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Abstract

Conformal �eld theory is a formalism encountered in many branches of
physics, such as String Theory and condensed matter physics. Given the
wide range of its applicability it has become a subject of extensive study
and research. In such �eld theoretic descriptions we are usually interested
in computing observables called correlators. Two dimensional CFTs are im-
portant not only because they are simpli�ed by the presence of an in�nite
dimensional symmetry algebra, thereby making it easier to compute correla-
tors, but also because they play a very important role in the Polyakov String
action.

Liouville theory emerges when one couples a conformally invariant �eld to a
two dimensional quantized gravitational background. The gravity sector of
Liouville theory matches that of non-critical string theory, hence assigning it
more importance.

In this project we �rst try to understand the conceptual and computational
aspects of two dimensional conformal �eld theories. Thereafter, the discus-
sion will move onto Liouville theory, which is an example of an irrational
conformal �eld theory. This will include the study of how Liouville theory
emerges from two-dimensional quantum gravity plus a conformal �eld the-
ory, and studying the DOZZ proposal: The conjectural formula for the three
point structure constant in Liouville theory.
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Chapter 1

Conformal invariance and

Correlation functions

Conformal invariance is a powerful tool that gives us a handle on seemingly
complicated formalisms. The quantities of interest in a conformal �eld theory
are the spectrum of the theory, the central charge and the structure constant
of the three-point function. Given these data, one has essentially solved the
theory and can determine any correlation function, which form the observ-
ables of the theory. This chapter will focus on detailing some of the most
important properties of a conformal �eld theory in general d dimensions.

1.1 Conformal invariance in d dimensions

A coordinate transformation in d dimensions x → x
′
is considered to be a

conformal transformation if it scales the metric by a scalar function [6]:

g
′

µν(x
′
) = Λ(x)gµν(x) (1.1)

The set of conformal transformations form a group structure which contains
the Poincare group as a subgroup. In a d dimensional spacetime, the con-
formal group is SO(d + 1, 1) if the spacetime is Euclidean and SO(d, 2) if
it is Minkowski. The conformal group has the following generators in a d
dimensional Euclidean spacetime :

Translation Pµ = −i∂µ
Dilation D = −ixµ∂µ

Roatation Lµν = i(xµ∂ν − xν∂µ)

Special Conformal Transformation Kµ = −i(2xµxν∂ν − x2∂µ)
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A theory is said to be conformally invariant if its action is invariant under
conformal transformations. A spinless, primary conformal �eld transforms
as :

φ
′
(x
′
) =

∣∣∣∣∂x′∂x

∣∣∣∣−
∆
d

φ(x) (1.2)

[Where ∆ is the eigenvalue of the Dilation operator]

In scale invariant descriptions such as a system undergoing a second-order
phase transition, we can check for conformal invariance by con�rming the
tracelessness of the energy-momentum tensor. For a conformal transforma-
tion xµ → xµ + εµ, the action transforms as :

δS =
1

d

∫
ddxT µµ ∂ρε

ρ (1.3)

This makes it apparent the tracelessness of Tµν implies conformal invariance,
however the vice-versa is not true because ∂ρε

ρ is not an arbitrary function.
The Energy momentum tensor can always be made symmetric by adding the
Belinfante term.

1.2 Correlation functions

Correlation functions are of utmost importance in �eld theory. An n-point
correlator is de�ned as :

〈φ1(x1)φ2(x2)...φn(xn)〉 =
1

Z

∫
[dφ]φ1(x1)φ2(x2)...φn(xn) exp{−S[φ]} (1.4)

where Z is the partition function given by : Z =
∫

[dφ] exp{−S[φ]}

Under a conformal transformation, primary �elds transform in a coordinate
dependant manner and this dependence can be extracted from the integral
because the measure [dφ] is coordinate invariant. This technique gives us
the general rule for how correlation functions transform under a conformal
transformation [Here we consider the two-point function of a spinless primary
�eld for simplicity] :

〈φ′1(x
′

1)φ
′

2(x
′

2)〉 =

∣∣∣∣∂x′∂x

∣∣∣∣−
∆1
d

x=x1

∣∣∣∣∂x′∂x

∣∣∣∣−
∆2
d

x=x2

〈φ1(x1)φ2(x2)〉 (1.5)
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Using the conformal covariance of the correlator, one can completely �x the
functional form of the two and three point correlation functions as follows:

〈φ1(x1)φ2(x2)〉 =
C12

|x1 − x2|2∆1

(
δ∆1,∆2

)
(1.6)

This signi�es that the two-point correlator is 0 if ∆1 6= ∆2

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

(1.7)

[
Where xij = |xi − xj|

]
The four and higher point functions cannot be completely �xed by conformal
invariance. However one can express the higher point functions in terms of
conformally invariant cross ratios. For eg: In the case of four point functions
the cross ratios are x12x34

x13x24
and x12x34

x23x14
. For a general N-point function there

are N(N−3)
2

independent cross-ratios.
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Chapter 2

CFT in 2 dimensions

2 dimensional conformal �eld theory has emerged as the most solvable de-
scription of a CFT after the publication of the seminal work done by BPZ [1].
In this chapter we will outline the properties which make 2-D CFTs so
favourably transparent.

2.1 Conformal transformation in 2 dimensions

In �at space, i.e. ds2 = dzdz̄, CFT in 2 dimensions is described by two in-
dependent coordiantes z (holomorphic) and z̄ (anti-holomorphic) where con-
formal transformations are of the form (z, z̄)→ (w(z), w̄(z̄)). This results in
an in�nite dimensional conformal group in the space of each coordinate (let's
call them Γ and Γ̄), and the overall conformal group is given by Γ⊗ Γ̄.

The generators of the group have commutation relations given by: [ln, lm] =
(n − m)ln+m, which de�nes the Witt algebra, where the l−1, l0 and l1 gen-
erators along with their anti-holomorphic counterparts generate the global
subgroup SL(2,C) of conformal transformations. The global transformations
are of the form:

z → w =
az + b

cz + d
given ad− bc = 1 (2.1)

The basic objects in conformal �eld theory are correlators, and as covered in
the last chapter, they are de�ned as the average expectation value of opera-
tors in a given theory. The Operator Algebra is a generalised version of the
operator product expansion in conformal �eld theory and is described by the
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equation :

φn(z, z̄)φm(0, 0) =
∑
p,k,k̄

Cp,k,k̄
nm

(
zhp−hn−hm+

∑
i ki
)(
z̄h̄p−h̄n−h̄m+

∑
i k̄i
)
φk,k̄p (0, 0)

(2.2)
We get this equation by requiring that both sides of it transform in the same
way under a transformation. The operator algebra is equivalent to the state-
ment that once we know the central charge of a theory along with the confor-
mal dimensions of the primaries involved, and all the three-point structure
constants, we have essentially solved the theory since all correlators and the
spectrum of the theory can be computed directly from the Operator Algebra.

Using the fact that the correlators have coordinate co-variance, one can write
down equations known as Ward identities :

〈δX〉 = 〈XδS〉 (2.3)

Writing the change in action in terms of the current generated by conformal
transformations, one can �nd the ward identity in terms of the current and
the generator of the transformation :

∂

∂xµ
〈jµ(x)φ(x1)φ(x2)...φ(xn)〉 = −i

n∑
i=1

δ(x− xi)〈φ(x1)...Gφ(xi)...φ(xn)〉

(2.4)

Here j is the current and G is the generator of the transformations. Integrat-
ing this equation in a thin pill-box results in a very fundamental equation in
all of quantum �eld theory :

[Q, φ] = −iGφ Q =

∫
dxj0(x) (2.5)

This is equivalent to the quantum version of Noether's theorem and it states
that the conserved charge of the current is the generator of transformations
in the operator formalism.

In a theory we will have a set of �elds called primary �elds. They have
the unique property of transforming as : δεφ = −ε∂φ−hφ∂ε under any local
conformal transformation (h is the conformal dimension of φ). In the Hilbert
space we can construct asymptotic states corresponding to these primaries
which are eigenfuctions of the Hamiltonian : Ĥ |φ〉 = (h+ h̄) |φ〉.
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But they are not the only eigenfunctions of the Hamiltonian in the theory,
we can construct a whole "tower" of states by acting operators L−ns and
L̄−ns, which are the modes of the EM Tensor, on the state to increase it's
eigenvalues in the left and right direction respectively:

Ĥ
(
L̄−k1 ...L̄−knL−k1 ...L−km |φ〉

)
=
[(
h̄+ k̄1 + ...+ k̄n

)
+
(
h+k1 + ...+km

)]
|φ〉

(2.6)
These states are known as descendants of the primary. Corresponding to
each eigenvalue h + N are independent states equal to the number p(N) of
partitions of the integer N.

2.2 The Energy Momentum tensor

Using the conformal ward identity :

δε〈X〉 = − 1

2πi

∫
dz ε(z) 〈T (z)X〉 (2.7)

one can show that the energy momentum tensor acts as a generator of con-
formal transformations for conformal �elds :

δεφ(w) = −[Qε, φ(w)] where Qε =
1

2πi

∫
dz ε(z)T (z) (2.8)

If we expand the Energy momentum tensor into its constituent modes :

T (z) =
∑
n∈Z

z−n−2Ln (2.9)

The operators Ln and L̄n are the generators of local conformal transforma-
tions on the Hilbert space. The Hamiltonian of the system is given by L0+L̄0.
These operators form the the Virasoro algebra which is the central extension
of the Witt Algebra :

[Ln, Lm] = Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.10)

The conformal ward identity yet again proves to be useful when showing that
the components of the energy momentum tensor don't transform as a true
tensor because it is a quasi-primary �eld (i.e. it behaves as a primary only
under global conformal transformations):

T (z) =

(
dz

dw

)−2[
T (w)− c

12
(z;w)

]
(2.11)
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(z;w) is known as the Schwarzian derivative] and is de�ned by

(z;w) =
d3z/dw3

dz/dw
− 3

2

(
d2z/dw2

dz/dw

)2

(2.12)

Using the ward identity, one can show that the OPE of the Energy Mo-
mentum Tensor with a primary �eld takes the form :

T (z)φ(w, w̄) ∼ h

(z − w)2
φ(w, w̄) +

1

(z − w)
∂wφ(w, w̄) (2.13)

And using the way tensors transform under a local transformation, it can be
shown that the OPE of T with itself is given by the general structure :

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(2.14)

Where c is the central charge of the theory

2.3 Correlation functions

Using the covariance of correlation functions, it can be shown that the general
two and three point correlators in 2 dimensional CFTs take the form :

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =
C12

(z1 − z2)2h(z̄1 − z̄2)2h̄

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉 =
C123

(zh1+h2−h3
12 zh3+h2−h1

23 zh1+h3−h2
13 )(z̄h̄1+h̄2−h̄3

12 z̄h̄3+h̄2−h̄1
23 z̄h̄1+h̄3−h̄1

13 )

Here also, the two-point function is zero if the �elds do not have equal confor-
mal dimensions. An easy way to compute correlation functions is to use the
equations of motion of correlators, which is derived by taking the variation
of Ward identities with respect to a conformal �eld :〈

δX

δφ(y)

〉
=

〈
X

δS

δφ(y)

〉
(2.15)
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For example, in case of the Free Boson action :

S =
1

8π

∫
d2x ∂µφ∂µφ (2.16)

Putting X = φ(x) in the equation of motion of correlation functions, we get
the result :

〈φ(x)φ(y)〉 = −ln(x− y)2 (2.17)

2.4 Vertex Operators

Putting the free boson on the cylinder with coordinates x, t and the property
φ(x, t) = φ(x+ L, t), allows us to fourier expand φ as follows :

φ(x, t) =
∑
n

e2πinx/L φn(t) (2.18)

The Hamiltonian in this picture is given by :

H =
2π

L

∑
n

{πnπ−n + (2πn)2φnφ−n} (2.19)

Where πns are the conjugate momenta to the φns. The mode expansion of
the �eld φ(x) at t=0 is :

φ(x) = φ0 + i
∑
n6=0

1

n
(an − ā−n)e2πinx/L (2.20)

φ0 is the zero mode of the �eld. Using the Hamiltonian, we can get the time
evolution of the operator in the Heisenberg picture. We can then move to
the coordinates z = e2π(τ−ix)/L and z̄ = e2π(τ+ix)/L (where τ = it), to get the
general dependence of the operator in terms of the modes :

φ(z, z̄) = φ0 − iπ0ln(zz̄) + i
∑
n6=0

1

n
(anz

−n + ānz̄
−n) (2.21)

The fact that we can extract the z and z̄ dependence of φ separately is due
to its periodic nature.
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Vertex Operators are de�ned by Vα(z, z̄) =: eiαφ(z,z̄) :. The normal order-
ing here means that :

Vα(z, z̄) = exp

{
iαφ0 + α

∑
n>0

1

n
(a−nz

n + ā−nz̄
n)

}
exp

{
απ0 − α

∑
n>0

1

n
(anz

−n + ānz̄
−n)

}
(2.22)

Given this expression, one can �nd the OPE of T (z) with Vα(z, z̄) to get :

T (z)Vα(w, w̄) ∼ α2

2

Vα(w, w̄)

(z − w)2
+
∂wVα(w, w̄)

z − w
(2.23)

Thus we know that hα = α2

2
. The OPE of operators Vα1(z1, z̄1)...Vαi(zi, z̄i)...Vαn(zn, z̄n)

vanishes unless
∑

i αi = 0. This is known as the Neutrality Condition and
can be obtained by imposing translation invariance on the correlator.
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Chapter 3

Rational Conformal Field Theory

RCFTs contain a �nite number of primary �elds. Although the techniques
detailed in this chapter are for rational conformal �elds, in a few cases they
can be applied to even irrational conformal �eld theories. An example of this
is Liouville theory which we will be detailing in chapter 5.

3.1 Minimal Models

In certain theories, the representation of the Virasoro Algebra (The Verma
module) is not irreducible as they contain Null Vectors with the following
properties: Ln |χ〉 = 0 for n > 0 and L0 |χ〉 = (h + K) |χ〉. As one can
immediately notice, these are properties of the primary state, however, the
Null vector is a secondary of another primary in the theory.

One can check that since a null vector is a secondary corresponding to an-
other primary, the 〈χ| will be acted on by n > 0 modes of the operators Ln
and if we take the inner product with some state |φ〉 on the right that is
annihilated by positive modes (Like Primaries and Null Vectors), the inner
product will vanish. But if 〈ψ|χ〉 = 0 and 〈χ|χ〉 = 0, one can self-consistently
set the null �eld to zero. In such a case the conformal family contains "less"
�elds than usual and it is known as a degenerate conformal family and we call
the �eld ψ a degenerate primary �eld. The appearance of such null vectors
happens at special values of h and all such values have been listed by Kac [1]
through the formula:

h(n,m) = h0+

(
α+n+ α−m

2

)2

: where h0 =
1

24

(
c−1

)
and α± =

√
1− c±

√
25− c√

24
(3.1)

12



If h = h(n,m), the corresponding null vector has the dimension h(n,m) + nm.
The di�erential equations satis�ed by these degenerate �elds impose hard
constraints on the operator algebra and give rise to the Fusion Rules:

χ(n,m)φα =
1+m∑
l=1−m

1+n∑
k=1−n

[
φ(α+lα−+kα+ )

]
where

(
α = α+n

′
+ α−m

′)
(3.2)

These di�erential equations are generated by expressing correlators involv-
ing secondary �elds in terms of correlators involving their corresponding pri-
maries. Since null vectors are secondary with respect to some primary �eld,
we can obtain a di�erential equation for the primary �eld. As an example,
we will look at the ψ1,2 �eld of the BPZ paper which has the null vector :

|χ〉 =

[
L−2 +

3

2(2∆ + 1)
L2
−1

]
|∆〉 (3.3)

The formula to compute correlators of secondaries is given by :

〈φ(−k1...−km)
n (z)φ1(z1)...φN(zN)〉 = L̂−km(z, zi)...L̂−k1(z, zi)〈φn(z)φ1(z1)...φN(zN)〉

(3.4)

where

L̂−k(z, zi) =
N∑
i=1

[
(1− k)∆i

(z − zk)k
− 1

(z − zi)k−1

∂

∂zi

]
(3.5)

Using this equation, we can �nd the correlator for the state |χ〉 but since
|χ〉 = 0, this correlator is zero too which gives us the di�erential equation :{

3

2(2∆ + 1)

∂2

∂z2
−

N∑
i=1

∆i

(z − zi)2
−

N∑
i=1

1

z − zi
∂

∂zi

}
〈ψ1,2(z)φ1(z1)...φn(zn)〉 = 0

(3.6)

Let the OPE of φ∆ with ψ1,2 be :

ψ1,2(z)φ∆(z1) = (z − z1)κ[φ∆′ (z1) + ...] where κ = ∆
′ −∆− δ (3.7)

δ is the dimension of the �eld ψ1,2. Substituting this equation into the dif-
ferential equation for the correlator of ψ1,2 and comparing the most singular
terms in (z − z1) gives us the allowed values of ∆

′
:

3κ(κ− 1)

2(2δ + 1)
−∆ + κ = 0 (3.8)
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Once we know about degenerate conformal families, it is natural to ask the
question: How many such null vectors are present in a given conformal fam-
ily? Let's examine the case where 0 < c ≤ 1 because it is forbidden for a
quantum �eld theory to have degenerate �elds beyond these values of the
central charge. It can be seen from the Kac formula that if α+p + α−q = 0,
where p and q are integers, then there will be in�nitely many null vectors
in the conformal family. For eg: if h = h(n,m) then h = h(n+p,m+q) but
the null vectors corresponding to both lie at di�erent levels. Therefore, the
correlation functions in minimal theories satisfy in�nitely many di�erential
equations and as a result the operator algebra is truncated from both above
and below. This means that the operator algebra is closed for the conformal
families

[
ψ(n,m)

]
with 0 < n < p and 0 < m < q.

To each Verma module V (c, h) associated with a highest-weight state |h〉,
we associate a generating function χ(c,h)(τ) de�ned by:

χ(c,h)(τ) =
∞∑
n=0

dim(h+ n)qn+h− c
24

(
where q = e2πiτ

)
(3.9)

Since the Verma module associated with minimally degenerate highest weight
vectors is in�nitely reducible, the formula has to account for all the null states
that will be removed from the module. For any theory described by integers

(p, p
′
) where c = 1 − 6 (p−p′ )2

pp′
, the degenerate primary will have conformal

dimension hr,s = (pr−p′s)2−(p−p′ )2

4pp′
[This is done to take care of unitarity]. The

irreducible character will be equal to :

χ(r,s)(q) = K(p,p
′
)

r,s (q) − K
(p,p
′
)

r,−s (q)

(
where K(p,p

′
)

r,s (q) =
q
−1
24

φ(q)

∑
n∈Z

q
(2pp
′
n+pr−p

′
s)2

4pp
′

)
(3.10)

Below is a table that lists characters upto order q6 for certain well-known
minimal theories:
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Characters of speci�c minimal models

(p, p
′
) hr,s q−hr,s+c/24χr,s(q)

(5,2) h1,1 = 0 1 + q2 + q3 + q4 + q5 + 2q6....
Yang-
Lee

h1,2 = −2/5 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6....

(4,3) h1,1 = 0 1 + q2 + q3 + 2q4 + 2q5 + 3q6...
Ising h2,1 = 1/16 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6...

h1,2 = 1/2 1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6...
(5,4) h1,1 = 0 1 + q2 + q3 + 2q4 + 2q5 + 4q6...
Tri-crit. h2,1 = 7/16 1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6...
Ising h1,2 = 1/10 1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6...

h1,3 = 3/5 1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 7q6...
h2,2 = 3/80 1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 8q6...
h3,1 = 3/2 1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6...

(6,5) h1,1 = 0 1 + q2 + q3 + 2q4 + 2q5 + 4q6...
3-state h2,1 = 2/5 1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6...
Potts h3,1 = 7/5 1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6...

h1,3 = 2/3 1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6...
h4,1 = 3 1 + q + 2q2 + 3q3 + 4q4 + 5q5 + 8q6...
h2,3 = 1/15 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6...

3.2 Conformal Bootstrap

The conformal bootstrap is an associativity based consistency check for cor-
relators in Conformal Field Theory. Let's consider the four point function
〈φk(x1)φl(x2)φm(x3)φn(x4)〉. Due to conformal invariance we can make the
correlator depend on conformal cross-ratios x = z12z34

z13z24
and x̄ = z̄12z̄34

z̄13z̄24
. Send-

ing z1 = z̄1 = ∞; z2 = z̄2 = 1; z3 = x; z̄3 = x̄; z4 = z̄4 = 0, we can de�ne the
functions :

Glk
nm(x, x̄) = 〈k|φl(1, 1)φn(x, x̄) |m〉 (3.11)

The crossing symmetry condition then reads :

Glk
nm(x, x̄) = Gmk

nl (1− x, 1− x̄) = x−2∆nx̄−2∆̄nGlm
nk(1/x, 1/x̄) (3.12)

These functions can be written in terms of conformal blocks :

Glk
nm(x, x̄) =

∑
p

Cp
nmCklpF lknm(p|x)F̄ lknm(p|x̄) (3.13)
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Where each conformal block can be expressed as a power series expansion :

F lknm(p|x) = x∆p−∆n−∆m
∑
{k}

β{k}nmx
∑
ki
〈k|φl(1, 1)L−k1 ...L−kN |p〉

〈k|φl(1, 1) |p〉
(3.14)

Analytically, the crossing symmetry relation is expressed as :∑
p

Cp
nmCklpF lknm(p|x)F̄ lknm(p|x̄) =

∑
q

Cq
nlCmkqF

mk
nl (q|1− x)F̄mknl (q|1− x̄)

(3.15)

Diagrammatically, this relation can be expressed as :

Figure 3.1: Conformal Bootstrap
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Chapter 4

2-D Quantum Gravity and CFT

in curved spacetime

Conformal �eld theory in a curved spacetime coupled to quantum gravity in
the conformal gauge gives birth to the Liouville �eld theory, whose classical
equation of motion is the generalization of the Liouville di�erential equation.
In this chapter we will study in great detail, how ghost �elds arise from quan-
tum gravity in two dimensions and how they generate the critical dimension
in Bosonic String Theory.

4.1 CFT in Curved Spacetime

A �eld theory in curved spacetime is considered conformally invariant if its
EM Tensor obeys the conformal anomaly equation T µµ = − c

12
R, where c is the

central charge of the theory and R is the scalar curvature of the metric [14].
A general subtlety here is that usually the conformal anomaly equation is
written as

〈
T µµ
〉

= − c
12
R but here we will assume that we have 'absorbed'

the curvature dependence of the measure [dφ] into the �eld T µµ . A general
reparametrisation of the co-ordinates xµ → xµ + εµ induces the variation of
the metric according to : δgµν = 2∇(µεν). This, combined with the de�nition
of the Energy Momentum tensor :

δS = − 1

4π

∫
√
g Tµν δg

µν d2x (4.1)

directly implies that the continuity equation in curved spacetime takes the
form ∇µT

µν = 0.

It is wise to extract the traceless part of the EM Tensor by writing it as
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Tµν = T 0
µν − c

24
tµν , where t

µ
µ = 2R and therefore T 0 is traceless. Using the

continuity equation once can then verify that ∂z̄T
0
zz = 0, and the same goes

for its anti-holomorphic counterpart. The tensor T 0 acts as the generator
for conformal transformations in curved spacetime and its modes follow the
Virasoro commutation relations.

4.2 Weyl Response of the Partition function

and the Liouville action

This section will deal with the mathematics of the emergence of the Liouville
action. The partition function of a conformal �eld in a �xed background
metric is given by :

Z[g] =

∫
e−S[g,φ][Dφ] (4.2)

Since φ is a conformal �eld, its EM tensor will follow T µµ = − c
12
R. If we

make an in�nitesimal Weyl transformation to the metric, i.e. g(x) → (1 +
δσ(x))g(x), the action changes by :

δS =
1

4π

∫
√
g δσ T µµ d

2x (4.3)

This variation can be plugged into the partition function to obtain the dif-
ferential equation governing the Weyl response :

δ logZ[eσg] =
c

48π

∫
√
g R(x) δσ(x) d2x (4.4)

Integrating with respect to σ, we obtain the famous Liouville action :

Z[eσg]

Z[g]
= exp

{
c

48π

∫
√
g
[
R(x)σ(x) +

1

2
gµν∂µσ∂νσ

]
d2x

}
(4.5)

This equation shows us how the physics of a conformal �eld theory changes
at di�erent length scales.

4.3 Quantum gravity in the conformal gauge

In 2-D quantum gravity, the Einstein-Hilbert action does not generate any
dynamics because it is proportional to the Euler-Characteristic of the space
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due to the Gauss-Bonnet theorem. Hence all dynamics is generated strictly
by the underlying topology, given that there is no cosmological term. The
partition function in quantum gravity is given by :

Z[g] =

∫
e−S[g,φ][Dgµν ][Dφ] (4.6)

This involves integrating over all possible con�gurations of the metric (Here
φ is any scalar �eld). The measure [Dgµν ] poses a problem, however, because
metrics related by a coordinate reparametrization represent the same geom-
etry. This can be interpreted as redundancies in the description of gravity
and therefore the transformations xµ → xµ + εµ are to be regarded as gauge
transformations. In the conformal gauge, we can always choose a geometry to
be conformally �at within a given open set, and this description is uniquely
labelled by the conformal factor eσ. Therefore, a good gauge slice consists
of the conformal class [δµν ] of metrics, all conformal to the Euclidean metric
[Friedan reference].

This problem of unnecessary in�nities arising in the partition function, due
to overcounting of descriptions related by gauge transformations, is over-
come by introducing the Faddeev-Popov determinant in the following pro-
cedural manner: A metric in 2 dimensions has three degrees of freedom
and therefore we can split the measure [Dgµν ] in terms of three indepen-
dent components [Dgµν ] = [Dgzz][Dgz̄z][Dgz̄z̄] [7]. Looking at reparametriza-
tion as a vector �eld (εz, εz̄), one can then make the change of variables :
(gzz, gz̄z, gz̄z̄)→ (εz, εz̄, σ) which are related in the following way :

δgzz̄ = ∇zεz̄ +∇z̄εz

δgzz = 2∇zεz

δgzz̄ = eσgzz̄

Since we are making a change of variables, this has to be accompanied by
the corresponding Jacobian :

[Dgµν ] = [Dεz][Dεz̄][Dσ]
∂(gzz, gz̄z, gz̄z̄)

∂(εz, εz̄, σ)
(4.7)

The Jacobian ∂(gzz ,gz̄z ,gz̄z̄)
∂(εz ,εz̄ ,σ)

is computed to be equal to det(∇z)det(∇z̄). Usu-
ally, we would throw out the measures corresponding to reparametrizations
because they would be perpendicular to the gauge slice. However, here they
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are not strictly perpendicular as their projection along the gauge slice gives
us conformal transformations. We will assume that these dependencies will
be absorbed into the remaining path integral implicitly [Friedan reference].
It is a standard mathematical trick to rewrite determinants of di�erential
operators in terms of a path integral over fermionic [anti-commuting] �elds.
Here we will employ the same method and write :

det(∇z)det(∇z̄) =

∫
[Dc][Db] exp

{
−
∫
d2x

2π

√
g (bzz∇zcz + bz̄z̄∇z̄cz̄)

}
(4.8)

4.4 Ghost �elds in quantum gravity

The ghost action, as encountered in the the previous section, can be written
as :

Sgh =

∫
d2x

2π

√
g (bµν∇µcν) [Where b is a symmetric, traceless tensor]

(4.9)

Computing the Energy momentum tensor of this theory, we �nd:

Tµν =
2π
√
g

δSgh
δgµν

=
1

2
∇ρ(bµνc

ρ) + bρ(µ(∇ν)c
ρ)− 1

2
gµνbρσ(∇σcρ) (4.10)

Immediately, one can check that gµνTµν = 0 which implies that the ghost
�eld theory is conformally invariant! Hence we can use techniques similar to
section 4.2 to extract the Weyl dependence of the theory, if we can compute
the central charge of the theory. The standard technique to do this is of
course to compute the TzzTzz OPE. To do this, we will put the theory on
a �at background and �nd its equations of motion. The action on a �at
background is given by :

Sgh =

∫
d2x

2π
(b∂c+ b̄∂̄c̄) (4.11)
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The equations of motion are given by :

∂̄c = 0 ∂̄b = 0

∂c̄ = 0 ∂b̄ = 0

∂c+∂̄c̄ = 0

The OPE of the b and c �elds is special in the sense that it is o�-diagonal
even though they are primary �elds :

b(z)c(w) ∼ 1

z − w
b(z)b(w) ∼ 0 c(z)c(z) ∼ 0 (4.12)

Incorporating the classical equations of motion, the energy momentum tensor
becomes :

T (z) = : (2(∂c)b+ c(∂b)) : (4.13)

Here the order of the operators matters because they are fermionic. The
OPE of T with the primary �elds and itself is given as follows :

T (z)c(w) ∼ − c(w)

(z − w)2
+
∂wc(w)

z − w

T (z)b(w) ∼ 2
b(w)

(z − w)2
+
∂wb(w)

z − w

T (z)T (w) ∼ −13

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

This result makes it evident that the central charge of ghost �elds is c=-26

4.5 Bosonic String Theory

In Polyakov's description of String Theory [9], two-dimensional Strings trace
out world-sheets that are embedded in the spacetime. This is similar to how
a particle traces out its world-line. Polyakov wanted to place surfaces with
equal 'areas' on equal footing in terms of the probability with which they
occur. The way to do this was to de�ne the Polyakov action :

SP =
1

2

∫
d2x

2π

√
ggab∂aX

µ∂bXµ (4.14)
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Here Xµ(x) are the coordinates on the world sheet and the free �eld term
measures the area of the world sheet. The full partition function also includes
summing over di�erent metrics with the weight of the cosmological constant
µ0 :

Z =

∫
metrics

[Dg]e−µ0

∫
d2x
√
g

∫
surfaces

[DX]e−SP (4.15)

The free �eld term forms a conformal �eld theory with central charge equal
to d (dimension of the spacetime) and the sum over metrics is done exactly
as in section 4.3, thereby giving the central charge −26. This generates a
Weyl dependence proportional to d− 26 and hence d = 26 is the dimension
at which the scale dependence of the partition function disappears. This is
the critical dimension in Bosonic String Theory, which is required to build a
consistent String Theory.
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Chapter 5

Liouville Theory

As we have studied in the previous chapter, the critical dimension in Bosonic
String theory is d = 26. Therefore, an important area to explore is what
happens when d 6= 26. In Liouville Theory, as we will see, we can describe
and study the theory for d < 1 [Here d will lose its interpretation as the
dimension of spacetime in a String Theory and instead it will be the central
charge of some underlying conformal matter �eld]. In a particular limit of
the correlator, Liouville theory becomes easier to solve, and we have a strong
contender for the 3-point structure constant conjectured by DOZZ [3,13]. In
this chapter we will study the properties of classical and quantum Liouville
theory, including the DOZZ proposal.

5.1 Classical Liouville theory

In previous chapter we have shown how to extract the Weyl dependence
of the gravity sector and external conformal �eld. The resulting partition
function is :

Z =

∫
moduli

dµ(ĝ)Zmatter(ĝ)Zghost(ĝ)

∫
e−SL[σ,ĝ][Dσ] (5.1)

Here ĝ is a �xed background metric and we have extracted the explicit metric
dependence in terms of the Liouville action :

SL[σ, ĝ] =
26− c
48π

∫ √
ĝ

[
R̂σ +

1

2
∂µσ∂µσ + Λeσ

]
d2x (5.2)

Here c is the central charge of the underlying conformal �eld and the Liou-
ville term Λeσ has been added by hand as a cosmological term. The prefactor
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proportional to (26− c) acts like a 1
~ term and therefore ~→ 0 corresponds

to c → −∞. In this limit, classical con�gurations of the �eld dominate :
σ(x)→ σcl(x).

The Euler Lagrange equation for the �eld σ is :

R̂(x) + Λeσ −∆ĝσ(x) = 0 (5.3)

Using the equation
√
ĝ
(
R̂ −∆ĝσ

)
=
√
gR, given g = eσĝ, we can write the

above equation as :
R(x) + Λ = 0 (5.4)

Hence classical con�gurations of the �eld describe geometries where the scalar
curvature is negative of the cosmological constant. Since we are free to
choose any background metric ĝ we like, it is wise to put the theory on a �at
background and look at its equation of motion. Using R = −4e−σ∂z∂z̄σ, we
get :

− 4∂z∂z̄σ + Λeσ = 0 (5.5)

This is the famous Liouville equation. The next task will be to compute the
Energy momentum tensor of the theory. Using the de�nition :

δS = − 1

4π

∫ √
ĝ δĝµν tµν d

2x (5.6)

we obtain the tensor tµν as :

tµν = −∂µσ∂νσ + ĝµν

(
1

2
(∂σ)2 + Λeσ

)
+ 2
(
∂µ∂νσ − ĝµν∂2σ

)
(5.7)

This tensor has the trace tµµ = 2(Λeσ − ∂2σ), which vanishes because of
the classical equations of motion. Moreover, one can check that ∂ztz̄z̄ = 0
and ∂z̄tzz = 0, therefore they can be written as t(z̄) and t(z) respectively.
Because of the tracelessness of the EM tensor, one can check that the classical
equations of motion are invariant under conformal transformations provided
one transforms the �eld σ in the following way :

σ(w, w̄) = σ(z, z̄)− log

(
dw

dz

dw̄

dz̄

)
(5.8)
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Having checked certain nice properties of the classical Liouville equation,
let's concern ourselves with �nding the solution to the Liouville equation.
We will construct the solution to the classical equation using solutions to a
set of di�erent di�erential equations [14] :

−4∂2
zψ(z) = t(z)ψ(z)

−4∂2
z̄ ψ̄(z̄) = t(z̄)ψ(z̄)

One known solution to these equations is ψ = e−
σ
2 . Since these are both

second order di�erential equations, each will have two independent solutions.
Let

ψ̄(z̄) = [ψ̄1(z̄), ψ̄2(z̄)] and ψ(z) =

[
ψ1(z)
ψ2(z)

]
Where ψ1(z) and ψ2(z) are the two independent solutions to the holomorphic
di�erential equation and ψ̄1(z̄) and ψ̄2(z̄) are solutions to its anti-holomorphic
counterpart. Since the equations lack a �rst order derivative term, they
have a constant Wronskian and we can choose the basis of solutions to have
Wronskian equal to one :

W (z) = ψ1(z)∂zψ2(z)− ψ2(z)∂zψ1(z) = 1 (5.9)

Similarly one can choose the anti-holomorphic Wronskian to be equal to one
: W̄ (z̄) = 1. De�ning a new matrix Λ̃, it is straightforward to verify that the
�eld :

σ(z, z̄) = −2 log
(
ψ̄(z̄)Λ̃ψ(z)

)
+ log 8 (5.10)

solves the Liouville equation upto Monodromy and sign issues, if we set
det(Λ̃) = Λ. Now we will move on to the quantum regime in Liouville the-
ory.

5.2 Quantum Liouville theory

We will start with the Liouville action :

SL[σ, ĝ] =
26− cM

48π

∫ √
ĝ

[
R̂σ +

1

2
∂µσ∂µσ + Λeσ

]
d2x (5.11)
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cM is the central charge of the matter �eld. The measure associated with the
Liouville action [Dσ] poses a subtle problem as it is not linear. This can be
seen from how the inner product is de�ned on the space of σ �elds :

||δσ||2 =

∫ √
ĝ eσ(δσ)2 d2x (5.12)

Here the exponential term makes the measure non-linear. Following the
approach of Distler and Kawai [2], we will make an intelligent guess based on
general coordinate invariance and write a renormalised action in which the
non-linearity of the measure is absorbed into the action :

S
(r)
L =

1

8πb2

∫ √
ĝ

[
1

2
(∂σ)2 + qR̂σ + Λ̃eσ

]
d2x (5.13)

The parameters b and q have to be �xed and Λ̃ is a free parameter. Since
classical saddle points are not a�ected by the measure, we should expect the
same classical limits to hold in the renomarlised action :

1

b2
→ −cM

6
and q → 1 as c→ −∞ (5.14)

In standard literature, the convention is to use the �eld σ = 2bφ, in terms of
which the action becomes :

S
(r)
L =

1

4π

∫ √
ĝ

[
(∂φ)2 +QR̂φ+ 4πµe2bφ

]
d2x (5.15)

After absorbing the non-linearity in the action, the measure [Dφ] now follows
: D[φ(x) + C(x)] = D[φ(x)]. Using the linearity of the measure we will now
aim to establish background independence which a key feature in quantum
gravity. Substituting ĝµν = eσ̃gµν , one should expect the σ̃ dependence to
drop out of the total partition function. We will �rst address the problem
in the absence of the cosmological term, i.e. µ = 0. Given that

√
ĝR̂ =√

g(R−∆σ̃), after integrating by parts we can write :

S
(r)
L =

1

4π

∫
√
g

[
(∂φ)2 +QRφ+Q∂µσ̃∂µφ

]
d2x (5.16)

After making a shift of the �eld φ = φ̃− Q
2
σ̃, the expression can be rewritten

as :

S
(r)
L =

1

4π

∫
√
g

[
(∂φ̃)2 +QRφ̃− Q2

2

(
Rσ̃ +

1

2
(∂σ̃)2

)]
d2x (5.17)
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Here we must keep in mind that the partition function of the theory is given
by :

Z =

∫
moduli

dµ(ĝ)Zmatter(ĝ)Zghost(ĝ)

∫
e−S

(r)
L [φ̃,ĝ][Dφ̃] (5.18)

Since the measure is linear, [Dφ] = [Dφ̃]. Also as we can see, the �rst
half of the action above is exactly the term we want to keep after we have
factored out the Weyl dependence. Since we are dealing with the full partition
function, we have to deal with the Weyl dependence of the Ghost and matter
�elds partition functions :

Zmatter[ĝ]Zghosts[ĝ] = exp

{
cM − 26

48π

∫
√
g

[
Rσ̃ +

1

2
(∂σ̃)2

]
d2x

}
Zmatter[g]Zghosts[g]

(5.19)

From the calculation of the Weyl anomaly, it can be checked that the cur-
vature term does not a�ect the anomaly. Therefore, the measure [Dφ̃] con-
tributes a free scalar �eld term of 1

48π
. Collecting all the prefactors, we will

have a term like :

25− cM − 6Q2

48π

∫
√
g

[
Rσ̃ +

1

2
(∂σ̃)2

]
d2x (5.20)

But we want background independence, hence this term has to vanish. This
implies that :

Q2 =
25− cM

6
(5.21)

Now we will turn our attention to the exponential term : µ
∫ √

ĝ e2bφ d2x.
This term has 3 contributions coming from the Weyl factor. One is obviously
the
√
ĝ term, the second is due to the shifted Liouville �eld φ̃ and the third

is quantum corrections to the exponential vertex operator, resulting in it
transforming like :

[
e2aφ

]
eσg

= ea
2σ
[
e2aφ

]
g
. Collecting all these factors, we

get the result :

e(σ̃+b2σ̃−bQσ̃) µ

∫
√
g e2bφ̃ d2x (5.22)

Using this, we can express Q in terms of b

Q = b+
1

b
(5.23)

Here we can �nd two solutions for b, but we choose the one that results in the
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correct classical limit. In this form, it is obvious that Q ≥ 2 and in order to
have real and positive b, cM < 1. b is chosen to be real and positive since we
want a Weyl factor interpretation for e2bφ and we want large φ to correspond
to a large rescaling of the metric. Since cM is not an integer we have also
lost the spacetime interpretation of the theory. The EM tensor of the theory
without the cosmological term is given by :

T = −(∂zφ)2 +Q∂2
zφ

T̄ = −(∂z̄φ)2 +Q∂2
z̄φ

The term proportional to Q is known as the improvement term. Finding
the OPE of the TT operator gives us the central charge of the theory which
comes out to be equal to 1 + 6Q2. The total central charge of the theory,
i.e. cM + cghosts + cL is equal to 0 [One should note that this is essentially
the same equation which gives us Q2 is terms of cM ], which tells us we have
successfully built a quantum theory of gravity. Since the Weyl response of
any partition function is proportional to the central charge, the partition
function in quantum gravity has no Weyl response. And this is quite a
sane expectation, because integrating over metrics should eliminate all metric
dependence.

5.3 Physical operators

The Liouville �eld φ transforms as :

φ(w, w̄) = φ(z, z̄)− Q

2
log

∣∣∣∣dwdz
∣∣∣∣2 (5.24)

This suggests that the Liouville �eld e2αQ has holomorphic conformal dimen-
sion αQ. However, we know from the theory of vertex operators that normal
ordering will introduce a −α2 term to each conformal dimension. Therefore
the total left conformal dimension of the �eld e2αQ is : ∆α = α(Q− α)

While computing correlators, one can interpret the QRφ term in the Liouville
action as the curvature singularities in the topology of the sphere. This is
done by putting a �at metric on the sphere except at two points,the North
and South pole :

√
ĝR̂ = 4πδ(x− xs) + 4πδ(x− xn). Therefore it is easy to

check that :
1

4π

∫
√
g Q R̂ φ d2x = Qφ(xs) +Qφ(xn) (5.25)
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Figure 5.1: The topology on the sphere

While computing correlators, we can insert the operators eQφ(xs)eQφ(xn) into
the correlator instead of writing the curvature term of the Liouville action.

With this knowledge, let us put the theory on the cylinder via the trans-
formation law z = eiu and z̄ = e−iū, where u = σ + iτ [Here σ is just the
spatial coordinate on the cylinder is not to be confused with the Weyl scaling
factor used above in the text]. This means that the coordinate σ is identi�ed
with itself after a 2π translation. The modes of the EM Tensor on the sphere
:

T (z) =
+∞∑
−∞

Ln
zn+2

T̄ (z̄) =
+∞∑
−∞

L̄n
z̄n+2

(5.26)

Are represented in the following way when put on the cylinder :

T (u) =
cL
24
−

+∞∑
−∞

e−inuLn T̄ (ū) =
cL
24
−

+∞∑
−∞

einūL̄n (5.27)

The Hamiltonian, by de�nition, is given by :

H =
1

2π

∫
Tττdσ = − 1

2π

∫
(T + T̄ ) dσ (5.28)

This becomes H = − cL
12

+L0 + L̄0. To get a better idea of the space of states
in the theory, we will move onto the approximation where the zero mode of
the �eld φ, i.e. φ0 is taken to −∞. In this limit, the theory reduces to a free
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�eld and therefore φ admits the following mode expansion :

φ(σ, τ) = φ0 + 2P̂ τ +
∑
n 6=0

(ian
n
e−inu +

iān
n
einū
)

(5.29)

Where P̂ = − i
2

∂
∂φ0

and the modes of the �eld follow the commutation rela-

tions : [an, am] = m
2
δn+m,0 and [ān, ām] = m

2
δn+m,0. The energy momentum

tensor on the cylinder is : T (u) = −(∂uφ)2 +Q∂2
uφ+ Q2

4
. Using this expres-

sion, one can express the modes of the EM tensor in terms of the modes of
the �eld φ :

Ln =
∑
k 6=0,n

akan−k +
(
2P̂ + inQ

)
an

L0 =
Q2

4
+ P̂ 2 + 2

∑
k>0

a−kak

and the same expression for the barred modes. The oscillator Fock Vacuum is
de�ned by ak |vac〉 = 0 for k>0. The oscillator Fock space is obtained by ap-
plying negative modes to the vacuum like : Fosc = Span{a−k1 ...a−kn ā−k̄1

...ā−k̄m |vac〉}.
The full Hilbert space will be the product of the oscillator space of states with
the space of states of the zero mode.

As we can check, the eigenstates and eigenvalues of the theory are of the
form :

ψ(P,ki,k̄j) = e±2iPφ0a−k1 ...a−kn ā−k̄1
...ā−k̄m |vac〉

h =
Q2

4
+ P̂ 2 +

∑
i

ki

h̄ =
Q2

4
+ P̂ 2 +

∑
i

k̄i

These are the eigenstates in the region where the zero mode of the �eld is
extremely small. These modes are modi�ed on their journey to the interac-
tion barrier and then re�ected back to the free �eld region. The full state in
the very small φ region is then :

|ΨP 〉 =

(
e2iPφ0 + Ŝ(P )e−2iPφ0

)
|s〉

where |s〉 = a−k1 ...a−kn ā−k̄1
...ā−k̄m |vac〉
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Figure 5.2: Re�ection of the Liouville �eld

Here Ŝ(P ) is the Liouville re�ection operator. This re�ection amplitude can
be physically interpreted if we imagine the universe to start with a metric
e2bφ along with a few bosonic excitations and then imagine that the universe
grows in size, only to be re�ected back to its small size after a period of time.
The operator Ŝ(P ) is easy to compute for small excitations :

Ŝ(P )a−1 |vac〉 =
Q− 2iP

Q+ 2iP
S(P )a−1 |vac〉 (5.30)

Here S(P) is a phase factor known as the Liouville re�ection amplitude. The
above calculation is performed by expressing the mode L−1 in terms of the
modes ak, acting it on the state |ΨP 〉 and then comparing the result with
S(P )a−1 |vac〉.

5.4 Two and Three point correlation functions

The two-point correlator of two physical states is normalised in the following
way :

〈VQ/2+iP (0)VQ/2−iP ′ (∞)〉 = πδ(P − P ′) (5.31)

Here Va(x) = e2aφ(x) and P, P
′
> 0. States with real P always have ∆ ≥ Q2

4
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as shown in the previous section. However, states for which ∆ ≤ Q2

4
have

imaginary values of P or a ∈ [0, Q
2

], and were shown to be non-normalisable
by Seiberg [That is, they do not correspond to delta function integrable func-
tions] [5, 10]. This is known as the Seiberg bound.

As one can compute, the states Va(x) and VQ−a(x) have the same confor-
mal dimension. In the modern interpretation these states are the same upto
a factor in the quantum regime [8] :

Va = R(a)VQ−a (5.32)

This will be justi�ed using the DOZZ proposal and we will later compute
the value of R(a) but for now we will turn our attention to three point-
functions. Following the approach of BPZ [1], we can �nd the null vectors at
level 2 in Liouville theory. The conformal dimension of the degenerate �elds
ψ1,2 and ψ2,1 in Liouville theory can be obtained from the formula :

∆ =
1

16
[5− c±

√
(c− 1)(c− 25)] (5.33)

Plugging cL = 1 + 6Q2 in the above expression gives us the following two
�elds whose conformal dimensions satisfy the equation :

V−b/2 : ∆ = −1

2
− 3b2

4

V−1/2b : ∆ = −1

2
− 3

4b2

As BPZ have shown, degenerate �elds satisfy di�erential equations that limit
the number of �elds that can appear in the Fusion Rules. For eg : The OPE
of the degenerate �eld V−b/2 with another �eld Va can only result in two �elds
:

V−b/2Va = (C−)Va−b/2 + (C+)Va+b/2 (5.34)

Where C− and C+ are three point structure constants. Any �eld which is
not present in the Fusion Rules will have a 0 correlation with the two other
�elds.
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5.5 Conformal Bootstrap and the DOZZ pro-

posal

Let's consider the four-point function G(x1, x2, x3, x4) de�ned by :

G(x1, x2, x3, x4) = 〈0|Vα4(z4, z̄4)Vα3(z3, z̄3)Vα2(z2, z̄2)Vα1(z1, z̄1) |0〉 (5.35)

where α2 = −b/2. We know that due to conformal invariance, we can reduce
this expression to a function of cross ratios in the following way :

G(x1, x2, x3, x4) = |z42|−4∆2|z41|2(∆3+∆2−∆4−∆1|z43|2(∆1+∆2−∆4−∆3|z31|2(∆4−∆2−∆1−∆3G(z, z̄)
(5.36)

Where z = z21z43

z31z42
. Since Vα2 is a degenerate �eld, the correlator will follow

the null-vector di�erential equation (Conformal invariance has been used to
convert the partial di�erential equation to an ordinary di�erential equation)
:(
− 1

b2

d2

dz2
+

(
1

z − 1
+

1

z

)
d

dz
− ∆3

(z − 1)2
−∆1

z2
+

∆3 + ∆2 −∆4 + ∆1

z(z − 1)

)
G(z, z̄) = 0

(5.37)

The equation given above corresponds to the S-channel. We will choose to
combine �elds 1 and 2 to split the four point correlator into two conformal
blocks :

G(z, z̄) =
∑
s=+,−

C(α4, α3, α1 + sb/2)C(s)|Fs(z)|2 (5.38)

In this form, the solution to the di�erential equation is given in terms of

Hypergeometric functions : Fs(z) = zas(1− z)b
′
F (As, Bs, Cs; z) where

as = ∆α1+sb/2 −∆2 −∆1

b
′
= ∆α3−b/2 −∆3 −∆2

As = −sb(α1 −Q/2) + b(α3 + α4 − b)− 1/2

Bs = −sb(α1 −Q/2) + b(α3 − α4) + 1/2

Cs = 1− sb(2α1 −Q)

The Gamma function identity :

F (A,B,C; z) =
Γ(C)Γ(B − A)

Γ(B)Γ(C − A)
(−z)AF (A, 1− C + A, 1−B + A, 1/z) +

Γ(C)Γ(A−B)

Γ(A)Γ(C −B)
(−z)BF (B, 1− C +B, 1− A+B, 1/z)
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can be used to yield a relation of the form [11]:

Fs(z) = z−2∆2

∑
t=+,−

BstFt
(

1

z

)
(5.39)

Given the crossing relations G(z, z̄) = |z|−4∆2G(1/z, 1/z̄), one can then de-
termine the ratio of the three point functions :

C(α3, α2, α1 + b)

C(α3, α2, α1)
= −γ(−b2)

πµ

γ(b(2α1 + b))γ(2bα1)γ(b(α2 + α3 − α1 − b))
γ(b(α2 + α3 + α1 −Q))γ(b(α2 + α1 − α3))γ(b(α1 + α3 − α2))

(5.40)

where γ(x) = Γ(x)
Γ(1−x)

and we have used the integral representation of C(−)
C(+)

given in Dotsenko and Fateev [4]:

C(−)

C(+)
=
γ(−b2)

πµ
γ(2bα1)γ(2− b(2α1 − b)) (5.41)

This ratio of the three-point functions di�ering by b is exactly what one gets
from the DOZZ proposal [13] :

C(α1, α2, α3) =

[
πµγ(b2)b2−2b2

](Q−
∑
αi)/b

Υ
′
(0)Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 −Q)Υ(α1 + α2 − α3)Υ(α3 + α2 − α1)Υ(α1 + α3 − α2)
(5.42)

Here

Υ(x|b, 1/b) = Υb(x) =
Γ2

2(Q/2|b, 1/b)
Γ2(x|b, 1/b)Γ2(Q− x|b, 1/b)

(5.43)

And Γ2(x) is the Barnes double Gamma function de�ned by :

log Γ2(x|b, 1/b) =
d

dz

∞∑
m,n=0

(x+mb+ n/b)−z|z=0 (5.44)

The DOZZ proposal can be used to calculate the value of the re�ection
amplitude R(a) :

R(a) =
πµγ(b2))(Q−2a)/b

b2

γ(2ab− b2)

γ(2− 2ab−1 + b−2)
(5.45)
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Because of the DOZZ proposal, Liouville theory is self-dual, i.e. it in in-
variant under b → 1/b and µ → µ̃ where πµ̃γ(1/b2) = (πµγ(b2))1/b2 . Apart
from giving the correct ratio of three-point functions, the DOZZ proposal
has passed tests such as produce the correct thermodynamic Bethe ansatz
for the Sinh-Gordon model which is related to Liouville theory in the ultra-
violet limit and generate the right quantum version of Liouville equation of
motion [12].
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Summary

In this project, we �rst studied conformal transformations in general d-
dimensions and then specialized to two dimensions. This allowed us to delve
into a special class of conformal �eld theories known as minimal models. Af-
ter that, we discussed quantum gravity in two dimensions and derived the
Liouville action as the Weyl response of the partition function of a conformal
�eld theory. Coupling conformal matter to quantum gravity in the conformal
gauge in two dimensions allows us to explore the full system in terms of the
Weyl mode of the gravity sector. We studied the properties of the action gov-
erning this Weyl sector, both classical and quantum, and ran a consistency
check for the DOZZ proposal using the conformal bootstrap. This approach
was valid only if the central charge of the external conformal matter �eld was
less than one and it will be interesting to see what happens when c > 1 since
in this limit, the uniqueness of Teschner's single-valued recursion relation for
the three point function breaks down. In this context, the c = 1 barrier is
an interesting limit to explore.
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Appendix A

Mathematical identities

A.1 Properties of the Gamma function

The Gamma function, for α > 0 is given by :

Γ(α) =

∫ ∞
0

xα−1 e−x dx

It follows certain properties which make computation easier in the context
of Liouville theory :

Γ(α) = (α− 1)Γ(α− 1)

Given that γ(x) = Γ(x)/Γ(1− x), we have the following property :

Γ2(2− z)

Γ2(z)
= −γ(2− z)

γ(z)

A.2 Properties of the Upsilon function

The Upsilon function, as de�ned in the text, has the following identities :

Υ(x) = Υ(Q− x)

It follows the shift-recursion relations :

Υ(x+ b) = γ(bx)b1−2bxΥ(x)
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Υ(x+ 1/b) = γ(x/b)b2x/b−1Υ(x)

Combining these, we obtain :

Υ(x+Q) = b−2+2x( 1
b
−b)γ(bx+ 1)γ(x/b)Υ(x)
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