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Abstract

Here we study the behaviour of a fermionic system in a linear tight binding lattice in the

presence of interaction and disorder, and whether the system displays Many-Body Localiza-

tion. We also observe the phase transitions in a driven Floquet MBL system and how its

behaviour and phases differ from a static system.
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Chapter 1

Introduction

In closed and isolated quantum systems, two phases of dynamics are observed - namely

eigenstate thermalization and localization. The discovery of localization of single particle

states in quantum systems is accredited to P.W.Anderson [1], after whom this phenomenon

was named as Anderson Localization. Anderson studied a single particle in a tight binding

Hamiltonian model with disorder in the form of random potentials at each site. He deduced

that for a sufficiently large disorder, the particle’s wavefunction stops diffusing and as a

result the particle remains localized close to the state it was initially in.

Following Anderson’s lead, recently others have started exploring localization in multi-

particle systems in the presence of interactions as well as disorder. Thus using various

techniques such as perturbation theory [2] , exact diagonalisation [3] and DMRG [4] tech-

niques it has been shown that even in isolated multi-particle systems with strong interaction,

localization can occur. In such systems, the occurrence of Many-Body Localization phase

depends on various factors [6], such as the form of interaction, its strength, the strength of

disorder, initial state etc.

Furthermore, localization has been observed even in periodically driven Floquet many-

body systems [8]. In such systems, the periodic driving constantly pumps energy into a

closed system. Thus, one may expect that such a system would absorb energy indefinitely

and approach an infinite temperature featureless ETH state. However, in the presence of a

strong disorder, such a situation can be avoided [7]. Under these specific conditions, instead

of the system thermalizing, we observe that the dynamics is analogous to localization, which
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we call Floquet-Many Body Localization.

So while an ETH system acts like a bath for its subsystems, a localized system does not

and therefore none of its subsystems thermalize. In other words, there are emergent local

integrals of motion whose values do not change under the dynamics and thus do not reach

thermalized equilibrium values [9].

In this thesis, we study regimes in which ETH is broken. We also study the phase

transitions that these MBL systems display. However, unlike the conventional approach

of studying phase transitions using statistical ensembles of the system, here we study the

properties of its eigenstates and eigenvalues. This is because the difference between an ETH

system and an MBL system is only apparent when observing the dynamics and disappears

when evaluating thermodynamic quantities by averaging over a canonical ensemble.

We study localization in a linear tight binding model acting on a fermionic system, in

the presence of interaction and disorder. Then by changing the strengths of the interaction

and disorder we observe the changes in its properties. We also study phase transitions in a

Floquet-MBL system in a periodically driven transverse field model. Here instead of studying

dynamics directly, we use properties of eigenstates as a proxy for observing.
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Chapter 2

Preliminaries

2.1 Time evolution

The time evolution of a wavefunction |ψ(t)〉 is defined by the Schrodinger’s equation

i~
d |ψ(t)〉

dt
= Hψ(t)

Thus the time evolution of a state ψ(t) can be determined by a unitary time evolution

operator U(t)

U(t) = T e−i(
∫ t
0 H(t′)dt′)

where T denotes time ordering. such that

|ψ(t)〉 = U(t) |ψ(0)〉
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2.2 Quantum Thermalization

Earlier we defined thermalization as the ability of a system to act as a reservoir for one of

its subsystems. Here we present a formal definition of thermalization.

Consider a system A which can be divided into a subsystem S and a bath B, s.t. HA =

HS ⊗HB. For this subsystem, the reduced density is obtained by tracing the density matrix

over the bath, i.e. ρS = TrB(ρ). For thermal equilibrium at temperature T, the system is

described by

ρeq(T ) =
1

z(T )
e
− H
kBT

where z(T ) is the partition function. For such a system, we say subsystem S thermalizes

if

ρS = TrB(ρeq(T )).

For quantum systems at thermal equilibrium, it is sufficient to have one parameter each

per conserved quantity to uniquely identify that system. This introduces an apparent para-

dox, wherein unitary time evolution of a state to its thermal equilibrium results in the system

losing information about its initial state. However, the information about the initial state

is not actually lost. Upon time evolution the information spreads into the system, and af-

ter sufficiently long timescales becomes inaccessible to local measurements. To recover this

spread out information would require one to make global measurements.

2.3 Eigenstate Thermalization Hypothesis

The Eigenstate Thermalization Hypothesis assumes that for any given initial state, the

system eventually thermalizes. As a consequence, it implies that all many-body eigenstates

of the Hamiltonian are at thermalized too. Consider an eigenstate |n〉 of a local non-trivial

Hamiltonian H such that
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H |n〉 = En |n〉 (2.1)

with En corresponding to the temperature at thermal equilibrium. In the limit that

dim(ρS) → ∞, dim(ρB) → ∞ and dim(ρB)
dim(ρS)

→ 0, ETH claims that the ρS approaches Gibbs

ensemble with constant energy constraints [11] [12]. That is to say,

ρeqS (T ) =
1

z(T )
e−βH

where β is determined by the energy density of sub-system at equilibrium.

For periodically driven ETH systems, since the drive is constantly pumping energy into

the system, it keeps absorbing and heating. For a system with a bounded Hilbert space,

it thermalizes to the infinite temperature state [13]. Such a system continues acting as a

reservoir for its subsystems, but not just for the exchange of energy, instead the system

provides more degrees of freedom to the subsystem. This results in greater entanglement

between the system and the subsystem, thereby diffusing the information about the initial

state at the global scale.

2.4 Single Particle Localization

ETH fails for localized systems, wherein a particle stays localized close its initial state. Here

we take a look at a tight binding hamiltonian that displays single particle localization.

H = J
∑
ij

(c†icj + c†jci) +
∑
i

Uic
†
ici

Anderson showed that the eigenstates for this system are localized in 1 and 2 dimensions,

and given strong enough disorder localization holds for higher dimensions too [?]. In such

cases the Hamiltonian has a localized spectrum, given by

ψi(~r) ∼ e−
~r− ~Ri
ε (2.2)

5



where ~Ri is the location of the particle and ε is the localization length, which depends

on factors like energy of the particle and the disorder strength of the system.

2.5 Many Body Localization

Many body Localization is essentially Anderson localization for multiple particles interacting

with each other, where different dynamics are observed because of the interaction between

particles. For a strong enough disorder ETH can be avoided even in interacting multi particle

systems. It has also been observed that MBL phase displayed by fermions and bosons are

largely the same[6], since MBL occurs at high energy. In this thesis we study how MBL

depends on various parameters, by analyzing the properties of eigenspectrum.
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Chapter 3

Disordered interacting tight binding

model

The model we use here is a fermion system with the tight binding Hamiltonian along with

interaction and disorder:

H = J
∑
i

(c†ici+1 + c†i+1ci) + Jz
∑
i

nini+1 +
∑
i

hini

where c†i is a creation operator, ci is an annihilation operator and ni is a number operator

all acting on the ith site. Here the disorder(hi) at each site is chosen randomly over a range

of values [−δ, δ] . We study this model for 14 sites and 7 particles.

Using a Jordan-Wigner transform this Hamiltonian can be mapped to a Hubbard Hamil-

tonian with an interaction. The transform is given by:

σ+
j = eiπ

∑
k<j nkc†j

σ−j = e−iπ
∑
k<j nkcj
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σzj = 2nj − 1

3.1 IPR and disorder

Inverse Participation Ratio for a state |ψ〉 =
∑

i ai |ψi〉 is defined as (
∑

i | a4i |)−1. For a

localized state, contribution from a single basis i would be ai 1 and all rest would be close

to 0. As a result, IPR for localized state is close to 1. For a completely delocalized state, all

ai ∼ 1√
D

where D is the dimension of the Hilbert space of the system.

Thus, IPR for a delocalized state scales with the dimension of its Hilbert space and is

larger than the IPR for localized state. Precisely, IPR for localized systems scales as D0

whereas IPR for delocalised systems scales as D1. Further, IPR for states that scale as

fractals scales as Dd where d is a fraction.

In Figure 3.1 we plot the IPR vs disorder for different interaction strengths. We do it

for system size 12 and 14. We observe that the N = 12 system is more localized that N=14.

Because of computational constraints, here instead of looking at scaling of IPR, we try to

get some insight by calculating IPR for 2 different system sizes.

3.2 Large disorder

Here we observe the behaviour of the system at a very large disorder. We plot the value of

IPR vs Interaction Strength (Jz) for disorder strength δ = 20 in Figure 3.2

In the presence of a large disorder at large interaction the system behaves like a mott

insulator [14]. This happens because at low energy, at half filling, the system has a charge

ordered state. This charge density wave results in a higher delocalization for lower interaction

strength, and this order disappears as we increase interaction strength. Thus, the system

becomes more localized as a result.

For a charge density wave, the nearest neighbour interaction doesn’t matter, thus it isn’t

affected by a change in interaction strength. However, introducing strong disorder changes
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(a) IPR v/s disorder for Jz = 0.1 (b) IPR v/s disorder for Jz = 1

(c) IPR v/s disorder for Jz = 2

Figure 3.1: IPR v/s disorder

that. Since the results obtained in the previous sections were for small range of disorder, we

note from Figure 3.2 that the charge density wave doesn’t melt in that range.
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Figure 3.2: IPR vs Interaction strength for large disorder

3.3 IPR for Ground state

The ground state for the Hubbard model for low interaction strength we have here behaves

like a charge density wave. To observe how the localization for the ground state change we

plot the the IPR for ground state for different values of interaction strength in Figure 3.3.

We observe that there is a decrease in the value of IPR as interaction strength increases.

We also observe that localization for the ground state is roughly the same for different

disorder strengths.
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(a) Ground state IPR v/s interaction for δ = 0.44 (b) Ground state IPR v/s interaction for δ = 0.88

(c) Ground state IPR v/s interaction for δ = 1.33 (d) Ground state IPR v/s interaction for δ = 1.77

Figure 3.3

3.4 Next nearest neighbour interaction

As we saw earlier, since in the low interaction limit at half filling, the charge density wave

is observed. As a result, due to the nearest neighbour interaction, this system behaves like

a non interacting system. To avoid that situation, we introduce next-nearest neighbour

interaction.

In this above, we change the interaction from nearest neighbour to next hearest neighbour.
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The Hamiltonian thus becomes

H = J
∑
i

(c†ici+1 + c†i+1ci) + Jz
∑
i

nini+1ni+2 +
∑
i

hini

Plotting IPR v against interaction strength for a large disorder (δ = 20) in Figure 3.4

and comparing it to the previous result, we observe that the localization has decreased by a

factor of 2 for next-nearest neighbour interaction. This is because a longer interaction range

makes a charge ordered density wave less favourable.

We notice here a

Figure 3.4: IPR vs Interaction strength for large disorder for next-nearest neighbour
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Chapter 4

Periodically driven transverse field

model

Floquet spin systems are periodically driven spin chains wherein the Hamiltonian varies

periodically with a fixed time period T, i.e. H(t) = H(t + T ). For such a system the time

evolution is defined by the unitary floquet operator.

Uf (t) = T e−i(
∫ t
0 H(t′)dt′) (4.1)

One might expect a driven many-body system to absorb energy indefinitely and approach

an infinite temperature. However, such a situation can avoided for floquet systems with the

presence of a disorder interaction in the system. As a result such systems give rise to

interesting dynamical behaviour and allow phases to be defined. One such phase is the π

Spin Glass, also referred to as a time crystal.

4.1 Transverse Field Model

The following model is characterised by the Hamiltonian

H(t) =
L−1∑
i=0

Jzσ
z
i σ

z
i+1 +

∑
n∈Z+

L∑
i=0

hσxi δ(t− nT ) (4.2)
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Here the first term is an interaction term between neighbouring spin and the second term

corresponds to a field along the x direction applied at integral intervals of a fixed time period

T. As a result H(t) = H(t+T ) and the hamiltonian describes a floquet system with a period

T. The unitary time evolution operator for this system is

Uf (T ) = e−i
∑L−1
i=0 Jzσzi σ

z
i+1T e−i

∑L
i=0 hσ

x
i (4.3)

4.1.1 Spontaneous symmetry braking

Time crystals display spontaneous Time Translation Symmetry Braking(TTSB). The defi-

nition for TTSB is that it occurs if the eigenstates of Floquet unitary operator are not short

range correlated [15]. To illustrate TTSB, consider the Floquet unitary operator

Uf = e−itHHBLeiπ/2
∑
i σ
x
i (4.4)

HMBL =
∑
i

(Jzσzi σ
z
i+1 + hzσzi + hxσxi (4.5)

The second term in the Floquet operator eiπ/2
∑
i σ
x
i =

∏
i iσ

x
i flips all the spins. For

hxi = 0 the eigenstates of HMBL are simply the eigenstates of σzi . For such eigenstates |{si}〉
we have si = ±1 and σzk |{si}〉 = sk |{si}〉.

Applying H to |{si}〉 we obtain HMBL |{si}〉 = (E+({si}) + E−({si})) |{si}〉, where

E+({si}) =
∑

i J
zσzi σ

z
i+1 and E−({si}) =

∑
i(h

zsi).

Thus the eigenstates for the Floquet operator are (eitE
−({si})/2) |{si}〉±e−itE

−({si})/2) |{−si}〉)/
√

2

with eigenvalues ±eitE+({si}).

Since the eigenstates of the Floquet unitary operator has long range correlations, TTSB

occurs for hxi = 0. Furthermore, it has been shown using perturbation theory that TTSB

holds upto weak perturbations of the Floquet operator. Therefore the eigenstates of the

perturbed Floquet operator with hxi 6= 0 will also satisfy TTSB.
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4.1.2 Error correction

In the previous hamiltonian, setting the value of the parameter h to π would correspond to

applying a pi pulse to the system at periodic intervals. As a result we expect the spins to

rotate by an angle π along the x-axis, and thus the spins flip along the z axis . However,

if we now introduce a small error in h, we observe that the neighbouring interaction term

between the spins acts as correction. This effect can be observed for small deviations from

π in the magnitude of h.

Figure 4.1: Magnetization plot for system for h = π − 0.1 and J = 1

From the numerical simulation we also observe that for the driving period of the system

T, the period of oscillation in the magnetization is 2T.
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4.1.3 Phase diagram

We noted earlier that the dynamics of the system are different for different magnitudes of

the term h. Thus the behaviour of the system is dependent of the strength of the different

interactions in the hamiltonian. We thus can characterize the different phases of matter by

observing the dynamics for different magnitudes of the various parameters.

We simulate the system for the values for Jz ∈ [0, 2π] , h ∈ [0, π] and T = 1. As a result

we would expect oscillations in magnetization to be of period 2T . We therefore characterise

the different phases by performing a fourier transform for frequency 1/2T , i.e. ω = 0.5. We

can thus obtain a phase diagram and observe the various phase transitions for the above

model.

(a) Phase diagram for L=10 Transverse field model

(b) 2d representation of the phase
diagram showing the different
phases

The π Spin Glass phase is be characterized by it’s correlations Cij = 〈σzi σzj 〉 6= 0 for all

eigenstates and the spectrum of its unitary operator contains pairs of cat states with splitting

exponentially close to π/T [17].

4.1.4 Stability

To check the robustness of the model, we perturb the system by adding a disorder term to

the hamiltonian of the form
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H(t) =
L−1∑
i=0

Jzσ
z
i σ

z
i+1 +

∑
n∈Z+

L∑
i=0

hσxi δ(t− nT ) + v
L∑
i=0

σzi (4.6)

(a) Phase diagram weak perturbation for v = 0.01 (b) Phase diagram weak perturbation for v = 1

We observe that the phase is stable for weak perturbation. As a result the phase diagram

is unchanged for small values of the parameter v. However, upon increasing the strength of

disorder the phase diagram changes and only the πSG is absolutely stable [16].

4.2 Analogous 2 spin system

Consider an operator O, with eigenstates {|i〉}, that commutes with the hamiltonian H. Since

[O,H] = 0, we must have 〈i|[O,H]|j|i|[O,H]|j〉 = 0.

=⇒ 〈i|(OH −HO)|j|i|(OH −HO)|j〉 = 0 =⇒ (Oi−Oj) 〈i|H|j|i|H|j〉 = 0 =⇒ Hij 6= 0 if Oi = Oj

Since Hij can be non zero only for states |i〉 , |j〉 corresponding to the same eigenvalues of

operator O, we claim that there exists a basis for which H is of block diagonal form; where

non-zero blocks of the Hamiltonian correspond to the same eigenvalue of O.

The operator L2 =
∑

i S
2
i commutes with the hamiltonian given in eq.(2.1), i.e. [L2, H] =

0. As a result we can transform to a basis where H is of block diagonal form. Since H is

17



of block diagonal form, so is the Floquet unitary operator e−iHt. Thus, starting with a

state |ψ〉 belonging to the hilbert subspace of H, the time evolution with Floquet unitary

operator maps it within the same subspace. This property of the system allows us focus on

the dynamics of subset of spins, while treating the rest of the spin system as a single entity.

With this motivation, we build a system analogous to our system of L=10 spin 1/2 chain

with the transverse field Hamiltonian. This system consists of a s=1/2 spin coupled to a

s=9 spin. The Hamiltonian describing the system is

H = JSzM z +
∑
n∈Z+

h(Sx +Mx)δ(t− nT ) (4.7)

(a) Time dependence of σµ for L = 10 spin
1/2 system

(b) Time dependence of σµ for spin 1/2
- spin 9 system

Here Sz, Sx are spin operators acting on s=1/2 spin and M z,Mx are spin operators acting

on s=9 spin.

From the numerical simulations we observe that the dynamics of this 2 spin system is

similar to that of L=10 spin 1/2 system.
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Chapter 5

Summary

5.1 Results and Discussion

We studied Many Body Localization in a fermionic system in the presence of interaction and

disorder for system size 14 with 7 particles in a half filling configuration.

For this system we observed the typical IPR values to be in the range of 10 - 100. This

means that the system is fairly localized, since for a delocalized system the value of IPR

scales with the dimension of its Hilbert space, which is much larger than the values we

obtained.

For this system we observed the increase in IPR with system size. However, the slight

increase in average IPR with interaction strength was unexpected. We do note however,

that since this since the system is half-filled, it is likely displaying a charge ordered state,

called a charge density wave, in which alternate sites are occupied by particles. In such

a scenario, nearest neighbour interaction doesn’t affect the system by a significant amount,

and the system esentially behaves like a non-intercating disordered system. This would likely

explain our results since increasing the interaction strength doesn’t have much effect on the

system then.

We also observe that in the presence of a large disorder, the system is slightly delocalized

for low interaction strength. On increasing the disorder strength we find that the system
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localizes. This indicates the competing effects at play in the system, where upon increasing

the interaction strength melts a disorder stabilised state.

We also study MBL in a periodically driven transverse field Ising model. We note an

interesting property of this system called Time Translation Symmetry Braking.

We also found that the system auto corrects small errors in the periodic drive. We

observed this by introducing a small error in the pi pulse driving the system. However,

because of the presence of interaction in the Hamiltonian, the system corrected the small

error in the drive and still maintained a regular behaviour. We also observed the various

phase transitions this system displays and their stability against weak perturbations.

5.2 Future work

In the context of disordered interacting tight binding model, we would like to study the

system for larger and more system sizes to observe how the the properties of eigenstates

scale with length.

We also obtained some results that were unexpected, such as the increase in IPR with

interaction strength and disorder. We believe that these results could be because of the

system displaying Mott insulator phase and charge density phase. Hence, this requires some

further analysis of the properties of system.

For the Floquet transverse field model, we would like to study the dynamics of the system

in the presence of an external bath.
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