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Abstract

Class Field Theory gives a one-one correspondence between the Galois groups of finite abelian

extensions of a global field, k, and open subgroups of finite index in class group. This

correspondence is captured by Reciprocity map and Existence theorem.

We first derive these theorems for local fields using Tate’s theorem and Lubin-Tate Formal

groups. From local case we go to global case using cohomology of Adeles and Ideles.
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Introduction

In the first chapter we get introduced to the notion of valuation. This gives topological
structure on a field. We read about the correspondence between the primes of Q and valua-
tions on it. We study how these valuations extend to the extensions over Q. In the second
chapter we introduce Adeles and Ideles. We study the restricted topology on them and prove
Dirichlet’s theorem. In chapter 3 we read about the correspondence between the valuations
in an extension to the primes in the extension. We also explicitly see how Galois group of
the maximal unramified extension looks like.

In chapter 4 we study about Tate cohomology theory and profinite groups. These are
basically tools we need to understand further chapters.

Chapter 5 and 6 are the most important part. Chapter 5 is Local class field theory, where
we study the local reciprocity map and local existence theorem. We use Tate’s theorem to
prove the isomorphism but use Lubin-Tate Formal groups to explicitly give its description.

Chapter 6 is Global class field theory. We read about the cohomology of Ideles and
prove two important inequalities. From these inequalities the reciprocity map and existence
theorem follow.
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Chapter 1

Valuations

1.1 Definitions

Definition 1.1. Valuation on a field k is a map || : k → R≥0 satisfying the conditions

1. |a| = 0 if and only if a = 0

2. || : k∗ → R>0 is a homomorphism

3. There exists constant C such that |1 + a| ≤ C for all |a| ≤ 1

We can define a topology k by taking open basic spheres Br(a) =
{
x : |x− a| < r

}
. Two

valuations are said to be equivalent if the topology induced by them is same.

Lemma 1.1. Valuations ||1 and ||2 are equivalent if there exists a c ∈ R such that |a|1 = |a|c2
for all a ∈ k.

Proof. The statement boils down to proving that |a|1 < 1 ⇔ |a|2 < 1 if and only if there
exists a s ∈ R such that |a|1 = |a|s2. (⇐) case follows trivially.
Assume |a|1 is non trivial and |a|1 < 1⇔ |a|2 < 1. Fix a c ∈ k such that |c|1 > 1. |a|1 = |c|α1
for some α ∈ R. Let m/n→ α+

|a|1/|c|m/n1 < |a|1/|c|α1 = 1⇒ |a|2/|c|m/n2 < 1

Observe that the condition |a|1 < 1⇔ |a|2 < 1 can be restated as |a|1 > 1⇔ |a|2 > 1. This
follows from the fact that |a| < 1⇒ |a−1| > 1. Similarly if we consider m/n→ α− we have
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|a|2/|c|m/n2 > 1. Implying that |a|2/|c|α2 = 1

log|a|1/log|a|2 = log|c|2|c|1 ⇔ |a|1 = |a|log|c|2 |c|12

.

Any valuation is equivalent to valuation where the constant in last inequality is 2. This
can be seen by taking c in above lemma as log2C. Now from the fact |1 + a| ≤ 2 when
|a| ≤ 1 bi-implies |a+ b| ≤ |a|+ |b|,refer pg43, [CF10]. We can replace the inequality in the
definition by triangle inequality.

We define Non archimedean valuation by replacing the inequality with |a+b| ≤ max
{
a, b
}

. This is equivalent to saying n ≤ 1 for all n ∈ k. For a non archimedean valuation we define
the set

{
x : |x| ≤ 1

}
as ring of integers denoted by o. Given a, b ∈ o |ab| = |a||b| ≤ 1 and

|a + b| ≤ max
{
|a|, |b|

}
. This shows that o is a ring. The set p =

{
x : |x| < 1

}
forms an

ideal in o. a ∈ o is unit if and only if |a| = 1. From this it implies that p is set of all non
units, hence maximal ideal. Archimedean valuation is defined to be valuation that is not
non archimedean.
The valuation || is called discrete if log|a|, for a 6= 0 forms a discrete additive subgroup of
R.

Lemma 1.2. A non archimedean valuation is discrete if and only if the ideal p is a principal
ideal.

Proof. Assume the valuation is discrete and log|a| generates the additive subgroup. Then it
is easy to observe that a generates the ideal.

(k, ||) is said to be complete if every cauchy sequence in k converges with respect to the
metric induced by ||. Let k̄ denote a complete field. If a ∈ k̄, a = lim an for a ∈ k. We define
|a| = lim |an|. Well definedness follows from the inequality

||a| − |b||∞ ≤ |a− b|

.

Lemma 1.3. If k̄ is completion of a discrete non archimedean valuation then the set of
values || taken on k and k̄ are equal.

Proof. Assume a = lim an, from discreteness if |an| are close enough there exists N such that
for all n,m ≥ N |an| = |am|.
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1.2 Valuations on Q

|a|∞ denotes the absolute value for a ∈ Q . Given x = a/b in Q for a prime p let a/b = pna
′
/b
′

such that p 6 |a′b′ . We define p-adic valuation as |a|p = 1/pn. It is a trivial check to see that
p-adic valuation is discrete and non archimedean.

Theorem 1.4 (Ostroswki’s Theorem). Every valuation on Q is either equivalent to ||∞ or
||p for some prime p.

Proof. Let || be a non trivial valuation on Q, we will prove separately in two cases

1. Non archimedean. |n| ≤ 1 for all n. Since it is non trivial there exists a p such that
|p| < 1. Define the set

A =
{
a : |a| < 1

}
pZ ⊂ A, since pZ is maximal pZ = A. Any a ∈ Q takes the form pmb, p 6 |b for some
m ∈ N.

|a| = |p|m|b| = |p|m = |a|sp, s = −mlogp|p|

2. Archimedean. We know that given any two natural number m,n we have |m|1/logm =
|n|1/logm. Let |m|1/logm = c, then observe that |x| = xlnc for any x > 0 ∈ Q

1.3 Finite Residue Fields

Let || be a non archimedean discrete valuation and o, p be its corresponding ring of integers
and maximal ideal. We define residue field by kr = o/p. In this section kr is finite and (k, ||)
is complete. Let p = (π). Every element a ∈ k can be written uniquely as uπn for some unit
u. Let ai denote some fixed representatives of kr throught this section.

Lemma 1.5.

k =
{ ∞∑
i=n

aiπ
i : n ∈ Z

}
Proof. Observe that the sequence bn =

∑∞
i=n aiπ

i is a cauchy sequence hence converges in k.
Consider a unit u ∈ o. Say image of u in kr is a0 6= 0. Then u− a0 ∈ p, say u− a0 = πnu1

where u1 is a unit. u1−a1 ∈ p for some representative a1 and u = a0 +πnu1. Continuing like
this we can write every unit u as

∑∞
i=n aiπ

i. The theorem follows from the fact that every
element a ∈ k can be represented as πnu for some unit u.
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Theorem 1.6. o is compact. Consequently k is locally compact.

Proof. We have shown that every element a ∈ o can be written as
∑∞

i=0 aiπ
i. Assume that{

oi
}

is an open cover of o without a finite subcover.

o = ∪iaio

hence one of aio is covered by infinitely many oi, say a0o. Again a0o = ∪i(a0 + aio) we get
a1 such that a0 + a1o is covered by infinitely many oi. Continuing like this we get an α =
a0 +a1π+ .... ∈ o. WLOG assume α ∈ o1. Since o1 is open, for some n, a0 + ...+anπ

no ⊂ o1.
This contradicts the construction of α that a0 + ...+anπ

no ⊂ o1 is covered by infinitely many
oi. This proves o is compact. Any element a ∈ k has open set a.o which is compact. This
proves the theorem.

1.4 Extensions of Valuation

Let l be a finite field extension of k. We call a valuation ||1 on l an extension to || on k if
|a|1 = |a| for all a ∈ k. If k is complete then the extended valuation is unique. If not there
are only finitely many extension to a given valuation. We prove these two statements in this
section.
Let V be a finite dimensional vector space over k. We define norm(‖ ‖) on V as a function
‖ ‖ : V → R satisfying the conditions

1. ‖a‖ = 0 if and only if a = 0

2. ‖a+ b‖ ≤ ‖a‖+ ‖b‖

3. ‖ab‖ = |a|‖b‖ for all a ∈ k and b ∈ V

Example:Let ωi be basis for V . We define ‖v‖0 = ‖
∑

i aiωi‖ = max
{
|ai|
}

. If k is complete
then under this norm V is complete. V can be given topology by using basic open sets as
spheres B(r, a) =

{
x : n(a− x) < r

}
. Observe that l can seen as a vector space over k and

extended valuation as a norm. Since basic open spheres are same the topology induced as a
norm and valuation are also same.

Definition 1.2 (Equivalent norms). If there exists positive real numbers c1 and c2 for norms
‖ ‖1 and ‖ ‖2 such that ‖a‖1 ≤ c1‖a‖2 and ‖a‖1 ≥ c2‖a‖2 for all a ∈ V then ‖ ‖1 and ‖ ‖2

are said to be equivalent.

Observe that equivalent norms produce same topology on the vector space.
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Lemma 1.7. For a finite dimensional vector space V over a complete field (k, ||) any two
norms are equivalent.

Proof. Let V be of dimension n with basis ωi. We show that every norm on V is equivalent
to absolute norm ‖ ‖0. Let ‖ ‖ be a norm on V .

‖v‖ ≤
∑
i

|ai|‖ωi‖ ≤ ‖v‖0

∑
i

‖ωi‖

This proves ‖v‖ ≤ c‖v‖0 where c =
∑

i‖ωi‖. To prove the other way around we use induction.
n = 1 is obvious with c = max

{
‖ωi‖

}
. Assume it is true for n− 1. Let Vi = kω1 + ..kωi−1 +

kωi+1 + ..+ kωn. Vi by induction hypothesis is complete so is Vi +ωi. Hence Vi +ωi is closed
in V . 0 6∈ Vi + ωi. Hence there exists c > 0 such that ‖vi + ωi‖ ≥ c for all vi ∈ Vi, for all i.
Take v =

∑
i aiωi and ‖v‖0 = |ai|. a−1

i v ∈ Vi + ωi hence ‖a−1
i v‖ ≥ c. Thus we have

‖v‖ ≥ c‖v‖0

Theorem 1.8. Let l be a field extension over complete field (k, ||) of dimension n ∈ N. Then
the valuation || can be uniquely extended to l given explicitly by the formula

|a|1 = |Nl/k(a)|1/n

Proof. From the previous lemma considering l as a finite dimensional vector space every
norm induces the same topology. Since a valuation can be considered as a norm we see that
any two valuations induce the same topology. So any two valuations satisfy |a|1 = |a|c2. But
if we take a ∈ k we see that c = 1. This proves uniqueness.

f : l→ R

a→ |Nl/ka|1/n

is a continous function. The only thing left to prove thet f is a valuation is the triangle
inequality . On since the set S =

{
a ∈ l : ‖a‖0 = 1 is compact. There exists c1, c2 > 0

such that c1 ≤ f(a) ≥ c2 for all a ∈ S. This implies c1 ≤ f(a)/‖a‖0 ≤ c2. For all
f(a) ≤ 1 ≤ c2(‖1 + a‖0) ≤ c2(1 + c−1

1 ). This proves that f is a valuation.

But in the case of an incomplete field we have

Theorem 1.9. Let l be a finite separable extension over k of degree n. There can be atmost
N number of extension of | |. Let li be the completion of l with respect to valuation ‖ ‖i, for
i ≤ N . Then we have

k̄ ⊗k l ∼= ⊕ili
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.

Proof. Let us first see that k̄ ⊗k l is of the form mentioned. Let l = k[a] and fa(x) ∈ k[x]
is minimal polynomial of a then k̄ ⊗k l = ⊕n−1

j=0a
jk. Let fa(x) =

∏
i gi(x) where gi(x) are

irreducible polynomials in k̄[x]. Take li ∼= k̄[x]/gi(x). Fix a ai ∈ li such that gi(ai) = 0.
Define homomorphism

θi : k̄ ⊗k l→ li

a→ ai∑
j

bja
j → bja

j
i

If θi(h(x)) = 0 then gi(x)|h(x).

θ : k̄ ⊗k l→ ⊕ili

x→ ⊕iθi(x)

This map is clearly a surjection. If θ(h(a)) = 0 then gi(x)|h(x) for all i, hence fa(x)|h(x)
implying h(a) = 0. This proves that the map is an isomorphism. Now consider an b ∈ l,
x =

∑
j bja

j where bj ∈ k.

θi(b) = 0⇒
∑
j

bja
j
i = 0

h(x) ∈ k[x] and . This proves that k̄ and l have an inclusion into li. li as an extension over
k̄ has a unique extension of | |, say ‖ ‖i. By the inclusion θi : l→ li define va;uation | |i on l
by

|a|i = ‖θi(a)‖i
If ||i is non zero on say li, then for all b ∈ li, 6= 0 we have |a|i = |b|i|ab−1|i. Hence |b|i 6= 0.
If ||i is non zero on any two of li say l1 and l2 we have for ai ∈ li

(a1, 0, ..., 0).(0, a2, 0...0) = (0, 0, ...0)

⇒ |a1|i|a2|i = 0

This is a contradiction, since both are non zero. Hence ||i can be non zero only on one li.
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Chapter 2

Number Fields

Finite extension over Q is known as Number field. In this entire section k represents a
finite extension over Q. Since ¯Q||∞ = R, the extensions of archimedean valuations lie in R
or C. In archimedean case if the field lies in R then valuation is normalized if it is absolute
value. In case of C, if it is square of the absolute value. In non archimedean case we call ||
normalized if |π| = 1/|kr|. It is well defined since kr is finite extension of some Z/pZ.
If (Q, ||) is complete then normalized extension of || is |Nk/Q|, pg59 [CF10]. In the incomplete
case, let ||i be normalized extensions then

∏
i |a|i = Nk/Qa|. This follows from the fact that

norm is the constant in characteristic polynomial and f(x) =
∏

i gi(x).
In this entire section v denotes a normalized valuation.

Lemma 2.1. For any a ∈ k, |a|v = 1 for all most all v.

Proof. Given any a ∈ Q we know that there are only finitely many primes dividing it. There
for all most all primes |a|p = 1. Now consider a ∈ k, there exists ai ∈ Q such that

an =
n−1∑
i=0

aiai

For any discrete non archimedean valuation v we have

|a|nv ≤ max
{
|a|i|ai|v

}
If |a|v ≥ 1

|a|nv ≤ |a|n−1max
{
|ai|v

}
|a| ≤ max

{
|ai|
}

Thus we have |a|v ≤ 1 and |a−1|v ≤ 1 for almost all v.
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Lemma 2.2. Let v run through all the normalized valuations of k then we have∏
v

|a|v = 1∀a ∈ k

Proof. Let v|p for some p. We have already shown that |a|v = Nkv/Qpa. Thus from the
corollary of last section we have∏

v

|a|v =
∏
p

(
∏
v|p

|a|v) =
∏
p

(
∏
v|p

Nkv/Qpa) =
∏
p

Nk/Qa

Since Nk/Qa ∈ Q it comes down to proving the statement for Q. Consider a b ∈ Q. b =
±
∏
pnii for some finitely many primes pi. We have |b|pi = p−ni and |b|∞ =

∏
pnii . Hence the

lemma follows.

2.1 Adeles and Ideles

For a number fieldk let mk denote the set of all normalized valuations. Adele ring Vk is
subset of

∏
v∈mk kv such that given a = (av) ∈ Vk av ∈ ov for almost all v. This topology is

known restricted topology of kv with respect to ov. We define topology on Vk by taking the
basis elements as ∏

v

Ov

where Ov is open in kv and Ov = ov for almost all v.

Lemma 2.3. Vk ∼= VQ ⊗Q k

Proof. This follows from k ⊗Q Qp = ⊕v|pkv and ⊕iωio ∼= ⊕v|pov for almost all v, refer pg61
[CF10].

k can be seen as an element of Vk whose vth component is k for all v. Thus we have an
inclusion k → Vk and the images of k are known as principal adeles.

Lemma 2.4. k+ is discrete in V +
k and V +

k /k
+ is compact.

Proof. As seen earlier V +
k
∼= ⊕iVQωi ∼= ⊕iVQ. This implies V +

k /k
+ ∼= ⊕V +

Q /Q+. So it is
enough to prove the statement for Q.

For Q it is enough to show that we can find a neighborhood around 0 which is disjoint
to Q. By translation we can extend it to any neighborhood. Take the set A =

{
a ∈ VQ :

10



|a∞|∞ < 1, |ap|p ≤ 1. A is open. If a rational number q ∈ A since |qp|p ≤ 1 for all p, q ∈ Z.
But |q∞|∞ < 1 implies q = 0.

We construct a continous surjective map from a compact set to V +
Q /Q+. The continous

image of compact set is compact, that proves the lemma. Consider a subset B of A where
|a∞|∞ ≤ 1. Let b ∈ VQ, there are finitely many p such that |bp|p > 1. For such a p we have
bp = sp+rp where rp ∈ op. For all such p’s the sum s =

∑
sp ∈ Z. Thus we have |bp−s|p ≤ 1

for all p. Now choose a r such that |b∞ − r− s|∞ ≤ 1/2. Thus we have found z = r+ s ∈ Z
such that b− z ∈ B. We have constructed a surjective map from B → V +

Q /Q+.

As in the above proof we can similarly construct a compact set W =
{
a ∈ Vk : |av|v ≤ cv

}
for some constants cv where cv = 1 for almost all v. Satisfying the condition that every a ∈ Vk
can be represented as w + a where w ∈ W and a ∈ k.

Theorem 2.5 (Weak approximation theorem). Let | |1, | |2,...| |n be inequivalent valuations
on k. Given ai ∈ k and ε > o there exists a ∈ k such that

|a− ai|i < ε ∀i

Proof. We use induction to construct xi such that |xi|i > 1 and |xi|j < 1 for all j 6= i. For
n = 1 say | |1 and | |n are inequivalent. Then there exists a and b such that |a|1 < 1, |a|n ≥ 1,
|b|n < 1 and |b|1 ≥ 1. y = a/b satisfies the require condition that |y|1 < 1 and |y|2 > 1.
Now assume the statement is true for n − 1. So we have x such that |x|1 < 1 and |x|j > 1
for all j 6= 1, n.

1. If |x|n > 1, take tm = xm/1 + xm. Observe that |tm|i → 1 for i = 1, n and |tm|i → 0
otherwise. Therefore for sufficiently large m we have |tmy| > 1 and |tmy| < 1 for all
i 6= 1.

2. If |x|n < 1 for sufficiently large m, |xmy|1 < 1 and |xmy|i < 1 for all i 6= 1.

Similarly we can construct xi such that |xi|i < 1 and |xi|j > 1 for all i 6= j.

Let zim = xmi /1 + xmi . Observe that

|zim − 1|i → 0

|zim − 0|j → 0, j 6= i

Let zm =
∑

i aizim

|zm − ai|i ≤ |ai|i|zim − 1|i +
∑
j

|aj|i|zjm|i → 0

11



Given ε we can find sufficiently large m and take a to be zm to satisfy the required condition.

Theorem 2.6 (Strong Approximation Theorem). Let w be a normalized valuation of k. S
be a finite set of normalized valuations and w 6∈ S. Given av ∈ kv for all v ∈ S and ε > 0
there exists a ∈ k such that |a− av|v < ε for v ∈ S and |a|v ≤ 1 for v 6∈ S, 6= w.

Proof. Similar to the construction of B in the proof of compactness of V +
k /k

+ we can con-
struct a compact set W =

{
a ∈ V − k : |av|v ≤ cv

}
for some constants cv = 1 for almost all

v such that every a ∈ Vk can be repersetned as w + a where w ∈ W and a ∈ k. We use the
following lemma, pg66 [CF10],

Lemma 2.7. For a number field k there is a corresponding constant C > 0 such that for
A ∈ Vk satisfying

∏
v∈mk |av|v < C. Thene there exists b ∈ k such that |b|v ≤ |av|v for all v.

Choose av ∈ kv such that 0 < |av|v ≤ cv and |av|v = 1 if cv = 1. Choose aw ∈ kw large
enough that

∏
v∈mk |av|v > C.

So by above lemma there exists b ∈ k such that

|b|v ≤ c−1
v ε, v ∈ S

|b|v ≤ c−1
v , v 6∈ S, 6= w

Consider a ∈ Vk such that av = av, v ∈ S av = 0, v 6∈ S, 6= w. There exists b−1a = w + β.
bβ satisfies the required conditions.

The Idele group, Jk, is defined to be the set of all units of Vk. Define map

τ : Jk → Vk × Vk

x→ (x, x−1)

Jk can be seen as a subset of Vk × Vk through this map. A subset O of Jk is said to be open
if τ(O) is open in τ(Jk) with subset topology. It can be seen that this topology is equivalent
to restricted product topology on k∗v with respect to o∗v.

J1
k :=

{
x ∈ Jk :

∏
|xv|v = 1

}
Lemma 2.8. Topology on J1

k as a subset of Vk is same as topology as a subset of Jk.

12



Proof. Consider Γ ⊂ J
′

k such that Γ = O ∩ J ′k for an open set O in Jk and 1 ∈ Γ. We want
to find U ⊂ Vk containing 1 such that U ∩ J ′k ⊂ Γ.

We may assume that if v is non archimedian then Γv ⊂ o∗v. Further we may assume that
if v is archimedean then Γv =

{
x ∈ kv : |x − 1| < εv

}
. Choose a prime p such that for

archimedean primes v we have ∏
v∈S∞

(1 + εv) < p

Take

U =
∏
v∈S∞

Γv ×
∏
v<p

o∗p ×
∏
v>p

ov

If (xv) ∈ U ∩ J
′

k

⇒ 1 =
∏
v∈mk

|xv|v =
∏
v∈S∞

|xv|.
∏
v>p

|xv|v

≤
∏
v∈S∞

|xv|v/p ≤
∏
v∈S∞

(1 + ε)/p < 1

This implies xv ∈ o∗v for all v > p. Hence U =
∏

v∈S∞ Γv ×
∏

v<p o
∗
p ×

∏
v>p ov ⊂ Γ

Now consider a subset W of J
′

k open with respect to Vk topology. That is we have open
set Γ =

∏
v∈S Γv ×

∏
v 6∈S O such that W = Γ ∩ J ′k. Γ contains open set Γ

′
of Jk given by∏

v∈S Γv ×
∏

v 6∈S o
∗
v. Since (xv) ∈ W is a unit for all v 6∈ S, W = Γ

′ ∩ J ′k. This proves the
lemma.

As a corollary we note

Corollary 2.9. J
′

k is closed in Vk.

Proof. This follows from the fact that J
′

k is kernel of the continous map

Jk → R

(xv)→
∏
|xv|v

.

Lemma 2.10. J1
k/k

∗ is compact

Proof. We prove this by showing that J1
k/k

∗ is continous image of a compact subset of J
′

k.
Let a ∈ Vk such that

∏
v∈k |av|v > C and |av|v = 1 for almost all v. Consider the compact

set V =
{
x ∈ Vk : |xv|v ≤ |av|v

}
.
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Given a x ∈ J
′

k there exists b ∈ k such that |b|v ≤ |x−1
v .av|v for all v. Thus we have

b.x ∈ V . This defines a continous surjection

V ∩ J ′k → J
′

k/k
∗

2.2 Dirichlet’s Unit Theorem

Ideal class group, Ik, is defined to be set of formal sums of no archimedean valuations of k.

Ik :=
{∑

v

nvv : v ∈ mk and non archimedean, nv ∈ Z
}

Ik is given discrete topology. There is natutal continous homomorphism υ : Jk → Ik

a = (av)→
∑

v nonarch

v(a).v

The sum is finite since av ∈ o∗v for almost all v. υ(k∗) is known as group of principal ideals.

Lemma 2.11. Ik/υ(k∗) is a finite group.

Proof. Ik/υ(k∗) is continous image of the compact set Jk/k
∗. Hence Ik/υ(k∗) is compact

and discrete, so finite.

Theorem 2.12 (Dirichlet’s Unit Theorem). For a finite set S of mk consisting of archimedean
primes. The set US :=

{
x ∈ k : |x|v = 1 ∀ v 6∈ S

}
is direct sum of a finite cyclic group and

free abelian group of rank s− 1

Proof. Define

Jk,S =
∏
v∈S

k∗v ×
∏
v 6∈S

o∗v

J
′

k,S := Jk,S ∩J
′

k. Since Jk,S is an open subgroup of Jk, J
′

k,S is an open subgroup of J
′

k. Hence

J
′

k,S/US = J
′

k,S/J
′

k,S ∩ k∗ is open subgroup of J
′

k/k
∗. Hence is closed and compact. Consider

the subset of W ⊂ k∗ defined by

c1 ≤ |x|v ≤ c2, v ∈ S

|x|v = 1, v 6∈ S

14



for some constants c1 and c2. This is the subset of compact subset of V ⊂ Jk given by

c1 ≤ |xv|v ≤ c2, v ∈ S

|xv|v = 1, v 6∈ S

V = W ∩ k∗, that is intersection of a compact set and a discrete set, hence is finite.

Take c1 = c2 = 1, these are elements in k∗ which are units in every valuation. These
contain the roots of unity. They also form a finite subgroup, hence are entirely roots of unity
of some order.

Define

f : Jk,S → ⊕si=1R+

a→ ⊕si=1log|ai|i
where | |i are valuations of S. This map is continous ans surjective. f(Jk,S/ker(f)) is
subspace with

∑s
i=1 xi where xi 6= 0. f(Jk,S/ker(f)) is s − 1 dimensional subspace of

⊕si=1R+. f((Jk,S/ker(f))/(US/ker(f))) = f(Jk,S/US) is a compact subspace of this. Hence
f(US/ker(f)) is free on s− 1 element. Since ker(f) restricted to US consists of x such that
|x|v = 1 for all v. We have US as direct sum of free abelian group generated by s−1 elements
and a finite cyclic group consisting of roots of unity.

We note two important maps. l be a finite extension over k we define

1. Norm map.

Nl/k : Vl → Vk

(Nl/k(a))v =
∏
w|v

Nlw/kvaw, ∀ a ∈ Vk

2. Conorm map.

Conl/k : Vk → Vk

(Conl/k(a))w = av, ∀ w|v

If the context is clear we generally omit the l/k from the subscript.
Observe that Nl/kUl ⊂ Uk and Conl/kUk ⊂ Ul. Hence these definitions can be extended to
Jk and Ik similarly. From the above definitions it follows that

Nl/k : Il → Ik

15



w → ew/vv

and

Conl/k : Ik → Il

v → fw/vw

e is known as ramification index and f is extension degree of residue fields. These will be
properly defined in the next chapter.
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Chapter 3

Dedekind Domains

Throught this section R denotes an integral domain and K is the corresponding quotient
field.

Definition 3.1 (Discrete additive valuation). A map v : K → Z∪∞ is a discrete valuation
if,

1. v defines a surjective homomorphism K∗ → Z

2. v(0) =∞

3. v(x+ y) ≥ inf
{
v(x), v(y)

}
Observe that given v(x) we can define a corresponding valuation |x|v := cv(x) for some

constant c < 1. This turns out be a discrete non archimedean valuation. we can choose c
such that ||v turns out to be a normalized valuation.

Definition 3.2. Discrete valuation ring. Given a discrete valuation v : K → Z∪∞ discrete
valuation ring is defined by the set

{
x ∈ K : v(x) ≥ 0

}
This is same as o of first chapter.

Theorem 3.1. R is a discrete valuation ring if and only if it is noetherian, integrally closed
and contains an unique prime ideal.

Proof. (⇐) Let I be a non zero ideal of R, if I/pI = 0 by Nakayamma’s lemma we have
I = 0. Let x ∈ I − pI, since p is the only maximal ideal Rad(x) = p and R is noetherian
implies ∃n s.t Rad(x)n = pn ⊂ (x). Choose smallest n s.t

pnI ⊂ pn ⊂ (x) ⊂ I ⊂ p

17



take a ∈ pn−1I − (x) and define the map

µa/x : pnI → pnI

y 7−→ ay/x

Observe a/x(pnI) ⊂ (1/x)pnIp(n−1)I, if 1/xpnI = R⇒ pnI = (x)⇒ x ∈ pI hence 1/xpnI ⊂
p. Therefore this map satisfies an equation

µna/x + a1µ
n−1
a/x + ....+ an = 0

⇒ (a/x)n + a1(a/x)n−1 + ...+ an) = 0⇒ a/x ∈ R

We have a ∈ (x), contradiction, therefore n = 0 ⇒ (x) = I. We showed R is a PID hence
a UFD, if p = (π) since p is the only nonzero prime ideal every x ∈ R admits a unique
representaion πnu where u ∈ R− p i.e, u is a unit in R. Define

v : R→ Z≥0

x = πnu 7−→ n

Now assume that R is a dvr corresponding to the discrete valuation v.

v(1) = v(1.1) = v(1) + v(1)⇒ v(1) = 0

Take u, v ∈ R s.t uv = 1

⇒ v(xy) = v(x) + v(y) = 0⇒ v(x) = v(y) = 0

Since v(x), v(y) ≥ 0. Observe that

v(u) = 0⇒ v(1/u) = 0⇒ (1/u) ∈ R

Therefore u ∈ R is a unit iff v(x) = 0. Consider the set
{
x ∈ R : v(x) > 0

}
. The properties

of valuation show that its an ideal and since its the set of all nonunits its the unique maximal
ideal. Since R is a PID its noetherian and Integrally closed.

A fractional ideal J of R is R submodule of K s.t ∃a ∈ K s.t aJ ⊂ R. For a fractional
ideal J we define J−1 =

{
x ∈ K : xJ ⊂ R

}
. Observe that J−1 is an R submodule and for

any nonzero a ∈ J , aJ−1 ⊂ R making J−1 a fractional ideal.

If M is Rsubmodule of K then Mp = MRp is Rp-module and if M is finitely generated
then Mp is finitely generated over a PID. Consider M,N , free R−submodules of K of rank
n. There exists a linear transormation l of K s.t lM = N . We define [M : N ] as fractional
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ideal Rdet(l). If M,N are finitely generated, then [M : N ] is defined to be the unique ideal
[M : N ] s.t

[Mp : Np] = [M : N ]Rp∀p

This definition of [M : N ] is well defined only if [Mp : Np] = Rp for almost all p. Since M,N
are finitely generated, we have a, b ∈ K such that aM ⊂ N ⊂ bM . Since vp(a) = vp(b) = 0
for almost all p, Mp = Np for almost all p. L be a seperable extension of K and S be the
integral closure of R in L. Let tL/K denote the trace map on L, since L is seperable over K,
tL/K defines a nondegenarate bilinear form on L. For any R submodule N of L we define
DR(N) =

{
x ∈ L : tL/K(xN) ⊂ R

}
.

Lemma 3.2. If N is a free R submodule of L then DR(N) is a free R submodule.

Proof. Let
{
ai
}

be basis for N over R. Since tL/K is nondegenerate if
{
bi
}

is dual basis of{
ai
}

then DR(N) is freely generated by
{
bi
}

.

Lemma 3.3. If M is a free Rsubmodule of S with basis
{
ui
}

then d(M) defined by [DR(M) :
M ] is generated by det(tL/K(uiuj))

Proof. Assume M is generated by
{
ui
}

and DR(M) by the dual basis
{
vi
}

. Define

l : L→ L

vi 7−→ ui

this takes DR(M) to M . Fix
{
vi
}

as basis for L then

l(vi) = ui = ai1v1 + ...ainvn

tL/K(uivj) = 0 if i 6= j and tL/K(uivj) = 1 if i = j hence

tL/K(uiuj) = aij

Hence [DR(M) : M ] = Rdet(tL/K(uiuj))

Theorem 3.4. S is a finitely generated R module that spans L over K and is a dedekind
domain.

Proof. If x ∈ L then x = s/r for some s ∈ S and r ∈ R. x satisfies a polynomial

xn + an−1x
n−1 + ...+ a0 = 0

if ai = bi/ci consider rn = (
∏
ai)

n

(rx)n + r1an−1(rx)n−1 + ...+ rna0 = 0, rian−i ∈ R
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hence rx ∈ S, this implies SK = L. x ∈ S if and only if R[x] is finitely genererated R
module, from this it follows that S is an R module.

S contains a free N module that spans L. From the definition of DR(N) it is easy to
see that S ⊂ DR(S) ⊂ DR(N). DR(N) is a free module over a noetherian ring(R), hence
noetherian. Thus S as R submodule of DR(N) is noetherian. Since S is integrally closed, if
α is inegral over S and satisfies xn + an−1x

n−1 + .. + a0, ai ∈ S then α is finitely generated
over R[an−1, .., a0]. Thus α is finitely generated over R hence α ∈ S. Let P be a prime ideal
in S and P ∩R = p. Consider an element α ∈ S −P that satisfies

xn + an−1x
n−1 + ...+ a0 = 0, ai ∈ R

then α satisfies

xn−i + an−1x
n−i−1 + ...+ ai = 0, ai ∈ R/p

for some 1 ≤ j < n. Rewriting it after substituting α we have

α(αn−i−1 + an−1α
n−i−2 + ...+ ai+1)ai

−1 = 1

. Thus we found an inverse for non zero element in S/P, making P a maximal ideal. This
completes the proof that S is a dedekind domain.

It also follows from Hensel’s lemma that S =
{
x ∈ L : NL/K(x) ∈ R

}
. Since we have

shown that NL/K is a normalized valuation, the maximal prime ideal of S corresponds to
the normalized extension of the valuation corresponding to R.

S/pS as a vectorspace over k is isomorphic to S/P⊕P1/P2 ⊕ ....⊕Pe−1/Pe. We have
S/P ∼= P/P2 by the map s 7−→ sπL, similarly Pi/Pi+1 ∼= Pi+1/Pi+2 for all i ≤ e− 2. If
x1, x2....xf is basis of S/P over R/p then πix1, π

ix2....π
ixf is basis of Pi/Pi+1 over R/p,

xi ∈ kL. Consider N = Rx1 + ... + Rxf + ... + Rx1π
e−1 + .... + Rxfπ

e−1 then S = pS + N ,
by Nakayama’s lemma, S = N . Hence

{
πjxi

}
1 ≤ j ≤ e− 1, 1 ≤ i ≤ f forms a basis for L

over K.

Consider a pair of dedekind domains R1, R2 with quotient fields K1,K2 respectively s.t
R1 ⊂ R2. If p2 is a prime ideal in R2 and the prime ideal p1 = p2 ∩ R1 is also nonzero then
we define residue class degree f(p2/p1) = (k2 : k1), where ki = Ri/pi. The ramification index
is defined by e(p2/p1) = vp2(p1R1). From here assume that R is d.v.r and K is complete.
Let p and P denote the prime ideals of R and S respectively.We define residue class degree
of P, f as kL : k where kL = S/P and k = R/p.

Lemma 3.5. ef = [L : K]

Proof. Pi+1 is maximal ideal in Pi. We have S/P ∼= P/P2 by the map s 7−→ sπL. Similarly
we have Pi/Pi+1 ∼= Pi+1/Pi+2 for all i ≤ e− 2. Since S is a free R moduke of rank [L : K],
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dimension of S/pS is [L : K]. lemma follows from the fact that S/pS as a vectorspace over
k is isomorphic to S/P⊕P1/P2 ⊕ ....⊕Pe−1/Pe

Definition 3.3. Finite seperable extension L over K is said to be Unramified if e(L/K) =
1 and kL is seperable over k

An eisenstein polynomial in K[X] is a seperable polnoymial

E(x) = xn + am−1x
n−1 + ...+ a0

where vK(ai) = 1 for all 1 ≤ i ≤ n− 1 and vK(a0) = 1

Lemma 3.6. E(x) is an irreducible polynomial.

Proof. Assume E(x) is not irreducible amd xn + an−1x
n−1 + ...+ a0 = (xm + ...+ b0)(xn−m +

...+ c0). Since b0c0 ∈ p assume WLOG b0 6∈ p and cn−i be the smallest ci s.t ci(modp) 6= 0

ai = b0cn−i + ...bn−ic0

ai − b1cn−1−i + ...bn−ic0 = b0cn−i

p divides LHS above but not RHS, hence E(x) is irresucible.

We state a very useful lemma without proof.

Lemma 3.7 (Hensel’s Lemma). Let R is a complete local ring, p be it’s prime ideal and
k = R/p. Let f(x) ∈ R[x] be a monic polynomial and f(x) ≡ f(x)(modp). If f(x) =
g(x)h(x) where (g(x), h(x)) = 1 then there exists unique g(x), h(x) ∈ R[x] such that f(x) =
g(x)h(x), h(x) ≡ h(x)(modp) and g(x) ≡ g(x)(modp)

In the case of finite separable extension L over a local field K where S is integral closure
of R in L. If f(x) were separable and f(α) = 0 for some α ∈ kL then the lemma says that
there exists a unique α ∈ S such that f(α) = 0 and α ≡ α(mod(P)).

Proposition 3.8. Suppose L is an unramified extension over K. Then there exists an
element x ∈ S with kL = k[x]. If x is such an element and g(x) is it’s minimal polynomial
over K, then S = R[x], L = K[x] and g(x) is irreducible in k[x] and separable.

Proof. Since kL is seperable over k, kL = k[α for some α ∈ kL. Let f(x) be minimal
polynomial of α in k(x). F (x) ∈ S[x] such that F (x) = f(x). Since f(x) is irreducible F (x)
is irreducible, otherwise going mod for the factorization of F (x) gives us a factorization of
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f(x). Since f(x) is separable we can apply Hensel’s lemma to get a unique α ∈ S such that
α = α and F (α) = 0.

[L : K] ≥ degree(F (x)) ≥ degree(f(x)) = [kL : k] = [L : K]

Thus we have degree(F (x)) = [L : K], hence L = K[α]. kL = k ⊕ kα ⊕ ... ⊕ kαn−1, by
Nakayama’s lemma we can lift the basis to S and we get S = R⊕Rα⊕ ...⊕Rαn−1.

Proposition 3.9. Suppose g(x) is a monic polynomial in R[x], such that g(x) is irreducible
in k[x] and separable. If x is a root of g(x) then L = K[x] is unramified over K and
kL = k[x].

Proof. Since g(x) is irreducible and separable degree(g(x)) = degree(g(x)). Thus we have

[L : K] = degree(g(x)) = degree(g(x)) ≤ [kL : k] ≤ [kl : k]

Hence [L : K] = [kl : k] and kL ∼= k[x]/g(x). If α is a root of g(x) then L = K[α] and
kL = k[α].

Theorem 3.10. given k a finite seperable extension of k there exists a finite seperable ex-
tension L = L(k) over K, such that

1. k ∼= kL

2. L is unramified over K

3. the canonical map is bijective

HomK(L,K) −→ Homk(kL, k)

Proof. k = k[α] for some α ∈ k. assume α satisfies

g(x) = xn + an−1x
n−1 + ....+ a0, an−i ∈ k

consider g(x) = xn + an−1x
n−1 + .... + a0 ∈ K[X], ai ≡ aimod(p) since g(x) is seperable

and irreducible g(x) is seperable and irreducible. Consider any L s.t L ∼= K[X]/g(x), by
hensel’s lemma there exists an unique α ∈ L s.t α ≡ αmod(p) and g(α) = 0. Hence we
have kL ∼= k[X]/g(x) ∼= k and also [L : K] = [kL : k] since degree of g(x) = g(x) making L
unramified extension.

we are left to prove the bijection of canonical map given

f : k[α]→ kL′
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α 7−→ β

assume α, β satisfy g(x) = xn+an−1x
n−1 + ....+a0. If there exists β1, β2 s.t g(β1) = g(β2) = 0

where g(x) = xn + an−1x
n−1 + .... + a0 and β1 = β2 = β then g(x) is not seperable. Hence

there exists a unique β ∈ L′ s.t g(β) = 0 and g(β) = 0. This defines a unique homomorphism

f : L→ L
′

α 7−→ β

whose restriction to k[α] defines f

Theorem 3.11. Composite of two unramified extensions is unramified

Proof. Let L1 = K[α], L2 = K[β] be unramified extensions such that kL1 = k[α], kL2 = k[β].
Assume f(x) ∈ K[X] is minimal polynomial of α in K[x] but it may split in L2[x]. Say
f(x) =

∏
hi(x) where hi(x) ∈ L2[X] are irreducible and h1(α) = 0. Since f(x) is seperable,

h1(x) is seperable in kL2 . h1(x) is also irreducible in kL2 , if not assume h1(x) = g(x)h(x).
Since h1(x) is separable (g(x), h(x)) = 1 by Hensel’s lemma we can find g(x), h(x) such that
h1(x) = g(x)h(x) which gives us a contradiction. Thus by proposition3 L2[α] ∼= L2[X]/h1(x)
is unramified over L2, hence over K. Thus L1L2 = L2[α] is unramified over K.

Thus taking compositum of all umramified extensions we get a maximal unramified ex-
tension of K in its algebraic closure denoted by Knr

Lemma 3.12. If L is unramified extension and σ is an automorphism of L then σL is
unramified extension

Proof. Assume L = K[α], σ(α) = β and g(x) ∈ K[X] be the minimal polynomial of α and
β. BY theorem4 we have a unique homomorphism

σ : kL → kσL

α 7−→ β

Since β is root of g(x) which is irreducible and seperable, [kσL : k] ≥ degreeg(x). Hence
[σL : K] ≥ [kσL : k] ≥ [kL : k] = [L : K] = [σL : K]. This proves that σL is unramified.

Given a seperable extension L over K let L0 denote the composite of all unramified
extensions over K in L. Since σL0 is unramified, L0 is normal. Consider L

′
= L(ks) which is

an unramified extension, hence L
′ ⊂ L0. Thus ks ⊂ kL0 , but kL0 is seperable, hence ks = kL0

Lemma 3.13. Adjoining eth roots of unity to K where (e, p) = 1 is an unramified extension.
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Proof. Let ζe denote the primitive eth roots of unity with minimal polynomial f(x) in R[x].
Since xe − 1 is separable in kζe , f(x) ∈ kζe is separable. Since it’s separable and f(x) is
irreducible by Hensel’s lemma we conclude that f(x) is irreducible.Applying proposition2
Kζe is unramified over K.

Theorem 3.14. Every unramified extension of degree n is given by adjoining qn− 1th roots
of unity where q = #k

Proof. Assume L is an unramified extension by theorem3 we have Gal(L/K) ∼= Gal(kL/k).
xq

n − x is seperable in kL hence by Hensel’s lemma L contains (qn − 1)th roots of unity,
ζqn−1. By applying above lemma L

′
= K[ζqn−1] is unramified extension of degree n in over

K and L
′ ⊂ L, hence L = L

′
.
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Chapter 4

Tate’s Cohomology and Profinite
Groups

4.1 Tate’s Cohomology

Throught this section let G be a finite group. For i > 0, Zi := Gi+1, Gi+1 = G×G× ....×G,
i + 1 times. For a G module A, Hom(G,A) can be given module structure by (g.f)(x) :=
g.f(g−1x). We denote Hom(G,A)G =

{
f ∈ Hom(G,A) : g.f = f ∀g ∈ G

}
by HomG(G,A).

G always acts trivially on Z.

di−1 : Zi → Zi−1

(g0, g1, ..., gi)→
i∑

j=0

(−1)j(g0, g1, ..., gi)

This is a G module homomorphism. Z−i = Hom(Zi−1,Z)

d−i : Z−i → Z−i−1

Take f ∈ Hom(Z[Gi],Z) we define

d−i.f(g0, g1, ..., gi) = f(di−1(g0, g1, ..., gi))

By the above definitions we have the exact sequence

→ Z1
d0−→ Z0

ε−→ Z−1
d−1−−→ Z−2 →

ε : Z0 → Z−1
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∑
aigi →

∑
ai.
∑

gi

This exact sequence is known as a standard complex. This induces a chain

d−2−−→ HomG(Z−2, A)
d−1−−→ HomG(Z−1, A)

ε−→ HomG(Z0, A)
d1−→ HomG(Z1, A)

d2−→

dq : HomG(Zq−1, A)→ HomG(Zq, A)

dq.f(g0, g1, ..., gq) = f(dqg0, g1, ..., gq)

These are G module homomorphisms. For a G module A Tate’s groups are defined as

Ĥq(G,A) = ker(dq)/img(dq−1) ∀q ∈ Z

Elements of ker(dq) are known as q-cocycles and of img(dq−1) are know as q − 1 cochains. Let
Hq(G,A) denote the qth cohomology groups and Hq(G,A) denote the qth homology groups.

N : A → A, a →
∑
g.a induces N : H0(G,A) → H0(G,A). We define Ĥ0(G,A) = ker(N).

It can be seen that

Ĥq(G,A) = Ĥq(G,A), q ≥ 1

Ĥ−1(G,A) = Ĥ0(G,A)

Ĥ−q = Hq−1(G,A)

For an exact sequence of G modules

0→ A→ B → C → 0

we have the exact sequence

→ Ĥq(G,A)→ Ĥq(G,B)→ Ĥq(G,C)
δ−→ Ĥq+1(G,A)→

δ above is known as connecting homomorphism.

Let H be a subgroup of G then we have embedding f : H → G. This induces map known
as restriction homomorphism

Res : Ĥq(G,A)→ Ĥq(G,A)

If H is a normal subgroup then AH is a G/H module. G→ G/H induces Ĥq(G/H,AH)→
Ĥq(G,AH). AH → A induces Ĥq(G,AH)→ Ĥq(G,A). Thus we have the inflation map

Inf : Ĥq(G/H,AH)→ Ĥq(G,A)
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For Homology groups we can also define corestriction map induced by H → G

cor : Hq(H,A)→ Hq(G,A)

This can be extended to all Tate’s groups by dimension shifting, pg104 [CF10]. We note an
important lemma, pg101 [CF10]

Lemma 4.1. If Ĥ i(G,A) = 0 for all 1 ≤ i ≤ q − 1 for some q > 1 then the following
sequence is exact

0→ Ĥq(G/H,AH)
inf−→ Ĥq(G,A)

res−→ Ĥq(H,A)

Lemma 4.2 (Shapiro’s lemma). Let B be a H module, then

Ĥq(G,HomH(Z[G], B)) = Ĥq(H,B)

Proof. Define

f : HomG(Z,HomH(Z[G], B))→ HomH(Z,B)

For ψ ∈ HomG(Z,HomH(Z[G], B)), f(ψ)(g) := ψ(g)(1). The lemma follows from the fact
that it is an isomorphism.

Definition 4.1 (Cup product). There exists a unique family of homomorphisms in Ĥp+q(G,A⊗
B) denoted by a.b for a ∈ Ĥp(G,A) and b ∈ Ĥq(G,B) written as

Ĥp(G,A)⊗ Ĥq(G,B)→ Ĥp+q(G,A⊗B), ∀ p, q ∈ Z

satisfying

1. These homomorphisms are funcorial in A and B.

2. For p = q = 0 they are induced by AG ⊗BG → (A⊗B)G.

3. If 0 → A1 → A2 → A3 → 0 and 0 → A1 ⊗ B → A2 ⊗ B → A3 ⊗ B → 0 then for
a3 ∈ Ĥp(G,A3) and b ∈ Ĥq(G,B) we have (δ(a3)).b = δ(a3.b)

4. If 0 → B1 → B2 → B3 → 0 and 0 → A ⊗ B1 → A ⊗ B2 → A ⊗ B3 → 0 then for
a ∈ Ĥp(G,A) and b3 ∈ Ĥq(G,B3) we have a.(δ.b3) = (−1)pδ(a.b3)

From pg108 of [CF10] we note the lemma

Lemma 4.3. 1. Res(a.b) = Res(a).Res(b)

2. Cor(a.Res(b)) = Cor(a).b

For a finite cyclic group G we have the theorem

27



Theorem 4.4. Ĥ2(G,Z) is cyclic and the cup product with the generator induces an iso-
morphism

Ĥq(G,A)→ Ĥq+2(G,A)

For a finite cyclic group G if Ĥ0(G,A) and Ĥ1(G,A) are finite then we define Herbrand
Quotient, h(G,A), by [Ĥ0(G,A)]/[Ĥ1(G,A)].

4.2 Profinite Groups

Let I be a set with a relation ≤ which is reflexive and transitive. Inverse system over I is{
Gi

}
indexed over I with continous homomorphism θji : Gj → Gi for all i ≤ j satisfying

πii = 1 and πji ◦ πkj = πki .

Let Gi be finite sets with discrete topology. G :=
{

(ai) ∈
∏

i∈I Gi : πji (aj) = ai
}

. G is
closed in

∏
Gi(product topology). We denote G = lim←−Gi and call it a profinite group(Gi

are finite).

Theorem 4.5. A topological group is profinite if and only if it is compact and totally dis-
connected.

Proof. Consider G = lim←−Gi. Gi are finite and discrete hence compact, so is
∏
Gi. Since

G is closed, it is compact. To prove it is totally disconnected it is enough to show that
intersection of all compact subgroups is 1. Let G

′
i denote the subset of

∏
Gi containg 1 at

Gi component. ∩G′i = 1, hence
∏
Gi is totally disconnected which follows to G.

Let G be a compact and totally disconnected set. Let Gi be collection of open normal
subgroups. The natural maps G/Gj → G/Gi for Gj ⊂ Gi make it an inverse system. Let

µ : G→ lim←−G/Gi

x→ xGi

Injectivity follows from the fact that every neighborhood of 1 contains a normal subgroup.
If a = (aiGi) then ∩aiGi is non empty. This shows surjectivity. Restriction to G/Gi is
continous, hence θ is continous. Thus we have shown that if G is a profinite group and Gi

are open normal subgroups then G = lim←−G/Gi

Thus from above theorem it follows that if l/k is a Galois extension and li are intermediate
fields G(l/k) = lim←−G(li/k). From theorem 3.14 Gal(kur/k) = lim←−Z/nZ. It is denoted by Ẑ.
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Direct system is set abelian groups
{
Ai
}

indexed over I with maps µji : Ai → Aj such

that µkj ◦ µ
j
i = µki . Let A

′
= tAi, we can define an equivalence relation x− y ⇔ µki x = µkjy

for some k. A = lim−→Ai is set of equivalence classes. This can be made an abelian group by

defining x+ y as equivalence class of µki x+ µkjy for any k ≥ i, j

If G = lim←−G/Ui and A is a G module then A = lim−→AUi . We have direct system

(I, Ĥq(G/Ui, A
Ui); θji ) where

θji : Ĥq(G/Ui, A
Ui)→ Ĥq(G/Uj, A

Uj)→ Ĥq(G/Uj, A
Uj)

This gives us Ĥq(G,A) lim−→ Ĥq(G/Ui, A
Ui . Thus if E is Galois extension over K, we have

Ĥq(G,E) = lim−→ Ĥq(G(Ki/K), Ki) for finite intermediate extensions Ki. Similarly we have

Ĥq(G,E∗) = lim−→ Ĥq(G(Ki/K), K∗i )

Lemma 4.6. Galois extension E has trivial cohomology.

Proof. If E is a finite extension then by normal basis theorem E is induced, hence has trivial
cohomology.

Lemma 4.7. Ĥ1(G,E∗) = 1

Proof. Consider E to be finite extension. Let τ ∈ G and f be a 1 cocycle. By independence
of characters we have a non zero b =

∑
σ∈G f(σ).σ(c) for some c. Then τ(b) = f−1(τ)b.

Hence f is a cochain.
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Chapter 5

Local Class Field Theory

5.1 Brauer Group

Throught this section k denotes complete field with respect to a non archimedean valuation
v and a finite residue field kr of order q. Brauer group of k denoted by Br(k) is defined
as lim−→G(m/k) where m runs through finite extensions of k. o denotes the ring of integers
and p the maximal ideal. Let l denote a finite Galois extension of degree n. Let kur be
the maximal unramified extension of k with Galois group Ẑ. In this section we prove that
Br(k) = Ĥ2(Ẑ, k∗ur) .
From the exact sequence 0→ Z→ Q→ Q/Z→ 0, we have

Ĥ1(G,Q)→ Ĥ1(G,Q/Z)
δ−→ Ĥ2(G,Z)→ Ĥ2(G,Q/Z)

Since Q has trivial cohomology δ becomes an isomorphism. Ĥ1(G,Q/Z) ∼= Hom(G,Q/Z) ∼=
Ĥ2(G,Z). The map γ : Hom(Ẑ,Q/Z) → Q/Z defined by φ → φ(1) is an ismorphism. The
valuation map v : k∗nr → Ẑ defines a homomorphism v : Ĥ2(Ẑ, k∗nr)→ Ĥ2(Ẑ,Z). We define
invariant map, invk : Ĥ2(Ẑ, k∗nr)→ Q/Z as

invk = γ ◦ δ−1 ◦ v

Claim is that this is an isomorphism. Which will be proved by showing that v is an ismor-
phism.

Proposition 5.1. Let kn be the degree n unramified extension of k with Galois group G then
Ĥq(G,Ukn) = 1 for all q ∈ Z.

Proof. Define U i
n = 1 + πnon, then Un = lim←−Un/U

i
n. Let knr denote the residue field of kn.
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We have a G module homomorphism

Un → k∗nr

a0 + a1π + ...→ a0

The kernel is U1, hence U/U1
∼= k∗n. Similarly the G module homorphism

U i
n → k+

nr

1 + πn.a→ ā

has kernel U i+1
n . Hence U i

n/U
i+1
n
∼= k+

n . Since they are G module isomorphisms we have
Ĥq(G,U/U1) = Ĥq(G, k∗nr) and Ĥq(G,U i

n/U
i+1
n ) = Ĥq(G, k+

nr). From lemma 4.5 and 4.6, k+
nr

has trivial cohomology and Ĥ1(G, k∗nr) = 1. Since G is cyclic, we have Ĥ2q(G, k∗nr) = 1 and

Ĥ2q+1(G, k∗nr) = h(k∗nr).Ĥ
2q(G, k∗nr). Since k∗nr is finite h(k∗nr) = 1, refer pg109 [CF10]. This

implies Ĥ2q+1(G, k∗nr) = 1.

1→ U1 → U → U/U1 → 1

⇒ Ĥq−1(G,U/U1)
δ−→ Ĥq(G,U1)→ Ĥq(G,U)→ 1

By above exact sequences given a q-cocycle f ∈ Ĥq(G,U) we have g1, (q − 1)-cochain
in Ĥq−1(G,U) and f1, q-cocycle in Ĥq(G,U1) such that f = δ.g1 + f1. Similarly we can
construct fn = δ.gn+1 + fn+1 where fn is q-cocycle of Ĥq(G,Un) and gn+1 is (q − 1)-cochain
of Ĥq−1(G,Un). Now adding all fn = δ.gn+1 +fn+1 we have f = δ(

∑
gi). The sum converges

since Un = lim←−U/Un and is a cochain. Since f is image of cochain we have f = 0.

From the exact sequence 0→ Ukn → k∗n
v−→ Z→ 0 we have the sequence

Ĥq(G,Ukn)→ Ĥq(G, k∗n)
v−→ Ĥq(G,Z)→ Ĥq+1(G,Ukn)

the isomorphism of v follows from the above proposition.
Let Γk denote the Galois group of k∗nr then Γk ∼= Gal(k̄r/kr). Since lr ⊂ k̄r we have
an inclusion Gal(l̄r/lr) → Gal(k̄r/kr). This inclusion Γl → Γk gives us the map Res :
Ĥ2(Γk, k

∗
nr)→ Ĥ2(Γl, l

∗
nr)

Proposition 5.2. invl ◦Res = n.invk

Ĥ2(Γk, k
∗
nr) Ĥ2(Γl, l

∗
nr)

Q/Z Q/Z

invk

res

invl

n
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Proof. Let σk be the frobenius element of Γk. Let e be the ramification index and f = [lr : kr].
βk is defined as βk(χ) = χ(σk). For x ∈ k∗ur, vl(x) = evk(x). Hence we have the left most
commutative diagram. Gal(lr/kr) is a cyclic group of order f , hence we have σl = σfk . The
third commutative diagram follows as

βl(e.res(χ) = eβl(res(χ)) = eχ(σfk ) = ef(χ(σk)) = nβl(χ)

.

Ĥ2(Γk, k
∗
nr) Ĥ2(Γk,Z)

Ĥ2(Γl, l
∗
nr) Ĥ2(Γl,Z)

Hom(Γk,Q/Z)

Hom(Γk,Q/Z)

Q/Z

Q/Z
vl

res e.res

vk

e.res

δ−1

δ−1

βk

βl

n

This proves the theorem.

5.2 Fundamental Class of Ĥ2(G(l/k), l∗)

Let x be an element of kernel of Res. Then from the previous proposition we have

invl(Res(x)) = 0⇔ n.invk(x) = 0⇔ invk(x) = 1/n

Hence the kernel is generated by an element ul/k ∈ Ĥ2(Γk, k
∗
nr) such that invk(ul/k) = 1/n.

Since ker(res) ⊂ Ĥ2(G, l∗) we conclude that Ĥ2(G, l∗) contains a cyclic group of order n.
In fact we can show that Ĥ2(G, l∗) is generated by ul/k. First let us look at cyclic case.

Lemma 5.3. For a cyclic extension l/k of degree n, Ĥ2(G, l∗) is cyclic of order n.

Proof. Let U be an open subgroup of Ul with trivial cohomology, refer pg134 [CF10].

1→ U → Ul → Ul/U → 1

From this we have h(Ul) = h(U).h(Ul/U) = 1, refer pg109 [CF10].

1→ Ul → l∗
v−→ Z→ 0

This gives h(l∗) = h(Z).h(Ul). h(Z) = [Ĥ0(G,Z)]/[Ĥ1(G,Z)]. G = Z/nZ acts trivially on
Z. Ĥ0(G,Z) = Z/nZ and Ĥ1(G,Z) = Hom(Z/nZ,Z) = 0. Hence h(Z) = n. Therefore
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h(l∗) = 1. Using the definition h(l∗) = [Ĥ2(G, l∗)]/[Ĥ1(G, l∗)] and the fact that Ĥ1(G, l∗) = 1
we have [Ĥ2(G, l∗)] = n.

We need the following lemma to go from cyclic case to a general case, refer pg135 [CF10].

Lemma 5.4. Ugly lemma:Let p, q ≥ 0 be integers. A be a G module. Assume

1. Ĥ1(H, l∗) = 0 for all subgroups H of G.

2. For H ⊂ K ⊂ G such that H is normal in K and K/H cyclic of prime order. Then
[Ĥq(H,A)]|[K : H]p.

Proposition 5.5. Ĥ2(G, l∗) is cyclic of order n.

Proof. Take p = 1, q = 2 and A = l∗ in previous lemma. Hence [Ĥ2(G, l∗)] divides n. But
we have shown that Ĥ2(G, l∗) contains a cyclic group of order n. Hence Ĥ2(G, l∗) is cyclic
group generated by ul/k such that invl(ul/k) = 1/n.

By definition Br(k) = lim←− Ĥ
2(G, l∗) where l runs through finite Galois extensions. But

Ĥ2(G, l∗) ⊂ Ĥ2(Γk, k
∗
nr) hence Br(k) ⊂ Ĥ2(Γk, k

∗
nr). Thus we have proved

Theorem 5.6. Br(k) = Ĥ2(Γk, k
∗
nr)

5.3 Local Reciprocity Map

We use Tate’s theorem from pg115 of [CF10] for the following theorem.

Theorem 5.7. The map Ĥq(G,Z)→ Ĥq+2(G, l∗) given a 7→ a.ul/k is an isomorphism.

Proof. For every subgroup H of G we have field k
′

over k in l such that H = Gal(l/k
′
).

We have Ĥ1(H, l∗) = 0 for all subgroups H. We have shown already shown Ĥ2(H, l∗) is
generated by ul/k′ such that invk′ (ul/k′ ) = 1/m, m = [l : k

′
]. Observe that

invk′ (Resul/k) = [k
′
: k]invk(ul/k) = [k

′
: k]/n = 1/m

Hence invk′ (ul/k′ ) = invk′ (ul/k′ ). The above arguement is true for all the Sylow subgroups
of G. Hence by applying Tate’s theorem we arrive at the result.
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In the case q = −2 we have Ĥ−2(G,Z) = H1(G,Z) = Gab and Ĥ0(G, l∗) = k∗/Nl/kl
∗.

Thus we have an isomorphism

θ : k∗/Nl/kl
∗ → Gab

This map which is the inverse of the above isomorphism is Local reciprocity map.
Let k

′
be a separable extension over k and l be a finite extension k

′
. Let G = Gal(l/k) and

H = Gal(l/k
′
). With this notation we have

Ĥq(G,Z) Ĥq+2(G, l∗)

Ĥq(H,Z) Ĥq+2(H, l∗)
.ul/k

′
res res

.ul/k

Consider α ∈ Ĥq(G,Z) then res(α.ul/k) = res(α).res(ul/k) = res(α).ul/k′ , refer pg107 of
[CF10]. Since cup product is isomorphism. We can reverse the isomorphism and taking
q = −2 we have

k∗/Nl/kl
∗ Gal(l/k)ab

k∗/Nl/k′ l∗ Gal(l/k
′
)ab

θl/k′
incl res

θl/k

The above restriction map is also known as Transfer.
Let Gk

ab denote maximal abelian extension over k. Then Gk
ab = lim−→Gal(l/k)ab. Taking

inverse limits

k∗ Gk
ab

k
′∗

Gk′
ab

θk′
incl transfer

θk

Similarly from
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Ĥq(G,Z) Ĥq+2(G, l∗)

Ĥq(H,Z) Ĥq+2(H, l∗)
.ul/k

′
cores cores

.ul/k

we have

k
′∗ Gk′

ab

k∗ Gk
ab

θk

Nk
′
/k incl

θk′

From the sequence 0→ Z→ Q→ Q/Z→ 0 we have

Ĥ1(G,Q)→ Ĥ1(G,Q/Z)→ Ĥ2(G,Z)→ Ĥ2(G,Q)

Since Q has trivial cohomology the connection homomorphism δ : Ĥ1(G,Q/Z)→ Ĥ2(G,Z)
is an isomorphism. Ĥ1(G,Q/Z) = Hom(G,Q/Z) and let χ ∈ Hom(G,Q/Z). Let a ∈ k∗

and it’s image in Ĥ0(G, l∗) be denoted by ā. ā.δ(χ) ∈ Ĥ2(G, l∗)

Lemma 5.8. With the above notation χ(θ(ā)) = invk(ā.δ(χ))

We can explicitly derive in the unramified case.

Proposition 5.9. Let l/k be an unramified extension and σ be the generator of Gal(l/k).
If vk is the normalized valuation of k then θ(ā) = σvk(a).

Proof. Let a = Nl/k(b) for some b ∈ l∗. vk(Nl/kb) = fvl(b), since vk is unramified we have
f = n. Hence σvk(a) = σn.vl(b) = 1 since σ is generator of group of order n. Therefore
θ(ā) = σvk(a) is well defined. By the previous lemma χ(θ(ā)) = invk(ā.δ(χ)). Drop the k in
vk we have

invk(ā.δ(χ)) = γ ◦ δ−1 ◦ v(ā.δ(χ)) = γ(δ−1(v(ā)δ(χ)) = v(ā)γ(χ)

χ(θ(ā)) = v(ā)χ(σ) = χ(σv(a))

This is true for all χ, hence θ(ā) = σvk(a).
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5.4 Characterization of Reciprocity Map

Let l be an abelian extension of k containing kur. Let kπ denote the fixed field of σ, the
frobenius element of G(kur/k). Then kπ and kur are linearly disjoint(kur ∩ kπ = k) and
l = kur ⊗ kπ.

Lemma 5.10. f : k∗ → G(l/k) be an homomorphism such that

1. f(x)|kur = σv(x)

2. For any uniformizer, π, f(π) is identity on kπ

Proof. θl/k and f coincide on kur. θl/k(ω) is identity on kur, for any uniformizer ω. Therefore
f and θl/k coincide on kπ. Every a ∈ k∗ can be written as ω.πn for some uniformizer ω.
Hence f(x) = θl/k(x).

We can replace the second condition with
If a ∈ Nm/km

∗ for some finite extension m over k in l then f(a) is trivial on m. Assume f
satisfies the above statement. Let k

′
be a finite extension in kπ. Since θl/k(π)(x) = 1 for all

x ∈ k′ ⊂ kπ. Hence θk′/k(π) = 1, this implies π ∈ Nk′/kk
′∗. Hence f(π) is trivial on k

′
.

Note: We use these criterion to prove that a map is reciprocity map.

5.5 Formal Groups

A formal group law(F (x, y)) is a power series in variables over a ring o satisfying the
conditions

1. F (x, F (y, z)) = F (F (x, y), z)

2. F (0, y) = y and F (x, 0) = x

3. F (x, y) = F (y, x)

If x, y ∈ p then F (x, y) ∈ p, this makes p group under the binary operation x ∗ y = F (x, y).
We denote this group by Fp. Similarly for any finite extension l/k we have F (P).
Fπ be set of formal series f ∈ o[[x]] satisfying

1. f(x) ≡ πx(moddeg2)
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2. f(x) ≡ xq(mod π)

Proposition 5.11. Let f, g ∈ Fπ and φ1(x1, ...., xm) be a linear form over x1, ..., xm with
coefficients in o. Then there exists a unique φ ∈ o[[x1, .., xm]] such that

1. φ ≡ φ1(moddeg2)

2. f ◦ φ = φ ◦ (g × ...× g)

Proof. We shall construct a sequence of φ(m) =
∑m

i=1 φi satisfying the required conditions
(mod.deg.m+ 1). Also deg(φm) ≥ m. For m = 1, φ(1) = φ1 satisfies the required conditions.

Assume by induction we have φ(m) =
∑m

i=1 φi

φ(m) ≡ φ1(mod.deg.2), f ◦ φ(m) ≡ φ(m) ◦ (g × ....× g)

We need to find φm+1 such that φ(m+1) := φ(m)+φm+1 satisfies the conditions (mod.deg(m+2).
Say f ◦ φ(m)(x) ≡ φ(m)(g(x)) + Em+1(mod.deg(m + 2)) where Em+1 ≡ 0(mod.deg(m + 1)).
We have chosen φm+1 with degree greater than m+1 hence by f(x) ≡ πx(moddeg2) we have

f ◦ φ(m+1)(x) = f(φ(m)(x) + φm+1(x)) ≡ f(φ(m)) + πφm+1(mod.deg(m+ 2))

and similarly

φ(m+1)(g(x)) ≡ φ(m)(g(x)) + π(m+1)π(m+1)

⇒ (f ◦ φ(m+1) − φ(m+1) ◦ g)(x) ≡ Em+1 + (π − πm+1)φm+1

So we define φm+1 := Em+1(π−πm+1)−1. By induction hypothesis Em+1 is unique, therefore
φm+1 is unique. All left is to show that φm+1 ∈ o[[X]].

1− πm is a unit hence it is enough to show that Em+1 ≡ 0(mod π). Since f ≡ xq(mod π)

Em+1 ≡ f(φ(m+1)(x))− φ(m+1)(g(x)) ≡ (φ(m+1)(x))q − φ(m+1)(xq) ≡ 0(mod π)

Using the above proposition the following corollaries follow

Corollary 5.12. 1. There exists a unique formal group law Ff ∈ o[[x]] satisfying f(Ff (x, y)) =
Ff (f(x), f(y))

2. For any a ∈ o there exists a unique [a]f,g ∈ o[[x]] satisfying

(a) f ◦ [a]f,g = [a]f,g ◦ g
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(b) [a]f ≡ ax(mod.deg.2)

This [a]f,g is an homomorphism of Ff p to Fgp.

3. For any unit u ∈ o [u]f,g is an isomorphism between Ff p and Fg(p)

Proof. 1. Take φ1[x, y] = x + y and g = f , then by above proposition we have a unique
Ff [x, y] satisfying satisfying f(Ff (x, y)) = Ff (f(x), f(y)). To prove the properties of a
formal group for example F (x, y) = F (y, x) take φ1(x, y) = x + y. Both Ff (x, y) and
Ff (y, x) satisfy the conditions of the above proposition. So by uniqueness Ff (x, y) =
Ff (y, x). Similarly we can prove the rest of the properties.

2. Take φ1(x) = ax in the proposition. To show that [a]f,g : Ff p → Fgp one needs to show

Ff ([a]f,g(x), [a]f,g(y)) = [a]f,gFg(x, y)

Take φ1(x, y) = ax+ ay, both LHS and RHS above satisfy the criterion of the propo-
sition hence by uniqueness they are equal.

3.

Fg → Ff → Fg

x→ [u]f,g(x)→ [u−1]g,f ◦ [u]f,g(x)

For the group of endomorphisms on Fg, [1]g,g acts as an identity. It can be seen that
[u−1]g,f ◦ [u]f,g = [1]g,g by using the uniqueness property of the proposition.

5.6 Reciprocity map and Existence Theorem

Denote [a]f,f as [a]f . Let m denote the maximal ideal in separable closure of k. Mf = Ffm,
we define o− module structure on Mf by defining a.x = [a]f (x).

Ef :=
{
x ∈Mf : [πn]f,f (x) = 0 for some n

}
and kπ := k(Ef ).

Lemma 5.13. As o-modules Ef and k/o are isomorphic.

Proof. En
f :=

{
x ∈ Ef : [πn|f,f (x) = 0

}
. Define a o-module homomorphism

k/o→ Ef
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π−1 → a1, a1 ∈ E1
f

π−2 → a2, a2 ∈ E2
f

choose a2 such that π.a2 = a1 Since E1
f is divisible we can always choose an element like a2.

Continuing with a3,.. so on we define an isomorphism.

Lemma 5.14. The map

G(kπ/k)→ Auto(Ef )

σ → σ|Ef

is an isomorphism.

Proof. If σ is identity on Ef then it is identity on K(Ef ), hence it is an injection. We prove
the surjectivity by showing that the order is same.

‘

Ef ∼= k/o⇒ Aut(Ef ) ∼= Aut(k/o)

Note that

o ∼= Endo(k/o)

x→ ψx; ψx(a) = ax

Hence Aut(k/o) ∼= Uk.

Since by definition [π]f ≡ π.x(mod.deg2) and f(x) ≡ π.x(mod.deg2) we can take [π]f = f .
Since Ff are isomorphic, take f(x) = π.x + xq. Define knπ = k(En

f ) and a ∈ En
f − En−1

f .
πn.a = 0 ⇒ f ◦ f... ◦ f = fn(a) = 0. Take φ(x) = fn(x)/fn−1(x) = (fn−1(x))q−1 + π. Note
that φ(x) is Eisenstein polynomial of degree qn−1(q − 1) and all the roots lie in En

f − En−1
f .

This implies if we define knπ = k(En
f ) then |G(knπ/k)| ≥ qn−1(q − 1). We have already seen

that |Uk/Un
k | = qn−1(q − 1). We have G(kπ/k) = lim←−G(knπ/k) and lim←−Uk/U

n
k = Uk. This

prooves the surjectivity.

This shows knπ/k is an abelian extension. And also observe that since π is constant in
Eisenstein polynomial, π ∈ Nknπ/kk

n∗
π .

k∗ Gab
k

Nknπ/kk
n∗
π G(knπ/k)

θknπ/k

j res

θk
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From the above commutative diagram θk(π) is identity on knπ , since π ∈ Nknπ/kk
n∗
π . This

implies kπ ⊂ (kab)<θk(π)>. Hence kπ and kur are disjoint, that is kπ ∩ kur = k. Define
lπ = kur.kπ.

Let k̂ur denote completion of kur and ônr denote its ring of integers. Let ω be another
uniformizer of kur. Let g ∈ Fω and f ∈ Fπ.

Proposition 5.15. There exists φ ∈ ôur[[x]] with φ(x) ≡ ηx(mod.deg.2) where η is a unit,
such that σ.φ = φ ◦ [u]f and φ is an o-module isomorphism of Mf and Mg.

Proof. The proof is similar to the proof of proposition5.11, where we use successive approx-
imations to construct φ.

Lemma 5.16. φ in the above proposition is invertible.

Proof. Let φ(x) = η.x+ a1.x
2 + .... We need to find ψ(x) = b1.x+ b2.x

2 + .... such that x =
η.ψ(x)+a1.ψ(x)2 + .... So we have η.b1 = 1⇒ b1 = η−1, η.b2 +a1.b

2
1 = 0⇒ b2 = η−1(−a1.b

2
1).

Inductively we can get all bi.

Lemma 5.17. lπ is independent of uniformizer

Proof. Take α ∈ kur.kπ, α =
∑
αi.βi where αi ∈ kur and βi ∈ kπ. Say β ∈ kπ, β =

∑
ci.ei =∑

ci.φ(e
′
i) for some e

′
i ∈ kω. Hence we have β ∈ k̂ur.kω ⇒ α ∈ k̂ur.kω ⊂ ˆkur.kω.

Take an α ∈ kur.kπ ⊂ ˆkur.kω, say F = kur.kω. Assume ∃σ ∈ G(F̂ /F ) such that σ(α) 6= α.

α = limα, αn ∈ F

⇒ ∃ n, |α− αn| < |α− σ(α)| = |α− αn − σ(α− αn)| ≤ |α− αn|

This gives us contradiction to assumption that a σ choosen exists. This implies kur.kπ ⊂
kur.kω. Similarly we can show kur.kπ ⊃ kur.kω prooving the lemma.

Lemma 5.18. Define the map rπ : k∗ −→ Gal(lπ/k) by

1. rπ(π) is 1 on kπ and is σ on kur

2. rπ(u) is [u−1] on kπ and is 1 on kur

rπ is independent of the uniformizer.
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Proof. Let us see how rπ(ω) and rω(ω) act on kω = k(Eg). Take λ ∈ Eg

rπ(ω)(λ) = rπ(π.u)(λ) = rπ(π)(rπ(u)(φ(µ))), µ ∈ Ef

Since rπ(u) is identity on Ô and φ ∈ Ô[[x]]

rπ(π)(φ(rπ(u)(µ)) = rπ(π)(φ([u−1]f (µ))), [u−1]f (µ) ∈ kπ

⇒ rπ(π)(φ)(u−1µ) = φ(µ) = λ

⇒ rπ(ω) = rω(ω)

Since rπ(π) is identity on kπ and Frobenius on kur, it is the reciprocity map.

Theorem 5.19 (Existence Theorem). For every open subroup M of finite index m in k∗

there is a finite abelian extension l/k such that Nl/kl
∗ = M .

Proof. Since 1 ∈ M , |x − 1| < ε ⊂ M implies Uk
n ⊂ M for some n. M is of index m

implies πm ∈M . Say ln,m = knπ .km where km is unramified extension of degree m. Consider
u.πa ∈ ln,m, u.πa ∈ Nln,ml

∗
n,m ⇔ θln,m(u.πa) = 1.

θln,m(u.πa) acts as [u−1] on knπ and we know G(knπ/k) ∼= Uk/U
n
k . Therefore [u−1] is identity

if and only if u ∈ Un
k . θln,m(u.πa) acts as σa where σ is Frobenius element on km. Therefore

θln,m(u.πa) is identity on km if and only if a ≡ 0(mod.m). Hence we have u.πa ∈ Un
k .π

m.
This implies Nln,ml

∗
n,m ⊂ M . For case of convinience denote Nln,ml

∗
n,m by Nl∗. We have

isomorphism

θl : k∗/Nl∗ → G(l/k)

Let H = θl(M). Let l
′

be abelian extension such that G(l
′
/k) = Gab/H. This implies

Nl′/kl
′∗ = M .
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Chapter 6

Global Class Field Theory

6.1 Main Theorem

k denotes a finite extension of Q. l a finite abelian extension of k with Galois group G
and order n. mk denotes the set of all normalized valuations of k. v is used to denote a
normalized valuation of k and w for l.
Let σ ∈ G, for a ∈ l, |a|σw := |σ−1a|w. lw denote completion of l with respect to w. Then
we have isomorphism σ : lw → lσw.

Lemma 6.1. Let v be restriction of w to k. lw/kv is a Galois extension with Galois group
given by

Gw =
{
σ ∈ G : σw = w

}
Proof. Observe that Gw ⊂ Gal(lw/kv). σi, i ∈ [r] be representative of G/Gw.

|G| = r.|Gw| ≤
r∑
i=1

[lw : kv] ≤
∑
w|v

[lw; kv] = |G|

From the isomorphism σ : lw → lσw, [lw : kv] is constant over w dividing v. Hence by the
above inequality we know that G acts transitively on the set of w dividing v and |Gw| = [lw :
kv].

Note that Gσw = σGwσ
−1. If l/k is an abelian extension we use lv to denote lw since

Gσw is same for all σ. Throught this section S denotes(unless mentioned) the set of all
archimedean and ramified primes of k. We define the homomorphism

Fl/k : IS → G
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v → σv

where σv is the Frobenius element of unramified extension lv/kv. The aim of the Class Field
theory is to understand the finite abelian extensions of a Field. The main theorem can be
summarized into four points

1. Reciprocity Law. There exists a continous homomorphism ψl/k : Jk → G satisfying
the conditions

(a) ψl/k(k
∗) = 1

(b) ψl/k(x) = Fl/k((x)S) for all x ∈ JSk
2. ψl/k(k

∗Nl/kJL) = 1 and we have an isomorphism ψl/k : Ck/Nl/kCl → Gal(l/k)

3. For abelian extensions m ⊃ l ⊃ k we have the following commutative diagram.

Ck/Nm/kCm Gal(m/k)

Ck/Nl/kCl Gal(l/k)
ψl/k

j res

ψl/k

Here res takes an element in Gal(m/k) to it’s restriction on l. j is the natural surjective
map.

4. Existence Theorem. Given a subgroup N of finite index in Ck there exists a unique
abelian extension l/k such that Nl/kCl = N

6.2 Cohomology of Ideles

Al = Ak ⊗k l, action of σ ∈ G on Al can be seen as action of 1⊗ σ on Ak ⊗k l.

Lemma 6.2. Ĥr(G, Jl) ∼=
∐

v∈Mk
Ĥr(Gv, lv

∗)

Proof. Let

Jl,S =
∏
v∈S

(
∏
w|v

lw
∗)
∏
v 6∈S

(
∏
w|v

Uw)

observe that Jl = lim−→
S

Jl,S, S →Mk. Since Uw has trivial cohomology,

Ĥr(G, Jl,S) =
∏
v∈S

Ĥr(G,
∏
w|v

lw
∗)
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∏
w|v lw

∗ ∼= HomGw(Z[G], lw
∗), hence by Shapiro’s lemma we have Ĥr(G,

∏
w|v lw

∗) ∼= Ĥr(Gv, lv
∗).

Taking S →Mk proves the lemma.

Consequence

1. Ĥ1(G, Jl) = 0

2. Ĥ2(G, Jl) ∼=
∐

v∈Mk
(Z/nvZ) where nv = [lv : kv]

Theorem 6.3 (First Inequality). If l/k is cyclic of degree n then [Jk/k
∗Nl/kJl] ≥ n

Proof. [h(G,Cl)] ≤ [Ck/Nl/kCl] and Jk/k
∗Nl/kJl ∼= Ck/Nl/kCl. So it is enough to show that

[h(G,Cl)] = n. Choose S
′ ⊂Ml to be set of archimedean, unramified and primes generating

Il/l
∗. Then we have Jl = l∗Jl,S where S is restiction of S

′
to k.

Cl = Jl/l
∗ = Jl,S/Jl,S ∩ l∗

call Jl,S ∩ l∗ as lS. So we have h(Cl).h(lS) = h(Jl,S)

h(Jl,S) = h(
∏
v∈S

(
∏
w|v

l∗w)×
∏
v 6∈S

(
∏
w|v

Uw)) = h(
∏
v∈S

(
∏
w|v

l∗w))

=
∏
v∈S

h(
∏
w|v

l∗w) =
∏
v∈S

h(Gv, l
∗
v) =

∏
v∈S

nv

V :=
{
f : S

′ → R
}

. σ ∈ G. (σ.f)w := f(σ−1w). V is a vector space over R of dimension

|S ′ |. The set W =
{
f : f(S

′
) ⊂ Z

}
spans V .

W ∼=
∏
w∈S′

Z =
∏
v∈S

(
∏
w|v

Z)

f →
∏
w∈S′

f(w)

σ.
∏

w|v Z ⊂
∏

w|v Z. Hence by Shapiro’s lemma we have

Ĥr(G,W ) ∼=
∏
v∈S

Ĥr(Gv, Z)

Here Gv acts trivially on Z

⇒ h(N) =
∏
v∈S

[Ĥ0(Gv,Z]/[Ĥ1(Gv,Z)] =
∏
v∈S

nv
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.
Now we construct another lattice that spans V but with Herbrand quotient nh(lS). Define

γ : lS → V

a→ fa, fa(w) = log|a|w
by the proof of Dirichlet’s theorem we note that kernel of γ is finite and image is lattice
spanning X =

{
f :
∑

w∈S′ f(w) = 0
}

. Hence, V ∼= X ⊕R. Now the lattice U = img(γ)⊕ Z
spans V .

h(U) = h(img).h(Z) = nh(lS)

Since W and U both span same vector space we have h(W ) = h(U) refer pg110 in [CF10]
nh(lS) =

∏
v∈S nv = h(jl,S). This proves h(Cl) = n

Lemma 6.4. Let l/k be a cyclic extension of prime order n. Let kn = k[ζn], ζn is primitive
nth root of unity. Let k

′
n = lkn, if [Ckn/NCk′n ] divides n so does [Ck/NCl]

Proof. The proof follows from the following diagram

Cl Ck

Ck′n Ckn

Ck/Nl/kCl

Ckn/Nk′n/kn
Ck′n

Cl Ck Ck/Nl/kCl

0

0

0

Nk′n/kn

Con con

Nl/k

Con

Nk′n/l

N/k

Nk′n/k
Nkn/k

Let [kn : k] = m. By definition of norm map if a ∈ Ck then an ∈ Nl/kCl.

Nkn/k ◦ Conkn/k : Ck/Nl/kCl → Ck/Nl/kCl

a→ am

Since (m,n) = 1 there exists k1 and k2 such that mk1 + nk2 = 1. Hence the map
Nkn/k ◦ Conkn/k is surjective, ak1 → a. Thus lemma follows from the fact the map Nkn/k :
Ckn/Nk′n/kn

Ck′n → Ck/Nl/kCl is surjective.

Theorem 6.5. Let k contain nth roots of unity for some prime n. l be an abelian extension
with Galois group, G ∼= (Z/nZ)r. Then [Ck/Nl/kCl]|nr.

46



Proof. By Kummer theory (refer corollary on pg90 of [CF10]) l = k[a
1/n
1 , ..., a

1/n
r ] for some

ai ∈ k. Let S be a finite subset of mk containing all the archimedean, ramified and unramified
primes that generate Ik/k

∗. And also let S contain primes which divide n and primes such
that ai ∈ o∗v for all v 6∈ S. Let US denote the set of S units, that is, a ∈ US implies a ∈ o∗v for

all v 6∈ S. Let M = k[U
1/n
S ], by Dirichlet’s unit theorem US has finite basis. Let [M : k] = ns.

Let w be a prime of l, above a v 6∈ S. M/k is unramified outside S hence FM/l(w) makes
sense and it generates Gw(M/l). Let G(M/l) be generated by FM/l(wi), i = 1, 2.., t where
wi are unramified. T =

{
vi
}

be the corresponding restrictions of wi to k. Claim is that
lwi = kvi for all i ∈ [t]. Let v ∈

{
vi
}

, Gv(M/k) is cyclic subgroup of (Z/nZ)s, implies
Gv(M/k) = Z/nZ or (0). Mw′ ⊃ lw ⊃ kv, Gw(M/l) = FM/l(w) is non trivial.

Gv(l/k) = Gv(M/k)/Gw(M/l)⇒ G(lw/kv) = G(Mw′/kv)/G(lw/kv)

⇒ Gv(l/k) = (0)⇒ Gv(M/k) = Gw(M/k)

⇒ lw = kv and FM/l(w) = Fl/k(v)

Claim: l∗n ∩ US =
{
a ∈ US : a ∈ knv ∀ v ∈

{
vi
}}

. If a ∈ l∗n ∩ US, a ∈ o∗v for all v ∈
{
vi
}

.
a = bn for some b ∈ l and vw(a) = 0 since o∗v = o∗w. This implies b ∈ o∗w hence a ∈ o∗w

n ⊂ knv .
Now assume a ∈ Us

⇒ a = bn, b ∈ kv

FMw/kva
1/n = a1/n

FMw/kv = FMw/lw ⇒ a ∈ ln. This proves the claim.

Define

U =
∏
v∈S

k∗nv ×
∏
v∈T

k∗v ×
∏

v 6∈S∪T

Uv

av ∈ kv, v ∈ S, since k∗v/Nl/kl
∗ ∼= Gv ⊂ Z/nZr anv ∈ Nl/kl

∗. av ∈ k∗v , v ∈ T , since lw = kv,
av ∈ Nl/kl

∗. av ∈ Uv for v unramified, av ∈ Nl/kl
∗ since Nl/kUl = Uk. Hence E ⊂ Nl/kJl. So

to prove the lemma it is enough to show [Jk/k
∗E] divides nr.

Jk = k∗Jk,S = k∗Jk,S∪T and

[k∗Jk,S∪T/k
∗E][k∗ ∩ Jk,S∪T/k∗ ∩ E] = [Jk,S∪T/E]

Claim: [Jk,S∪T/E]/[k∗ ∩ Jk,S∪T/k∗ ∩ E] = nr

[Jk,S∪T/E] =
∏
v∈S

[k∗/k∗n]

h(k∗v) = n/|n|v = [k∗v/k
∗n
v ]/n
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Since |n|v = 1 for all v 6∈ S we have

[Jk,S∪T/E] =
∏
v∈S

n2/|n|v = n2s
∏
v∈S

1/|n|v = n2s
∏
v∈mk

1/|n|v = n2s

By Dirichlet unit theorem the cardinality of basis for US is s. Thus we have [m : k] = ns,
[l : k] = nr and [m : l] = nt where s = r + t. By Kummer theory(pg91 [CF10]) we have
[US ∩m∗n : US ∩ k∗n] = [US;Un

S ] = ns. Replacing S by S ∪ T we have [US∪T ;Un
S∪T ] = ns+t.

So it is enough to show k∗ ∩ E = knS∪T . This follows from the fact that kS →
∏

v∈T Uv/U
n
v ,

refer pg184 [CF10].

Now applying the ugly lemma and using previous two lemmas we have

Theorem 6.6. If l/k is Galois extension of degree n then

1. [Ĥ0(G,Cl)] and [Ĥ2(G,Cl)] divide n.

2. Ĥ1(G,Cl) = 0.

6.3 Reciprocity Map

Define

ψl/k(x) =
∏
v∈Mk

ψv(xv)

where ψv is the local reciprocity map. Since v is unramified and xv is unit for almost all v
the product is well defined. The continuity of the local map implies the continuity of the
product. If x ∈ JSk then

FL/k((x)S) =
∏
v 6∈S

FLv/kv(xv) =
∏
v 6∈S

ψv(xv) = ψL/k(x)

So it remains to show that
∏
ψv(x) = 1 for all x ∈ k. We prove this first in the cyclotomic

extension case, that is l = k[ζ].

Lemma 6.7. If l = k[ζ] for some root of unity ζ, then
∏

v∈Mk
ψv(a) = 1 for all a ∈ k.

Proof. (Nk/Qx)p =
∏

v|pNkv/Qpxv and locally we have seen that ψp(Nkv/Qpx) = ψv(x). Hence∏
v∈Mk

ψv(a) =
∏
p

ψp(
∏
v|p

Nkv/Qp(a))
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So it is enough to prove the lemma for a cyclotomic extension l over Q
Let ζ be mth root of unity and S be a finite set of primes of Q conatining the archimedean
and ramified primes. If (a,m) = 1 then (a)S =

∑
vpi(a)pi where pi 6 |a. This implies

Fl/Q((a)S)ζ = ζ
∏
p
vpia

i = ζa. Let a ∈ Q such that |a − 1|p < |m|p for all p ∈ S. a = 1 + mr
for some r ∈ Z. (b, c) = 1 implies (b,m) = 1 and (c,m) = 1. Hence Fl/Q((b)S)ζ = ζb = ζc =
Fl/Q((c)S)ζ. (a)S = (b)S − (c)S, Fl/Q((a)S)ζ = ζb/c = ζ. Hence Fl/Q(a)S = 1. We found a ε
such that for all a ∈ Q such that |a − 1|p < ε, p ∈ S, Fl/Q(a)S = 1. This property is called
admissibility. Using the above property we construct a continous ψ : JQ → G(l/Q) such
that ψ(Q) = 1. Take x ∈ JQ, by weak approximation theorem there exists (an) ∈ Q such
that an → x−1

p for all p ∈ S.

ψ(x) := lim
n
Fl/Q(anx)S

Well definedness follows from admissibility. If an/am → 1

Fl/Q(anx)S/Fl/k(amx)S = Fl/Q(an/am)S

by admissibility we have Fl/Q(an/am)S → 1. Taking an = a−1 we have ψ(a) = 1 for all
a ∈ Q.
Homomorphism property of Fl/Q implies that ψ defined is a homomorphism. ψp(x) := ψ((x)p)
where ((x)p)pi = δppi . All is left to show is that ψp are indeed the local reciprocity maps.
From the commutative diagram whose proof will be given in next section

Jk′ Gal(L
′
/k
′
)

Jk Gal(L/k)
ψL/k

Nk′/k res

ψL′/k′

we can take l to be the maximal cyclotomic extension. We have ψp : lp → G(lp/Qp). Since
unramified extensions are cyclotomic, Qnr

p ⊂ lp. ψp(a)|Qp = F vp(a) where F is frobenious
element of Qnr

p . This follows from definition. For any finite extension m over Qp, ψp(a)
leaves m fixed. From the lemma in characterization of reciprocity map section, these three
properties show that ψp is a local reciprocity map. This proves the lemma.

Theorem 6.8. If a ∈ Br(k) then
∑
invv(a) = 0

Proof. We will first prove this in the case where a ∈ Ĥ2(G, l∗) for some cyclic cylotomic
extension l.

Consider a ∈ k∗ and let ā be its image in Ĥ0(G, l∗). If δχ ∈ Ĥ2(G,Z) then ā.δχ ∈
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Ĥ2(G, l∗) ⊂ Br(k). let â be image of a in Ĥ0(G, Jl), then we have

inv(ā.δχ) =
∑
v

invv(â.δχ)

The map l∗ → Jl → lv induces

Ĥ2(G, l∗)
j−→ Ĥ2(G, Jl)

res−→ Ĥ2(Gv, l
v)

by definition invv(â.δχ) = invv(j.res(â.δχ)) = invv(â.δχv) = χv(ψv(a))

χ(ψl/k(a)) = χ(
∏
v

ψv(a)) =
∑
v

χv(ψv(a)) =
∑
v

invv(â.δχ)

Since we proved reciprocity law for cyclotomic extension, we have χ(ψl/k(a)) = 0, implies∑
v invv(â.δχ) = 0. This proves the lemma for cyclotomic case.

To prove the general case we show that every a ∈ Br(k) comes from a cyclic cyclotomic
extension. For a Galois extension l/k we have the exact sequence

0→ Ĥ2(G, l∗)
infl−→ Br(k)

res−→ Br(l)

From the above exact sequence we have resl/k(a) = 0 if and only if a ∈ Br(k) comes from a

Ĥ2(G, l∗). let w be a prime of l whose restriction to k is v. locally we know

invw(resl/k(a)) = [lw : kv]invv(a)

Therefore resl/k(a) = 0 if and only if [lw : kv]invv(a) = 0 for all w over v. So we need to find
a cyclic cyclotomic extension l/k such that [lw : kv]invv(a) = 0 for every v. But invv(a) = 0
for almost all v, hence we boil down to proving the lemma

Lemma 6.9. Given a finite set of primes S ⊂Mk and a positive integer z. There exists a
cyclic cyclotomic extension l over k such that [lw : kv] is divisible by z at non archimedean
places and by 2 at archimedean places.

Proof. t be a positive integer and p an odd prime. let m = Q(ζpt), then G(m/k) ∼= Z/(p −
1)Z⊕ Z/pt−1Z. let m

′
be field with Galois group Z/pt−1Z

[m : m
′
] = p− 1

⇒ [mq : m
′

q] ≤ p− 1

for a prime q. Hence we have [m
′
q;Qq]→∞ as t→∞.

Now for p = 2, take m = Q(ζ2t). If ζ is a primitive element then Q(ζ − ζ−1) forms a
cyclic group of order 2t−2. Since i ∈ Q(ζ − ζ−1), Q(ζ − ζ−1) is complex. Hence the local
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degrees are divisible by 2. So given z =
∏
pnii the required l would be the compositum of

required fields generated above.

By the above theorem we have χ(ψl/k(a)) = 0 for all characters χ hence ψl/k(a) = 1.
This proves the reciprocity law.

Lemma 6.10. For abelian extension l/k and l
′
/k
′

we have

Jk′ Gal(l
′
/k
′
)

Jk Gal(l/k)
ψl/k

Nk′/k res

ψl′/k′

Proof. let S
′

denote the finite set of primes consisting ramified and archimedean primes.

JS
′

k′
IS
′

k′

JSk ISk

Gal(l
′
/k
′
)

Gal(l/k)
j

Nk′/k Nk′/k

j Fl′/k′

Fl/k

res

let S denote the restriction of these primes to l. Fix a prime v of k not in S. let α ∈ JS
′

k′

such that αw = 1 for all w 6 |v.

Nk′/k(j(α)) = Nk′/k(
∑
w|v

w(αw)w) =
∑
w|v

w(αw)Nk′/k(w) =
∑
w|v

w(αw)fwv

Nk
′
/k(α)v =

∏
w|vNk′w/kv

αw Hence

j(Nk′/k(α) =
∑
w|v

j(Nk′w/kv
αw) =

∑
w|v

v(Nk′w/kv
αw)v =

∑
w|v

w(αw)fwv

This proves the left rectangle. let σw denote the Frobenius element for the unramified
extension l

′
w/k

′
v.

Fl/kNk′/kw = Fl/kfwv = (σv)
fw

res(Fl′/k′w) = res(σw) = σfwv

51



This proves the second rectangle. But ψl/k(x) = Fl/k(x)S for all x ∈ JSk . Hence Fl/k◦j = ψl/k,
thus we have shown

JS
′

k′
Gal(l

′
/k
′
)

JSk
Gal(l/k)

ψl/k

Nk′/k
res

ψl′/k′

The lemma follows from the fact that k∗JSk is dense in Jk.

Substituting k
′

and l
′

by l we have ψl/k(Nl/kJl) = 1, hence ψl/k(k
∗Nl/kJl) = 1. Since

Ck/Nl/kCl ∼= Jk/k
∗Nl/kJl we can define the map

ψl/k : Ck/Nl/kCl → Gal(l/k)

Using the cohomology inequalities we now show that this is indeed an isomorphism.
Surjectivity: We note two lemmas of the first inequality

Lemma 6.11. If D is a subgroup of Jk satisfying (a)D ⊂ Nl/kJl and (b)k∗D is dense in Jk
then l = k

Proof. Consider a cyclic field extension M over k in l. From local theory NMw/kvMw
∗ are

open sets of kv and contain Uv for all v unramified. This implies NM/kJM is open so closed
in Jk. Hence k∗NM/kJM is closed in Jk. D ⊂ Nl/kJk ⊂ NM/kJM , from hypothesis we have
k∗NM/KJM dense Jk. Hence is entire Jk and from first inequality M = k, implying l = k.

Lemma 6.12. let S be finite set of primes in Mk containing the archimedean and ramified
primes. For a finite abelian extension l/k the map Fl/k : IS → Gal(l/k) is surjective.

Proof. let H be subgroup of G generated by Fl/kv for all v 6∈ S and M = lH . For v unramified
since Gal(M/k) = G/H Fl/kv(x) = x for all x ∈ M . Hence Mw = kv for all v 6∈ S, this
implies from local theory kv = NMw/kvMw. let D = Jk

S D ⊂ NM/kJM and from weak
approximation theorem D∗JSk is dense in Jk. From above consequence we conclude M = k
hence H = G. Since ψl/k(x) = Fl/k((x)S) for all x ∈ JSk we have ψl/k surjective.

Injectivity follows from the second inequality. Ĥ0(G,Cl) = Ck/Nl/kCl divides [l : k] hence

if [Ĥ0(G,Cl)] ≤ [l : k] we have [Ĥ0(G,Cl)] = [l : k]. And injectivity follows from surjectivity.

In this section we prove the diagram
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Ck/NM/kCM Gal(M/k)

Ck/Nl/kCl Gal(l/k)
ψl/k

j res

ψM/k

j in the above diagram is the natural injection obtained by observing that NM/kCM ⊂ Nl/kCl.
Consider fields l

′ ⊃ l and k
′ ⊃ k such that l/k and l

′
/k
′

are finite abelian extensions.

Now in the commuatative diagram proved in the last subsection put l
′
= M and k

′
= k.

We can replace Jk by Ck since ψ(k∗) = 1. Taking kernel will preserves the commutativity.
Thus the diagram follows. From this commuatative diagram we can pass to inverse limit to
get homomorphism

ψk : Ck → lim←−G(l/k) ∼= G(kab/k)

where l runs through finite abelian extensions and kab is maximal abelian extension. Thus
we have

G(kab/k) ∼= lim←−(Ck/Nl/kl
∗)

Thus if we prove existence theorem we will have

G(kab/k) ∼= lim←−(Ck/N)

where N runs though open subgroups of finite index of Ck.

Throught this section H denotes an open subgroup of Ck of finite index n. Call H normic
if and only if there exists an abelian extension L/k so that H = NL/kCL. Observe two points

1. If H is normic and is contained in H1 then H1 is normic. Let H = NL/kCL we have the
isomorphism ψL/k : Ck/H → G. Say ψL/k(H1) = G1, this gives a map ψLG1/k : Ck →
G/G1 with kernel H1 = NLG1/kCLG1 .

2. Similarly we can also show that if H1, H2 are normic so is H1 ∩H2.

Lemma 6.13. Let n be a prime and k a field not of characteristic n and containing the nth

roots of unity. Then H is normic.

Proof. Let H
′

be inverge image of H in Jk. Since H
′

is open for some finite set S,
∏

v∈S 1×∏
v 6∈S Uv ⊂ H

′
. H is of index n, so Jnk ⊂ H

′
. Since H

′
is a group we have

∏
v∈S k

∗n ×∏
v 6∈S Uv ⊂ H

′
. By the proof of second inequality there exists an abelian extension l such

that k∗Nl/kjl = k∗
∏

v∈S k
∗n ×

∏
v 6∈S Uv = k∗U , say. Thus Nl/kCl = Uk∗/k∗ ⊂ H

′
/k∗ = H,

Since H contains a norm group, itself is a norm group.
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Lemma 6.14. If L/k is cyclic and N−1
L/k(H) is normic in L then H is normic.

We use induction on index for proof of existence theorem. Let [Ck : H] = n and p be a
prime dividing n. If n = 1 then k itself suffices as the abelian extension. Let k1 = k[ζp]
and H1 = N−1

k1/k
H, then by above lemma it is enough to show H1 is normic. Nk1/k :

Ck1/Nk1/kH1 → Ck/H is injective hence [Ck1 : H1] divides [Ck : H]. [Ck1 : H1] = n otherwise
by induction hypothesis H1 is normic.

Choose H2 such that H ⊂ H2 and [Ck1 : H2] = p. H2 is normic since it is of prime index.
Say H2 = Nm/km

∗, m is a cyclic extension. H3 = N−1
m/k1

H1. Nm/k1 : Cm/H3 → Ck1/H1 is

injection with image H2/H1. Hence [Cm/H3] < [Ck1/H1] = n, by induction hypothesis H3

is normic. Applying previous lemma H1 is normic. This implies H is normic. This proves
the existence theorem.
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Chapter 7

Conclusion

For a local field k, we have seen that for every finite extension l/k there exists a subgroup
N of k∗ such that we have an isomorphism

θl/k : k∗/N → Gal(l/k)ab

This N is equal to Nl/kl
∗.

For a number field k we have seen that for every finite abelian extension l/k we have
isomorphism

ψl/k : Ck/Nl/kCl → Gal(l/k)

For a number field k we have constructed the map

ψk : Ck → lim←−G(l/k) ∼= G(kab/k)

Existence theorem gives us correspondence between norm subgroups of finite index in Ck
and finite abelian extensions. Thus we have

G(kab/k) ∼= lim←−(Ck/N)

where N runs though open subgroups of finite index of Ck.
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