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Abstract

The observation of Quantum Hall Effect led to the development of interest in
topological studies of quantum systems. In the case of Quantum Hall Effect
the conductivity of the system acts as the topological invariant which only
takes values that are integer multiples of e2

~ . In this project we try to under-
stand how the quantum metric behaves when a topological phase transition
occurs. Thus, we look for signatures of topological phase transitions in the
quantum metric.

We work with different systems. We first analyze the SSH model of Poly-
acetylene. We see that when the quantum metric, which is defined in terms of
the overlap between nearby states diverges at a topological phase transition.
This signals that there is no overlap between the states on the two sides of
the transition.

We then work with systems in different gauges and see how the metric trans-
forms under the gauge transformation. We have also come up with a rule to
tell the transformation of metric in one unit cell to that in another. We then
work with the honeycomb lattice and see how the metric behaves when spin
inversion symmetry is broken.
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Chapter 1

Geometric Phase of a Quantum

System

When a quantum system traverses around a closed adiabatic path, it acquires
a phase apart from the dynamical phase. This other phase depends on the
geometry of the path it traverse and hence is known as the geometric phase.
The geometric phase was first observed by Michael Berry in 1984, and thus it
is also known as the Berry’s Phase. The geometric phase is a very interesting
and consequential feature of quantum systems and has led to the new idea
of geometric approach for quantum systems. In this chapter we will briefly
describe how the geometric phase appears in quantum systems.

1.1 The Quantum Adiabatic Theorem

Consider a quantum system described by the Hamiltonian Ĥ(Rµ),which is
dependent on the parameters {Rµ}. Then the eigenvalues E and eigenfunc-
tions  of the Hamiltonian are also {Rµ} dependent and satisfy the eigenvalue
equation:

Ĥ(Rµ) n(Rµ) = En(Rµ) (Rµ) (1.1)

The adiabatic theorem is the statement that if the Hamiltonian is varied
’slowly enough’, by varying the parameters {Rµ}, then the system remains in
the state it started with and only acquires a phase factor. Now the question is
how slow is ’slow enough’? The answer to this question is that the frequency
of the variation of the Hamiltonian should be much much smaller than the
gap between the instantaneous eigenenergies of the system for the quantum
adiabatic theorem to hold true.
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1.2 Geometric Phase

We will now see how the Berry’s phase comes about in the adiabatic evolu-
tion of a quantum system.

If the parameter {Rµ} is t, i.e. if we have a time-dependent Hamiltonian,
then (1.1) becomes

Ĥ(t) n(t) = En(t) n(t) (1.2)

For the time-dependent Hamiltonian in (1.2), the eigenfunctions and eigen-
values are also time-dependent. But these eiegenfunctions still constitute
a complete, orthonormal set at any particular instant of time, such that
h m(t)| n(t)i = �mn. The general solution to the time-dependent Schrodinger
equation can then be given by a linear combination of these eigenfunctions
as follows:

 n(t) =
X

n

cn(t) n(t)e
✓n(t) (1.3)

where ✓n(t) is the dynamical phase factor given by ✓n(t) = �
1
~
R t

0 En(t0)dt0.
On substituting (1.2) in (1.1) we get:

i~
X

n

⇣
ċn n + cn ̇n + icn n✓̇n

⌘
ei✓n =

X

n

cn(H n)e
(i✓n) (1.4)

The last two terms cancel due to (1.1). Now taking inner product with  m

we get:
˙cm(t) = �

X

n

cnh m| ̇nie
i(✓n�✓m) (1.5)

Taking the time derivative of (1.1) and inner product with  m we get:

h m|Ḣ| ni+ h m| ̇ni = Ėn�mn + Enh m| ̇ni (1.6)

Now, since H is hermitian h m|H| ̇ni = Emh m| ̇ni Thus, for m 6= n (1.6)
becomes:

h m|Ḣ| ni = (En � Em) h m| ̇ni (1.7)

Using this in (1.5) we get:

ċm(t) = �cmh m| ̇ni �

X

n

cn
h m|Ḣ| ni

En � Em
ei(✓n�thetam) (1.8)

Now assuming the validity of the adiabatic theorem, i.e. Ḣ is very small so
that we can neglect the last term. We are then left with

ċm(t) = �cmh m| ̇mi (1.9)
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(1.9) has a solution of the form:

cm(t) = cm(0)e
i�m(t) (1.10)

where �m(T ) = i
R t

0 h m(t0)| ̇(t0)idt0.

Now if  n(t) is dependent on some parameter set {Rµ(t)} varying with time,
then

@ n@t = (rR n) .
dR

dt
(1.11)

Then the Berry’s phase becomes:

�n(t) = i

Z Rf

Ri

h n|rR ni.dR̄ (1.12)

Now if the system is taken through a closed path in the parameter space,
i.e. the parameter values return to the initial set of values at the end of the
process, then the geometric phase is given by the line integral around a close
loop and is given by the following equation:

�n(T ) = i

I
h n|rR ni.dR̄ (1.13)

Thus we see from (1.3) and (1.12) that the state of a quantum system, when
taken through an adiabatic closed cycle acquires an additional phase that
depends on the geometry of the path traversed in the parameter space, apart
from the time dependent dynamical phase factor ✓n(t).
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Chapter 2

Quantum Geometry

The studies of the quantum Hall effect led to the idea of studies of quantum
systems in terms topological invariants. Also, the discovery of the geometric
phase made possible the studies of the geometry of the space of many elec-
tron ground states.

In this chapter we try to build an understanding of the geometry of
states of quantum system which are called rays in the Hilbert space. We
try to understand quantum geometry in the framework of quantities called
Bargmann invariants. We define the Quantum Geometric Tensor in terms of
the Bargmann invariants. The Quantum Geometric tensor has a symmetric
and antisymmetric part which give the distance metric and the Berry curva-
ture respectively. The topological characterization of quantum systems can
be done in terms of the distance metric and the Berry curvature which we
try to understand in this project.

2.1 The space of rays

In quantum mechanics the physical state of a system is described by rays
in the Hilbert space. By a ’ray’ we mean, if there is a state | i, which is
normalized, i.e. h |i = 1 and another state | 0

i = ei✓| i then the two sates
are physically same as they both lead to the same set of observables. This is
the state of the quantum system is not physically detectable. Thus, there is
a many to one relation from the ray space to the physical state of the system.

To understand this better, we can think of a situation analogous to the 3d
real Euclidean space. Then two normalized vectors n̂ and �n̂ represent the
same physical state. Thus, we see that there is no distinction between the
forward and backward direction and they both represent the same physical
state. We call these objects rays in the Hilbert space.
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The quantity that can serve as a one to one correspondence to the physical
state of the system is the density matrix or projector defined as:

⇢( ) =
| ih |

h | i
(2.1)

We call it a projector because on acting a state |�i with ⇢( ) we get

⇢( )|�i =
| ih |

h | i
|�i (2.2)

=
h |�i

h | i
| i (2.3)

This is the projection of |�i in state | i.

The density matrix/ projector satisfies the following :
•⇢2 = ⇢
•tr(⇢) = 1.

2.2 Bargmann Invariants

We know any measurable quantity of a state | i can be written in terms of
the projectors ⇢( ) defined in (2.1). Noting this, we define a sequence of
quantities called Bargmann invariants by the following equation:

BN( 1, 2, ..., N) = tr

 
NY

n=1

⇢( n)

!
(2.4)

To see how these invaariants are relevant, let us consider the inner product
h |�i. This is the probability amplitude for a system in state |�i to be found
in state | i. The measurable quantity here is the square of the probability
amplitude, that is:

|h |�i|2 = tr(⇢( )⇢(�)) (2.5)

We see that the RHS is the second Bargmann invariant. The third and higher
Bargmann invariants have a phase ⌦N associated with them which satisfies:

BN( 1, 2, ..., N) = ei⌦
N ( 1, 2,..., N )

|BN( 1, 2, ..., N)|

Here ⌦N( 1, 2, ..., N) is the phase of the N vertex Bargmann invariant with
vertices at  1, 2, ..., N . We will later relate the phase of the Bargamnn
invariants to th egeometric phase.
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2.3 Distance and the Quantum metric

We work in a subspace of the states of a quantum system. The states are
parameterized by a local N coordinate system. We denote the local coordi-
nates by ⌘a, where a=1,2,...,N. We define the distance between two nearby
points using the second Bargmann invariant as follows:

d( 1, 2) =
q
1� B2( 1, 2)�/2 (2.6)

where � is a real number � 1. Notice that the distance is maximum, i.e.
1 between two orthogonal states and is zero between a state and itself. On
Taylor expansion we see that

d2(⌘ + d⌘, ⌘) =
�

4
tr(@a⇢(⌘)@b⇢(⌘))d⌘

ad⌘b (2.7)

where {⌘µ} is the set of parameters on which  depends and @a means @
@⌘µ

.
On comparing (2.7) with

d(⌘ + d⌘, ⌘)2 =
X

a,b

ga,b(⌘)d⌘
ad⌘b (2.8)

we get

gab(⌘) =
�

4
tr(@a⇢(⌘)@b⇢(⌘)) (2.9)

Thus the space of rays has a geometry in which the notion of distance can
be described in terms of the metric in (2.9).

2.4 Phase of Bargmann Invariants

Let’s look at the phase of a three vertex Bargmann invariant. When the the
three vertices of the Bargmann invariant are very close to each other, the
phase will be given by

⌦3(⌘, ⌘ + d⌘1, ⌘ + d⌘2) = Im(ln(tr(⇢(⌘)⇢(⌘ + d⌘1)⇢(⌘ + d⌘2)))) (2.10)

Again, using Taylor expansion and making use of the properties tr(⇢)2 =
tr(⇢) = 1 and thus tr(@a⇢@b⇢) = �tr(⇢@a@b⇢) we get

⌦(⌘, ⌘ + d⌘1, ⌘ + d⌘2) =
1

2i
tr(⇢(⌘)[@a⇢(⌘), @b⇢(⌘)])d⌘

a
1d⌘

b
2 (2.11)

9



Figure 2.1: Three states close to each other as discussed in (2.10)

We define an antisymmetric tensor

Fab(⌘) =
1

2i
tr(⇢(⌘)[@a⇢(⌘), @b⇢(⌘)]) (2.12)

Now for any N vertex Bargmann invariant can be divided into triangles and
the phase associated with the N vertex Bargmann invariant can be written
as a sum of the phase of the 3 vertex Bargmann invariants as follows:

⌦(@⌃) =

Z

⌃

Fab(⌘)d⌘
a
^ ⌘b (2.13)

Where @⌃ denotes the closed Bargmann curve, ⌃ is the surface whose bound-
ary is @⌃ and d⌘a ^ ⌘b is a wedge product. Although there can be many sur-
faces with @⌃ as their boundary, we know that the phase of the Bargmann
invariant is independent of the triangulation i.e. chice of the surface. There-
fore Fab(⌘) must be a closed two-form.

@aFbc + @bFca + @cFab = 0 (2.14)

Also, since F is a closed form it can locally be written as dA where A is
a one-form. If we choose

Aa =
1

i
h⌘|@a|⌘i (2.15)

we get back F as defined in (2.12). The phase of the Bargmann invariant
can now be written as a line integral along @⌃ as

⌦(@⌃) =

I

@⌃

Aad⌘
a (2.16)
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We note that this A defined in (2.15) is the Berry connection differing only
by a factor of 2. (2.16) is then the statement that the berry phase is given
by the line integral of the Berry connection.

2.5 The Quantum Geometric Tensor

The quantum geometric tensor is defined as the sum of the symmetric tensor
gab and the antisymmetric tensor Fab.

Qab = gab + Fab (2.17)

This can be compared to the quantum geometric tensor obtained from the
covariant derivative of | i as follows.

Consider the covariant derivative of | 0
i = ei✓| i

Da| 
0
i = |@a i � i@a✓| i

Construct an object

qab = hDa |Db i

and

g0ab =
qab + qba

2

F 0
ab =

qab � qba
2i

On using the definition of covariant derivative as given above we get

g0ab =
h@a |@b i+ h@b |@a i

2
+ @a✓@b✓

F 0
ab =

h@a |@b i � h@b |@a i

2i

and

qab = g0ab + iF 0
ab

On comparing gab, Fab from (16) with the above mentioned g0ab and F 0
ab using

the definition of ⇢( ) we see that

gab = 2g0ab
Fab = 2F 0

ab
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Thus we see a correspondence between the quantum geometric tensors
defined in two different ways.
We now proceed to discuss several examples of tight binding models that
exhibit topological phases in trying to understand their signature in both g
and F.

12



Chapter 3

Quantum metric in 1d: The

Polyacetylene system

In this chapter we work with a simple 1d quantum system, namely the Su-
Schrieffer Heeger model of Polyacetylene. We analyze the properties of the
quantum metric, which in this case is a scalar, both qualitatively and quan-
titatively.

3.1 Polyacetylene (The SSH model)

Polyacetylene is a special case of the Su-Schrieffer-Heeger model in which
the hopping probabilities between two sites are different. It is carbon com-
pound with alternate double and single bonds between carbon atoms. Thus
we have electrons hopping on a 1d chain with staggered hopping probabilities.

We choose a two site unit cell with sublattice labels a and b as shown in
fig.(3.1).

Figure 3.1: Polyacetylene chain with the two-site unit cell having sublattice

labels a and b
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The hamiltonian of the system is given by

H = �

X

m

�
t(a†mbm + h.c) + t0(b†mam+1 + h.c)

�
(3.1)

Taking the Fourier transform of (??) using

am =
p

a
2⇡

⇡/aX

k=�⇡/a

eikmaak

bm =
p

a
2⇡

⇡/aX

k=�⇡/a

eikmabk

we get, on setting ’a’=1 for simplicity,

Hk = �

X

k

⇥
a†k b†k

⇤  0 t+ t0e�ik

t+ t0eik 0

� 
ak
bk

�
(3.2)

On solving this Hamiltonian we get 2 bands.

✏k = ±

p
t2 + t02 + 2tt0 cos(k) (3.3)

We set t = 1 and plot the dispersion relation with varying t0 which is equiv-
alent to varying t0/t ratio.

As we can see from Fig (3.2) the dispersion has a gap when the ration t0

t is
small and large.At t = t0 we have a gapless spectrum. The points (k = ±⇡)
where the two bands meet are called the Dirac points and the dispersion
around these points is linear in the momentum. We expand the Hamiltonian
(3.2) around the Dirac points using:

am = ei⇡m
X

q

eiqma1q + e�i⇡m
X

q0

e�iq0ma2q0 (3.4)

bm = ei⇡m
X

q

eiqmb1q + e�i⇡m
X

q0

e�iq0mb2q0 (3.5)

we get

Ĥ1q =
X

q

⇥
a†1q b†1q

⇤  0 t� t0 + iqt0

t� t0 � iqt0 0

� 
a1q
b1q

�
(3.6)

and

Ĥ2q =
X

q

⇥
a†2q b†2q

⇤  0 t� t0 � iqt0

t� t0 + iqt0 0

� 
a2q
b2q

�
(3.7)
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Figure 3.2: Dispersion realtion for the system with different t’:t. The gap

closes as t’ increases(t is set to 1). And it opens again as t’ exceeds 1.

Here H1q is the hamiltonian expanded around k = ⇡ nd H2q is what we
get on expanding around k = �⇡.

(3.6) and (3.7) can be written as:

H1q =  †
1q (m��

x + it0�y@q) 1q (3.8)

H2q =  †
2q (m��

x
� it0�y@q) 2q (3.9)

Here � represents the sublattice index and  iq =
⇥
aiq biq

⇤T and m� =
t� t0 (3.8) and (3.9) can be combined as follows:

Hq =  †
q (m��

x
� it�z⌧ z@q) q (3.10)

Here ⌧ represents the valley index and  q =
⇥
a1q b1q a2q b2q

⇤T We
see from (3.10) that the Hamiltonian looks like a Dirac equation, where
m� = t � t0 acts like the mass which opens up a gap in the spectrum as we
can see from fig. (3.2).

3.2 Zero modes

To solve for the zero modes we consider the following equation:

H1q 10 = 0 (3.11)
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Figure 3.3: The zero modes for m < 0 and m > 0 concatenated (m = m�
t0 )


0 m� + t0@q

m� � t0@q 0

� 
u1

v1

�
= 0


u1

v1

�

On solving the above system of linear equations we get two possible linearly
independent solutions:

 10 = e�
R m�

t0 dx


0
1

�
and  10 = e

R m�
t0 dx


1
0

�
.

The two solutions are depicted graphically in Fig.(3.3).

3.3 Quantum metric

The quantum metric gives the distance between two nearby states in the
space of rays as given by (2.9)

Now we calculate the quantum metric for the polyacetylene system. We
solve for the eigenvalues and eigenstates of Hk in (3.2), taking a=1 for sim-
plicity.
We get the eigenvalues

✏±(k) =
p

t2 + t02 + 2tt0 cos(k) (3.12)

and eigenstates

 ±(k) =


t+ t0e�ik

±✏(k)

�
(3.13)

Next we calculate the density matrices using:

⇢± =
| ±ih ±|

h ±| ±i
(3.14)
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This gives

⇢± =
1

2

"
1 ±✏(k)

t+t0e(ik)
±✏(k)

t+t0e(�ik)
1

#
(3.15)

Now using (2.9) we get

gkk( +) =
1

2

t02(t0 + t cos(k))

(t+ t0e�ik)2(t+ t0eik)2
(3.16)

Similarly we get

gkk( �) = gkk( +) (3.17)

We now wish to calculate the quantum metric w.r.t to the hamiltonian ex-
panded around the dirac points i.e the quantity gqq(⇢±). We have the fol-
lowing hamiltonian:

H1q =


0 m� + iqt0

m� � iqt0 0

�
(3.18)

Solving for the eigenvalues and eigenstates we get

✏±(q) = ±

q
m2

� + q2t02 (3.19)

 ±(q) =


m��+ iqt0

✏±(q)

�
(3.20)

Proceeding as before we get

gqq(⇢+) = gqq(⇢�) = gqq =
t02

✏(q)2
�

t04q2

✏(q)4
(3.21)

Using (3.19), (3.21) becomes

gqq =
t02�2

(�2 + t02q2)2
(3.22)

Where � = m� is a measure of the gap in the band structure. Let us define
another variable ⌘ as

⌘ =
t0q

�
(3.23)

Then we have the following forms of gqq in the two limits:

gqq =
t02

�2(1 + ⌘2)
⇠

t02

�2
; when ⌘ << 1(q ! 0) (3.24)

gqq =
⌘2

q2(1 + ⌘2)2
⇠

1

q2⌘4
; when ⌘ >> 1(� ! 0) (3.25)

We see that gqq dependence on q and � is inverse square in both the limits
as listed in (3.24) and (3.25).
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Figure 3.4: Variation of g as t’/t varies. Note that the metric diverges as

it reaches near the critical point t’/t=1. This can also be seen from (3.11)
when � ! 0.
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Chapter 4

Quantum metric under gauge

transformation

In this chapter we will try to understand how the quantum metric transforms
under gauge transformations. For this, we will work with a special class of
systems in 2d called ⇡ flux systems.

4.1 Pi-flux systems

For any system with a certain vector potential A-distribution the flux through
a placket is given by:

� =

I
A.dl (4.1)

Any system that has � = ⇡ will be called a pi-flux system.

4.2 Pi-flux system in two different gauges

We look at systems as shown in the figure (4.1). In the above diagrams
the wavy lines have vector potential A = ⇡ on moving along positive x and
A = �⇡ on moving in the opposite direction and the straight lines have
A = 0. We see that the distribution of A in the two systems is different but
the flux through each square placket in both the cases is

� =
X

⇤
A.dl = ±⇡ (4.2)
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Figure 4.1: Two different gauges

These are thus two different gauges of the same system.
The Hamiltonian for both the gauges is given by

H =
X

<ij>

c†ie
iAijcj (4.3)

We can see from (4.3) that the directionality of A does not matter as

ei⇡ = e�i⇡

Statement: Given a system whose Hamiltonian is dependent on the set
of parameters {kµ} in two different gauges, call them A and B, then one can
find a transformation between kµA and kµB such that for each kµA in the first
gauge there is a corresponding kµB in the second gauge that gives the same
eigenvalue as that given in the first gauge. We will find such a transformation
between the above two gauges.

Let’s first find the Hamiltonians for the two gauges.
Gauge A: We choose a four-sight unit cell with basis

⇥
a b c d

⇤
. Now, from

(4.3) and using Fourier transform

aj =
X

k

eik.rjak (4.4)

and similarly for b,c and d. We get

HkA =

2

664

0 2Cos(ky) 0 �2Cos(kx)
2Cos(ky) 0 2Cos(kx) 0

0 2Cos(kx) 0 2Cos(ky)
�2Cos(kx) 0 2Cos(ky) 0

3

775 (4.5)
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Gauge B : Following the same procedure for the second gauge we get

HkB =

2

664

0 2Cos(ky) 0 2iSin(kx)
2Cos(ky) 0 �2iSin(kx) 0

0 2iSin(kx) 0 2Cos(ky)
�2iSin(kx) 0 2Cos(ky) 0

3

775 (4.6)

HkA has eigenvalues ±
p
2
p

2 + Cos(2kx) + Cos(2ky) each with a double de-
generacy. HkB has eigenvalues ±

p
2
p
2� Cos(2kx) + Cos(2ky) again with

double degeneracy. And the transformation between kA and kB such that we
get the same eigenvalues for both the Hamiltonians is

kxB = kxA �
⇡

2
(4.7)

kyB = kyA (4.8)

4.3 Quantum metric calculations

We will now look at how the quantum metric looks in the two gauges. Using
(2.9) for the two gauges we get

gkxkyA
=

1

(2 + cos(2kx) + cos(2ky))2


4 cos(ky)2 sin(kx)2 � sin(2kx) sin(2ky)
� sin(2kx) sin(2ky) 4 cos(kx)2 sin(ky)2

�

(4.9)

gkxkyB
=

1

(2� cos(2kx) + cos(2ky))2


4 cos(ky)2 cos(kx)2 sin(2kx) sin(2ky)
sin(2kx) sin(2ky) 4 sin(ky)2 sin(kx)2

�

(4.10)
Notice that the quantum metrics in (4.9) and (4.10) also follow the transfor-
mation law (4.7) and (4.8). i.e.

gkxkyB
= gkx�⇡

2 kyA
(4.11)

We can check the validity of (4.11) by comparing the values of components
of g in the two gauges. For eg,

gkxkxA
(0, 0) = gkxkxB

(⇡/2, 0) = 0 (4.12)
gkxkyA

(⇡, ⇡) = gkxkyB
(3⇡/2, ⇡) = 0 (4.13)

gkykyA
(0, ⇡/2) = gkykyB

(⇡/2, ⇡/2) = 1 (4.14)
(4.15)

The plots of different components of g along specific path are given in
figure (4.2). We can note from the plots of g in the two gauges that they

21



Figure 4.2: Quantum metric plots in two gauges

diverge near the critical points in both the gauges, a feature also noted in
the case of polyacetylene. We have also established that the quantum metric
transforms as the reciprocal lattice vectors under a gauge transformation.
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Chapter 5

Quantum metric with different

unit cells

In this chapter we will work with ⇡ flux systems with diagonal hopping,
which, as we will see, opens up a gap in the spectrum. We will calculate the
quantum metric with different unit cells and try to understand whether there
is a rule by which the quantum metric in one unit cell can be converted into
the quantum metric in another unit cell.

5.1 Gauge 1

Consider a ⇡-flux system which has a potential distribution such that the
hopping probabilities are given by (5.1)-(5.4).

ti,i+x̂ = it1 (5.1)
ti,i+ŷ = it1(�1)ix (5.2)

ti,i+x̂+ŷ = it2(�1)ix+1 (5.3)
ti,i+x̂�ŷ = it2(�1)ix (5.4)

Where i denotes the position (ix̂ + iŷ). With this distribution the system
looks like as shown in figure (5.1). Going along the arrows adds a flux of ⇡

2
and going against the direction of the arrows adds a flux of �⇡

2 .

5.1.1 Hamiltonian

We now calculate the Hamiltonian for this system. Let’s choose a four-site
unit-cell with basis

⇥
a b c d

⇤
. Take t1 = 1 and t2 = t. We will have terms

like
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a b

cd

Figure 5.1: Pi-flux distribution

Figure 5.2: Brilluin zone for the system

Figure 5.3: Dispersion along the path � ! M ! K ! � ! M ! K 0
when

t = 0

24



Hab = i(1� exp(�ikx)) (5.5)
Hac = it(1 + exp(�ikx) + exp(�i(kx + ky)) + exp(�iky)) (5.6)
Had = i(�1 + exp(�iky)) (5.7)
Hbc = i(1� exp(�iky)) (5.8)
Hbd = it(�1� exp(�iky)� exp(i(kx � ky))� exp(ikx)) (5.9)
Hcd = i(�1 + exp(ikx))m (5.10)

Thus the Hamiltonian looks like

H =
X

k

⇥
a†k b†k c†k d†k

⇤

2

664

0 Hab Hac Had

H†
ab 0 Hbc Hbd

H†
ac H†

bc 0 Hcd

H†
ad H†

bd H†
cd 0

3

775

2

664

ak
bk
ck
dk

3

775 (5.11)

5.1.2 Dirac points and Dirac cones

The Brilluin zone for our system is a square as shown in figure (5.2). If we
plot the dispersion along the path � ! M ! K ! � ! M ! K 0, we get
two Dirac points, both at �.

5.1.3 Quantum metric

Quantum metric with 4-site unit cell

Let’s look at gauge 1, as described in fig (5.1) first. To calculate the quan-
tum metric in gauge 1 with 4-site unit cell, we expand the Hamiltonian in
(5.11) around the Dirac point (0,0). This gives (neglecting terms of the order
O(tq),O(q2) and higher):

hab = �qx (5.12)
hac = 4it (5.13)
had = qy (5.14)
hbc = �qy (5.15)
hbd = �4it (5.16)
hcd = �qx (5.17)
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Where (qx, qy) are momentum values near the Dirac point (0,0). Now the
soft mode hamiltonian h is given by :

h =
X

q

⇥
ã†q b̃†q c̃†q d̃†q

⇤

2

664

0 �qx 4it qy
�qx 0 �qy �4it
�4it �qy 0 �qx
qy 4it �qx 0

3

775
⇥
ãq b̃q c̃q d̃q

⇤
(5.18)

where ãq, b̃q etc are wavefunctions around the Dirac point (0,0). In this case
we get two pairs of degenerate bands, out of which two are ground states. The
quantum metric g in this case will be a tensor of rank (2,2) with components
of the form gijµ⌫ , where µ, ⌫ = qx, qy and i, j = 1, 2 (band index). On using
(2.9) we get the following:

g(4)qxqx =

2

4
16t2+q2y

(16t2+q2x+q2y)
2

(16t2+q2y)
2

(16t2+q2x+q2y)
3

(16t2+q2y)
2

(16t2+q2x+q2y)
3

16t2+q2y
(16t2+q2x+q2y)

2

3

5 (5.19)

g(4)qxqy =

2

4
�qxqy

(16t2+q2x+q2y)
2

�qxqy(16t2+q2y
2(16t2+q2x+qy)2)3

�qxqy(16t2+q2y
2(16t2+q2x+qy)2)3

�qxqy
(16t2+q2x+q2y)

2

3

5 (5.20)

g(4)qyqy =

2

4
16t2+q2x

(16t2+q2x+q2y)
2

�256t4+q2xq
2
y�16t2(q2x+q2y)

2(16t2+q2x+q2y)
3

�256t4+q2xq
2
y�16t2(q2x+q2y)

2(16t2+q2x+q2y)
3

16t2+q2x
(16t2+q2x+q2y)

2

3

5 (5.21)

Quantum metric with 2-site unit cell

For the calculation with 2-site unit cell, we select the unit cell as shown in
fig 7 with sublattice indices a and b. The Hamiltonian is given as follows:

H = i
X

R

[(a†(R)b(R) + b†a(R + x̂� h.c.)

+ (a†(R + ŷ)a(R)� h.c.) + (b†(R)b(R + ŷ)� h.c.)

+ t((a†(R)b(R + ŷ) + a†(R)b(R� x̂+ ŷ)� h.c.)

+ (a†(R + ŷ)b(R) + a†(R + x̂+ ŷ)b(R)� h.c.))]

(5.22)

For the soft mode expansion of the Hamiltonian in eq (65) we expand a(R)
and b(R) around the Dirac points k1 = (0, 0) and k2 = (0, ⇡) in terms of
wavefunctions aiq biq, where i =1,2 is the valley index.
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Figure 5.4: (a) The 2-site unit cell and (b) the Brillouin zone for the 2-site

unit cell in gauge 1

a(R) = exp(ik1.R)
X

q

exp(iq.R)a1q + exp(ik2.R)
X

q0

exp(iq0.R)a2q0 (5.23)

b(R) = exp(ik1.R)
X

q

exp(iq.R)b1q + exp(ik2.R)
X

q0

exp(iq0.R)b2q0 (5.24)

Now the full soft-mode Hamiltonian is given as follows:

Hq = H1q +H2q (5.25)

where,

H1q =
⇥
a†1q b†1q

⇤  2qy �qx + 4it
�qx � 4it �2qy

� ⇥
a1q b1q

⇤
(5.26)

H2q =
⇥
a†2q b†2q

⇤  �2qy �qx � 4it
�qx + 4it 2qy

� ⇥
a2q b2q

⇤
(5.27)

From eq (69) and (70), Hq can be written as:

H = ⌧z(2qy�z � 4t�y)� iqx�x) (5.28)

Here ⌧ is the valley index. Now we will do the gµ⌫ calculations for the
Hamitonian in eq (68) using (2.9)

g(2)qxqx =
2(4t2 + q2y

(16t2 + q2x + 4q2y)
2

(5.29)
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Figure 5.5: ⇡ flux distribution in second gauge

g(2)qxqy =
�2qxqy

(16t2 + q2x + 4q2y)
2

(5.30)

g(2)qyqy =
2(16t2 + q2x)

(16t2 + q2x + 4q2y)
2

(5.31)

5.2 Gauge 2

We now work with a ⇡ flux system in a different gauge as shown in fig

5.2.1 Hamiltonian

Following the convention, that the flux added when traveling along the arrow
is ⇡

2 and when traveling opposite to the the direction of the arrow, is �⇡
2 we

get the Hamiltonian with 4-site unit cell for the system.

Hab = i(1� exp(�ikx)) (5.32)
Hbc = it(1 + exp(�ikx) + exp(�i(kx + ky)) + exp(�iky)) (5.33)
Had = i(1� exp(�iky)) (5.34)
Hbc = i(1� exp(�iky)) (5.35)
Hbd = it(1 + exp(ikx) + exp(�iky) + exp(i(kx � ky)) (5.36)
Hcd = i(1� exp(ikx)) (5.37)

With the basis
⇥
a b c d

⇤T we get the following Hamiltonian for the system:

H =
X

k

⇥
a†k b†k c†k d†k

⇤

2

664

0 Hab Hac Had

H†
ab 0 Hbc Hbd

H†
ac H†

bc 0 Hcd

H†
ad H†

bd H†
cd 0

3

775

2

664

ak
bk
ck
dk

3

775 (5.38)
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Figure 5.6: Band structure for the system without and with the diagonal

hopping term

5.2.2 Dirac points

We plot the band structure for the system with t = 0 and nonzero t. We see
that there are two Dirac points in the t = 0 case at �. The gap opens up at
nonzero t.

5.2.3 Quantum metric

Quantum metric with 4-site unit cell

We calculate the quantum metric with the 4-site unit cell for Hamiltonian
as defined by (5.32)-(5.37) and (5.38) by expanding the Hamiltonian around
the Dirac point(�) (0,0) and get:

Hq =
X

q

⇥
a†q b†q c†q d†q

⇤

2

664

0 �qx 4it �qy
�qx 0 �qy 4it
�4it �qy 0 qx
�qy �4it qx 0

3

775

2

664

aq
bq
cq
dq

3

775 (5.39)

We calculate the quantum metric using (2.9) and get:

g(4)qxqx =

2

4
16t2+q2y

(16t2+q2x+q2y)
2

(16t2+q2y)
2

(16t2+q2x+q2y)
3

(16t2+q2y)
2

(16t2+q2x+q2y)
3

16t2+q2y
(16t2+q2x+q2y)

2

3

5 (5.40)

g(4)qxqy =

" �qxqy
(16t2+q2x+q2y)

2
�qxqy(16t2+qy)2

2(16t2+q2x+q2y)
3

�qxqy(16t2+qy)2

2(16t2+q2x+q2y)
3

�qxqy
(16t2+q2x+q2y)

2

#
(5.41)

g(4)qyqy =

2

4
16t2+q2x

(16t2+q2x+q2y)
2

�256t4+q2xq
2
y�16t2(q2x+q2y)

2(16t2+q2x+q2y)
3

�256t4+q2xq
2
y�16t2(q2x+q2y)

2(16t2+q2x+q2y)
3

16t2+q2x
(16t2+q2x+q2y)

2

3

5 (5.42)
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Figure 5.7: (a) The 2-site unit cell and (b) the Brillouin zone for the 2-site

unit cell in gauge 2

Quantum metric with 2-site unit cell

To calculate the quantum metric with 2 site unit cell as shown in fig. we
expand the 2-site Hamiltonian in (5.43) around the Dirac points (0,0) and
(⇡, 0) and get the soft mode Hamiltonian in (5.45)-(5.47).

H = i
X

R

[(a†(R)b(R)� h.c) + (a†(R)a(R + x̂)� h.c)

+ t{(a†(R)b(R + x̂)� h.c) + (a†(R)b(R + x̂� ŷ)� h.c)}

+ (b†(R)a(R + ŷ)� h.c) + (b†(R + x̂)b(R)� h.c)

� t{(b†(R)a(R + x̂)� h.c) + (b†(R)a(R� x̂+ ŷ)� h.c)}]

(5.43)

Next we use the expansion of the wavefunction near the two Dirac points
(0, 0) and (⇡, 0) as follows:

a(R) =
X

q

eiq.Ra1q + ei⇡Rx
X

q0

eiq
0.Ra2q0 (5.44)

b(R) =
X

q

eiq.Rb1q + ei⇡Rx
X

q0

eiq
0.Rb2q0 (5.45)

and get

H1q =
X

q

⇥
a†1q b†1q

⇤  �2qx �qy + 4it
�qy � 4it 2qx

� 
a1q
b1q

�
(5.46)
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H2q =
X

q

⇥
a†2q b†2q

⇤  2qx �qy � 4it
�qy � 4it �2qx

� 
a2q
b2q

�
(5.47)

Here H1q and H2q are the soft mode expansions of the Hamiltonian around the
Dirac points (0, 0) and (⇡, 0) respectively. (5.46) and (5.47) can be combined
as follows:

H = ⌧ z(�2qx�
z
� 4t�y)� qy�

x (5.48)

where ⌧ is the valley index. The quantum metric in the 2-site unit cell case
will be a scalar since there is only one occupied band. We use (2.9) to get
the following:

g(2)qxqx =
2(16t2 + q2y

(16t2 + 4q2x + q2y)
2

(5.49)

g(2)qxqy =
�2qxqy

(16t2 + 4q2x + q2y)
2

(5.50)

g(2)qyqy =
2(4t2 + q2x)

(16t2 + 4q2x + q2y)
2

(5.51)

5.3 Analysis

In this section we will see how the metric changes in different unit cells
and reestablish the relation we obtained for quantum metric under gauge
transformation.

5.3.1 Comparison of quantum metric with 4-site and 2-

site unit cell

In Gauge 1

If we compare the Quantum metric with 4-site unit cell and 2-site unit cell in
gauge 1 as in (5.19)-(5.21) and (5.29)-(5.31), we get the following relations:

g(2)qxqx(qy !
qy
2
) =

1

4
Tr[g(4)qxqx ] (5.52)

g(2)qxqy(qy !
qy
2
) =

1

2
Tr[g(4)qxqy ] (5.53)

g(2)qyqy(qy !
qy
2
) = Tr[g(4)qxqy ] (5.54)
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From (5.52) (5.54) we see that the metric in 2-site unit cell which is a scalar is
the trace of the metric obtained by using the 4-site unit cell times a prefactor,
i.e.

g(2)qµq⌫ = f(µ⌫)Tr[g(4)qµq⌫ ] (5.55)

where the prefactor f(µ⌫) is given as follows.

f(µ⌫) =
1

4

✓
1

�µ�⌫

◆
(5.56)

where µ, ⌫ = x, y and �µ is the scaling factor for the µ component between
the two unit cells. In this case �x = 1 and �y = 1

2 .

In Gauge 2

We do similar comparisons for metric in gauge 2 and find:

g(2)qxqx(qx !
qx
2
) = Tr[g(4)qxqx ] (5.57)

g(2)qxqy(qx !
qx
2
) =

1

2
Tr[g(4)qxqy ] (5.58)

g(2)qyqy(qx !
qx
2
) =

1

4
Tr[g(4)qxqy ] (5.59)

We can see that (5.57)-(5.59) satisfy (5.56) with �x = 1
2 and �y = 1.

5.3.2 Check for metric under gauge transformation rule

Now to check the validity of our metric under the gauge transformation rule
we compare the metric with 2-site unit cell in both the gauges. We know
that the gauge transformation here is:

qx ! qy (5.60)
qy ! qx (5.61)

Now due to the above gauge transformation we need to compare the g(2)qxqx in
one gauge with g(2)qyqy in the other. On doing so we find that g(2)qxqx(qx, qy) in
gauge is equal to g(2)qyqy(qy, qx) in gauge 2. This holds for other components
of the quantum metric as well. Same analysis can be done with the metric
for 4-site unit cell also. It turns out that the rule is valid in that case also.
Thus, we see that our rule for the metric under gauge transformation holds
well in all the cases we have considered. Also, we have found out a rule for
the transformation of metric with different sizes of the unit cell.
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Chapter 6

Quantum Metric in Honeycomb

Lattice

In this chapter we calculate the quantum metric for the honeycomb lattice.
We first calculate it for a Hamiltonian that has the usual nearest neighbor
hopping and next nearest neighbor spin dependent hopping terms. We then
calculate the metric for a Hamiltonian with a third term, that is the Rashba
spin-orbit coupling term. The Rashba term breaks the spin sz inversion
symmetry. Our aim in this chapter is to understand how the violation of the
spin inversion symmetry shows up in the quantum metric.

6.1 The Honeycomb lattice

The honeycomb lattice looks as shown in figure, with a two sublattice (a and
b) unit cell. The nearest neighbor distances are:

r̂1 = �ŷ (6.1)

r̂2 =

p
3

2
x̂+

ŷ

2
(6.2)

r̂3 = �

p
3

2
x̂+

ŷ

2
(6.3)

6.2 Hamiltonian without the Rashba term

The Hamiltonian without the Rashba term is given as follows:

H =
X

<ij>↵

tc†i↵cj↵ +
X

<<ij>>↵�

it2vijs
z
↵�c

†
i↵cj� (6.4)
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Figure 6.1: (a) The honeycomb lattice(b) The two Dirac points K and K’

Figure 6.2: The spectrum for the Hamiltonian with two terms. The next

nearest neighbor term opens up the gap in the spectrum as seen in the second

picture

The first term in the Hamiltonian is the nearest neighbor hopping. Let’s
call it H1. The second term is the spin dependent next nearest neighbor
hopping term. ↵, � are the spin indices. The spin dependent amplitude
vij = (2/

p
3)(d̂1Xd̂2)z = ±1. Here d̂1 and d̂2 are unit vectors along the two

bonds joining site i and j.

To diagonalize the Hamiltonian we take the Fourier transform. We do it
term y term as follows:

H1(k) = t
X

k

[a†kbk(e
i(

p
3
2 kx+

ky
2 ) + e�iky + ei(�

p
3

2 kx+
ky
2 )) + h.c] (6.5)

We have suppressed the spin indices in the above equation as H1 is the same
for both the spin components.
Next we calculate the second term in the Hamiltonian.

H2(k) = 2t2
X

k

X

↵�

sz↵�[a
†
k↵ak�(sin(

p
3kx)� 2(sin(

p
3

2
kx) cos(

3

2
ky))

� b†k↵bk�(sin(
p
3kx)� 2(sin(

p
3

2
kx) cos(

3

2
ky))]

(6.6)
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We plot the spectrum for this Hamiltonian and see that there are two Dirac
points in the spectrum at K = (4⇡/3

p
3, 0) and K 0 = (�4⇡/3

p
3, 0). The

next nearest neighbor term results in the gap opening, as we can see from
the plots.

6.2.1 Quantum metric calculations

We now calculate the quantum metric for the Hamiltonian with the two terms
H1 and H2. To do so we first calculate the soft mode Hamiltonian around
the two Dirac points using:

a(R) = eiK.R
X

q

eiq.Ra1q + eik
0.R
X

q0

e�iq0.Ra2q (6.7)

b(R) = eiK.R
X

q

eiq.Rb1q + eik
0.R
X

q0

e�iq0.Rb2q (6.8)

This gives us the soft mode Hamiltonian that looks like:

H(q) = ⌧ z(�3
p
3szt2�

z +
3

2
tqy�

y)�
3

2
qx�

x (6.9)

Here ⌧ represents the valley index (K,K’), s represents the spin index and �
represents the subllatice freedom (a or b). The soft mode Hamiltonian near
the two Dirac points thus looks like:

H(q) =
X

q

h
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(6.10)
near K and

H(q) =
X

q

h
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i
2
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p
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3
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3
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(6.11)
near K’. Using these soft mode Hamiltonians we calculate the quantum metric
for the system and get:

gqxqx =

2

4
12m2+q2y

2(12m2+q2x+q2y)
2 0

0
12m2+q2y

2(12m2+q2x+q2y)
2

3

5 (6.12)
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gqxqy =

" �qxqy
2(12m2+q2x+q2y)

2 0

0 �qxqy
2(12m2+q2x+q2y)

2

#
(6.13)

gqyqy =

"
12m2+q2x

2(12m2+q2x+q2y)
2 0

0 12m2+q2x
2(12m2+q2x+q2y)

2

#
(6.14)

Near both the Dirac points.

6.3 Calculations with Rashba term

The Rashba term is given by:

HR = it3ẑ.(s↵� ⇥ d)c†i↵cj� (6.15)

On addin the Rashba term (6.15) to the Hamiltonian (6.4) we get the soft
mode Hamiltonian near the two Dirac points K and K’, respectively:

H1q =
X

q

 †
1q

2

664
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(6.16)

H2q =
X

q

 †
2q

2

664
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3
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(6.17)
Where  iq =

⇥
aiq" biq" aiq# biq#

⇤
, i=1,2.

6.3.1 Quantum metric calculations

Next, we do the calculation for the quantum metric using the soft-mode
Hamiltonians in (6.16) and (6.17). Now since there are two occupied bands
the quantum metric is a (2,2) tensor. It can be written in terms of the 2⇥ 2
Identity matrix and the Pauli matrices as follows:

gµ⌫ =
g11µ⌫ + g22µ⌫

2
I2 +

g11µ⌫ � g22µ⌫
2

�z +
g12µ⌫ + g21µ⌫

2
�x + i

g12µ⌫ + g21µ⌫
2

�y (6.18)
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Let’s call

g11µ⌫ + g22µ⌫
2

= A (6.19)

g12µ⌫ + g21µ⌫
2

= B (6.20)

i
g12µ⌫ + g21µ⌫

2
= C (6.21)

g11µ⌫ � g22µ⌫
2

= D (6.22)

It turns out that when we write the metric in the form (6.18), we get the co-
efficients A, B, C, D to be the same for the metric near both the Dirac points.

The spin-orbit coupling terms in the Hamiltonian for the honeycomb lattice
make it a Symmetry Protected Topological phase which shows Spin Quantum
Hall Effect. And as we can see from the metric equations without the Rashba
term, the metric diverges near the transition as 1/q2. Similar behavior occurs
with the Rashba term also.

6.4 Summary and Conclusions

From the calculations of the quantum metric that we have studied in this
project, we see that the metric diverges near a topological phase transition.
We see this from the plots for the metric in the 1d Polyacetylene case and in
the 2d ⇡ flux systems. We have also found the analytical forms of the metric
in different systems. From our studies we conclude that the quantum met-
ric diversges, near a transition, wherein a mass-less Dirac fermion becomes
massive.
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Appendix A

Calculation of quantum metric

We have from (2.6)

d( 1, 2) =
q

1� B2( 1, 2)�/2

Now if we consider the distance between two neighboring points ⌘ and ⌘+d⌘
we have the square of the distance between these points using (5) and the
definition of the Bargmann invariants:

d2(⌘, ⌘ + d⌘) = 1� tr((⇢(⌘)⇢(⌘ + d⌘)))
�
2 (A.1)

We next use the properties of the projector ⇢2 = ⇢ and thus tr(⇢2) = tr(⇢) =
1. On differenciating this we get

tr(⇢@a⇢) = 0 ! tr(@a⇢@b⇢) = �tr(⇢@a@b⇢) (A.2)

Now on doing Taylor expansion for ⇢(⌘ + d⌘) in RHS of (51) we get

d2(⌘, ⌘ + d⌘) = 1� (tr(⇢(⌘) + @a⇢d⌘
a +

1

2
@a@b⇢d⌘

ad⌘b)⇢(⌘))
�
2 (A.3)

Using (52) we will have no contribution from terms with linear differentials
and tr(⇢2) = 1 will cancel the 1 in RHS and we are left with �

4 tr(@a⇢@b⇢)d⌘
ad⌘b.

This gives
d2(⌘, ⌘ + d⌘) =

�

4
tr(@a⇢@b⇢)d⌘

ad⌘b (A.4)
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