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Abstract

This project focuses on the interplay between the zero-divisor graphs of semigroups and

zero-divisor graphs of meet-semilattices. Mainly, we examine the weakly perfectness of the

zero-divisor graphs of semigroups and annihilating-ideal graphs of semigroups. In particular,

we solve DeMeyer and Schneider (L. DeMeyer and A. Schneider, The annihilating-ideal

graph of commutative semigroups, J. Algebra 469 (2017), 402-420.) conjecture about the

annihilating-ideal graphs of semigroups negatively.

In the first chapter, we provide a new proof of an analogue of Beck’s Conjecture for the

zero-divisor graphs of posets. Further, we study the partial order given by LaGrange and

Roy [20] for reduced commutative semigroups. In fact, we prove that the minimal prime

ideals of reduced commutative semigroups S are nothing but the minimal prime semi-ideals

of S treated as a poset (under the partial order given in [20]). In fact, we also observe that

a similar result holds for reduced commutative rings with unity. This gives a new insight

about the Beck’s conjecture for reduced rings via ordered sets.

It is known that the set of ideals of semigroups forms a multiplicative lattice. Hence in

the last section, we deal with the annihilating-ideal graphs of semigoups and its connections

with the zero-divisor graphs of multiplicative lattices.
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Introduction

In last two decades, a lot of research has been done on assigning a graph to an algebraic

structure and investigating algebraic properties of that structure using the associated graph.

Some examples of such graphs are the commutating graphs of groups, intersection graphs of

groups and rings, zero-divisor graphs of semigroups and rings, etc.

The focus of the project is to study zero-divisor graphs of algebraic structures as well

as ordered structures and relations between the two. To study the coloring of commutative

rings, the concept of the zero-divisor graph of a commutative ring with unity was introduced

by Beck [4] in 1988. Since then it has received significant attention in the area of algebra.

Following Beck [4], the zero-divisor graph of a commutative ring R with unity is a simple

undirected graph G whose vertices are the elements of R, and vertices x, y are adjacent, if

xy = 0. Here x, y are called zero-divisor and the set of zero-divisors of ring R is denoted by

Z(R). Note that Anderson and Livingston [2] changed the definition of zero-divisor graphs.

They consider only nonzero zero-divisors of rings as vertices of the zero-divisor graph and

x, y are adjacent if xy = 0. Also, we denote Z∗(R) = Z(R)∖ {0}. Now, researchers are using

this definition of zero-divisor graphs.

The chromatic number of a graph G is the minimum number of colors in a coloring

of the vertices of G such that adjacent vertices receive different colors and is denoted by

χ(G). If this number is not finite, we write χ(G) =∞. A subset C of G is a clique, if any

two distinct vertices of C are adjacent. The clique number of a graph G, is the maximum

number of vertices in a clique in G, and it is denoted by ω(G). If the sizes of the cliques

are not bounded, then ω(G) =∞. For any graph G, always χ(G) ≥ ω(G). If χ(G) = ω(G),

then G is called a weakly perfect graph. In [4], Beck conjectured that χ(G) = ω(G),

(referred as Beck’s Conjecture), that is, G is weakly perfect, if G is the zero-divisor graph of

a commutative ring with unity. Moreover, Beck [4, Theorem 3.8] proved this conjecture for
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reduced commutative ring with unity, which is essentially given below.

Theorem 1. Let R be a reduced commutative ring with unity. If χ(G(R)) <∞, then R has

only finite number of minimal prime ideals. If n is this number then χ(G(R)) = ω(G(R)) = n.

Now, we illustrated the concept of zero-divisor graphs by an example. Further, we observe

that G(Z12) satisfies Beck’s conjecture.

Example 1. For a ring Z12, the zero-divisor graph G(Z12) as depicted in Figure is weakly

perfect having χ(G(Z12)) = ω(G(Z12)) = 2.

2

10
4

8

6 9 3

Figure 1: Zero-divisor graph of ring Z12

In 1993, Anderson and Naseer [1] solved Beck’s conjecture negatively by providing an

example of a commutative local ring R with 32 elements for which χ(G) > ω(G).

This concept of zero-divisor graphs is also extended to ordered structures such as semi-

lattices, poset and qosets. Nimbhorkar et al. [22] introduced it for meet-semilattices whereas

Halaš and Jukl [12] extended it to posets which was further modified by Lu and Wu [21]. In

the last five years, Joshi, with his collaborators, developed the theory of zero-divisor graphs

through series of papers, see [13, 14, 16, 17].

From Lagrange and Roy [20, Remark 3.4] (see also Devhare, Joshi and LaGrange [9]) it

can be observed that a commutative reduced ring (semigroup) can be treated as a partially

ordered set (poset).

In the third chapter, we give a relation between minimal prime ideals of a reduced com-

mutative semigroup S and minimal prime semi-ideals of S treated as a meet-semilattice.

Moreover, using this result, we obtain Beck’s result for reduced commutative semigroups.
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In ring theory, the ideals play a crucial role. Hence Behboodi and Rakeei [5, 6]1, intro-

duced the concept of an annihilating-ideal graph AG(R) of a commutative ring R with

unity, where the vertex set V (AG(R)) is the set of nonzero ideals with nonzero annihilator.

That is, a nonzero ideal I belongs to V (AG(R)) if and only if there exists a nonzero ideal

J of R such that IJ = (0), and two distinct vertices I and J are adjacent if and only if

IJ = (0).

In [6], Behboodi and Rakeei raised the following conjecture about annihilating-ideal

graphs of commutative rings, which is still open.

Conjecture 2. For every commutative ring R with unity, χ(AG(R)) = ω(AG(R)).

Recently, DeMeyer and Schneider [7] raised the following analogues conjecture for annihilating-

ideal graphs of commutative semigroups.

Conjecture 3. For every commutative semigroup S with unity, χ(AG(S)) = ω(AG(S)).

In the second part of this project, we answer Conjecture 3 negatively by providing a

counter-example.

For undefined notions and terminologies in lattices and graphs, a reader is referred to

Grätzer [11] and West [27] respectively.

1M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10
(4) (2011), 727-739.
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Chapter 1

Beck’s Conjecture

In 1988, Beck [4]1 introduced the idea of coloring of a commutative ring establishing a

connection between the graph theory and ring theory, specifically commutative ring theory.

He also characterized some class of commutative rings with respect to their zero-divisor

graphs. The zero-divisor graphs of rings are helpful in studying the algebraic properties of

rings using graph theoretical tools.

In this chapter we study the premises of Beck’s Conjecture and a counter-example given

by Anderson and Naseer [1].

For a graph G, we have χ(G) ≥ ω(G). If the equality χ(G) = ω(G) holds for a graph

G, then we say that G is weakly perfect. A simple example of non-weakly perfect graph

is a 5-cycle graph which has chromatic number 3 and has a clique number 2. In [4], Beck

conjectured that for a commutative ring with unity, its zero-divisor graph G(R) is a weakly

perfect graph and proved it for some classes including a class of commutative reduced rings.

1.1 Preliminaries

Definitions 1.1.1. Let R be a ring. An element a ∈ R is a nilpotent element if there is

a positive integer n such that an = 0. A ring R is called reduced if it contains no nonzero

1I. Beck, Coloring of a commutative ring, J. Algebra 116 (1) (1988), 208-226.
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nilpotent element.

Definition 1.1.2. (See [4]). Given subsets I and K of R, I ∶ K = {r ∈ R∣(rK ⊂ I)}.

Moreover, 0 ∶ I = ann(I) and if I = {x} we simply write 0 ∶ x = ann(x) and these last ideals

are called annihilators.

As mentioned earlier, we are using the modified definition of the zero-divisor graph of a

ring given by Anderson and Livingston [2]2 given below.

Definition 1.1.3. For a ring R, Z(R) = {x ∈ R ∣ xy = 0 for some nonzero y ∈ R} denotes

the set of zero-divisors of R, then the zero-divisor graph of R, denoted by G(R), is a

simple undirected graph with vertex set Z∗(R) = Z(R) ∖ {0} in which two distinct vertices x

and y are adjacent if and only if xy = 0.

The following example lays out the difference between two definitions of zero-divisor

graph of rings given by Beck [4] and modified one by Anderson and Livingston [2].

Example 2. The zero-divisor graph of the ring Z12

2

10
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6 9 3

0

χ(GB(Z12)) = ω(GB(Z12)) = 3
(a)

2

10
4

8

6 9 3

χ(G(Z12)) = ω(G(Z12)) = 2
(b)

Figure 1.1: (a) Beck Definition (b) Anderson and Livingston Definition

2 D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217
(1999), 434-447.
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1.2 Zero-divisor graphs of reduced rings

Beck [4] proved that a reduced commutative ring R has a.c.c. on it’s ideals of the form

ann(x) whenever it’s zero-divisor graph does not contain an infinite clique. The following

two lemmas are due to Beck [4].

Lemma 1.2.1. Let R be a reduced ring such that G(R) does not contain an infinite clique.

Then R has a.c.c. on ideals of the form ann(x).

Proof. Assume that ideals of the form ann(x) do not have a.c.c., that is

ann(a1) < ann(a2) < ⋯. Let xi ∈ ann(ai) ∖ ann(ai−1) for i = 2,3,⋯. Then for n = 2,3, ...

non-zero elements yn = xnan−1 form an infinite clique, where yi ≠ yj for i ≠ j. Otherwise,

we have that yiyj = 0 and the equality yi = yj would yield y2i = y
2
j = 0 which implies that

yi = yj = 0, a contradiction.

Lemma 1.2.2. Let x and y be elements in R such that ann(x) and ann(y) are different

prime ideals. Then xy = 0.

Proof. On the contrary, assume that xy ≠ 0 implies that y ∉ ann(x) and x ∉ ann(y). Since

ann(x) and ann(y) are prime ideals we get ann(x) ∶ y = ann(x) and ann(y) ∶ x = ann(y).

Since, ann(x) ∶ y = ann(y) ∶ x = ann(xy) we get ann(x) = ann(y).

Using Lemma 1.2.1 and Lemma 1.2.2, Beck [4] essentially proved the following theorem.

Theorem 1.2.3. For a reduced ring R the following statements are equivalent :

1. χ(G(R)) is finite.

2. The zero-ideal in R is a finite intersection of prime ideals.

3. R does not contain an infinite clique.

Proof. As ω(G(R)) ≤ χ(G(R)), (1) implies (3) is evident.

To see (2) implies (1), let (0) = P1 ∩ P2 ∩ ⋯ ∩ Pn, where P1, P2,⋯, Pn are prime ideals. We

define a coloring f on V (G(R)) as f(x) = min{i∣x ∉ Pi}. Note that χ(G(R)) ≤ n.

Now we show that (3) implies (2). So we assume that R is reduced and does not contain an
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infinite clique. Then by Lemma 1.2.1 R satisfies a.c.c. on ideals of the form ann(a). Let

ann(xi), i ∈ I be the maximal elements of the set {ann(a)}. Then each ann(xi) is also a

prime ideal and by Lemma 1.2.2 index set I is finite implies that the number of prime ideals

is also finite. Pick y ∈ V (G(R)), then ann(y) ⊂ ann(xi) for some i ∈ I. If yxi = 0 then

xi ∈ ann(y) ⊂ ann(xi) implies that x2i = 0, but since R is reduced we get xi = 0. So we have

yxi ≠ 0 and thus y ∉ ann(xi). Therefore, ⋂I ann(xi) = (0).

Using Theorem 1.2.3, Beck [4] essentially proved that finitely colorable commutative

reduced rings are weakly perfect. Moreover, clique and chromatic number are equal to

number of minimal prime ideals of reduced ring.

Theorem 1.2.4. Let R ≠ (0) be a reduced ring. If χ(G(R)) < ∞ then R has only finite

number of minimum prime ideals. If n is this number then χ(G(R)) = ω(G(R)) = n.

Proof. From Theorem 1.2.3 we get χ(G(R)) ≤ n, where n is the number of minimal prime

ideals Pi of R. Moreover, choose xi such that xi ∉ Pi and xi ∈ Pj for some j ≠ i. Then

{x1, x2,⋯xn} is the clique. Hence ω(G(R)) ≥ n, implies that n ≥ χ(G(R)) = ω(G(R)) ≤ n.

1.3 A Counter-Example

Anderson and Naseer [1]3 gave some characterizations for zero-divisor graphs of commutative

rings and more importantly gave an example of a ring for which zero-divisor graph is not

weakly perfect disproving Beck’s conjecture. We reproduce this example. (Note: We use the

modified definition of zero-divisor graphs).

Theorem 1.3.1. ([1]) Let R = Z4[X,Y,Z]/(X2 − 2, Y 2 − 2, Z2,2X,2Y,2Z,XY,XZ,Y Z − 2)

be a commutative ring with identity. Then 4 = ω(G(R)) < χ(G(R)) = 5.

Proof. M = {0,2, x, x+2, y, y+2, z, z+2, x+y, x+y+2, y+z, y+z+2, x+y+z, x+y+z+2} is

a maximal ideal of R and (R,M) is a finite local ring such that R/M ≈ Z2. The remaining

16 elements of R −M are units U(R). 0 and 2 both annihilate complete M and also,

0 ∶M =M2 = {0,2} and M3 = 0.

3 D. D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra 159 (2) (1993),
500-514.

8



To show that ω(G(R)) = 4 it is sufficient to show that ω(G(M)) = 4. Since (apart from 0)

2 annihilates every element of M it has to be part of every maximal clique. {2, x, y, y + z} is

a maximal clique, therefore ω(G(R)) ≥ 4.

Next we show that no clique has more than 4 elements. From Table 1.1, we have for any

element i ∈ {x, y, z, x+y, x+ z, y + z, x+y + z} there is an element i+2 such that pair of i and

i + 2 have same annihilators. Similarly, if for some i ∈M has annihilator j ∈M then j + 2 is

also an annihilator of i.

Suppose that clique contains x then other than 2 it contains one of three pairs viz; pair y

and y + 2 or pair z and z + 2 or pair y + z and y + z + 2. The same is true for x+ 2. So largest

clique with x or x + 2 is of length 4. Similarly it is evident from Table 1.1, that a clique

containing y or y + 2, z or z + 2, x + y or x + y + 2, x + z or x + z + 2, y + z or y + z + 2, and

x + y + z or x + y + z + 2 will have at most 4 elements. Therefore, ω(G(M)) ≤ 4.

Since C = {2, x, y, y + z} is the maximal clique in M we have χ(G(R)) ≥ 4. We color C with

4 colors (viz; c1,c2,c3, and c4). Let 2 is colored by c1, then no other element can be colored

by c1 and color x with c2, y with c3, and y + z with c4.

Next we claim that the subgraph {2, x, y, z, y+z, x+y, x+z, z+2, x+y+2} can not be colored

by 4 colors. Since xz = x(z + 2) = 0 and z(z + 2) = 0 implies that we have to color one of z

and z + 2 with c3 and then other with c4. So we color z with c3 and z + 2 with c4. Also,

x+ y and x+ y +2 are annihilators of each other. In addition y + z annihilates both x+ y and

x+ y + 2. Therefore, we color x+ y with c2 and x+ y + 2 with c3 since y + z is already colored

by c4. Now since x + y, z, and z + 2 all annihilates x + z it cannot be colored with c1, c2,

c3, c4. This implies that χ(G(R)) ≥ 5. In fact, the following partition of R gives coloring of

G(R) using five colors.

{2},{x,x+2, x+y, x+y+z},{y, y+2, z, x+y+2},{y+z, y+z+2, z+2, x+y+z+2},{x+z, x+z+2}.
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Chapter 2

Zero-divisor Graphs of Semigroups

In this chapter, we study the partial ordering relation given by LaGrange and Roy [20]1 on

a reduced commutative ring. Using this relation, we study the interplay of a zero-divisor

graph of a reduced commutative semigroup S and the zero-divisor graph of S treated as a

meet-semilattice.

We begin with few definitions and terminologies.

2.1 Preliminaries

2.1.1 Semigroups

Throughout this chapter S is a commutative semigroup with 0 and 1. If S has no identity

element, one can simply be adjoined to S.

Definitions 2.1.1. An element a ∈ S is a nilpotent element if there is a positive integer

n such that an = 0. A semigroup S is called reduced if it contains no nonzero nilpotent

elements.

A nonempty subset I of S is called ideal if SI ⊆ S. If a is an element of a commutative

1J.D. LaGrange and K.A. Roy, Poset graphs and the lattice of graph annihilators, Discrete Math. 313
(10) (2013), 1053-1062.
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semigroup S, then the smallest ideal containing a is called the principal ideal generated

by a. Similarly as in rings, this ideal will contain aS = {as ∣s ∈ S}, the set of multiples of a.

The zero ideal will be denoted (0).

Note that the product, union, and intersection of ideals of S will again be an ideal of S,

and that each nonzero ideal must necessarily be composed of a union of principal ideals.

Definition 2.1.2. For a subset A ⊆ S, the annihilator of A, denoted ann(A) is given by

ann(A) = {x ∈ S ∣ xa = 0 for all a ∈ A}.

We summarize some properties of annihilators of subsets of commutative semigroup S

which we will be use repeatedly.

1. ann(0) = S.

2. ann(A) is an ideal of S.

3. A ⊆ B implies that ann(A) ⊇ ann(B).

4. A ⊆ ann((annA)) and ann(A) = ann(ann(ann(A))).

Definitions 2.1.3. Let S be a semigroup. A proper ideal P of S is called a prime ideal if

ab ∈ P implies either a ∈ P or b ∈ P . A prime ideal P of S is said to be a minimal prime

ideal if there does not exist any prime ideal Q such that Q ⫋ P .

Definition 2.1.4. A semigroup S is said to satisfy annihilating condition (a.c.) if for

a, b ∈ S, there exists c ∈ S such that ann(a) ∩ ann(b) = ann(c).

DeMeyer, McKenzie and Schneider [8], defined the zero-divisor graph of a commutative

semigroup analogues to the definition given by Anderson and Naseer [1] for zero-divisor

graph of a commutative ring.

Definition 2.1.5. An element x of a semigroup S is a zero-divisor if there is a nonzero

y ∈ S such that xy = 0. The set of nonzero zero-divisors of a semigroup S is denoted by

Z∗(S) = {x ∈ S∣xy = 0 for some nonzero y ∈ S}, also we define Z(S) = Z∗(S)⋃{0}. The

zero-divisor graph of a commutative semigroup S with unity is a simple undirected graph,

denoted by G(S), whose vertices are the nonzero zero-divisors of S and vertices x, y are

adjacent, if xy = 0.

12



2.1.2 Poset and Lattices

Definitions 2.1.6. A partially ordered set (poset) < P ;≤> consists of a non-empty set

P and a binary relation ≤ on P such that ≤ satisfies the following three properties;

(P1) Reflexivity ∶ a ≤ a,∀a ∈ P

(P2) Antisymmetry ∶ a ≤ b and b ≤ a imply that a = b

(P3) Transitivity ∶ a ≤ b and b ≤ c imply that a ≤ c.

A poset < L;≤> is a meet-semilattice, if the greatest lower bound of {a, b}, i.e., inf{a, b}

exists for all a, b ∈ L. Similarly, it is a join-semilattice, if the least upper bound of {a, b},

i.e., sup{a, b} exists for all a, b ∈ L. A poset < L;≤> is a lattice, if it is a meet-semilattice

as well as a join-semilattice. Equivalently, a lattice can also be defined as an algebra

< L;∧,∨ > with two binary operations ∧ (meet) and ∨ (join) on L that satisfy associa-

tivity, commutativity, idempotency and the absorption identities, i.e., a ∧ (a ∨ b) = a and

a ∨ (a ∧ b) = a for a, b ∈ L.

Let P be a poset with the least element 0. Given any nonempty subset X of P , the sets

Xu = {y ∈ P ∣ y ≥ x for every x ∈ X} and X` = {y ∈ P ∣ y ≤ x for every x ∈ X} are called the

upper cone and the lower cone, respectively. Also, if x ∈ P then the sets {x}u and {x}`

will be denoted by xu and x`, respectively.

In [25], Varlet introduced and studied the concept of a 0-distributive lattice.

Definition 2.1.7. A lattice L with 0 is said to be 0-distributive if a∧ b = 0 = a∧ c implies

a ∧ (b ∨ c) = 0.

Definitions 2.1.8. Let L be a meet-semilattice. A non-empty subset I of L is said to be

a semi-ideal if x ≤ y ∈ I implies that x ∈ I. A proper subset I of L is said to be prime

if a ∧ b ∈ I implies that a ∈ I or b ∈ I. A prime semi-ideal P ⊆ L is said to be a minimal

prime semi-ideal if there does not exists any prime semi-ideal Q such that Q ⫋ P .

Definitions 2.1.9. Let L be a meet-semilattice. A nonempty subset F of L is a filter if

(i) a, b ∈ F implies a ∧ b ∈ F and (ii) a ∈ F and a ≤ b imply b ∈ F . A filter F of L is said to

be a maximal filter if there does not exists a filter J ≠ L such that F ⫋ J . If a is an element

of the meet-semilattice L, then the smallest filter containing a is called the principal filter

generated by a. This filter is denoted by [a) = {b ∈ L ∣ a ≤ b}.
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As mentioned earlier, Nimbhorkar et al. [22] introduced the concept of a zero-divisor

graph for meet-semilattices with 0 which was further generalized by Halaš and Jukl [12] for

poset. Lu and Wu [21] modified this definition on the lines of Anderson and Livingston [2].

The zero-divisor graph of a poset with respect to an ideal I was introduced by Joshi [13].

Note that this definition coincides with the definition of Lu and Wu, when I = {0}. It should

be noted that both the papers ([13] and [21]) are submitted around same time. We quote

this definition when a poset is a meet-semilattice.

Definition 2.1.10. Let L be a meet-semilattice with 0. An element x of a meet-semilattice

L is a zero-divisor if there is some nonzero y ∈ L such that x ∧ y = 0. We associate with

L, a simple undirected graph Γ(L), called the zero-divisor graph of L, with the vertex set

V (Γ(L)) which is the set of nonzero zero-divisors in L and distinct vertices a, b are adjacent

if a ∧ b = 0. In this case, the vertex set of Γ(L) is the set of nonzero zero-divisors of L ,

denoted by Z∗(L). Further, we denote Z(L) = Z∗(L) ∪ {0}.

Example 3. Consider the lattice L shown in Figure 2.1.2.1 (a) and its zero-divisor graph

Γ(L) is shown in Figure 2.1.2.1 (b).

0

c

a

b

d

1

L
(a)

c

a b

Γ(L)
(b)

Figure 2.1: Zero-divisor graph of L

2.2 Zero-divisor graphs of posets

On the similar lines of Beck’s theorem for reduced rings, Halaš and Jukl [12] essentially

proved the following Theorem 2.2.1 for a poset.
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Theorem 2.2.1. Let P be a poset with 0, and assume that ω(Γ(P )) <∞. Then the number

n of all minimal prime ideals of P is finite and χ(Γ(P )) = ω(Γ(P )) = n.

Let L be a meet-semilattice with the least element 0. Define the set x⊥ = {y ∈ L ∣ x∧y = 0}.

Next, we provide a direct proof of [12, Theorem 2.9] for meet-semilattices with 0.

Theorem 2.2.2. Let L be a meet-semilattice with 0 and ω(Γ(L)) < ∞. Then ω(Γ(L)) =

χ(Γ(L)).

Proof. Let ω(Γ(L)) = n (say). Then there exists a clique C of Γ(L) with cardinality

n such that C = {x1, x2,⋯, xn} where xi ∧ xj = 0 for i ≠ j and for all i, j ∈ {1,2,⋯, n}.

Also if i ≠ j it is easy to observe that x⊥i and x⊥j are distinct. Otherwise, xj ∈ x⊥i = x⊥j
will give xj = 0, a contradiction. That is, all x⊥j are distinct and total number is again n.

Further observe that ⋂ni=1x
⊥

i = {0}. Otherwise let 0 ≠ t ∈ ⋂ni=1x
⊥

i . Then it can be verify that

{t, x1, x2,⋯, xn} is a clique of n + 1 elements, a contradiction to ω(Γ(L)) = n. We denote

x⊥i = Pi. Define f(x) = min{i ∣ x ∉ Pi}. We claim that f(x) is a coloring. Let x and y be

adjacent vertices of Γ(L), i.e., x ∧ y = 0. Let f(x) = k + 1. Then x ∉ Pk+1 but x ∈ Pi for all

i = 1,2,⋯, k. We now claim that y ∈ Pk+1 = x
⊥

k+1. On the contrary, assume that y ∉ Pk+1,

i.e., xk+1 ∧ y ≠ 0. Therefore x ∧ xk+1, y ∧ xk+1 are vertices of Γ(L). Now consider the set

C1 = {(x ∧ xk+1), (y ∧ xk+1), x1, x2,⋯, xk, xk+2,⋯, xn}. Note that xk+1 ∉ C1. We claim that

C1 is a new clique. All xi of C1 are distinct, as they are the elements of the clique C.

Now if x ∧ xk+1 = xi for some xi ∈ C1, then xi = x ∧ xk+1 ∧ xi = 0, as xi ∧ xk+1 = 0, a

contradiction. Similarly, y ∧ xk+1 ≠ xi for every xi ∈ C1. Again, if x ∧ xk+1 = y ∧ xk+1 then we

get x∧xk+1 = (x∧xk+1)∧ (y ∧xk+1) = 0, since x∧ y = 0, again a contradiction. Thus C1 is the

new clique with ∣C1∣ = n+1, a contradiction to the fact that ω(Γ(L)) = n. Therefore y ∈ Pk+1

and hence the function f is a coloring. Thus n = ω(Γ(L)) ≤ χ(Γ(L)) = n.

Let S be a reduced commutative semigroup with 0 ≠ 1. Define a relation ≤ such that r ≤ s

in S if and only if either ann(s) ⫋ ann(r) or r ≤ s in some predetermined linear order on the

set [r] = {x ∈ S ∣ ann(r) = ann(x)}. LaGrange and Roy [20, Remark 3.4], proved that ≤ is

a partial order on S. In fact it follows from Remark 4.8 of [19] that S is a meet-semilattice.

The last two statements of the following theorem follow from [3, Lemma 3.5 (1), (2) and (5)]

and [10, Theorem 3.4]. For the sake of completeness, we provide its proof.

Theorem 2.2.3. Let S be a reduced commutative semigroup with 0 and 1. Then the following

statements are true.
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1. < S;≤> is a meet-semilattice.

2. For a, b ∈ S we have ab = 0 if and only if a ∧ b = 0.

Therefore, the zero-divisor graph of S (treated as a meet-semilattice) and zero-divisor

graph of a semigroup S are essentially same, i.e., Γ(S) ≅ G(S).

3. If S satisfies annihilating condition (a.c.), then S is a 0-distributive lattice.

Proof. (1.) From the above discussion, S is a poset. Now we prove that S is a meet-

semilattice. Let a, b ∈ S. If a and b are comparable, then inf{a, b} exists and we are through

in this case. Assume that a and b are incomparable. Then ann(a) ⫋ ann(ab) and ann(b) ⫋

ann(ab). Hence ab is a lower bound of {a, b}. Consider the elements of [ab] in predetermined

linear order. Without loss of generality assume that ab is the largest, i.e., x ≤ ab for all x ∈

[ab]. Let t be any lower bound of {a, b}, i.e, t ≤ a, b. Then ann(a), ann(b) ⊆ ann(t). Without

loss of generality, if ann(t) = ann(a) and ann(b) ⫋ ann(t), then a ≤ b, a contradiction. Hence

ann(a), ann(b) ⫋ ann(t). We claim that ann(ab) ⊆ ann(t). Let x ∈ ann(ab). Then xab = 0.

Hence we have xb ∈ ann(a) ⫋ ann(t). This gives xbt = 0, i.e., xt ∈ ann(b) ⫋ ann(t) which

further implies that xt2 = (xt)2 = 0. Since S is reduced, we get xt = 0. Hence x ∈ ann(t).

This gives ann(ab) ⊆ ann(t). Now if ann(ab) ⫋ ann(t) we get t ≤ ab or if ann(ab) = ann(t)

again we get t ≤ ab, as considered in predetermined order that the element ab is the largest,

proving that inf{a, b} = ab. Thus S is a meet-semilattice.

(2.) If a, b ∈ S and ab = 0, then as S is a meet-semilattice, from the proof of (1.) we get

that a ∧ b = inf{a, b} = ab = 0. Conversely, if a ∧ b = 0 then ab ≤ a ∧ b = 0 implies that ab = 0.

(3.) Assume that S satisfies the annihilating condition (a.c.). Let a, b ∈ S. Then by

(a.c.), we have c ∈ S such that ann(c) = ann(a) ∩ ann(b). Consider the elements of [c] in

predetermined linear order. Without loss of generality, assume that c is the least of them, i.e.,

c ≤ x for all x ∈ [c]. Arguing similarly as above we get sup{a, b} is a or b, if ann(c) = ann(b)

or ann(c) = ann(a). Now, if ann(c) ⫋ ann(a) and ann(c) ⫋ ann(b) then a, b ≤ c. Thus

c is a upper bound of {a, b}. Let u be any upper bound of {a, b}. Then u ≥ a, b which

implies ann(a), ann(b) ⊆ ann(u). Again we have similar conditions and therefore by similar

arguments we get the existence of sup{a, b}. Now if ann(u) ⫋ ann(a), ann(b) then we claim

that ann(u) ⊆ ann(c). Let x ∈ ann(u) ⫋ ann(a), ann(b). Then xa = xb = 0. This gives

x ∈ ann(a)∩ann(b) = ann(c). Hence ann(u) ⊆ ann(c). Now if ann(u) ⫋ ann(c) we get c ≤ u

or if ann(u) = ann(c) again we get c ≤ u as considered in predetermined order, proving that
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sup{a, b} = c. Thus S is a lattice.

Now, suppose that x, y, z ∈ S such that x ∧ y = x ∧ z = 0. Since Γ(S) = G(S), it follows

that xy = xz = 0. Let u = x ∧ (y ∨ z). Since y, z ∈ S, by (a.c.) there exists a ∈ S such that

ann(a) = ann(y) ∩ ann(z). Hence ann(a) ⊆ ann(y) and ann(a) ⊆ ann(z), so either y, z ≤ a

or ann(a) ∈ {ann(y), ann(z)}. But if ann(a) = ann(y) then replace a by any element of

{s ∈ S∣ann(s) = ann(y)} that is greater than or equal to y, i.e., y ≤ a. Similarly, it can be

assumed that z ≤ a. Hence it follows that a can be chosen such that ann(a) = ann(y)∩ann(z)

and y ∨ z ≤ a. Therefore, u ≤ a, and since x ∈ ann(y) ∩ ann(z) = ann(a) ⊆ ann(u), we have

xu = 0, i.e., x ∧ u = 0. But u ≤ x implies u = 0. Thus, x ∧ (y ∨ z) = 0.

The following well-known result is due to Kist [18].

Lemma 2.2.4. Let S be a reduced semigroup and P be a prime ideal of S. Then P is a

minimal prime ideal if and only if it satisfies the condition (§).

(§) : For any x ∈ P , there exists y ∉ P such that xy = 0.

The following result is a modified version of [23, Theorem 4] by Pawar and Thakare,

which is an analogue of the above result. For the sake of completeness, we provide its proof.

Lemma 2.2.5. Let L be a meet-semilattice with 0 and P be a prime semi-ideal. Then P is

a minimal prime semi-ideal if and only if it satisfies the condition (⋆).

(⋆) : For any x ∈ P , there exists y ∉ P such that x ∧ y = 0.

Proof. Let P be a prime semi-deal satisfying the condition (⋆). Suppose on the contrary

that P is not minimal. Hence there exists a minimal prime semi-ideal, say Q such that Q ⫋ P

Then there exists x ∈ P such that x ∉ Q. By the condition (⋆), there exist y ∉ P such that

x ∧ y = 0 ∈ Q. But x, y ∉ Q a contradiction to primeness of Q.

Conversely, assume that P is minimal prime semi-ideal. Then L∖P is a filter. Moreover,

L ∖ P is a maximal filter. Let x ∈ P . Consider the filter K = [x) ∨L ∖ P . By maximality of

L∖P , we have K = L. Since, 0 ∈ L =K = [x)∨L∖P implies that x∧y = 0 for some y ∈ L∖P .

This proves that x ∧ y = 0 for some y ∉ P .

With this preparation, we are ready to prove our main result which relates minimal

prime ideals of a reduced semigroup S and minimal prime semi-ideals of S treated as a

meet-semilattice.
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Theorem 2.2.6. Let S be a reduced semigroup with 0 and 1 and P ⊆ R. Then P is a minimal

prime ideal of S (treated as a semigroup) if and only if P is a minimal prime semi-ideal of

S (treated as a meet-semilattice).

Proof. Let P be a minimal prime ideal of S (treated as a semigroup). First, we prove

that it is a semi-ideal of S as a meet-semilattice. Let x ≤ y ∈ P . We claim that x ∈ P . Since

y ∈ P , by Lemma 2.2.4, there exists z ∉ P such that yz = 0. By Theorem 2.2.3, we have

y ∧ z = 0. Therefore x∧ z = 0. Again by Theorem 2.2.3 xz = 0. This gives x ∈ P . Thus P is a

semi-ideal.

Next we prove that P is a prime semi-ideal. Let x ∧ y ∈ P . From proof of Lemma 2.2.3,

we observe that xy is a lower bound of x, y. Hence xy ≤ x∧y ∈ P . Since P is a semi-ideal, we

have xy ∈ P . Therefore, either x ∈ P or y ∈ P , as P is a prime ideal (treated as a semigroup),

proving that P is a prime semi-ideal of S (treated as a meet-semilattice). Minimality of a

prime semi-ideal P follows from the condition (⋆) of Lemma 2.2.5 and Theorem 2.2.3.

Conversely, let P be a minimal prime semi-ideal of S (treated as a meet-semilattice).

First, we prove that P is an ideal of a semigroup S. Let a ∈ P and r ∈ R. By the condition

(⋆) of Lemma 2.2.5 there exists c1 ∉ P such that a∧c1 = 0. This further gives that ac1 = 0 (by

Theorem 2.2.3). Hence (ar)c1 = 0 which yields (ar)∧ c1 = 0 ∈ P . This gives ar ∈ P . Hence P

is an ideal of S (treated as a semigroup).

Next we claim that P is a prime ideal of a semigroup S. Let ab ∈ P . Then by the

condition (⋆) of Lemma 2.2.5 there exists c ∉ P such that ab∧c = 0. Hence abc = 0. Note that

if abc = 0 then a ∧ b ∧ c = 0. For this let t ∈ {a, b, c}`. Then ann(a) ⊆ ann(t), ann(b) ⊆ ann(t)

and ann(c) ⊆ ann(t). Clearly, bc ∈ ann(a) ⊆ ann(t). Hence bct = 0 which further implies

that ct ∈ ann(b) ⊆ ann(t). Since S is reduced, we have ct = 0. Therefore, t ∈ ann(c) ⊆ ann(t)

implies that t2 = 0. Thus we have t = 0. Thus a ∧ b ∧ c = 0 ∈ P implies that a ∧ b ∈ P , since

c ∉ P . As P is a prime semi-ideal, we have either a ∈ P or b ∈ P . This proves that P is a

prime ideal of a semigroup S. Minimality of a prime ideal P follows from the condition (§)

of Lemma 2.2.4 and Theorem 2.2.3.

Let Min(S) denotes the set of all minimal prime ideals of S treated as a semigroup and

Minps(S) denotes the set of all minimal prime semi-ideals of S treated as a meet-semilattice.
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By Theorem 2.2.3, we have Γ(S) ≅ G(S). Using Theorem 2.2.2 and Theorem 2.2.6, we

have the following result.

Theorem 2.2.7. Let S be a reduced commutative semigroup with 0 and 1. Let ω(Γ(S)) <∞.

Then ω(Γ(S)) = χ(Γ(S)) = ω(G(S)) = χ(G(S)) = ∣Min(S)∣ = ∣Minps(S)∣.

To illustrate the idea of zero-divisor graph of reduced semigroup and verification of The-

orem 2.2.7, we provide the following simple example.

Example 4. Let semigroup S = {0, a, b, c, d,1} such that xy = 0 for x ≠ y, where x ≠ 1, y ≠ 1

also x2 = x for all x ∈ X, and x ⋅ 1 = x for all x ∈ X. Note that S is commutative reduced

semigroup with 0 and 1.

For a semigroup S, we have Z∗(S) = {a, b, c, d}, such that xy = 0 for all x ≠ y. Then the

zero-divisor graph G(S) is weakly perfect with ω(G(S)) = χ(G(S)) = ∣Min(S)∣ = 4, where

Min(S) = {(a), (b), (c), (d)}, (see Figure 2.2).

a(Y)

b(B)

d(R)

c(G)

(R)-red, (G)-green, (Y)-yellow, (B)-blue

G(S) ≅ Γ(S)

Figure 2.2: Zero-divisor graph of S

Now, if we treat S as a meet-semilattice with the partial order given by LaGrange and

Roy [20]. Then we have ann(x) ≠ ann(y) for all x, y ∈ Z∗(S). Therefore we have x ∧ y =

inf{x, y} = xy = 0 for all x, y ∈ Z∗(S). Then again all x, y ∈ Z∗(S) are adjacent, that

is, Γ(S) is a complete graph. Hence, the zero-divisor graph Γ(S) is also weakly perfect

with ω(Γ(S)) = χ(Γ(S)) = ∣Minps(S)∣ = 4, where Minps(S) = {{0, a},{0, b},{0, c},{0, d}}.

Moreover, we get that Γ(S) ≅ G(S) which is in accordance with second statement of Theorem

2.2.1.
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Therefore, for S in Example 4, we get ω(Γ(S)) = χ(Γ(S)) = ω(G(S)) = χ(G(S)) =

∣Min(S)∣ = ∣Minps(S)∣ = 4 which verifies the Theorem 2.2.7.

Though results are written for reduced semigroups, it can be easily observed that these

are also true for reduced rings. Therefore we can extend [4, Theorem 3.8] and rewrite above

theorem for rings as follow.

Corollary 2.2.8. Let R be a reduced commutative ring with unity. Let ω(Γ(R)) <∞. Then

ω(Γ(R)) = χ(Γ(R)) = ω(G(R)) = χ(G(R)) = ∣Min(R)∣ = ∣Minps(R)∣.
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Chapter 3

Annihilating-ideal Graphs of

Semigroups

3.1 Introduction

Behboodi and Rakeei [5] introduced the concept of annihilating-ideal graph of a ring as-

sociating a simple graph to set ideals of a ring. They established the weakly perfectness

of annihilating-ideal graph for reduced rings, and also in particular to counterexample for

Becks conjecture given by Anderson and Naseer [1]. In addition to this, due to the lack of

counterexample to weakly perfect annihilating-ideal graph they conjectured (see Conjecture

2) that annihilating-ideal graph for every commutative ring R is weakly perfect. Therefore

analogously DeMeyer and Schneider [7]1, introduced the annihilating-ideal graph of a com-

mutative semigroup. Similarly they showed that equality also holds for reduced semigroups

as well as semigroups S with ann(S) = S and raised the following conjecture analogues to

conjecture raised by Behboodi and Rakeei [5] for rings.

Conjecture 3.1.1. For every commutative semigroup S with unity, χ(AG(S)) = ω(AG(S)).

In this chapter, we study the theory of annihilating-ideal graph of semigroups, theory

of zero-divisor graph of multiplicative lattice and compressed graphs. With help of this, we

1L. DeMeyer and A. Schneider, The annihilating-ideal graph of commutative semigroups, J. Algebra 469
(2017), 402-420.
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provide an example of commutative semigroup S such that the annihilating-ideal graph of

S is not weakly perfect. This solves the Conjecture 3.1.1 negatively.

3.2 Preliminaries

Inspired from the concept of annihilating-ideal graph of a ring given by Behboodi and Rakeei

[5], Demeyer and Schneider [7] introduced the idea of annihilating-ideal graph of a semigroup

as follows.

Definition 3.2.1. Let I(S) be the set of ideals of a commutative semigroup S with 0 and let

I∗(S) = I(S) ∖ {(0)}. A proper ideal I ∈ I(S) is an annihilating-ideal of S if there exists

a nonzero ideal J ∈ I(S) such that IJ = (0). Let A(S) be the set of all annihilating-ideals of

S, and A∗(S) = A(S) ∖ {(0)}.

Let S be a commutative semigroup with 0 and 1. We say that x ∼ y if and only if

ann(x) = ann(y). Clearly, ∼ is an equivalence relation and let [x] = {y ∈ L∣ ann(x) = ann(y)}

be an equivalence class corresponding to ∼. Furthermore, if x1 ∼ x2 and x1y = 0, then

y ∈ ann(x1) = ann(x2) and hence x2y = 0. It follows that the multiplication is well-defined

on the equivalence classes of ∼, that is, [x][y] = [xy]. Note that [0] = {0} and [1] = S∖Z(S).

We denote the set of all equivalence classes of the relation ∼ on S by SE = {[x] ∣ x ∈ L}.

Note that SE is a commutative monoid. Also, SE forms a poset under the partial order ≤ as

follows: [a] ≤ [b] if and only if ann(b) ⊆ ann(a).

Consider the following Definition 3.2.2 given by LaGrange [19] of the compressed zero-

divisor graph of a commutative semigroup S with 0.

Definition 3.2.2. Let S be a commutative semigroup with 0. We associate an simple undi-

rected graph, called the compressed zero-divisor graph of S and denoted by C(G(S)),

in which the set of vertices are the equivalence classes of vertices in G(S), and two nonzero

distinct vertices [x], [y] are adjacent if and only if [x][y] = [0].

The following definition of the annihilating-ideal graph of a semigroup is given by De-

Meyer and Schneider [7] which is an analogue of definition of the annihilating-ideal graph of

a ring.
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Definitions 3.2.3. The annihilating-ideal graph AG(S) of a commutative semigroup S

with 1 ≠ 0 is the graph where the vertex set V (AG(S)) is the collection of nonzero ideals

with nonzero annihilator. That is, a nonzero ideal I belongs to V (AG(S)) if and only if

there exists a nonzero ideal J of S such that IJ = (0), and two distinct vertices I and J are

adjacent if and only if IJ = (0). Also, we associate an simple undirected graph, called the

compressed annihilating-ideal graph of S and denoted by C(AG(S)), in which the set

of vertices V (AG(S)) = SE and two distinct vertices [x], [y] ∈ SE are adjacent if and only if

[x][y] = [0].

The set of ideals of semigroup S, denoted by I(S) forms a multiplicative lattice. Moreover,

IE(S) is again a multiplicative lattice, in fact IE(S) is a compressed multiplicative lattice

(see Definition 3.2.7).

The concept of multiplicative lattices was introduced by Ward and Dilworth [26]2 to

study abstract commutative ideal theory of commutative rings.

Definition 3.2.4. A complete lattice (see Definition 2.1.6) L is a multiplicative lattice,

if there is a binary operation “ ⋅ ” called the multiplication on L satisfying the following

conditions:

1. a ⋅ b = b ⋅ a, for all a, b ∈ L.

2. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c, for all a, b, c ∈ L.

3. a ⋅ (⋁α bα) = ⋁α(a ⋅ bα), for all a, bα ∈ L, α ∈ Λ(an index set).

4. a ⋅ 1 = a, for all a ∈ L.

Definitions 3.2.5. (See [11]). An element c of a complete lattice L is a compact element,

if c ≤ ⋁α aα, α ∈ Λ (Λ is an index set) implies c ≤ ⋁ni=1 aαi
, where n ∈ Z+.

The set of all compact elements of a multiplicative lattice L is denoted by L∗. A lattice

L is compactly generated or algebraic, if for every x ∈ L, there exist xα ∈ L∗ for α ∈

Λ(an index set) such that x = ⋁α xα, that is, every element is a join of compact elements.

Equivalently, if L is a compactly generated lattice and if a /≤ b for a, b ∈ L, then there is a

nonzero compact element c ∈ L∗ such that c ≤ a and c /≤ b.

2M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939), 335-354.
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A multiplicative lattice L is 1-compact, if 1 is a compact element of L. A multiplicative

lattice L is compact, if every element of L is a compact element.

The following concept of m-SSC lattice is introduced and studied by Sarode and Joshi

[24].

Definition 3.2.6. A multiplicative lattice L is a m-section semi-complemented (in brief

m-SSC), if for a, b ∈ L with b ≰ a, there exists c ∈ L such that b ⋅ c /= 0 and a ⋅ c = 0.

Remark 3.2.1. It is easy to observe that a multiplicative lattice L is m-SSC if and only if

the equivalence class (treated L as a multiplicative semigroup) [a] = {a} for every a ∈ L.

Let L be a multiplicative lattice and x, y ∈ L. We say that x ∼ y if and only if ann(x) =

ann(y). Clearly, ∼ is an equivalence relation and let [x]m = {y ∈ L ∣ ann(x) = ann(y)}

be an equivalence class corresponding to ∼. Furthermore, if x1 ∼ x2 and x1 ⋅ y = 0. Then

y ∈ ann(x1) = ann(x2) and hence x2 ⋅ y = 0. It follows that the multiplication is well defined

on the equivalence classes of ∼, that is, [x]m ⋅ [y]m = [x ⋅ y]m. Note that [0]m = {0} and

[1]m = L ∖Z(L).

Definition 3.2.7. (See [15]) We denote the set of all equivalence classes of the relation ∼

on a multiplicative lattice L by LE = {[x]m ∣ x ∈ L} and called compressed multiplicative

lattice.

Note that LE is a commutative monoid. Also, LE forms a poset under the partial order

≤ as follows: [a]m ≤ [b]m if and only if ann(b) ⊆ ann(a). In Figure 3.1 (d) we have depicted

compressed multiplicative lattice LE for lattice in Example 3.

Next, we introduce the concept of a multiplicative zero-divisor graph Γ̃(L) of a multi-

plicative lattice L given by Sarode and Joshi [24].

Definition 3.2.8. Let L be a multiplicative lattice. An undirected simple graph is said to be

the multiplicative zero-divisor graph of L and denoted by Γ̃(L), with the set of vertices

is set of nonzero zero-divisors of L and it is denoted by (Z∗(L)), and two distinct vertices

a, b are adjacent if and only if a ⋅ b = 0. Further, we denote by Z(L) = (Z∗(L)) ∪ {0}.

Example 5. Consider the lattice L shown in Figure 3.1 (a) with the trivial multiplication

x ⋅ y = 0 = y ⋅ x for x, y ∈ L ∖ {1} and x ⋅ 1 = x = 1 ⋅ x for every x ∈ L. It is easy to see that L
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is a multiplicative lattice. Then, its zero-divisor graph Γ(L) and multiplicative zero-divisor

graph Γ̃(L) are shown in Figure 3.1 (b) and (c) respectively.

0

c

a

b

d

1

L

(a)

c

a b

Γ(L)

(b)

b

a c

d

Γ̃(L)

(c)

[0]m

[d]m

[1]m

LE

(d)

Figure 3.1: For a multiplicative lattice L (a) Hasse Diagram, (b) Zero-divisor graph,
(c) Multiplicative zero-divisor graph and (d) Hasse Diagram of compressed multiplicative
lattice LE

Definition 3.2.9. Let G be a graph. Duplicating a vertex x of G produces a new graph

G ○ x by adding a new vertex x′ with N(x′) = N(x) (West [27, page 320]). Thus a vertex y

is adjacent to x′ in G ○ x if and only if y is adjacent to x in G.

3.3 Results

In [15], Joshi and Sarode gave an example of multiplicative lattice for which Beck’s conjecture

is not true, that is zero-divisor graph of multiplicative lattice of L (Example 6) is not weakly

perfect.

Example 6. A multiplicative lattice L with the multiplication given in Table 3.1.
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● 0 a b c d e f (a ∨ c) (a ∨ d) (b ∨ e) (c ∨ e) (b ∨ d) t 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a 0 f 0 f f 0 0 f f 0 f f f a

b 0 0 f 0 f f 0 0 f f f f f b

c 0 f 0 f 0 f 0 f f f f 0 f c

d 0 f f 0 f 0 0 f f f 0 f f d

e 0 0 f f 0 f 0 f 0 f f f f e

f 0 0 0 0 0 0 0 0 0 0 0 0 0 f

(a ∨ c) 0 f 0 f f f 0 f f f f f f (a ∨ c)
(a ∨ d) 0 f f f f 0 0 f f f f f f (a ∨ d)
(b ∨ e) 0 0 f f f f 0 f f f f f f (b ∨ e)
(c ∨ e) 0 f f f 0 f 0 f f f f f f (c ∨ e)
(b ∨ d) 0 f f 0 f f 0 f f f f f f (b ∨ d)

t 0 f f f f f 0 f f f f f f t

1 0 a b c d e f (a ∨ c) (a ∨ d) (b ∨ e) (c ∨ e) (b ∨ d) t 1

Table 3.1: Multiplication on L
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J
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a b c d e

t
t t

u

t

a ∨ c a ∨ d b ∨ d b ∨ e c ∨ e

t

L

u
t
t

t
t

t

t

u
t

t

u

u
f

Γ(L)
(R)-Red, (B)-Blue, (G)-Green, (Bk)-Black

(Bk)

a (B)

b (G)

c(R)d(B)

e (G)

b ∨ e(R)

a ∨ c(R)

b ∨ d(B)

t(G)

a ∨ d(R)

c ∨ e(R)

(a) (b)

Figure 3.2: Multiplicative lattice L for which the Beck’s Conjecture does not hold
(a) Hasse Diagram of L (b) Multiplicative zero-divisor graph of L
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Now we consider the multiplicative lattice L given above as a semigroup. Then the

nonzero annihilating ideals of L are as follows.

(a)
(b) ∪ (e) (b ∨ e) (b) ∪ (b ∨ e) (b) ∪ (e) ∪ (b ∨ e)

(e) ∪ (b ∨ e)

(b)
(a) ∪ (c) (a ∨ c) (a) ∪ (a ∨ c) (a) ∪ (c) ∪ (a ∨ c)

(c) ∪ (a ∨ c)

(c)
(b) ∪ (d) (b ∨ d) (b) ∪ (b ∨ d) (b) ∪ (d) ∪ (b ∨ d)

(d) ∪ (b ∨ d)

(d)
(c) ∪ (e) (c ∨ e) (c) ∪ (c ∨ e) (c) ∪ (e) ∪ (c ∨ e)

(e) ∪ (c ∨ e)

(e)
(a) ∪ (d) (a ∨ d) (a) ∪ (a ∨ d) (a) ∪ (d) ∪ (a ∨ d)

(d) ∪ (a ∨ d)
(f) (t)

Table 3.2: Nonzero annihilators of L (treated as semigroup)

Lemma 3.3.1. Ideals which are the union of more than three distinct principal ideals, except

(0) and (f), are not annihilating ideals.

Proof. It is evident from the multiplication table that any one element (except 0 and f)

annihilates only three elements (other than 0 and f) thus, any combination of four distinct

non-trivial principal ideals do not annihilate single element and vice-versa.

Moreover, for each principal ideal only annihilating ideals are unions of combination of

principal ideal generated by its three annihilators.

Lemma 3.3.2. Let L be an m-SSC lattice and I, J ⊆ L. If ann(I) = ann(J) (treated L as

a multiplicative semigroup) then ⋁ I = ⋁J .

Proof. Without loss of generality, assume that ⋁ I /≤ ⋁J . Since L is m-SSC, there exists

c ∈ L such that c ⋅ (⋁ I) ≠ 0 and c ⋅ (⋁J) = 0. But then c ∈ ann(J) = ann(I). This gives

c ⋅ x = 0 for every x ∈ I. As L is a multiplicative lattice, the multiplication distributes over

an infinite join, we have c ⋅ (⋁ I) = 0, a contradiction.

With this preparation, we are ready to prove a crucial lemma which will help disprove

the Conjecture 3.1.1.
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Lemma 3.3.3. Let L be a compactly generated, m-SSC multiplicative lattice and AG(L) be

its annihilating-ideal graph (treated L as a multiplicative semigroup). Then the (semigroup

theoretic) zero-divisor graph G(L) and the compressed annihilating-ideal graph of L (treated

as a multiplicative semigroup) are isomorphic. That is, G(L) ≅ C(AG(L)).

Proof. Let Φ : C(AG(L))Ð→ G(L) be a map such that

Φ([I]) = ⋁ I.

First, we prove that Φ is well-defined. Let [I] = [J]. Then by Lemma 3.3.2, ⋁ I = ⋁J . Thus

Φ is well-defined.

Now, we prove that Φ is one-to-one. For this, let ⋁ I = ⋁J , where I, J ∈ AG(L). We

claim that [I] = [J], i.e., ann(I) = ann(J). Let I = ⋃(xi) and J = ⋃(yj) be two ideals of L

(treated as a multiplicative semigroup). Assume that t ∈ ann(I) = ann(⋃(xi)). Then t⋅xi = 0

for every i. Since L is a multiplicative lattice, we have t ⋅ (⋁xi) = t ⋅ (⋁ I) = t ⋅ (⋁J) = 0.

Hence t ⋅ yj = 0 for every j. This proves that ann(I) ⊆ ann(J). On similar lines, we can

prove the reverse inclusion. Thus Φ is one-one.

To prove that Φ is onto, assume that x ∈ G(L). Since L is compactly generated, we have

x = ⋁ ci, where ci’s are compact elements of L. We put J = ⋃(ci). Then Φ(J) = ⋁J = ⋁ ci = x.

Thus Φ is onto.

Lastly, we prove that Φ is a graph isomorphism. Let [I] and [J] be two adjacent vertices

of C(AG(L)). Then [I] ⋅ [J] = [(0)]. This further gives I ⋅ J = (0). If I = ⋃(xi) and

J = ⋃(yj), we have xi ⋅ yj = 0, ∀i, ∀j.

For fixed i, we have xi ⋅(⋁ yj) = xi ⋅(⋁J) = 0, as the multiplication distributes over infinite

join. Thus we have xi ⋅ (⋁J) = 0 for every i. Again using the fact that the multiplication

distributes over infinite join, we have (⋁ I) ⋅ (⋁J) = 0. This proves that ⋁ I and ⋁J are

adjacent in G(L).

Conversely, assume that [I] and [J] are not adjacent, where I = ⋃(xi) and J = ⋃(yj). If

possible, (⋁ I)⋅(⋁J) = 0, then xi ⋅yj = 0, ∀i, ∀j. Therefore, we have I ⋅J = (0) which will yield

[I] ⋅ [J] = [(0)], a contradiction. Thus Φ is a graph isomorphism, i.e., C(AG(L)) ≅ G(L).
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Therefore, from Lemma 3.3.3 and the fact that for a lattice L given in Table 3.1,

3 = ω(G(L)) < χ(G(L)) = 4 (see Figure 3.2 (b)) we have C(AG(L)) (see Figure 3.3) which

is not weakly perfect.

u
t
t

t
t

t

t

u
t

t

u

u
[(f)]

C(AG(L)
(R)-Red, (B)-Blue, (G)-Green, (Bk)-Black

(Bk)

[(a)] (B)

[(b)] (G)

[(c)](R)[(d)](B)

[(e)] (G)

[(b) ∪ (e)](R)

[(a) ∪ (c)](R)

[(b) ∪ (d)](B)

[(t)](G)

[(a) ∪ (d)](R)

[(c) ∪ (e)](R)

Figure 3.3: C(AG(L))

[(a)] [(b) ∪ (e)] = { (b) ∪ (e), (b ∨ e) , (b) ∪ (b ∨ e) , (b) ∪ (e) ∪ (b ∨ e) , (e) ∪ (b ∨ e) }
[(b)] [(a) ∪ (c)] = { (a) ∪ (c), (a ∨ c) , (a) ∪ (a ∨ c) , (a) ∪ (c) ∪ (a ∨ c) , (c) ∪ (a ∨ c) }
[(c)] [(b) ∪ (d)] = { (b) ∪ (d), (b ∨ d) , (b) ∪ (b ∨ d) , (b) ∪ (d) ∪ (b ∨ d) , (d) ∪ (b ∨ d) }
[(d)] [(c) ∪ (e)] = { (c) ∪ (e), (c ∨ e) , (c) ∪ (c ∨ e) , (c) ∪ (e) ∪ (c ∨ e) , (e) ∪ (c ∨ e) }
[(e)] [(a) ∪ (d)] = { (a) ∪ (d), (a ∨ d) , (a) ∪ (a ∨ d) , (a) ∪ (d) ∪ (a ∨ d) , (d) ∪ (a ∨ d) }
[(t)] [(f)]

Table 3.3: Equivalence classes of A∗(L)

Remark 3.3.1. The duplication of a vertex does not enlarge any clique. Also, it is easy

to extend proper coloring of G to a proper coloring of G ○ x by giving the color of x to x′.

Hence, we get the following result.

The following lemma is well-known in the literature.

Lemma 3.3.4. Let G′ be a graph obtained by duplicating a vertex v of a graph G, i.e.,

G′ = G ○ v. Then χ(G′) = χ(G) and ω(G′) = ω(G).
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Now annihilating-ideal graph AG(L) can be obtained by successive duplication of vertices

of C(AG(L)). Observe from Table 3.3 that AG(L) will have 4 duplicate vertices (ideals from

equivalence class) for each vertex of type [(x)∪(y)] in C(AG(L)). Hence Lemma 3.3.4 proves

that AG(L) is not weakly perfect which is a counter-example for Conjecture 3.1.1.

We close the thesis by providing a smaller counter-example to Conjecture 3.1.1.

Example 7. Let S = {0, a, b, c, d, e, f,1} with fx = 0 ∀x ∈ S and x2 = f ∀x (except f,1) in

S. Also ab = bc = cd = de = ae = 0 and ac = ad = bd = be = ce = f . Note that, since f 2 = 0, S is

a non-reduced semigroup. It is interesting to note that G(S) as well as AG(S) both are not

weakly perfect. In fact, 4 = χ(AG(S)) = χ(G(S)) ≠ ω(G(S))ω(AG(S)) = 3.

In Table 3.4 given below the nonzero annihilating ideals of S are given.

(f)
(a) (b) (c) (d) (e)

(b)⋃(e) (a)⋃(c) (b)⋃(d) (c)⋃(e) (a)⋃(d)

Table 3.4: Nonzero annihilating ideals of S
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Figure 3.4: (a) Zero-divisor graph of S (b) Annihilating-ideal graph of S
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