topology have been used extensively in modelling early physical networks of computers

[6] [7]. In biology, the tropic pyramid has been used to represent a simple hierarchy of energy

transport up the food chain. With the rapid increase in information available and naturally

occurring systems being complex these simple models do not suffice. Ecological relations are

represented as a complex web of interactions between species and their environment with

every unit considered to play a key role in the network [8]. The naive modelling of the

internet as a set of star networks connected to each other do not suffice and are now treated

as a giant growing complex network [9]. Some examples of real-world complex systems where

complex networks framework have found useful are:

• World trade networks and financial market networks [10]

• Transportation (Air travel Networks) [11]

• Disease spreading models [12]
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• Ecological webs [13]

• Dependency graphs in software package distributions [14] [15]

• Social network analysis [16]

All of these have descriptions that involve the language of graph theory. A brief review

of some graph theory fundamentals used in describing complex networks is given below.

1.0.1 Complex Network Framework

Topology of a network can be represented by a graph.

Graph: A graph G is a pair (V, E) on sets satisfying E ⊆ V 2 where V is the set of

vertices (nodes) and E is the set of edges (links).

Adjacency Matrix: An adjacency matrix Ai,j is a representation of a graph, where

(i, j) represents an edge from node i to node j such that:

Ai,j =

1 if (i, j) ∈ E

0 if (i, j) /∈ E

0

12

3 4

A =



0 1 1 0 0

0 0 1 0 1

0 1 0 1 0

0 0 0 0 0

0 0 0 0 0



Connected graph: A graph G is connected if for any two vertices vi,vj in the set of all

vertices V there exists a path joining vi and vj.
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Degree of node: The degree of a node or vertex, deg(i) is the number of edges that

vertex i is incident to.

deg(i) =
∑
i

Ai,j

Clustering coefficient: Clustering coefficient is a measure of the likelihood of a vertex’s

neighbours themselves being neighbours. For a node vi it is defined as the number of triangles

with vertex vi divided by the number of possible triangles given its degree.

τ(i) - No of triangles in graph such that vi is a vertex

cc(i) =

∑
i τi(

deg(i)
2

)
Degree Distribution: In a graph the probability function p(k) of obtaining a node

with degree k is called the degree distribution. It is usually defined for graph at the large N

limit N → ∞. For random Erdős–Rényi graphs the degree distribution is Poisson, i.e. for

random graph with average degree λ :

p(k) =
λkε−λ

k!

Another type of distribution commonly found in many real world networks is the power

law distribution of scale free networks. The degree distribution for scale free graph with

parameter λ is:

p(k) = k−λ

Characteristic path length: The mean of lengths of shortest paths between every pair

of nodes in a network is called the characteristic path length. For a graph on N nodes:

d(i, j) = length of a shortest path from i to j
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cpl =
∑
i,j

d(i, j)

N(N − 1)

1.0.2 Types of networks

Regular Network

A network in which all nodes are connected to the same number of immediate neighbours is

a regular network. Such networks can have varying topologies from lattices to regular ring

graphs. Regular networks represent systems with ordered components with local connections,

for example, a crystal lattice, a regular road network etc. In regular network, all nodes have

the same degree and the average path lengths are large.

Erdős–Rényi model (Random graphs)

Erdős–Rényi (ER) graph is a model for obtaining random graphs among all possible graphs

of given node number N. These are often used as a baseline network while studying more

complex graphs. A random ER graph on N nodes can be described in two ways.

• G(n, m): A graph with m edges randomly chosen from set of all N2 possible edges.

• G(n, p) : A graph constructed by accepting each possible edge with probability p.

Barabási – Bollobás model (for scale free networks.)

Barbasi and Bollabas came up with a model of growing networks with a preferential attach-

ment of new nodes to higher degree nodes of the existing network. These networks have

been shown to have very high clustering coefficients and small world properties which are

also properties of many real-world systems. In these networks, the degree distribution shows

power law. A generative procedure to create a scale-free network G(N,m0) is as follows
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1. Start with connected network of m0 nodes.

2. Add a new node j to graph and connect it to m already existing nodes with sampling

probability

pi =
kj∑
j kj

1.0.3 Dynamical systems

The dynamics of complex systems can be modelled with dynamical systems on the nodes

of the underlying network. A dynamical system is a particle or ensemble of particles whose

state varies over time and thus obeys differential equations involving time derivatives. Dy-

namical systems are used to model a large number of real-world systems with application

in physics, biology, engineering, chemistry, economics and recently growing use in social

sciences. Evolution of a continuous dynamical system can be represented as a differential

equation.

ẋ = f(x)

Simple nonlinear dynamical systems can show unpredictable behaviour. Such systems are

called chaotic systems. Chaotic systems are completely deterministic systems whose dynam-

ics after a short time of evolution cannot be predicted given any margin of error in initial

conditions. While they are bounded and aperiodic, most chaotic systems are characterised

by a sensitivity to initial conditions.

Chaos is often confused with stochastic behaviour, but these are completely different.

Stochastic processes have some probabilistic component in them while chaos is completely

deterministic. Chaotic systems which occur in natural systems like weather [17] and which

involve systems as simple as the double pendulum [19] have potential application in com-

munications, computing[18], systems engineering, understanding biological processes etc. In

some complex systems including biological systems like the brain or heart also chaos is ob-

served. Following are some of the well-studied examples of non-linear systems that show
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chaotic behaviour for certain parameter ranges.
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Lorenz System
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Figure 1.1: Trajectory of Lorenz system for parameter values σ = 10, r = 8
3
, b = 28 shows a

chaotic butterfly pattern.

ẋ = σ · (y − x) (1.1)

ẏ = rx− xz − y
ż = xy − bz

The Lorenz system (Eqn. 1.1) is a set of ordinary differential equations that were first derived

by Edward Lorenz in 1963 to model convection in atmospheric systems. The system exhibits

non periodic behaviour and for certain range of parameters, it exhibits chaos. The system is

known for its characteristic butterfly shaped chaotic attractor. One set of parameter values

at which it shows chaos that are extensively studied and often used are σ = 10, r = 8
3
, b = 28

The trajectory of Lorenz system is shown in in Figure 1.1
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Rössler System
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Figure 1.2: Trajectory of Rössler system for parameter values a = 0.1, b = 0.1, c = 14

ẋi = −y − z (1.2)

ẏi = x+ ay

żi = b+ zi(x− c)

The Rössler system is a chaotic system first studied by Otto Rössler. The system was

intended to be a a simpler version of the Lorenz attractor. The phase space trajectory of a

Rössler system is shown in Figure 1.2.

In this project, we present the results of our study using standard non-linear systems

connected on a complex network. We analyse various measures to identify the nature of

the collective behaviour of such a system especially synchronization. We propose different

control mechanisms to optimize the synchronization with low coupling and minimum con-
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nections. We also study the formation of synchronization in clusters before the full network

synchronizes.
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Chapter 2

Emergent phenomenon on complex

networks

2.1 Dynamics of interacting non linear systems

Linear systems are associated with properties of homogeneity and additivity [20] and there-

fore they are considered superimposable. For example, the dynamics of a particle in a

medium carrying two waves can be represented as just the sum of deviation from mean posi-

tion caused by both waves. Non linear systems show a diversity of behaviour in response to

coupling together with other non linear systems. Often multiple interacting chaotic systems

will evolve and exhibit dynamics different from intrinsic dynamics in the chaotic regime.As

mentioned these can range from periodic oscillations, amplitude death, unbound destabiliza-

tion etc. Some classes of behaviour displayed by interacting non-linear systems are described

here:

• Synchronization: Non-linear chaotic systems are very sensitive to initial conditions

and very hard to predict in general Two almost identical systems with small differences
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will diverge very soon from each other if they are independent. Interacting systems,

on the other hand, have been observed to show decreasing deviation from each other

until their dynamics is synchronized.

– Complete synchronization: Complete synchronization is when the systems evolve

identically over time. x1(t) = x2(t) as t −→∞

60 80 100 120 140
time

20

10

0

10

20

X

X vs time

unsychronized

synchronized

Figure 2.1: Times series of x-component of two Rössler systems exhibiting full synchroniza-
tion.

– Generalized synchronization: Systems can show synchronized behaviour without

having identical trajectories in time. Two heterogeneous systems when coupled

often do not completely overlap in their dynamics. But when the dynamics of

one system can be described as a function of the other for any given time after

synchronization is said to be achieved, it is called generalised synchronization.

x1(t) = Φ(x2(t))

– Phase synchronization: Given a defined phase angle for the dynamical state of
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each system, two systems are said to be phase synchronized when there is a linear

relation between the phase of the two systems.

10 20 30 40 50 60 70
time

0

5

10

15

20

25

30

35

Z

Z vs time

Figure 2.2: Times series of z-component of two Rössler systems showing phase synchroniza-
tion.

– Lag synchronization: When one system follows the trajectory of the other with

a constant time-delay the two systems are said to be lag-synchronized or delay

synchronized.

• Amplitude death: When systems are connected by an interaction the previously

unstable equilibrium points of the individual systems may be stabilized due to the

interaction. When this leads to a decay of oscillations towards the newly stabilized

equilibrium point, it is called amplitude death. If the systems are identical then it is

very likely that the oscillations decay to the same equilibrium point for all of them.

The resultant state is also called a homogeneous steady state (HSS) and is distinct

from the heterogeneous fixed point behaviour called oscillation death.
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X vs time

Figure 2.3: Times series of x-component of two Rössler systems showing lag synchronization.
The green timeseries follows the blue timeseries exactly but with a time lag.

• Oscillation Death: The coupling interaction between systems may give rise to new

equilibrium states that do not exist in the individual independent systems. If the indi-

vidual dynamics was originally limit-cycles or non-periodic oscillations, after coupling

the systems can transient to one of the new equilibrium states through a decrease in

amplitude of these oscillations. This behaviour is called oscillation death. When the

transients are very short it is also called explosive oscillation death.[21] [22]

• Chimera state: Chimeras are a peculiar state first reported in networks of non-locally

coupled Kuramoto oscillators which showed dynamically stable groups of coherent

and incoherent nodes existing simultaneously. Named after monstrous creatures from

Greek mythology which are a composition of disparate body parts of many animals,

chimeras in the context of non-linear dynamics are states of coupled systems where

multiple behaviours coexist. While different behaviour is expected in complex networks
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Figure 2.4: A network of 100 identical Lorenz systems exhibiting oscillation death. Note the
heterogenous positions of equilibrium states

with non-identical components, what makes chimeras interesting is the fact that they

can also be found in networks of identical nodes and that they have been observed

experimentally [23]. The observation of chimeras in experiments demonstrates that

the chimeras are robust against noise which is intrinsic to experimental conditions.[23]

It is required in many applications to synchronize multiple systems retaining their in-

trinsic chaotic nature. Synchronization is known to depend not only on the dynamics of

the system and type of interaction but also on the topology of the interaction network [24].

After initial observations of the role of network topology on control of systems, many meth-

ods seemed to suggest that the topology of the network alone could explain the behaviour

19



of interacting systems. Recently, however, it has been noted that a more holistic approach

considering both structure and dynamics might be necessary for optimal control [25].

The aim of this project is to study a few control strategies that involve both topology

and dynamics that can lead to desirable collective behaviour. Some classes of control that

are to be investigated are:

• Dynamics driven control of topology for optimal stable structure.

• Topology driven control where strategic rewiring can result in desirable dynamics.

• Extending the study to externally driven controls.
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Chapter 3

Measures of collective dynamics

3.1 Measures used to characterize synchronization

There are various metrics to measure the extent of synchronization in coupled system. Here

we summarize some well-known measures generally used to characterize synchronization and

define new metrics used in this study.

• Complete-Sync Order Parameter [26]:

Full synchronization of two connected systems x(t), y(t) can be defined to be achieved

at time T if x(t)− y(t) = 0 for all t ≥ T . This can be extended to an N-node network

considering all interacting nodes:

∑
edges(x,y)

x(t)− y(t) = 0

≡
N∑
i,j

Ai,j· | xi(t)− xj(t) | = 0

The quantity
∑N

i,j Ai,j· | xi(t)− xj(t) | can be used as a measure of extent of synchro-
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nization.

• Trajectory Correlation:

Pearson Correlation Coefficient between time series of every two nodes is computed to

measure correlation in dynamics in the asymptotic limit. The RMS of the values in

the correlation matrix is used as a measure of the degree of synchronization.

• Deviation from mean-trajectory:

Standard deviation of node positions at time t from mean trajectory of all nodes. For

full synchronization, this goes ta zero.

• Average inter-node distance:

The distribution of inter-node distances is a useful indicator of the synchronization in

a system. The average distance between positions of every pair of nodes at time t can

be used as a metric for synchronization. For full synchronization, this goes to zero. For

some purposes, this measure is found to be better in a sense that it gives smaller values

in case of cluster synchronization where the deviation from mean trajectory might be

still larger.

• Number of synchronized clusters:

While the above metrics were explored for their effectiveness in measuring the degree

of synchronization the following method can be used to create a discrete measure for

clear binary identification of whether synchronization was reached. It is particularly

useful in systems exhibiting cluster synchronization.

Two nodes are said to be synchronized if their mutual distance remains less than

a cutoff distance ε. Construct a synchronization network by placing an edge between

every pair of synchronized nodes. The number of connected components of this network

is evaluated. Each connected component is a synchronized cluster with a maximum

inter-node distance ofNε. For full synchronization, the number of synchronized clusters

is 1 and for null synchronization, it is N. ,
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• Asymptotic cluster distribution:

Given the number of synchronized clusters, it is also useful to know the distribution

of nodes among these clusters. This allows us to differentiate for example whether the

synchronization procedure has resulted in one large synchronized cluster with other

clusters very small in comparison or an even distribution with multiple clusters of

comparable size.

3.2 Methods of analysis

The ODEs representing the dynamics of the systems in the network were solved numerically

in Python 3 using the SciPy’s [27] ODEINT method which uses the LSODA (Livermore

Solver for Ordinary Differential equations with Automatic method switching for stiff and

non-stiff problems).

For this at each node of network the dynamical system of interest with identical param-

eters but different initial condition was placed. Random graphs using Erdős–Rényi model

were used for network topology.

Effect of coupling strength and network density on synchronization properties were stud-

ied. Various metrics to measure extent of synchronization were explored for Rössler and

Lorenz system in chaotic regime.

Different methods of synchronization were devised and applied on precomputed sets of

initial conditions. Same set of initial conditions of systems were used across different methods

of control and variation of parameters. This was done to avoid the choice of initial condition

from having any relative affect on the results of a control procedure. For computing initial

conditions of N systems, N points are chosen at random from a unit cube in the vicinity of

the system and are allowed to evolve until they settle on trajectories close to the underlying

chaotic attractor of the system. This provides N initial conditions homogeneously distributed
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close to the chaotic attractor. For another set of initial conditions the process is repeated

with different set of random points.

On application of method of control to the initial points, the time series of resulting

trajectories are stored for analysis. After every rewiring event in the coupling network a

timestamped snapshot of the adjacency matrix is also saved. Later the resultant synchro-

nization of the system trajectories was quantified using suitable metrics and measures of

graph topology at any given time were computed from the adjacency matrix.

3.3 Qualitative aspects and visualization

Tools for visualization of the system state for better understanding of the system were

developed. As demonstrated by the Anscombe’s Quartet [28] (where four completely different

and identifiably distinct data-sets produce the same statistical measures) statistical measures

cannot always be solely relied upon to understand the information contained in any data-set.

While the computed statistical measures are useful they are limited in the insight provided

about the system.

Therefore methods for visualization of the evolving network of dynamical systems were

developed as a python toolkit. This allowed us for example to investigate the conditions

associated with oscillation death in some random networks of Lorenz systems.

In this chapter we present the different measures that can be used in general to identify

states of synchronization in any network. We now discuss the control strategies and dynamics

of evolved networks of our study
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Chapter 4

Methods of control

In this chapter we present cost effective and efficient methods of inducing synchronization

in a network of dynamical systems.

4.1 Network rewiring based on distance threshold

The rewiring scheme was devised as follows. The scheme prohibits connection of nodes far

away in the system which reduces the likelihood of them being in widely different environment

in the same chaotic system. It also limits the maximum absolute value of the coupling term

in the dynamics.

Nodes i and j are connected by an edge if | xi(t) − xj(t) |< D where D is a control

parameter that can be modulated. A simple heuristic to determine D is to choose a scale

size that is slightly smaller than the size of topological features of the system.
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4.1.1 Discrete time rewiring

The rewiring of the network can be modelled as being done continuously( i.e. at arbitrary

small intervals of time) over the entire span of the synchronization procedure. This scenario,

however, is ideal and unlikely to be translated into a real-world implementation. To account

for this we model the re-wirings as being done after discrete intervals of time. After a rewiring

event, the system is allowed to relax into the new network state until the next rewiring event.

For the discrete updating method of control the time between rewiring updates or relaxation

time τ is a control parameter.

This method of control is simulated for Rössler and Lorenz systems. The network consists

of a collection of nodes with identical systems placed on each node but different initial

conditions. The systems are initially randomly positioned close to the respective chaotic

attractors at beginning of the simulation.

The results of this control procedure are compared with the same systems evolving on a

static complete network topology. Above a critical value of coupling strength, the rewiring

scheme successfully synchronized all Lorenz systems and the resulting synchronized system

remained chaotic. For the same value of coupling strength, random (ER) networks of density

up to p = 0.12 failed to synchronize. Rössler systems show two distinct types of behaviour on

application of the control procedure, the outcome was either full synchronization or cluster

synchronization. In full synchronization all nodes become part of a singleton connected

network and synchronize, while in cluster synchronization they settle into multiple internally

synchronized components or clusters (Figure 4.1 ).

All networks were allowed to evolve until t = 200. We document the outcome of the syn-

chronization procedure for variations of values of the control parameters; coupling strength

(k) and distance threshold (D).
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Figure 4.1: Evolution of Rössler systems under discrete-time rewiring for threshold distance
D = 10, relaxation time τ = 2 and coupling strength k = 0.10. The state of an individual
system or node is marked as a blue circle. Edges between nodes are marked as black lines
connecting nodes. A free Rössler trajectory (yellow) is plotted in the background.
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Effect of control parameters on synchronization time

Full network topology leads to successful synchronization of Lorenz systems for all the cou-

pling strengths considered (k = 0.1 to k = 10). These show a decreasing trend for synchro-

nization time with increasing coupling strengths, levelling off near t = 7.6 (Figure 4.2).

The time to synchronize vs coupling strength for this control procedure on Lorenz systems

showed a similar decreasing trend but with fluctuations. This behaviour for varying choice

of relaxation time (τ) is shown in (Figure 4.2).
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Figure 4.2: Time taken for N = 100 Lorenz nodes to synchronize as a function of coupling
strength for varying choice of relaxation time τ . The distance threshold for connecting nodes
used here is D = 5 Time for synchronization of fully connected network (full-net) is shown
for comparison.

Rössler systems are not synchronized by fully connected networks for high values of
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coupling strength. For lower values of coupling strength, synchronization time decreases with

increasing coupling until an optimal coupling value is reached. For greater coupling strengths

increasing time for synchronization is observed. For even higher values the dynamics of

Rössler nodes show unbounded destabilization.

The behaviour for Rössler systems under the control procedure under discussion cannot be

characterised appropriately by synchronization time as under varying conditions the Rössler

system shows cluster synchronization with different clusters synchronizing at variable times.

We instead focus on the number of synchronized clusters after a fixed length of time. Systems

of Rössler networks under this control procedure do not destabilise like the fully connected

network even at higher coupling strengths.
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Figure 4.3: Time taken for N = 100 Rössler systems to synchronize as a function of coupling
strength for fully connected network. For coupling strength k > 0.5 the systems either do
not synchronize or destabilize into unbounded trajectories
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Behaviour under discrete-time rewiring for varying distance threshold (D)

Rössler networks show cluster synchronization for the distance threshold based rewiring

scheme. That is they settle into dynamically stable clusters of completely synchronized

nodes. Once synchronized the clusters remain stable over time.
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Figure 4.4: Number of clusters vs the distance threshold for various sizes of Rössler networks
for coupling strength k = 0.01

Figure4.4 and Figure 4.5 show number of clusters at the end of t = 300 for different values

of distance threshold (D) for coupling strengths k = 0.01 and k = 0.05 respectively. While

for lower coupling strength (k = 0.01) full synchronization (1 fully synchronized cluster) is

seen for large (D), for the higher coupling (k = 0.05) systems tend not to synchronize for

larger (D). For k = 0.05 the no of clusters tends to reduce for an initial increase in (t)

and onset of reverse trend appears earlier for larger values of the number of nodes(N). The

abrupt increase in the number of clusters can be explained by destabilisation of Rössler nodes
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due to high coupling forces. For networks of larger sizes the density of nodes in the system

position phase space is higher leading to larger node degree during rewiring, which results

in larger effective coupling forces on each node which in-turn explains the earlier onset of

increasing number of cluster. It must be noted however that the systems remain bounded,

unlike fully connected networks.
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Figure 4.5: Number of clusters vs the distance threshold for various sizes of Rössler networks
for coupling strength k = 0.05

Unlike Rössler systems Lorenz Systems do not show lasting stable cluster behaviour. In

the intermediate stages before synchronization, the nodes do condense into fully synchro-

nized sub-clusters which remain intact briefly before coalescing together into a completely

synchronized system. Figure 4.6 shows the relationship between number of clusters and

distance threshold for two values of coupling strength for 400 Lorenz systems.
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Figure 4.6: Number of clusters vs the distance threshold for Lorenz networks of size N = 400
for coupling strengths k = 1, k = 0.5 at t=200

Another way of characterising the effectiveness of synchronization is the distribution of

node numbers across synchronized clusters. The number of nodes in the greatest component

is plotted for varying D for different networks in Figure 4.7 . While Rössler shows a gradual

increase in the size of giant component Lorenz systems switch from unsynchronized (N

clusters) to synchronized (1 cluster) very sensitively with the change in distance threshold

D .
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Figure 4.7: Rössler networks (a) show gradual increase in the size of largest cluster for in-
creasing distance threshold while networks of Lorenz systems (b) show switch like behaviour.

In this section we have seen that for discrete-time rewiring based on network threshold,

Lorenz and Rössler systems follow a route to synchronization through cluster formation.

That is, we see separate clusters, with nodes inside a cluster wholly synchronized with each

other, yet evolving independently of other clusters. In Lorenz case, the clusters formed are

relatively short-lived and gradually coalesce with each other turning into larger clusters and

eventually form a singleton cluster. In the case of Rössler systems, however, we see that

the dynamics eventually stabilises into a fixed number of clusters synchronized internally.

The number of clusters depends on the distance threshold used and the relationship between

the no of clusters formed and the distance threshold is shown for different values of coupling

strengths. It is also shown that while for a network of Rossler systems the size of the greatest

cluster formed increases gradually with increasing D, for Lorenz systems it is more of a switch

like behaviour, with the maximal cluster size jumping from zero to N across a critical value

of distance threshold.
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4.2 Dynamics driven control of coupling criteria

This rewiring scheme was devised as follows. For any rewiring procedure depending on a

criteria, the scheme prevents certain nodes from making further connections or disconnections

(so their adjacency list is frozen). For this study, we have used transient synchronization

or swarming as a criterion to determine coupling behaviour of nodes. When a group of k

nodes show transient synchrony (i.e. inter-node distances remain less than a threshold for

synchronization for short transient interval δt ) all but l nodes are deactivated. For selection

of l nodes that remain active, we choose the l highest degree nodes from the k transiently

synchronized nodes. At the end of synchronization procedure when equilibrium is attained

a stable network structure is obtained based on the dynamics of the system.

This scheme was implemented on an array of Rössler systems undergoing distance thresh-

old based rewiring. The transient interval used is δt = 0.1 and no of active nodes in a syn-

chronized cluster is l = 1. A sample of resultant states of system for some values of distance

threshold D for coupling strength k = 0.1 are shown in Figure 4.8. The resultant topology

structure and degree-distribution is shown in (Figure 4.9 - Figure 4.20)

(a) D = 5 (b) D = 10

Figure 4.8: State of Rössler network of N = 400 nodes at t = 300 with red circles as nodes
and black edges for k = 0.1. The system shows formation of clusters for (a) and single cluster
for (b)
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4.2.1 Evolved topology of networks

The topology evolved from this control procedure is scale free type. The degree distribution

shows a fat tailed nature. The log-log plots of degree distribution fit to straight lines which is

characteristic of power law distribution. Deviations are seen from straight line at low degree

which is indicative of saturation of small degree nodes.

5 10 15
degree

0.00

0.05

0.10

0.15

0.20

fr
ac

tio
n 

of
 

 n
od

es

(a) linear scale

1 0 0 1 0 1

d e g r e e

1 0 3

1 0 2

1 0 1

fr
a

c
ti

o
n

 o
f

n
o

d
e

s

s lop e = -2 .0 0

(b) log-log scale

Figure 4.9: (a) Degree distribution for Rössler network of N = 1000 nodes at t = 500 . (b)
The log-log plot of distribution is shown. The rewiring control parameters are D = 5, k =
0.02
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Figure 4.10: (a) 2D representation of the network-graph showing the nodes as red circles
with black edges. (b) The degree-rank plot is displayed. The rewiring control parameters
are D = 5, k = 0.02
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Figure 4.11: (a) Degree distribution for Rössler network of N = 1000 nodes at t = 500 . (b)
The log-log plot of distribution is shown. The rewiring control parameters are d = 5, k = 0.12
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Figure 4.12: (a) 2D representation of the network-graph showing the nodes as red circles
with black edges. (b) The degree-rank plot is displayed. The rewiring control parameters
are d = 5, k = 0.12
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Figure 4.13: (a) Degree distribution for Rössler network of N = 1000 nodes at t = 500 . (b)
The log-log plot of distribution is shown. The rewiring control parameters are d = 5, k = 0.22
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Figure 4.14: (a) 2D representation of the network-graph showing the nodes as red circles
with black edges. (b) The degree-rank plot is displayed. The rewiring control parameters
are d = 5, k = 0.22
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Figure 4.15: (a) Degree distribution for Rössler network of N = 1000 nodes at t = 500 . (b)
The log-log plot of distribution is shown. The rewiring control parameters are d = 10, k =
0.02
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Figure 4.16: (a) 2D representation of the network-graph showing the nodes as red circles
with black edges. (b) The degree-rank plot is displayed. The rewiring control parameters
are d = 10, k = 0.02
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Figure 4.17: (a) Degree distribution for Rössler network of N = 1000 nodes at t = 500 . (b)
The log-log plot of distribution is shown. The rewiring control parameters are d = 10, k =
0.12
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Figure 4.18: (a) 2D representation of the network-graph showing the nodes as red circles
with black edges. (b) The degree-rank plot is displayed. The rewiring control parameters
are d = 10, k = 0.12
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Figure 4.19: (a) Degree distribution for Rössler network of N = 1000 nodes at t = 500 . (b)
The log-log plot of distribution is shown. The rewiring control parameters are d = 10, k =
0.22
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Figure 4.20: (a) 2D representation of the network-graph showing the nodes as red circles
with black edges. (b) The degree-rank plot is displayed. The rewiring control parameters
are d = 10, k = 0.22
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Table 4.1: Power law exponents of the evolved network for different values of control param-
eters.

D k γ

5

0.02 2

0.12 2.04

0.22 1.18

10

0.02 2.2

0.12 2.76

0.22 1.11

We see that the control procedure results in networks with power law distribution. There-

fore we conclude that the networks that are generated from this procedure are of scale free

type. A straight line is fit to the log-log plot of degree distribution. The slope (γ) of the

fitted line estimates of the exponent of the power law. The obtained exponents (γ) for dif-

ferent control parameters are summarised in Table 4.1 . It is seen that the value of γ first

increases then decreases with increasing coupling strength. The decrease in γ is associated

with the rise of very high degree nodes giving a more fat tailed degree-distribution.
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Chapter 5

Summary and outlook

The study under this project was mainly to design control strategies that involve both

topology and dynamics and the objectives were to investigate classes of control where:

* Topology driven control where strategic rewiring can result in desirable dynamics

* Dynamics driven control of network topology results in a stable structure

* Extend the study to externally driven control

In the distance threshold based network rewiring scheme, strategic rewiring of network

topology results in desirable dynamics while in the second method studied dynamics driven

control of coupling criteria, dynamics (synchronization) of the system is used to control

network topology resulting in stable scale-free type structure of the network.

The distance threshold based network rewiring scheme was successful in synchronizing

networks of Rössler and Lorenz systems of varying sizes. An interesting pattern of synchro-

nization through cluster formation was observed. The control method is also robust as it

allows tuning coupling strength (k) to high values in Rössler systems without them reaching

unbounded instability. Also synchronized Lorenz systems were able to retain their intrinsic

chaotic behaviour. We have also shown that these properties are achieved even when the

rewiring is not continuous but at discrete intervals even at the time scales of the system os-
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cillations therefore allowing for less frequent re-wirings. A drawback of the system is that in

the final limit when all nodes synchronize the network between synchronized nodes is always

a complete network. This is because for any two nodes that are synchronized the condition

| xi(t)− xj(t) |< D automatically holds for any non-zero D and they are connected by this

procedure. However, this is different from starting with complete network as the evolving

network reaches full network topology only very close to final synchronized state when the

coupling terms tend to vanish anyway.

Another form of control procedure involving dynamics dependent control of topology

was studied. The method involved disabling some already synchronized nodes from making

further connections. This was intended to allow distributing coupling edges more efficiently

among unsynchronized components for an optimal resultant topology. The method results

in phase synchronization with very few edges compared to pure distance threshold based

network rewiring. All networks obtained have < 4% of maximum edges that can be present

in the network. The resultant networks also show non-trivial topology. The networks exhibit

power-law degree distribution with saturation at small-degrees which is a variation [29] of

scale-free networks [3] We, therefore, conclude that the control scheme results in the gener-

ation of networks with scale-free topology with less frequent nodes of very small degrees.

Future trends

Using different distance thresholds (D) for discrete rewiring procedure on Rössler systems,

we see different cluster distribution with reducing number of clusters for increasing D. It

is possible to dynamically change D during the control procedure in a stepwise manner to

arrive at full synchronization with only one cluster. Dynamically varying D through the

control procedure or switching D based on system feedback could give an optimal route to

full synchronization. However, for high coupling strengths, the number of clusters increases

for larger D in network of Rössler systems. Care must be taken to detect onset of destabil-

isation 4.5 and stop/slow the increase of D at that stage for optimal synchronization. The
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destabilisation is believed to be due to higher magnitude of effective coupling due to high de-

grees in larger networked components. Therefore, alternatively, the use of degree normalised

coupling strength to counter the variation in effective magnitude of coupling on nodes can

be studied.

In this study all networks were undirected and the effect of coupling edge between any two

nodes was bi-directional. It has been shown that for directed graph improving the network

structure can, in fact, hinder synchronization [30]. Using directed coupling for the above

methods could be studied to observe the difference in behaviour.

The motivation for the first control procedure was to avoid non-local couplings which

along with being higher in magnitude often pull the nodes away from the underlying chaotic

attractors to unstable regions or fixed points. We propose a new method to localise interac-

tions.This involves relaying coupling through a Delaunay triangulation network of a separate

set of control nodes randomly dispersed and evolving on the chaotic system. A subset of

the nodes to be synchronized can also be tasked as control nodes instead of using separate

nodes.
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