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Abstract

In this work we explore the thermalization of two point functions of free scalars
in d + 1 dimensions after a quantum quench. The mass is time dependent and is
taken to zero. A detailed analysis of this problem has been done in 1+1 dimensions,
in [1]. My goal here is to extend this understanding to higher dimensions. In
previous works, [2] [1], we have seen that the post quench system equilibriates to a
generalised Gibb’s Ensemble. The post-quench observables retain a memory of the
quench by having signatures set by the scale of the pre-quench state. We restrict our
calculations to two kinds of pre-quench states: the ground state of the pre-quench
Hamiltonian, and specific excited states called the squeezed states (CC and GCC).

All observables seem to reach an equilibrium. The correlation functions in the
CC approach a thermal ensemble and those in the GCC approach a GGE, at late
times, and are related by, β = 4κ2 and µ = 4κ4. We observe a distinction between
odd and even dimensions. The approach to equilibrium is exponentially decaying
in time for odd d and fall off as a power law for even d. We also calculate the
time dependent thermal correlator and observe a similar difference in odd and even
dimensions.

In the second last section, we discuss the possibility of UV-IR mixing in the GCC
and GGE. The post-quench state is characterized by infinite number of conserved
charges which may correspond to irrelevant operators in the theory. Observables
seem to be affected by all such operators even at low energies, which is interesting
given our intuitions set by Wilsonian renormalization.

Finally, we wish to understand the implications of this result in the context of
holography, with the knowledge that thermalization in the gauge theory corresponds
to a quasi-normal decay to a black-hole. A quench itself can correspond to an
excitation in the bulk.
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Chapter 1

Introduction

This is where the preliminaries of the project is introduced.

1.1 Ergodicity and Subsystem Thermalization
Thermalization is the process of attaining thermal equilibrium. We are interested in
knowing what class of operators thermalize. The quantum ergodic theorem seems
to answer our question. Ergodic systems, classically, are those systems which are
uniformly distributed in the entire phase space. When we describe something as
being ergodic, its time average is same as its average over phase space. Quantum
mechanically, the latter is equivalent to taking an ensemble average.

• What are the conditions that need to be satisfied for us to say that a class of
observables (say {Â}) have reached thermal equilibrium? We should find that
when we allow the states to evolve unitarily, for most times in the long run,
|〈Â(t)〉 − Amc|< ε, where Amc is given by the value of the observable in the
microcanonical ensemble and ε is set by the experimental tolerance [3].

• Classically, if a system starts from a phase point Xo and has constant energy
Eo, ergodicity demands that

lim
T→∞

1

T

∫ T

0

dtδ(X −X(t)) = ρmc(E) (1.1)

i.e., X(t) should cover the entire phase space for every initial condition Xo.
In quantum mechanics, given a Hamiltonian of eigenstates |Ψα(t)〉 of energy
Eα, a microcanonical ensemble can be defined by taking an energy shell of
energy width δE. We define ρmc(E) =

∑
E<Eα<E+δE

1
Ω
|Ψα〉〈Ψα| where Ω is

the number of states in the microcanonical shell. Say we start with an initial
state,|Ψo〉 =

∑
E<Eα<E+δE cα|Ψα〉. |Ψ(t)〉 =

∑
α cαe

−iEαt|Ψα〉

∴ |Ψ(t)〉〈Ψ(t)|=
∑
α

|cα|2|Ψα〉〈Ψα|+
∑
α

∑
β

cαc
∗
βe
−i(Eα−Eβ)t|Ψα〉〈Ψβ| (1.2)
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Now when we take |Ψ(t)〉〈Ψ(t)|, the second term gives zero since it is fluctu-
ating. At this stage it is important, that the system is non-degenerate such
that, Em 6= En for n 6= m. Thus,

|Ψ(t)〉〈Ψ(t)| =
∑
α

|cα|2|Ψα〉〈Ψα|= ρ̂diag (1.3)

ρ̂diag = ρ̂mc when |cα|2= 1
Ω
, which is true only for a very special class of states.

A better way to look at ergodicity is in terms of operators rather than states.
A sensible expectation in a quantum ergodic system is to expect, that given a
set of macroscopic observables {Â},

〈Ψ(t)|Â(t)|Ψ〉 →t→+∞ Tr[Âρmc] ≡ 〈Â〉mc (1.4)

irrespective of the initial state |Ψo〉. This should hold for most times at long
times. This means that the mean square difference between LHS and RHS
in Eq. (2) is vanishingly small when averaged over long times. Parallely,
ergodicity can be defined as,

〈Ψ(t)|Â(t)|Ψ〉 = Tr[Âρmc] ≡ 〈Â〉mc (1.5)

If the expectation value relaxes to a well defined state , then the two definitions
(Eq.2 and Eq.3) coincide.This loosely means that Âρmc can be considered
equivalent to Âρdiag

• Thermalization in the present case means asymptotic approach to an equilib-
rium ensemble which is called the Generalized Gibbs Ensemble (GGE) because
it is characterized by chemical potentials µ’s completely with possibly an infi-
nite number of conserved charges W ’s.

ρGGE =
1

Z
e−

∑
α µαWα (1.6)

• If we look at a closed quantum system as a whole in a pure state, then its
density matrix as the system evolves remains pure. It does not seem possible
for the whole system to thermalize. But there is a sense in which part of the
system can still thermalize. This is known as Subsystem Thermalization.
Even though the full quantum state is pure, local observables within a sub-
system can be a mixed state and therefore expected to show thermalization.
More quantitatively this means that

〈O1O2 · · ·〉 = 〈ψ(t)|O1O2 · · · |ψ(t)〉 → Trace (ρsubO1O2 · · ·) (1.7)

where ρsub is the reduced density matrix for the subsystem of interest attained
by tracing over the remaining part. This is not so hard to expect. A a simple
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example consider two qubits (spins) in a Bell pair |bp〉 = 1√
2

(|01〉+ |10〉) with

the density matrix

ρbp =


0 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 0

 (1.8)

Evidently ρ2
bp = ρbp. Tracing over the 2nd qubit we get

ρ1 =

[
1/2 0
0 1/2

]
(1.9)

But this represents a mixed state. This also shows that there is a relationship
between thermalization and entanglement between subsystems.

Thermalisation demands that any system, irrespective of the initial conditions reaches
a specific state asymptotically. In case of integrable systems, the trajectories in phase
space are confined by constraint equations to region of the phase space. For unitary
theories, the integrable systems will return to their initial state in finite time due to
the periodic nature of their orbits. Consider an integrable system, with initial con-
ditions such that it excites only one normal mode of the system. The system forever
stays in that state, since there is not exchange of energy between the orthogonal
normal modes, thus it never reaches the thermal state asymptotically. However, if
degrees of freedom are more than the number of constraints, the system might still
be free to span a sub manifold of the phase space. Thus, integrable systems can also
experience subsystem thermalization. For a review on thermalization in quantum
systems, see references [4] [5].
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Chapter 2

Quantum Quench

2.1 The Lagrangian

Our choice of the physical system here is a scalar field with no interactions. This is
simple and convenient for our purpose. Quenching in general is a material science
term which means rapid cooling of a metal piece to obtain desired properties. In
our context it means varying one or more couplings and parameters in our theory
by making them explicit functions of time. This may seem too ambitious at first
but there are physically realizable systems where we can achieve this. For example
in ultra-cold gases, a sharp change in the background magnetic field is a perfect
example of a quantum quench. Since we are dealing with a free theory, the only
parameter at our disposal is the mass of the scalar. So we consider the following
theory in general d dimensions

S = −1

2

∫
ddx

(
∂µφ∂

µφ+m2(t)φ2
)

(2.1)

with the equation of motion (EOM) being (∂2 + m2(t))φ = 0. Here we study this
theory for a specific mass function m(t) which starts with some finite mass m0 and
drops to m = 0 later (see fig.2.1). [6] But even before going into that, by a very
simple mapping to a quantum mechanical scattering problem in 1-D, we can solve
for φ(t).

2.2 Scattering in Quantum Mechanics

We can perform a partial Fourier Transform (because of translational symmetry in
spatial dimensions)

φ(~x, t) =

∫ +∞

−∞

dd−1k

(2π)d−1
φ(~k, t)ei

~k·~x (2.2)
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Figure 2.1: Mass quench from m0 to 0(taken from [1])

QM QFT
x t

E ~k2

V (x) −m2(t)

ψ(E, x) φ(~k, t)

Table 2.1: Analogy between quench and scattering problem.

with φ∗(~k, t) = φ(−~k, t). Now the action becomes 1

S =
1

2

∫
dd−1k dt

(
|φ(~k, t)|2−(k2 +m2(t))|φ(~k, t)|2

)
(2.3)

the EOM decouples for different Fourier modes

− d2

dt2
φ(~k, t) = (k2 +m2(t))φ(~k, t) (2.4)

This looks like a Schroedinger-type equation in one spatial dimension, if we identify
these things (see table 2.1). Then following Landau [6], we can solve this exactly
for a certain types of mass functions. Here we give a brief summary of how to go
about it for a specific mass function of the type in the figure above.

2.3 A Specific Quench protocol
We work with the mass function

m2(t) = m2
0(1− tanh(ρt))/2 (2.5)

In the far past and the far future since the mass function/potential approaches a
constant value, φ(~k, t) must look like plane wave. If we call uin(~k, t) the solution

1Here metric signature is taken to be (-+++)
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which approaches positive frequency in the far past and similarly uout(~k, t) in the
far future, i.e.

uin(~k, t)
t→−∞−−−−→ e−iωint√

2ωin
, uout(~k, t)

t→∞−−−→ e−iωoutt√
2ωout

(2.6)

where ωin =

√
~k2 +m2

o and ωout = |~k|. Since this a second order linear ordinary
differential equation, we must have 2 independent solutions which are uin(~k, t) and
u∗in(~k, t) or uout(~k, t) and u∗out(~k, t), which is just a different basis. The two therefore
must be linearly related through a Bogoliubov transformation

uin(~k) = α(~k)uout(~k) + β(~k)u∗out(−~k) (2.7)

uout(~k) = α∗(~k)uin(~k)− β(~k)u∗in(−~k) (2.8)

As this was already done in [1] and also done in Birrell and Davies, we merely state
the following solutions for uin and uout

uin =
e−iωint√

2ωin
2F1

(
iω−
ρ
,−iω+

ρ
; 1− iωin

ρ
; e−2ρt

)
uout =

e−iωoutt√
2ωout

2F1

(
iω−
ρ
,
iω+

ρ
;
iωout
ρ

+ 1;−e−2ρt

) (2.9)

and the Bogoliubov coefficients

α(~k) =

√
ωout
ωin

Γ(− iωout
ρ )Γ(1− iωin

ρ )

Γ(− iω+

2ρ )Γ(1− iω+

2ρ )

β(~k) =

√
ωout
ωin

Γ( iωoutρ )Γ(1− iωin
ρ )

Γ( iω−2ρ )Γ(1− iω−
2ρ )

(2.10)

And so

φ(~k, t) = ain(~k)uin(~k, t) + a∗in(−~k)u∗in(−~k, t) = aout(~k)uout(~k, t) + a∗out(−~k)u∗out(−~k, t)
(2.11)

Moreover the in and out vacua are also related by a Bogoliubov transform [1]

|0in〉 = exp

[
1

2

∑
k

γ(~k)a†~ka
†
−~k

]
|0out〉 (2.12)

Sudden limit

If the quench is done suddenly, i.e.

ρ→∞ (2.13)
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which gives a step function drop

m2(t) = m2
0Θ(−t) (2.14)

Now the Bogoliubov coefficients become

α(~k) =
1

2

|~k|+ωin√
|~k|ωin

, β(~k) =
1

2

|~k|−ωin√
|~k|ωin

(2.15)

and the in and out waves

uin =
e−iωint√

2ωin
, uout =

e−iωoutt√
2ωout

(2.16)

With everything defined above, we can write our field φ as

φ(~x, t) =

∫ +∞

−∞

dd−1k

(2π)d−1

(
ain(~k)uin(~k, t) + a∗in(−~k)u∗in(−~k, t)

)
ei
~k·~x

=

∫ +∞

−∞

dd−1k

(2π)d−1

(
aout(~k)uout(~k, t) + a∗out(−~k)u∗out(−~k, t)

)
ei
~k·~x

(2.17)

We will do most of our calculations in this limit.

2.3.1 The Propagator
|0, in〉 being the ground state of the initial Hamiltonian, the propagator in |0, in〉 is
just the quantity

〈0in|φ( ~x1, t1)φ( ~x2, t2)|0in〉

=〈0in|
∫ +∞

−∞

dd−1k

(2π)d−1

(
ain(~k)uin(~k, t1) + a†in(−~k)u∗in(−~k, t1)

)
ei
~k· ~x1∫ +∞

−∞

dd−1q

(2π)d−1

(
ain(~q)uin(~k, t2) + a†in(−~q)u∗in(−~q, t2)

)
ei~q· ~x2 |0in〉

=

∫
dd−1k

(2π)d−1
uin(~k, t1)u∗in(~k, t2)ei

~k·( ~x1− ~x2)

(2.18)

Out of the 4 terms only aa† survives and we use the commutation relation [a(~k), a†(~q)] =

(2π)d−1δd−1(~k − ~q) and then integrate over the delta function to get the last line.
We can also write this in terms of the ‘out’ variables∫

dd−1k

(2π)d−1
uin(~k, t1)u∗in(~k, t2)ei

~k·( ~x1− ~x2)

=

∫
dd−1k

(2π)d−1

[
|α(~k)|2uout(~k, t1)u∗out(

~k, t2) + α(~k)β∗(~k)uout(~k, t1)uout(−~k, t2)

+ α∗(~k)β(~k)u∗out(−~k, t1)u∗out(
~k, t2) + |β(~k)|2u∗out(−~k, t1)uout(−~k, t2)

]
ei
~k·( ~x1− ~x2)

(2.19)
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We can also express the Bogoliubov coefficients as

|α(~k)|2=
1

1− |γ(~k)|2
, |β(~k)|2=

|γ(~k)|2

1− |γ(~k)|2

α(~k)β∗(~k) =
γ(~k)

1− |γ(~k)|2
, α∗(~k)β(~k) =

γ∗(~k)

1− |γ(~k)|2

(2.20)

where

γ(~k) =
β∗(~k)

α∗(~k)
(2.21)

2.3.2 The Cardy-Calabrese(CC) Ansatz and the CC state

The Cardy-Calabrese ansatz states that the post-quench state immediately after the
the sudden quench is given by the CC state

|CC〉 = e−κ2H |Bd〉 (2.22)

that is a Euclidean time evolution acting on the Drichlet boundary state |Bd〉. But
as MPS argued, this state is not correct at least in 2-D. The correct post-quench
state is given by a generalized Cardy-Calabrese state (gCC)

|gCC〉 = exp

[
−κ2H −

∑
n>2

κnWn

]
|Bd〉 (2.23)

where Wn are additional conserved charges other than the Hamiltonian.

2.3.3 Preparing gCC states (by quenching squeezed states)

The gCC states can be obtained from excited states of the initial Hamiltonian.
Instead of the initial state being the ground state of the pre-quench Hamiltonian,
we can choose it be any arbitrary squeezed state.

|ψin〉 = |f〉 = exp

[
1

2

∑
k

f(~k)a†in(~k)a†in(−~k)

]
|0in〉 (2.24)

This is just the Bogoliubov transformation of |0in〉. As the |0in〉 state can itself be
written as a Bogoliubov transform of |0out〉, the post quench state mathematically
looks like the |0in〉 state with γ′s replaced by ‘effective’ γ′s

|f〉 = exp

1

2

∑
~k

γeff (~k)a†out(
~k)a†out(−~k)

 |0out〉, γeff =
β∗(~k) + f(~k)α(~k)

α∗(~k) + f(~k)β(~k)
(2.25)
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By tailoring the choice of the squeezing function f(k) (or equivalently γeff (k)) can
lead to a particular gCC state. For example choosing

f(k) = 1− 2|~k|√
~k2 +m2 tanh

(
κ2|~k|+κ4|~k|3

)
+ |~k|

(2.26)

leads to a gCC state with κn = 0 for n > 4

|ψin〉 = |f4〉 = exp[−κ2H − κ4W4]|D〉 (2.27)

In particular if κ4 = 0, then we end up with the CC state |CC〉 = exp[−κ2H]|D〉,
which is the same state as in the Cardy-Calabrese ansatz.

κ2 and κ4 are tunable parameters independent of the mass (the scales in the pre
quench state). However, when the pre quench state is the ground state |0in〉, the
parameters are set by mass, which is the only scale in the theory. Then the post
quench state is given by gCC, where κ2 is of the order of 1/m and κ4 is of the order
1/m3, and so on.

The propagator in squeezed state

The propagator in the squeezed state is just given by replacing γ by γeff (op α and
β byαeff and βeff ) in the ground state propagator

〈f |φ( ~x1, t1)φ( ~x1, t1)|f〉

=

∫
dk

2π

[
|αeff (~k)|2uout(~k, t1)u∗out(

~k, t2) + αeff (~k)β∗eff (~k)uout(~k, t1)uout(−~k, t2)

+ α∗eff (~k)βeff (~k)u∗out(−~k, t1)u∗out(
~k, t2) + |βeff (~k)|2u∗out(−~k, t1)uout(−~k, t2)

]
ei
~k·( ~x1− ~x2)

(2.28)

Squeezed states are important because they are experimentally realizable.

2.4 Thermal and GGE
The GGE 2 point function is defined as

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

Z
Tr(e−βH−µW4φ( ~x1, t1, )φ( ~x2, t2)) (2.29)

Defining ~x = ~x1− ~x2, t = t1− t2 and G± = 1

|~k|(±e±(βk+µk3)∓1)
, the thermal correlator

becomes:

〈φ( ~x1, t1)φ( ~x2, t2)〉β,µ =
1

2

∫
ddk

(2π)d

[
G−e

ι~k·~xe−ι|
~k|t +G+e

−ι~k·~xeι|
~k|t
]

(2.30)

The detailed derivation is given in appendix A.
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2.5 Results for the Ground State Quench

From the above figure we see that the two point correlation function of φ in the
ground state of the pre-quench Hamiltonian 2.18 which looks like∫

ddk

(2π)d
ei
~k.~x2k2 −m2 cos(2kt) +m2

4k2
√
k2 +m2

(2.31)

does thermalize to some equilibrium valus at large times. The numerics are not very
steady and exhibit oscillations that decay with time, but do not go to zero. While
performing the numerical integral, I have always taken m greater than kmax. This
has to do with the subtleties in the sudden limit. In the quench profile 2.5, we took
ρ→ 0. However, in practice ρ ≈ 1

m
. Thus, m is the largest scale in the theory and

thus sets an upper limit on the momentum. This is discussed in detail in Appendix
E of [1].

13



Chapter 3

The Slab Propagator

The following calculation of propagators using the method of images has been in-
spired by the works of Sotiriadis and Cardy in [7].

3.1 The CC state (κ4 = 0)
The Calabrese Cardy state is given b:

|CC〉 = exp[−κH]|D〉 (3.1)

where |D〉 is a Dirichlet boundary state with the boundary condition that φ|D〉 = 0.
The 2-point correlator of φ in the CC state can be written as 〈D|e−κHφ(τ1)φ(τ2)e−κH |D〉,
here τ is Euclidean time. Now in the Heisenberg picture, the real time dependent op-
erator can be written in terms of the operator at time t = 0 as, φ(t) = eiHtφ(0)e−iHt,
where the -iHt term corresponds to positive evolution in time. Now in the Eu-
clidean picture, we take τ = it. Then we have the corresponding relation φ(τ) =
eHτφ(0)e−Hτ , where the e−Hτ corresponds to evolution in positive Euclidean time.
Our problem is a translationally invariant problem, so I have left the ~x dependence
implicit. Then the propagator can be mapped to a slab propagator problem as:

〈D|e−κHφ(τ1)φ(τ2)e−κH |D〉 = 〈D|e−κHeτ1Hφ(0)e−τ1Heτ2Hφ(0)e−τ2He−κH |D〉 (3.2)

This corresponds to the following picture:
Now the boundary condition implies that the Green’s function takes the value

zero, whenever any of the charges lies on a boundary. From electrodynamics we
know that this problem can be solved by the method of images where the boundaries
are replaced by an infinite number of positive and negative charges, such that the
Green’s function vanishes at the position of the boundaries. One of the operators
is treated as a probe, and infinite images of the other are taken (in this case, φ(τ1).
We are left to solve the Laplace’s equation: ∂2φ = ρ(x, τ), where ∂2 = ∂2

τ + ∂2
~x.

Note that the CC state corresponds to a post quench state which, according to the
quench problem described before follows the dispersion relation ω = |~k|, and has
zero mass. The Green’s function for a single point source satisfies,

(∂2
τ + ∂2

~x)G(~x− ~x′, τ) = δd(~x− ~x′)δ(τ) (3.3)
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τ = L
2

φ(τ2)

φ(τ1)

β
2

κ

τ = 0

τ = −L
2

L τ1

−

+

−

−
+

Figure 3.1: slab for CC state correlator

For a translationally invariant problem, upon taking the Fourier transform this
becomes (in Euclidean d+1 dimensions),∫

(∂2
τ + ∂2

~k
)G(~k, τ)ei

~k.~x d
d~k

2πd
=

∫
δ(τ)ei

~k.~x d
d~k

2πd
(3.4)

⇒ (∂2
τ + ∂2

~k
)G(~k, τ) = δ(τ) (3.5)

⇒
∫

(ω2 + ~k2)G(ω,~k)eiωτdω =

∫
eiωτdω (3.6)

⇒ G(ω,~k) =
1

ω2 + ~k2
(3.7)

Therefore,

∴ G(~k, τ) =

∫
−∞

∞dω

2π

eiωτ

ω2 + ~k2

=
1

2k
e−k|τ |

(3.8)

where, the last step is arrived at by doing a contour integral. In our case the
boundaries are replaced by an infinite number of positive and negative charges.
Thus the Laplace’s equation looks like:

(∂2τ + ∂2~x)G(~x− ~x′, τ1, τ2) =δd(~x− ~x′)
( ∞∑
n=0

δ(|τ1 − τ2|+2nL) +

∞∑
n=1

δ(−|τ1 − τ2|+2nL)

−
∞∑
n=0

δ(τ1 − τ2 + (2n+ 1)L)−
∞∑
n=1

δ(−τ1 − τ2 + (2n− 1)L)
)

(3.9)

Thus,

G(~k, τ) =
1

2|~k|

( ∞∑
n=0

e−|
~k|(|τ1−τ2|+2nL) +

∞∑
n=1

e−|
~k|(−|τ1−τ2|+2nL)

−
∞∑
n=0

e−|
~k|(τ1+τ2+(2n+1)L) −

∞∑
n=1

e−|
~k|(−τ1−τ2+(2n−1)L)

)
(3.10)
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Performing the k integral and analytically continuing τ to t we would get G(~x, t1, t2),
which we know, from Path integrals, corresponds to the two point correlation func-
tion of an operator at t1 with an operator at t2 and ~x is their spatial separation. One
can perform the n sum first and then do the k integral. This gives rise to the same
integral as obtained from calculating expectation value in the squeezed state with
κ2 6= 0 and κ4 = 0. We might also choose to perform the k-integral first and then
perform the n sum. It so appears. For even d, we do not have a very good analytical
handle over these problems. In these situations the second approach seems to give
us a better numerical control over our results.

〈φ( ~x1, t1)φ( ~x2, t2)〉slab =G(~x = ~x1 − ~x2, t1, t2) (3.11)

=

∫
ddk

(2π)d
ei
~k·~x

2|~k|

( ∞∑
n=0

e−|
~k|(|τ1−τ2|+2nL) +

∞∑
n=1

e−|
~k|(−|τ1−τ2|+2nL)

−
∞∑
n=0

e−|
~k|(τ1+τ2+(2n+1)L) −

∞∑
n=1

e−|
~k|(−τ1−τ2+(2n−1)L)

)
(3.12)
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d Autocorrelation function in CC state 〈φ(t1, 0)φ(t2, 0)〉CC

2

1
4πβ

(
H i(t1+t2)

β
+ 1

2

+H− i(t1+t2)
β

− 1
2

−H i(t2−t1)
β

−H− i(t2−t1)
β

)
− 2

4π(β+2i(t1+t2)) −
i

4π(t2−t1)

3

− 1
4β2

(
csch2

(
π(t2−t1)

β

)
+ sech2

(
π(t1+t2)

β

))

4

1
16π2

(−ψ(2)
(
i(t2−t1)

β
+1
)

+ψ(2)
(
i(t1+t2)

β
+ 3

2

)
−ψ(2)

(
1− i(t2−t1)

β

)
+ψ(2)

(
1
2
− i(t1+t2)

β

)
β3 − 16

(β+2i(t1+t2))3 + 2i
(t2−t1)3

)

5

π
12β4

(((
cosh

(
2π(t2−t1)

β

)
+ 2
)
csch4

(
π(t2−t1)

β

)
+
(

cosh
(

2π(t1+t2)
β

)
− 2
)
sech4

(
π(t1+t2)

β

)))

6

− 1
128π3

(ψ(4)
(
i(t2−t1)

β
+1
)
−ψ(4)

(
i(t1+t2)

β
+ 3

2

)
+ψ(4)

(
1− i(t2−t1)

β

)
−ψ(4)

(
1
2
− i(t1+t2)

β

)
β5 + 768

(β+2i(t1+t2))5 + 24i
(t2−t1)5

)

7

− π2

120β6

(
(26 cosh

(
2π(t1−t2)

β

)
+ cosh

(
4π(t1−t2)

β

)
+ 33)csch6(π(t1−t2)

β ) + (−26 cosh
(

2π(t1+t2)
β

)
+

cosh
(

4π(t1+t2)
β

)
+ 33)sech6(π(t1+t2)

β )
)

8

1
1536π4β7

(
−ψ(6)

(
i(t2−t1)

β + 1
)

+ψ(6)
(
i(t1+t2)

β + 3
2

)
−ψ(6)

(
1− i(t2−t1)

β

)
+ψ(6)

(
1
2 −

i(t1+t2)
β

))
−

60
π4(β+2i(t1+t2))7 + 15i

32π4(t2−t1)7

9

π3

1680β8

((
1191 cosh

(
2π(t1−t2)

β

)
+ 120 cosh

(
4π(t1−t2)

β

)
+ cosh

(
6π(t1−t2)

β

)
+ 1208

)
csch8

(
π(t1−t2)

β

)

+
(

1191 cosh
(

2π(t1+t2)
β

)
− 120 cosh

(
4π(t1+t2)

β

)
+ cosh

(
6π(t1+t2)

β

)
− 1208

)
sech8

(
π(t1+t2)

β

))

10

−
ψ(8)

(
i(t2−t1)

β
+1
)
−ψ(8)

(
i(t1+t2)

β
+ 3

2

)
+ψ(8)

(
1− i(t2−t1)

β

)
−ψ(8)

(
1
2
− i(t1+t2)

β

)
24576π5β9 + 8

π5(β+2i(t1+t2))9 + 105i
64π5(t2−t1)9

Clearly, when I take t2 = t1 = t, we get a divergence which is because of the coinci-
dence of the operators. Now I subtract out the divergence and I get the one point
function at spacetime point (t,0). Then in the t→∞ limit, we get:
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d One point function in CC state 〈φφ(t, 0)〉CC

2
(

2(log( 2t
β )+γ)

4πβ
− 7β3

1920π(2t)4 − β

48π(2t)2 +O(
[

1
2t

]5
)
)

+
1

16πβ
− (2t)2

4(πβ3)
+ 2it

4πβ2 +···

N2 +O([ 1
N

]3)

3 limt→∞−
sech2

( 2πt
β )

4β2 −→ 1
12β2 + e− 4πt

β

4β2 + · · ·

4 limt→∞
ψ(2)( 2it

β
+ 3

2)+ψ(2)( 1
2
− 2it

β )+4ζ(3)

16π2β3 − 1
π2(β+4it)3 −→ ζ(3)

4π2β3 + 1
32π2βt2

+ · · ·

5 limt→∞
π(cosh( 4πt

β )−2)sech4
( 2πt
β )

12β4 −→ π
180β4 + e− 4πt

β

12β4 + · · ·

6 limt→∞
ψ(4)( 2it

β
+ 3

2)+ψ(4)( 1
2
− 2it

β )+48ζ(5)

128π3β5 − 6
π3(β+4it)5 −→ 3ζ(5)

8π3β5 − 3
512(π3β)t4

+ · · ·

7 limt→∞−
π2(−26 cosh( 4πt

β )+cosh( 8πt
β )+33)sech6

( 2πt
β )

120β6 −→ π2

945β6 + e− 4πt
β

120β6 + · · ·

8
limt→∞− ψ(6)(1)

768π4β7 +
ψ(6)( 2it

β
+ 3

2)+ψ(6)( 1
2
− 2it

β )
1536π4β7 − 60

π4(β+4it)7 −→ − ψ(6)(1)
768(π4β7)

+
5

2048π4βt6
+ · · ·

9
limt→∞

π3(1191 cosh( 4πt
β )−120 cosh( 8πt

β )+cosh( 12πt
β )−1208)sech8

( 2πt
β )

1680β8 −→ π3

3150β8 +

e− 4πt
β

1680β8 + · · ·

10 limt→∞
ψ(8)( 2it

β
+ 3

2)+ψ(8)( 1
2
− 2it

β )
24576π5β9 − 840

π5(β+4it)9 + 105ζ(9)
32π5β9 −→ 105ζ(9)

32π5β9− 105
65536(π5β)t8

+· · ·

There is a distinct difference between odd and even dimensions. The autocorrelation
function and the one point function go as power law in time in even d, which is odd
spacetime dimension D. The decay to equilibrium is exponential in case of odd d,
which is even spacetime dimension D. Also, the one point function decays to a
constant, which is what we expect in a translationally invariant system. But, this
constant is not zero. The CC state decays to a thermal equilibrium, which is an
excited state of the CFT. An excited state has a scale in the theory, which is its
energy. In this case, the energy depends on temperature of the system, which is
reflected in the appearance of β in the constant.

3.2 The Thermal State (µ = 0)

As encountered earlier, the correlations function in a thermal equilibrium is given
by

〈φ( ~x1, t1, )φ( ~x2, t2)〉β =
1

Z
Tr(e−βHφ( ~x1, t1, )φ( ~x2, t2))

=
1

Z

∑
{Nk}

〈{Nk}|e−βHφ( ~x1, t1)φ( ~x2, t2)|{Nk}〉
(3.13)
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Now this can be mapped to a cylinder, which opens up to a plane with periodic
boundary conditions, repeated after an interval β. Upon going to Euclidean space
and keeping ~x dependence implicit, we get

=
1

Z
〈{Nk}|e−βHeτ1Hφ(0)e−τ1Heτ2Hφ(0)e−τ2H |{Nk}〉 (3.14)

This corresponds to the following picture:

φ(τ1)

φ(τ2)

β
L

β

τ1

+

+

Figure 3.2: slab for Thermal state correlator

From the figure, it is clear that this is the same as removing the negative charges
from the CC slab and summing over only the positive charges. Also, comparing the
two figures one finds that, β = 2L = 4κ. Therefore, the Euclidean Green’s function
in momentum space, now looks like:

G(~k, τ) =
1

2|~k|

( ∞∑
n=0

e−|
~k|(|τ1−τ2|+2nL) +

∞∑
n=1

e−|
~k|(−|τ1−τ2|+2nL)

)
(3.15)

〈φ( ~x1, t1)φ( ~x2, t2)〉β = G(~x = ~x1 − ~x2, t1, t2)

=

∫
ddk

(2π)d
ei
~k·~x

2|~k|

( ∞∑
n=0

e−|
~k|(|τ1−τ2|+2nL) +

∞∑
n=1

e−|
~k|(−|τ1−τ2|+2nL)

)
(3.16)

We can double check that, performing the n sum first gives us the same integrand
as obtained in the previous derivation of the thermal correlator. For this section,
however, we perform the k integral first on every term and then sum the n terms
up.
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Autocorrelation Function in Thermal State
d 〈φ(0, 0)φ(t, 0)〉β (Recursion relation: 〈φφ〉d+2 =

Ωd+2−1

4π2Ωd−1
(− ∂2

∂t2
)〈φφ〉d

Large time limit
(Real Leading Order
term)

2
limN→∞

(
− i

4πt
−ψ(0)(1− it

β
)+ψ(0)(1+ it

β
)

4πβ
+
ψ(0)(1+N− it

β
)+ψ(0)(1+N+ it

β
)

4πβ

)
− 1

4πβ
log
(

t2

N2β2

)

3
− 1

4β2 csch2[πt
β

] − 1
4β2 e

− 2πt
β

4

i
8π2t3

− ψ(2)(1− it
β

)+ψ(2)(1+ it
β

)

16π2β3
1

8π2βt2

5

π
12β4 csch4(πt

β
)
(

2 + cosh
(

2πt
β

))
π

12β4 e
− 2πt

β

6
− 3i

16π3t5
− ψ(4)(1− it

β
)+ψ(4)(1+ it

β
)

128pi3β5
3

32π3βt4

7
− π2

120β6 csch6(πt
β

)
(

33 + 26 cosh
(

2πt
β

)
+ cosh

(
4πt
β

))
− π2

120β6 e
− 2πt

β

8

15i
32π4t7

− ψ(6)(1− it
β

)+ψ(6)(1+ it
β

)

1536π4β7 − 5
32π4βt6

+

9

π3

1680β8 csch8(πt
β

)
(

1208 + 1191 cosh
(

2πt
β

)
+ 120 cosh

(
4πt
β

)
+

cosh
(

6πt
β

)) π3

1680β8 e
− 2πt

β

10
− 105i

64π5t9
− ψ(8)(1− it

β
)+ψ(8)(1+ it

β
)

24576π5β9
105

256π5βt8

The autocorrelation functions in the thermal state decay to zero at large times. This
can be understood physically as follows. Say, a system is already in thermal equi-
librium. Then, it is perturbed at one of the sites and the effect of this perturbation
is measured at the same site as a function of time. Gradually as the system relaxes
back to thermal equilibrium once again, the effect of the perturbation completely
dies out, as though it had never happened. This is seen in the autocorrelation
function. However, the two point correlation function for two spatially separated
points should be interpreted slightly differently. When you slightly perturb a site
in a system at thermal equilibrium the disturbance propagates spatially and is dis-
sipated out at large times. Thus, when the effect of the disturbance is measured at
a point separated by a finite distance, the effect seems to be a decaying function of
time( either exponential or a power law). However, when you start with a thermal
state with a prescribed energy given by its temperature, the correlation between two
spatially separated points is a function of the energy of the system. Thus, at large
times, it is not zero but a constant characterized by its temperature. For example
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at d=3,

〈φ(r, t)φ(0, 0)〉β =
coth

(
π(r−t)
β

)
+ coth

(
π(r+t)
β

)
8πβr

(3.17)

3.2.1 Odd d

Approach to thermal equilibrium of CC correlator

d 〈CC|φ(0, t)φ(r, t)|CC〉 〈φ(0, 0)φ(r, 0)〉β

3
2 coth(πrβ )−tanh(π(r+2t)

β )−tanh(π(r−2t)
β )

8πβr

coth(πrβ )
4πβr

5

β coth(πrβ )+πrcsch2
(πr
β

)

8π2β2r3 −
β(tanh(π(r+2t)

β )+tanh(π(r−2t)
β ))

16π2β2r3 +

πr(sech2
(
π(r+2t)

β
)+sech2

(
π(r−2t)

β
))

16π2β2r3

β coth(πrβ )+πrcsch2
(πrβ )

8π2β2r3

7

−3(tanh(π(r+2t)
β )+tanh(π(r−2t)

β ))
32π3βr5 +

3
(
sech2

(π(r+2t)
β )+sech2

(π(r−2t)
β )

)
32π2β2r4 +

tanh(π(r+2t)
β )sech2

(π(r+2t)
β )

16πβ3r3 +

tanh(π(r−2t)
β )sech2

(π(r−2t)
β )

16πβ3r3 +

3β2 coth(πrβ )+πr(3β+2πr coth(πrβ ))csch2
(πrβ )

16π3β3r5

3β2 coth(πrβ )+πr(3β+2πr coth(πrβ ))csch2
(πrβ )

16π3β3r5

9

15 coth(πrβ )
32π4βr7 +

csch4
(πrβ )

16πβ4r4 +

(15β2+4π2r2 coth2(πrβ )+12πβr coth(πrβ ))csch2
(πrβ )

32π3β4r6 +

3 tanh(π(r+2t)
β )

(
4π2r2sech2

(π(r+2t)
β )−5β2

)
64π4β3r7 +

3 tanh(π(r−2t)
β )

(
4π2r2sech2

(π(r−2t)
β )−5β2

)
64π4β3r7 +

sech2
(π(r+2t)

β )
(

15β2−6π2r2sech2
(π(r+2t)

β )+4π2r2
)

64π3β4r6 +

sech2
(π(r−2t)

β )
(

15β2−6π2r2sech2
(π(r−2t)

β )+4π2r2
)

64π3β4r6

15 coth(πrβ )
32π4βr7 +

csch4
(πrβ )

16πβ4r4 +

(15β2+4πr coth(πrβ )(3β+πr coth(πrβ )))csch2
(πrβ )

32π3β4r6

Clearly from 3.2.1 we see that for odd d, the decay in time is exponential, with
the leading order exponent being 2π

β

3.2.2 Even d
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Approach to thermal equilibrium of the CC correlator (Plotted against time)
d r = 4, β = 4π Legends and values

4

200 400 600 800 1000

0.00021146

0.00021148

0.00021150

0.00021152

0.00021154

• Pink dotted:
〈CC|φ(t, 0)φ(t, ~x)|CC〉

• Blue Line:〈φ(0, 0)φ(0, ~x)〉β

– value: 0.000211447

• Red line: Fit of 〈φφ〉CC with a +
bt−c

– a=0.000211447

– c=2.00622

• Range of t:[100, 1000]

6

200 400 600 800 1000

5.93706×10
-6

5.93707×10
-6

5.93708×10
-6

5.93709×10
-6

5.9371×10
-6

• Pink dotted:
〈CC|φ(t, 0)φ(t, ~x)|CC〉

• Blue Line:〈φ(0, 0)φ(0, ~x)〉β

– value: 5.9371× 10−6

• Red line: Fit of 〈φφ〉CC with a +
bt−c

– a=5.9371× 10−6

– c=4.07256

• Range of t:[50,1000]

8

200 400 600 800

2.93853×10
-7

2.93854×10
-7

2.93855×10
-7

2.93856×10
-7

• Pink dotted:
〈CC|φ(t, 0)φ(t, ~x)|CC〉

• Blue Line:〈φ(0, 0)φ(0, ~x)〉β

– value: 2.93852× 10−7

• Red line: Fit of 〈φφ〉CC with a +
bt−c

– a=2.93852× 10−7

– c=6.09988

• Range of t:[20,800]
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Approach to thermal equilibrium of the CC correlator 〈φ(0, 0)φ(t, 0)〉β
Value
of r

d = 4, Range of t:
[100,1000]

d = 6 Range of t:
[100,1000]

d = 8 Range of t:
[20,800]

1
2.0048 4.0176 6.0897

2
2.0051 4.0183 6.0919

4
2.0062 4.0210 6.0998

10
2.0139 4.0398 6.0555

From 3.2.2 and 3.2.2 we see that for even d the correlation functions fall off as
power laws in time.

3.2.3 Explanation for the Odd-Even difference

The Thermal Auto-Correlator

The auto-correlation function in the thermal state is defined as (Euclidean ordered
i.e. τ1 > τ2)

Gth(τ1, ~r; τ2, ~r) = 〈φ(τ1, ~r)φ(τ2, ~r)〉β

=
1

Z
Tr(e−βHφ(τ1, ~r)φ(τ2, ~r))

(3.18)

We can unfold the cylinder by using the method of images. Working in the partial
Fourier Transform variables, Gth(τ1, r; τ2, r) becomes

Gth(τ1, ~r; τ2, ~r) =

∫
ddk

(2π)d
Gth(τ1, τ2; k)

=

∫
ddk

(2π)d
1

2ωk
Sth(τ1 − τ2)

=
Ωd−1

2(2π)d

∫ ∞
0

dk kd−2Sth(τ1 − τ2)

(3.19)

where

Sth(τ) =
∞∑
n=0

e−k(nβ+τ) +
∞∑
n=1

e−k(nβ−τ) (3.20)

Ωd−1 is the solid angle of a d-1 dimensional spherical surface in d space dimensions
and we have used the dispersion relation ωk = |k|. This is easily seem from the
figure below.
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Now we can do the following jugglery

Gth(τ1 − τ2 = τ ; 0)β =
Ωd−1

2(2π)d

∫ ∞
0

dk kd−2

[
∞∑
n=0

e−k(nβ+τ) +
∞∑
n=1

e−k(nβ−τ)

]

=
Ωd−1

2(2π)d

[
∞∑
n=0

(
− ∂

∂τ

)d−2 ∫ ∞
0

dk e−k(nβ+τ) +
∞∑
n=1

(
∂

∂τ

)d−2 ∫ ∞
0

dk e−k(nβ−τ)

]

=
Ωd−1

2(2π)d

[
∞∑
n=0

(
− ∂

∂τ

)d−2(
1

nβ + τ

)
+
∞∑
n=1

(
∂

∂τ

)d−2(
1

nβ − τ

)]

=
Ωd−1(d− 2)!

2(2π)d

[
∞∑
n=0

(
1

nβ + τ

)d−1

+
∞∑
n=1

(
1

nβ − τ

)d−1
]
(3.21)

In the second step we can get the powers of k by action of derivatives with respect
to τ . In the third line we have performed the k integral. Finally in the last step
we evaluate the derivatives. These sums can be evaluated exactly in Mathematica.
The result for a few small dimensions (d > 2) is tabulated below.

To see the origin of this contrasting behavior between odd and even dimensions,
one can do the following. First we analytically continue τ → τ + it. Then in the
limit τ → 0 and t � β, we can approximate the sum by an integral using the
Euler-Maclaurin formula. For d > 2

∞∑
n=0

(
1

nβ + it

)d−2

≈ 1

βd−1

∫ ∞
0

dn

(n+ it/β)d−1

≈ 1

(d− 2)β

1

(it)d−2

(3.22)

The term with nβ − τ can be approximated similarly
∞∑
n=1

(
1

nβ − it

)d−2

≈ 1

βd−1

∫ ∞
1

dn

(n− it/β)d−1

=
1

(d− 2)β

1

(1− it)d−2

≈ 1

(d− 2)β

1

(−it)d−2

(3.23)

In the large t limit, n = 0 or n = 1 does not really matter. Therefore we have found
that this naive approximation of the sum by an integral gives us

Gth(τ + it; r = 0)β =
Ωd−1(d− 2)!

2(2π)d

[
1

(it)d−2
+

1

(−it)d−2

]
≈

{
Ωd−1(d−3)!

(2π)d
1

(it)d−2 d is even
0 d is odd

(3.24)

This gives us power law decay in even dimensions. Of course in odd dimensions the
cancellation is not exact and we get an exponential decay instead.
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Auto-Correlator in the CC state

The auto-correlation function in the CC state is defined as (Euclidean ordered i.e.
τ1 > τ2)

GCC(τ1, ~r; τ2, ~r) = 〈φ(τ1, ~r)φ(τ2, ~r)〉

=

∫
ddk

(2π)d
GCC(τ1, τ2; k)

=

∫
ddk

(2π)d
1

2ωk
(Sth(τ1 − τ2) + SCC(τ1 + τ2))

=
Ωd−1

2(2π)d

∫ ∞
0

dk kd−2 (Sth(τ1 − τ2) + SCC(τ1 + τ2))

(3.25)

where

Sth(τ) =
∞∑
n=0

e−k(2nL+τ) +
∞∑
n=1

e−k(2nL−τ)

SCC(τ ′) =−
∞∑
n=0

e−k((2n+1)L+τ ′) −
∞∑
n=1

e−k((2n−1)L−τ ′)

(3.26)

We have already evaluated the thermal part (Sth). The SCC term is no different.
The role of τ = (τ1−τ2) is now played by τ ′ = (τ1 +τ2). Repeating the same exercise
as in the thermal case above gives us

GCC(τ1, ~r; τ2, ~r)−Gth(τ1, ~r; τ2, ~r)β =
Ωd−1

2(2π)d

∫ ∞
0

dk kd−2SCC(τ1 + τ2)

= −Ωd−1(d− 2)!

2(2π)d

[
∞∑
n=0

(
1

(2n+ 1)L+ τ ′

)d−2

+
∞∑
n=1

(
1

(2n− 1)L− τ ′

)d−2
] (3.27)

Analytically continuing to real time (τ ′ → τ ′ + it′) and once again approximating
the sum by an Euler-Maclaurin integral in the large time limit gives us the same
odd-even behavior

GCC(τ1, ~r; τ2, ~r)−Gth(τ1, ~r; τ2, ~r)β =
Ωd−1(d− 2)!

2(2π)d

[
∞∑
n=0

1

(it′)d−2
+
∞∑
n=1

1

(−it′)d−2

]

≈

{
Ωd−1(d−3)!

(2π)d
1

(it′)d−2 d is even
0 d is odd

(3.28)

3.2.4 r dependence after thermalization

Our critical quench takes us to a massless theory, this theory has no scale to begin
with. Our Post quench Hamiltonian is a critical Hamiltonian at zero temperature.
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When we start an excited state however, the the energy of the excited state intro-
duces a scale into the system. Thus, as observables in the excited state decay to
thermal state, the equilibrium is characterized by a temperature that reflects this
scale. For correlations functions in a thermal state, the system already has a scale
(the temperature). We expect that correlation functions in d spatial dimensions
should look like, e−r/ξ

rp
, where p is some rational number and ξ is some correlation

length set by the temperature, the inverse of which can be perceived as a thermal
mass. At quantum criticality, the correlation length becomes infinite and the corre-
lation function becomes just dependent on the geometry of the system, hence falls
off as a power law in terms of spatial separation r between the operators. The free
energy cost for transmitting the response to a perturbation in the system (measured
by the free energy) is zero. In our case, we are calculating the time independent
correlation function at a generic temperature set by 1

β
. So we expect a Yukawa-like

behaviour. As mentioned earlier the thermal state can be represented as a cylinder,
where the Euclidean time has been compactified. We can use the Kaluza Klein
reduction to obtain the correlator in the thermalized state.

φ(~x, τ) =
∑
n∈Z

φn(~x)ei
2πn
β
τ (3.29)

For the free scalar field he Klein Gordon equation looks like:

�φ = ∂M∂Mφ = 0, where M = 1, ...d+ 1 (3.30)

Now using the form of φ after implementing periodic boundary conditions, we get:

∂µ∂µφn − (
2πn

β
)2φn = 0, ∀ n = 0,±1...±∞ where µ = 1, ...d (3.31)

which looks like the massive Klein Gordon equation in one lower dimension with
thermal mass mth = 2π|n|

β

Now in d+ 1 = 4 dimensions, for fields satisfying (∂2 −m2
n)φn = 0,

〈φn(0, 0)φn(r, 0)〉 =

∫
d3k

(2π)3

eikx

k2 +m2
n

=
e−mnr

r
(3.32)

Since now each φ can be decomposed into n modes, we get:

〈φ(0, 0)φ(r, 0)〉β =
1

4πβr
+ 2

∞∑
n=1

e−
2πnr
β

4πβr
(3.33)

The first term corresponds to the zeroeth mode and the we see that as β → 0 (or
temperature goes to infinity), only the zeroeth mode contribution remains. This
limit also corresponds to the large r limit, since in the exponentials, r and β appear
together as r

β
which is a dimensionless quantity. At large r, the leading order correc-

tion is an exponentially decaying term with coefficient, 2π
β
. The results are slightly
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puzzling to me, since even at an arbitrary temperature, the correlation function
seems to be predominated by a power law decay. Also at infinite temperature, the
thermal fluctuations are so high that there should be a rapid drop in the correlation
function as a function of separation. However, that is clearly not the case in the
results above, since it becomes solely a power law decay in r at that limit. The
thermal correlation functions in odd spatial dimensions are tabulated in the second
column of Table 3.2.1. Clearly, upon doing a large r expansion, the leading terms
are Greens functions in d spatial dimensions. We also found the same thing for
Even d, numerically. The numerical results have been tabulated below 3.2.4. When
the correlators are just spatially separated and then β which is the circumference
of the cylinder, is taken to zero, the correlators don’t see the Euclidean time di-
rection at all. Thus, the correlators exactly match the Green’s function in one less
spacetime dimension.The value of a is much much smaller than the values of the
correlation function at finite values of r. This is important because, if that were
not the case, then that would mean the correlation function between two infinitely
separated points is non-zero, which is inadmissible due to cluster decomposition.

leading behaviour in r of φφ correlator in Thermal equilibrium

d = D − 1
Numerical value of c in the
fit of 〈φ(0, 0)φ(r, 0)〉β with
a+ br−c

Greens function in d dimen-
sions

3 0.9999 ≈ 1 r−1

4 2.0000 ≈ 2 r−2

5 2.9999 ≈ 3 r−3

6 4.0000 ≈ 4 r−4

7 5.0090 r−5

8 6.0097 r−6

9 7.0252 r−7

The Greens function in 2 dimensions is Logarithmic with respect to spatial sep-
aration. The fit of the d+ 1 = 3 function also gave a Log fit:

At least with respect to behavior at large spatial separations in thermal equilibrium,
we observe no difference between Odd and Even dimensions. The general formula for
spatially separated thermal correlation function is, in the high temperature/ large
distance limit is (for d > 2) :

1

rd−2
+
e−

2πr
β

rd−2
(3.34)
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Figure 3.3: Time independent thermal correlator in 3 spacteime dimensions (d=2)
fitted with 0.5943− 0.0506 log r
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Chapter 4

The GCC and the GGE

4.1 The gCC State (κ4 != 0)
The 2 point functions in the gCC state cannot be calculated in the slab picture.
We therefore use the expressions for the equal time correlator and evaluate them
numerically. The integral to be evaluated is

〈gCC|φ(0, t)φ(~r, t)|gCC〉

=

∫ ∞
−∞

ddk

(2π)d
ei
~k·~r 1

2|~k|

[
coth

(
2|~k|(κ2 + κ4|~k|2)

)
− cos

(
2|~k|t

)
csch

(
2|~k|(κ2 + κ4|~k|2)

)]
= Ω(d− 2)

∫ ∞
0

dk kd−2

2(2π)d

∫ π

0
dθeikr cos θ(sin θ)d−2

[
coth

(
2k(κ2 + κ4k

2)
)
− cos(2kt) csch

(
2k(κ2 + κ4k

2)
)]

= Ω(d− 2)

∫ ∞
0

dk kd−2

2(2π)d

∫ 1

−1
dxeikrx

(
1− x2

) d−3
2
[
coth

(
2k(κ2 + κ4k

2)
)
− cos(2kt) csch

(
2k(κ2 + κ4k

2)
)]

(4.1)

Here Ω(d) is the solid angle of Sd, the sphere in d dimensions. The angular factor
can be calculated in general for d > 1 as∫ 1

−1

(
1− x2

) d−3
2 eikrx dx =

√
π Γ

(
d− 1

2

)
0F̃1

(
;
d

2
;−1

4
k2r2

)
(4.2)

where 0F̃1(; ; ) is the Hypergeometric0F1Regularized function. With the angular
integral in hand we can now evaluate the the 2-point function in the gCC state and
study its variation with κ4 in various dimensions. For κ4 = 0, we reproduce the same
results as in the slab. The leading correction to thermalization is then expected to
be linear when κ̄4 is small (κ̄4 = κ4/κ

3
2 is defined to be dimensionless). See figure

4.1

4.1.1 Odd d

For odd d and for small κ4, we qualitatively find an exponentially decaying approach
to thermalization with thermal relaxation rate given by exp

[
− π
κ2

(1 + αdκ̄4 +O(κ̄4
2))t
]
,

with αd being a number which depends on the dimension d.
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Figure 4.1: GCC 2 point function of φ: The top row is d = 3 while the bottom
is d = 5 for values κ2 = π, r = 2, t ∈ [10, 50] integrated up to kmax = 100.
The thermalization exponent is written in units of π/κ2 for r = 2. In general the
modification is non-linear (left) but for sufficiently small κ̄4, it is linear (right).

4.1.2 Even d

For even d and for small κ4, we qualitatively find a power law approach to equilibrium
t−(d−2)[1+αdκ4+O(κ̄4

2)] with αd being a number which depends on the dimension d. This
is seen from the figure 4.2.

4.2 The GGE Correlator (µ!=0)
The 2-point function in the GGE ensemble with non-zero µ is given by

〈φ(~r, t)φ(0, 0)〉β,µ =

∫ ∞
−∞

ddk

(2π)d
ei
~k·~r 1

2|~k|

[
coth

(
β|~k|+µ|~k|3

2

)
cos
(
|~k|t
)
− i sin

(
|~k|t
)]

= Ω(d− 2)

∫ ∞
0

dk kd−2

2(2π)d

∫ π

0
dθeikr cos θ(sin θ)d−2

[
coth

(
βk + µk3

2

)
cos(kt)− i sin(kt)

]
= Ω(d− 2)

∫ ∞
0

dk kd−2

2(2π)d

∫ 1

−1
dxeikrx

(
1− x2

) d−3
2

[
coth

(
βk + µk3

2

)
cos(kt)− i sin(kt)

]
(4.3)

Here Ω(d) is the solid angle of Sd, the sphere in d dimensions. The time ’t’ appearing
here is the time separation of the 2 operator insertions as compared to gCC equal-
time correlator, where ’t’ is the time after the sudden quench. We can also study
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Figure 4.2: GCC 2 point function of φ: The top row is d = 4 while the bottom
is d = 6 for values κ2 = 1, r = 2, t ∈ [20, 100] integrated up to kmax = 100. In
general the modification to the thermalization coefficient is non-linear (left) but for
sufficiently small κ̄4, it is linear (right).

the autocorrelation function (r = 0) which is given by

〈φ(0, 0)φ(0, t)〉β,µ =

∫ ∞
−∞

ddk

(2π)d
1

2|~k|

[
coth

(
β|~k|+µ|~k|3

2

)
cos
(
|~k|t
)
− i sin

(
|~k|t
)]

= Ω(d− 1)

∫ ∞
0

dk

2(2π)d
kd−2

[
coth

(
βk + µk3

2

)
cos(kt)− i sin(kt)

]
(4.4)

In this case the κ4 = 0 integral can be done exactly and agrees with the cylinder
calculation done in the section above. Its the same exponential decay for all odd
space dimensions and some power law for even dimensions. And as we will see
qualitatively that adding a small κ4 slightly increases the exponent in both the
cases. The Sin term (imaginary part) is the same even with κ4 6= 0 and is calculated
to be (in d space dimensions)

−1

4
π−

d
2
− 1

2 t1−d cos

(
πd

2

)
Γ

(
d− 1

2

)
(4.5)

which vanishes for odd d but not for even d. The real part in each case however is
now more complicated and has to be handled numerically. We however study the
case when r 6= 0 as it is more generic and
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Figure 4.3: GGE 2 point function of φ:The top row is d = 3 while the bottom is
d = 5 for values β = 2π, r = 2, t ∈ [10, 50] integrated up to kmax = 100. The
thermalization exponent is written in units of 2π/β. In general the modification to
the thermalization coefficient is non-linear (left) but for sufficiently small µ̄, it is
linear (right).

4.2.1 Odd d

We vary µ and note the effect it has on the thermalization rate. In odd dimensions,
for small µ̄ it is always given by exp

[
−2π

β
(1 + αd µ̄+O(µ̄2))t

]
where αd is a number

which depends on the dimension d. This can be seen from the figure 4.3.

4.2.2 Even d

Again we vary µ̄ and note the effect it has on the approach to thermalization in even
dimensions. Here, for small µ̄ it is given by t−(d−2)[1+αdµ̄+O(µ̄2)] with αd depending on
the dimension d. In general though, for large values of µ̄ the nature of the function
might something completely different as is shown in figure 4.4

4.2.3 Recursion Relation for the Correlator in the Thermal/GGE
Ensemble

The GGE two-point function in arbitrary dimensions is given by

〈φ( ~x1, t1, )φ( ~x2, t2)〉dβ,µ =
1

2

∫
ddk

(2π)d

[
G−e

ι~k·~xe−ι|
~k|t +G+e

−ι~k·~xeι|
~k|t
]

(4.6)
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Figure 4.4: GGC 2 point function of φ:The top row is d = 4 while the bottom
is d = 6 for values β = 1, r = 2, t ∈ [20, 100] integrated up to kmax = 100. In
general the modification to the thermalization coefficient is non-linear (left) but for
sufficiently small µ̄, it is linear (right).

where ~x = ~x1− ~x2, t = t1− t2 and

G± =
1

|~k|(±e±(β|k|+µ|k|3) ∓ 1)
(4.7)

This can also be written as

〈φ(~r, t)φ(0, 0)〉dβ,µ =

∫ ∞
−∞

ddk

(2π)d
ei
~k·~r 1

2|~k|

[
coth

(
β|~k|

2

)
cos
(
|~k|t
)
− i sin

(
|~k|t
)]

=
Ωd−2

2(2π)d

∫ ∞
0

dk kd−2

∫ π

0

dθeikr cos θ(sin θ)d−2

[
coth

(
βk

2

)
cos(kt)− i sin(kt)

]
(4.8)

Ωd−1 is the solid angle of a d-1 dimensional spherical surface in d space dimensions.
The time ’t’ appearing here is the time separation of the 2 operator insertions. Now
we pull out a k2(sin θ)2 = k2−k2(cos θ)2 and write it as a derivative operator acting
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on the correlation function in d− 2 dimensional space as follows

〈φ(~r, t)φ(0, 0)〉dβ,µ =
Ωd−2

2(2π)d

∫ ∞
0

dk kd−4

∫ π

0

dθeikr cos θ(sin θ)d−4

[
coth

(
βk

2

)
cos(kt)− i sin(kt)

]
× k2(sin θ)2

=
Ωd−2

2(2π)d

∫ ∞
0

dk kd−4

∫ π

0

dθeikr cos θ(sin θ)d−4

[
coth

(
βk

2

)
cos(kt)− i sin(kt)

]
× (k2 − k2(cos θ)2)

=
Ωd−2

2(2π)d
(
−∂2

t + ∂2
r

) ∫ ∞
0

dk kd−4

∫ π

0

dθeikr cos θ(sin θ)d−4

[
coth

(
βk

2

)
cos(kt)− i sin(kt)

]
=

Ωd−2

4π2Ωd−4

(
−∂2

t + ∂2
r

) Ωd−4

2(2π)d−2

∫ ∞
0

dk kd−4

∫ π

0

dθeikr cos θ(sin θ)d−4

[
coth

(
βk

2

)
cos(kt)− i sin(kt)

]
=

Ωd−2

4π2Ωd−4

(
−∂2

t + ∂2
r

)
〈φ(~r, t)φ(0, 0)〉d−2

β,µ

(4.9)

Thus we see that the recursion relation connects the correlator in d dimensions
to correlators in d-2 dimensions. This is consistent with our results. If in odd d
there is an exponential falloff then we would have an exponential falloff in all odd
dimensions. Similarly if we have a power law decay in even d, then we would have
power law decays with increasing degrees in higher even dimensions.

4.3 UV/IR Mixing
Consider a lattice at a certain temperature with a spin degree of freedom at each
site. The temperature specifies energy and therefore the (macro) state of our lattice
system. A 2-point function (g2 say) would correspond to for example how the spin
at site number i responds to perturbing the spin at site 0. In general g2 would be
a function of the distance (index) i and other scales present in the problem. At
zero temperature when all the spins aligned together, lets say that g2 has a certain
behavior. Now consider the same 2-point function at very high temperature T , the
spins are all disordered and the same 2-point function g2 now is expected to be
different. g2 is a function of the temperature and if there is some other quantity
characterizing the state of our system (a chemical potential), it should also show up
in the n-point functions.

From the above example we see that the 2-point function depends on the state
in which it is calculated. Now lets link this with the our understanding of Renor-
malization Group (RG) and RG flow. In the Wilsonian way of thinking, we can
integrate the momentum modes up to a certain cut-off Λ, but in the process the
couplings in the Lagrangian must also change and become functions of Λ so that the
path integral and therefore all n-point functions remain unchanged. In the ground
state, we can lower the cutoff up to k ∼ 1/r but in an excited state with very large
energy Es(or momenta ks) we can only come down to ∼ ks i.e. Λ ∼ ks. Due to
this extra scale in the problem g2 is expected to be a function of ks. In general this
information about the excited state must show up in the n-point functions. This
is what is seen in our calculations above. The κ4 characterizing the excited gCC
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state now appears in the 2-point function and similarly µ in the GGE ensemble. In
chapter 6 we have discussed the concept of UV-IR mixing using a Toy example.

4.4 Interpretation of W’s in higher D
Maldacena and Zhiboedov in their paper [8], showed that any CFT with higher spin
conserved currents has correlation functions that exactly match that of a free field
theory, which can constitute N number of free bosons or fermions. The presence of
one single higher spin conserved current implies the presence of an infinite number
of higher spin conserved current. Thus, in higher dimensions, apart from the global
conformal symmetry, there exists a higher spin symmetry, given by the W∞ algebra.
The operators corresponding to this can be In 2D CFT, the Virasoro is a subset of
the W∞ algebra. For free scalars, the operators corresponding to such currents can
be constructed as, φ

←→
∂ µ1

←→
∂ µ2 . . .

←→
∂ µnφ. In the context of our problem, this is par-

ticularly relevant, since our post quench state is a CFT of free scalars characterized
by these higher spin charges.

35



Chapter 5

Detailed Calculations in d = 3

5.1 Limits

We calculate two-point functions of different types- Non-Equilibrium and Equi-
librium correlators. Non-Equilibrium correlators are calculated in different initial
states, namely the ground state, the CC and gCC state with Hamiltonian and one
extra conserved charge. Equilibrium correlators comprise of the thermal and GGE.
We are mostly interested in the equal-time correlators (ETC’s). If the Subsystem
Thermalization is correct, then the non-equilibrium ETC’s must agree with the equi-
librium ETC’s in certain limits which are describe in the figures below. The first

1
m r 2t

First limit for non-equilibrium ETC

β r

First limit for equilibrium ETC

Figure 5.1: First Limit

1
mr 2t

Second limit for non-equilibrium ETC

βr

Second limit for equilibrium ETC

Figure 5.2: Second Limit
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limit is defined as
2mt� mr � 1 Non-equilibrium ETC

r/β � 1 Equilibrium ETC
(5.1)

The second limit is defined as
2mt� 1,mr � 1 Non-equilibrium ETC

r/β � 1 Equilibrium ETC
(5.2)

Hence forth we refer to them just as first limit and the second limit respectively.

5.2 Ground state quench
In the sudden limit, the ground state φφ ETC is

〈0in|φ(~x, t)φ(0, t)|0in〉 =

∫
d3k

(2π)3

(
2|~k|2+m2 −m2Cos(2|~k|t)

4(|~k|2+m2)
1
2 |~k|2

)
ei
~k.~x (5.3)

We get this expression by plugging in the expression for the in-out waves uin ,uout
and the Bogoliubov coefficients in the sudden limit. Details of the calculations are
in the appendix B. Performing this complicated integral by techniques of complex
analysis gives

〈0in|φ(r, t)φ(0, t)|0in〉 =


m

16πr + m2

16
√

2 π
3
2

(
2e−mr

mr
√
mr

+ e−m(2t+r)

mr
√
m(r+2t)

+ e−m(2t−r)

mr
√
m(2t−r)

)
+ · · · r < 2t

m2

16
√

2π
3
2

(
2e−mr

mr
√
mr

+ e−m(r+2t)

mr
√
m(r+2t)

+ e−m(r−2t)

mr
√
m(r−2t)

)
+ · · · r > 2t

(5.4)

The ground state ∂iφ∂iφ ETC is

〈0in|∂iφ(~r, t)∂iφ(0, t)|0in〉 =

∫
d3k

(2π)3

(
2|~k|2+m2 −m2Cos(2|~k|t)

4(|~k|2+m2)
1
2 |~k|2

)
ei
~k.~xk2 (5.5)

Notice that this is just the same as 〈φφ〉 except for a factor of k2. This time the
integral is done exactly

〈0in|∂iφ(~r, t)∂iφ(0, t)|0in〉 =

−
(m3r2+4m)K1(mr)+2m2rK0(mr)

8π2r3 − m3K1(m(r+2t))
16π2r − m3K1(m(r−2t))

16π2r , r > 2t

− (m3r2+4m)K1(mr)+2m2rK0(mr)

8π2r3 − m3K1(m(r+2t))
16π2r + m3K1(m(2t−r))

16π2r , r < 2t

(5.6)

The leading order contribution at late times in the first limit is

〈0in|∂iφ(~r, t)∂iφ(0, t)|0in〉 = − m4

16
√

2π3/2

(
2e−mr

mr
√
mr

+
e−m(r+2t)

mr
√
m(r + 2t)

− e−m(2t−r)

mr
√
m(2t− r)

)
+ · · ·

(5.7)

and the second limit (with t→∞ and small r) is

〈0in|∂iφ(~r, t)∂iφ(0, t)|0in〉 = − 1

2π2 r4
+ · · · (5.8)
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5.3 Squeezed state quench
The φφ ETC in the quenched state |f4〉 (see eq. 2.27) is

〈f4|φ(0, t)φ(~r, t)|f4〉 =
1

8π2ιr

∫ ∞
−∞

dk eikr
(
coth

(
2k(κ2 + κ4k

2)
)
− cos(2kt) csch

(
2k(κ2 + κ4k

2)
))

(5.9)

while the ∂iφ∂iφ ETC in |f4〉 is

〈f4|∂iφ(0, t)∂iφ(~r, t)|f4〉 =
1

8π2ιr

∫ ∞
−∞

dk eikr
(
coth

(
2k(κ2 + κ4k

2)
)
− cos(2kt) csch

(
2k(κ2 + κ4k

2)
))
k2

(5.10)

same as φφ except for a factor of k2 in the integral.

CC state

The φφ ETC in the CC state (κ4 = 0 in |f4〉) is (this is exact without any approxi-
mations)

〈CC|φ(0, t)φ(~r, t)|CC〉 =
m

32πr

[
2 coth

(πmr
4

)
− tanh

(
πm(r + 2t)

4

)
− tanh

(
πm(r − 2t)

4

)]
(5.11)

which in the first limit is

〈CC|φ(0, t)φ(~r, t)|CC〉 =
m

16πr
+

m

8πr

(
e−

πmr
2 + e−

πm(2t+r)
2 − e−

πm(2t−r)
2

)
+ · · ·

(5.12)

and in the second limit

〈CC|φ(0, t)φ(~r, t)|CC〉 =
1

4π2r2
+ · · · (5.13)

The ∂iφ∂iφ ETC in the CC state (κ4 = 0 in |f4〉) is (again exact without any
approximations)

〈CC|∂iφ(0, t)∂iφ(~r, t)|CC〉 =− πm3

256r

[
2 coth

(πmr
4

)
csch2

(πmr
4

)
+ tanh

(πm(r + 2t)

4

)
sech2

(πm(r + 2t)

4

)
tanh

(πm(r − 2t)

4

)
sech2

(πm(r − 2t)

4

)]
(5.14)

which in the first limit is

〈CC|∂iφ(0, t)∂iφ(~r, t)|CC〉 = −πm
3

32r

(
e−πmr/2 + e−πmt

)
+ · · · (5.15)

and in the second limit is

〈CC|∂iφ(0, t)∂iφ(~r, t)|CC〉 = − 1

2π2r4
− πm3

16r
e−πmt + · · · (5.16)
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gCC state

The φφ ETC in |f4〉 = |gCC〉 is calculated as follows. We have to take care of
contribution from poles occurring when the arguments of coth and csch functions
become i nπ. Introducing the dimensionless parameter κ̄4 = κ4/κ

3
2 and keeping track

of the slowest decaying transient perurbatively in κ̄4, we get for 2t > r (first limit)

〈gCC|φ(0, t)φ(~r, t)|gCC〉 ≈
1

16πrκ2
+

1

16πrκ2

(
1 +

3π2

4
κ̄4 + · · ·

)[
2 exp

(
−

π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
r

)
+

exp

(
−

π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
(2t+ r)

)
− exp

(
−

π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
(2t− r)

)]
(5.17)

while for r > 2t it is

〈gCC|φ(0, t)φ(~r, t)|gCC〉 ≈
1

16πrκ2

(
1 +

3π2

4
κ̄4 + · · ·

)[
2 exp

(
−

π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
r

)
+

exp

(
−

π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
(r + 2t)

)
+ exp

(
−

π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
(r − 2t)

)]
(5.18)

Similarly the ∂iφ∂iφ ETC in |f4〉 = |gCC〉 is calculated to be (for 2t > r i.e first
limit)

〈gCC|∂iφ(r, t)∂iφ(0, t)|gCC〉 ≈ −
π

64κ3
2r

(
1 +

5π2κ̄4

4
+O

(
κ̄4

3/2
))
×
[
2 exp{−

π

2κ2
r(1 +

π2κ̄4

4
+O

(
κ̄4

2
)
)}+

exp{−
π

2κ2
(2t+ r)(1 +

π2κ̄4

4
+O

(
κ̄4

2
)
)} − exp{−

π

2κ2
(2t− r)(1 +

π2κ̄4

4
+O

(
κ̄4

2
)
)}
]

(5.19)

while for r > 2t its

〈gCC|∂iφ(r, t)∂iφ(0, t)|gCC〉 ≈ −
π

64κ3
2r

(
1 +

5π2κ̄4

4
+O

(
κ̄4

3/2
))
×
[
2 exp{−

π

2κ2
r(1 +

π2κ̄4

4
+O

(
κ̄4

2
)
)}+

exp{−
π

2κ2
(r + 2t)(1 +

π2κ̄4

4
+O

(
κ̄4

2
)
)}+ exp{−

π

2κ2
(r − 2t)(1 +

π2κ̄4

4
+O

(
κ̄4

2
)
)}
]

(5.20)

5.4 Correlators in GGE and the Thermal Ensemble
We also calculate the correlation functions in the thermal and the generalized Gibbs
ensemble. If the Subsystem Thermalization really holds true, then the correlation
functions we have calculated must agree with these at least in appropriate limits.

GGE φφ Correlator

The real time propagator in GGE (with one other chemical potential) is defined as

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

Z
Tr
(
e−βH−µW4φ( ~x1, t1, )φ( ~x2, t2)

)
(5.21)

In 3 + 1 dimensions this is simplified to (see Appendix for details)

〈φ( ~x1, t1)φ( ~x2, t2)〉β,µ =

∫ +∞

−∞

dk

8π2ιr

[
eιk(r+t)

eβk+µk3 − 1
+

e+ιk(r−t)

−e−βk−µk3 + 1

]
(5.22)
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where ~r = ~x1 − ~x2, t = t1 − t2 and k(r) = |~k|(|~r|). The GGE calculation is very
similar to the gCC calculation. Again we have simple poles when denominator hits
inπ. Defining a dimensionless parameter µ̄ = µ/β3, after an involved calculation we
get a perturbative solution in µ̄.

For t > r

〈φ( ~x1, t1)φ( ~x2, t2)〉β ,µ≈
1

4πrβ

(
1 + 12π2 µ̄+ · · ·

)
×[

exp

(
−2π

β

(
1 + 4π2µ̄+ · · ·

)
(t+ r)

)
− exp

(
−2π

β

(
1 + 4π2µ̄+ · · ·

)
(t− r)

)]
(5.23)

while for t < r, we have

〈φ( ~x1, t1)φ( ~x2, t2)〉β ,µ≈
1

4πrβ
+

1

4πrβ

(
1 + 12π2 µ̄+ · · ·

)
×[

exp

(
−2π

β

(
1 + 4π2µ̄+ · · ·

)
(t+ r)

)
+ exp

(
−2π

β

(
1 + 4π2µ̄+ · · ·

)
(r − t)

)]
(5.24)

The ETC here is

〈φ( ~x1, t1)φ( ~x2, t2)〉β,µ≈
1

4βπr
+

1

2πrβ
(1 + 12π2µ̄+ · · ·) exp

(
−2πr

β
(1 + 4π2µ̄+ · · ·)

)
(5.25)

Thermal φφ Correlator

The real time propagator in Thermal Ensemble is obtained by putting µ = 0 in the
GGE correlator

〈φ( ~x1, t1, )φ( ~x2, t2)〉β =
1

Z
Tr
(
e−βHφ( ~x1, t1, )φ( ~x2, t2)

)
(5.26)

which simplifies to

〈φ( ~x1, t1)φ( ~x2, t2)〉β =

∫ +∞

−∞

dk

8π2ιr

[
eιk(r+t)

eβk − 1
+

e+ιk(r−t)

−e−βk + 1

]

=

∫ +∞

−∞

dk

4π2x
sin kx

[
eιkt

eβk+µk3 − 1

] (5.27)

This is computed exactly

〈φ( ~x1, t1, )φ( ~x2, t2)〉β =
coth

(
π(r+t)
β

)
8πβr

+
coth

(
π(r−t)
β

)
8πβr

(5.28)

We are interested in the Equal Time Correlator, where t = 0

〈φ( ~x1, t1, )φ( ~x2, t1)〉β =
coth

(
πr
β

)
4πβr

(5.29)
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The first limit of which is

〈φ( ~x1, t1, )φ( ~x2, t1)〉β ≈
1

4πβr

(
1 + 2e−

2πr
β + · · ·

)
(5.30)

Note that this matches the GGE ETC when we put µ̄ = 0. The second limit is

〈φ( ~x1, t1, )φ( ~x2, t1)〉β ≈
1

4π2r2
+ · · · (5.31)

GGE ∂iφ∂iφ Correlator

The real time ∂iφ∂iφ propagator in GGE (with one other chemical potential) is
defined as

〈∂iφ( ~x1, t1, )∂iφ( ~x2, t2)〉β,µ =
1

Z
Tr
(
e−βH−µW4∂iφ( ~x1, t1, )∂iφ( ~x2, t2)

)
(5.32)

In 3 + 1 dimensions this is simplified to (see AppendixD for details)

〈∂iφ( ~x1, t1)∂iφ( ~x2, t2)〉β,µ =

∫ +∞

−∞

dk

8π2ιr

[
eιk(r+t)

eβk+µk3 − 1
+

e+ιk(r−t)

−e−βk−µk3 + 1

]
k2 (5.33)

where ~r = ~x1− ~x2, t = t1−t2 and k(r) = |~k|(|~r|). Again we solve this perturbatively
in µ̄.

For r > t

〈∂iφ( ~x1, t1), ∂iφ( ~x2, t2)〉β , µ = − π

β3r

(
1 + 20π2µ̄+O

(
µ̄3/2

))
×[

exp

[
−2π

β
(r + t)(1 + 4π2µ̄+O(µ̄2))

]
+ exp

[
−2π

β
(r − t)(1 + 4π2µ̄+O(µ̄2))

]]
(5.34)

while for t > r

〈∂iφ( ~x1, t1), ∂iφ( ~x2, t2)〉β , µ = − π

β3r

(
1 + 20π2µ̄+O

(
µ̄3/2

))
×[

exp

[
−2π

β
(r + t)(1 + 4π2µ̄+O(µ̄2))

]
− exp

[
−2π

β
(t− r)(1 + 4π2µ̄+O(µ̄2))

]]
(5.35)

The ETC just becomes (t2 = t1)

〈∂iφ( ~x1, t1), ∂iφ( ~x2, t1)〉β,µ = − 2π

β3r

(
1 + 20π2µ̄+O

(
µ̄3/2

))
exp

[
−2π

β
r(1 + 4π2µ̄+O(µ̄2))

]
(5.36)

Thermal ∂iφ∂iφ Correlator

Putting µ = 0 in the GGE correlator

〈∂iφ( ~x1, t1, )∂iφ( ~x2, t2)〉β =
1

Z
Tr
(
e−βH∂iφ( ~x1, t1, )∂iφ( ~x2, t2)

)
(5.37)
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which simplifies to

〈∂iφ( ~x1, t1)∂iφ( ~x2, t2)〉β =

∫ +∞

−∞

dk

8π2ιr

[
eιk(r+t)

eβk − 1
+

e+ιk(r−t)

−e−βk + 1

]
k2

=

∫ +∞

−∞

dk

4π2x
sin kx

[
eιkt

eβk+µk3 − 1

]
k2

(5.38)

This is again calculated exactly

〈∂iφ( ~x1, t1)∂iφ( ~x2, t2)〉β = −
π coth

(
π(r−t)
β

)
csch2

(
π(r−t)
β

)
4β3r

−
π coth

(
π(r+t)
β

)
csch2

(
π(r+t)
β

)
4β3r

(5.39)

The ETC (t = 0) is

〈∂iφ( ~x1, t1)∂iφ( ~x2, t2)〉β = −π coth(πr/β)csch2(πr/β)

2β3r
(5.40)

which in the first limit (r � β) is

= − 2π

rβ3
e−2πr/β + · · · (5.41)

and in the second limit (r � β)

= − 1

2π2r4
+O(r0) (5.42)

5.5 General comments
Comparing GGE with GCC we see that β = 4κ2 and µ = 4κ4. Transients are
obtained in the Ground State when we do the calculation without taking the deep
quench limit (unlike [7]). ∂φ is a descendant field in 4 dimensions and φ is a primary
field in 4 dimensions. Thus they have different conformal dimensions, however, they
both exhibit the same decay coefficient in the exponential which is, 2π

β
. In the small r

limit the correlator reduces to the spatial Greens function in d+1 dimensions.There
are differences in the pole structures of the ground state and the GCC and GGE. The
Ground State has a branch cut singularity, whereas GGE and GCC have discrete
poles. In the exponents of GCC and GGE, we observe mixing of relevant operators
with irrelevant operators. These can be treated as signatures of UV-IR mixing which
is discussed in the following chapter 6.The correlation function in the GGE, however,
is not obtained by doing a path integral from a partition function corresponding to a
modified Hamiltonian, that follows the dispersion relation ω = |k|+α|k|3. The time
evolution of the GGE still happens according to the Hamiltonian H with ω = |k|.
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Chapter 6

Wilsonian Renormalization and
UV-IR mixing

Consider the action,

S =

∫
dx4[(∂φ)2 +m2φ2 + g2φ6] (6.1)

In 4 dimensions the mass is a relevant coupling and g is an irrelevant coupling. The
two point correlation function of φ sees a correction in the mass of the field due to
the φ6 interaction term. Thus instead of decay of the two point correlation function
being ≈ e−mr we see that it goes as ≈ e−m̄r(1+ ḡ2

m̄2 ) where, m̄ = m
Λ
and ḡ = gΛ, where

Λ is the energy cutoff of the theory.Taking m and g to be constants, we see that
as we go to lower and lower energy scales, that is, Λ → 0, the second term in the
exponent goes to zero. Thus, preferentially the effect of g dies out at lower energies
(or large distances). The exponent does not have an RG invariant. Thus, we do not
see any UV-IR mixing. The above calculation has been inspired from chapter 12 of
Peskin and Shroeder [9].

6.1 Toy Model

Now, consider a toy model,

S =

∫
d4x
(

(∂φ)2 +m2φ2 + g2(∂2φ)2
)

(6.2)

Clearly in 4 spacetime dimensions, m is a relevant coupling and g is an irrelevant
coupling.Now, mg would be an RG invariant. The two point function of φ in 4
dimensional Euclidean space is given by,

〈0|φ(x2)φ(x1)|0〉 =

∫
d4p

eipx

p2 +m2 + g2p4
, x = x2 − x1 (6.3)
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The answer is a Bessel function which when expanded in the large r limit depends
on r, m, g and the product s = mg. Since s is a dimensionless parameter, we can
do a perturbative expansion in s, where up to leading order we get,

e−mr(1+ s2

2
+ 7s4

8
+···)
(√m

2
(
π

r
)

3
2 +O(s2) + · · ·) +O(

1

r
5
2

) + · · ·
)

(6.4)

+ e−
r
g

(1− s
2

2
− 5s4

8
+···)
(√ 1

2g
(
π

r
)

3
2 +O(s2) + · · ·) +O(

1

r
5
2

) + · · ·
)

(6.5)

Thus here we see that the dependence on g persists even at large r through the RG
invariant mg. This is very similar to what we obtain for the GGE and GCC where
irrelevant operators like µ and κ4 seem to affect the two point correlation functions
even at large by combining with relevant operators to form RG-invariants. This can
be viewed as UV-IR mixing, as was also discussed in [1].
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Chapter 7

Relation to Holography

There are two kinds of AdS/CFT dualities. Maldacena proposed a duality between a
CFT( N=4, Super-Yang-Mills theory) and a string theory living on a 10 dimensional
spacetime. The second kind was proposed by Polyakov and Klebanov and and gives a
correspondence between certain CFTs and type Vasiliev theory, which is the theory
of higher spin gravity. We discuss both the of the following concepts below and
explain how both these dualities are of interest to us.

7.1 The Maldacena Type duality
The N=4 super Yang Mills Theory is a 3 + 1 dimensional theory of Matrix/ Adjoint
fields such as gauge fields Aµij(~x, t), spinor fields ψαij(~x, t), or scalar fields φaij, where
i and j take values from 1 to N. The Lagrangian has a coupling gYM. At this
stage we define the t’Hooft coupling as λ = g2

YMN . This theory is dual to a String
theory on AdS5 × S5. The defining parameters in the String theory are gs, the
string coupling, ls, the string length, and RAdS, the radius of the AdS geometry.The
following relations connect the field theory with the string theory:

g2
YM = gs (7.1)

λ =
(RAdS

ls

)4

(7.2)

From the above two equations, it follows that, when I set RAdS = 1,then

GN =
1

N2
(7.3)

ls = λ−
1
4 (7.4)

We are interested in the physics as we vary λ and N . It turns out we get four
regimes.

The gravitational constantGN for the AdS theory is proportional to 1
N2 , and so as

N →∞, GN → 0. Now we know that in gravity, GN comes in the denominator of the
action. For example, the Einstein Hilbert action looks like S = 1

16πGN c−4

∫√
−gRd4x.
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Figure 7.1: The regimes of the holographic dual of N=4 SYM

Thus while computing the path integral, when we exponentiate the action, the GN

appears like ~, in the quantum action. Thus, taking GN to 0 is analogous to taking
~ to 0, which is the classical limit. We see that for a certain λ, as N decreases and
GN increases we traverse the quantum regime. As we make N larger and larger,
making GN smaller and smaller, we approach the classical regime.

Secondly, from 7.2 we see that the string length is comparable to the radius of
the AdS in the small λ limit. At large values of λ when ls � RAdS, the string theory
is not perceived and the geometry becomes like just AdS gravity.

Quasinormal decay
In the AdS/CFT correspondence, a thermal state in the CFT corresponds to

a large static black hole in the AdS bulk. Perturbing the thermal state is similar
to perturbing the black hole and the decay of an excitation in the AdS to a black
hole is the return to thermal equilibrium in the CFT. Now, AdS space with a black
hole can be viewed as a box, with boundaries at the AdS radius and the black hole
horizon. Now say we excite a field in the spacetime and we wish to see how this
excitation propagates. In the box picture, it has two reflecting surfaces at the two
boundaries, thus we expect standing wave solutions, which can be expanded in terms
of the normal modes characterized by discrete frequencies. An AdS with a black
hole can be viewed as a box with a reflecting boundary condition at infinity and an
absorbing boundary at the black hole horizon. In this case the solutions are given
by quasinormal modes characterized by complex frequencies and are found to decay
in time. Physically this means that any excitations will get absorbed by the black
hole eventually.

In our case we study a free scalar field theory which is trivially a CFT. This
would be similar to the λ → 0 limit of N=4 SYM, which in the large N limit
would correspond to Classical String theory. As of now, in our calculations we
have dealt with a single scalar, but its possible to extend our study this case. We
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understand thermalization in the field theory end through the concept of subsystem
thermalization as described in the Introduction. However, its interpretation in terms
of quasinormal decay in the bulk is incomplete because it is not dual to Classical
Gravity where such an interpretation is possible.

There are some quantities or observables that remain invariant from the string
theory end to the gravity end. For example, the Log of the number of microstates in
the weak λ limit matches exactly with the Bekenstein-Hawking entropy calculated
at large λ. Thus, we hope to find a connection between the decay of correlation
functions to thermal equilibrium in the free field theory and the quasinormal decay
to an AdS black hole. A thermal state in 2D CFT is dual to a BTZ black hole in
AdS3. Given the differences that we find in odd and even dimensions in the field
theory, an interesting question to study would be, what observables decay as a power
law in time after exciting the bulk. Much of my understanding of the above concepts
comes from studying [10], [11] and [12].

7.2 The Polyakov-Klebanov type duality

In this kind of duality, vector-valued (O(N)) conformal field theory in D dimensions
is dual to a Vasiliev theory in AdSD+1. Vasiliev theory is a theory of AdS gravity in
which spin-2 gravitons are coupled with higher spins. Say, in 2 + 1 dimensions we
have a theory constructed out of vector-valued fields φi(~x, t), by which I mean they
exhibit some internal symmetries which make them of the O(N) kind. They could
have a simple Lagrangian such as L = (∂µφi)

2 +g(φiφi)
2. Now in 2+1 dimensions, g

is a relevant coupling. Thus, by arguments of Wilsonian RG flow, its effect increases
at lower energies( IR). Thus, there are cases when this theory can become conformal.
One is at g = 0, which is the UV CFT, and second, when g = g∗, which is an RG
fixed point (called the Wilson-Fischer fixed point) and is the IR CFT. In general,
we can obtain CFTs which are RG fixed points of the "vector" theories which are
dual to higher spin gravity in one higher spacetime dimension. When we talk of free
field theory, we take the UV CFT, where the coupling is zero. In D = 2, this kind
of duality is described by the Gaberdiel-Gopakumar duality [13]. Without going
into too much detail, I would like to put forth that the CFT is labeled by another
parameter. Let’s call it λ̂. It turns out that when λ̂ = 0, the theory consists of free
fermions and and when λ̂ = 1, the theory consists of free bosons.

Now these CFTs live on the boundary of the holographic gravity theory. If these
CFTs exhibit higher number of conserved charges, corresponding to higher number
of conserved currents, then they couple to the higher spin gravity fields from the
bulk. How do we see this? When we have a theory with conserved currents, the
generating functional for the n-point functions of the conserved currents is given by,
Z[Aµ] =

∫
Dψ exp

{
(iSo[ψ] +

∫
ĀµJ

µ
}
, where Āµ can be thought of as a gauge field

coupling to the conserved current. These functionals have the property, z[Aµ] =
Z[Aµ+∂µλ], which is easy to show given, ∂µJµ = 0. If Aµ is a field in the bulk, then
Āµ is the value it takes on the boundary. Similarly, a conserved currents of the form
Jµν , Jµνρ, Jµνρσ couple to higher spin gravity gauge fields like, Aµν , Aµνρ, Aµνρσ. In
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2D, these extra conserved currents in the field theory have corresponding conserved
charges which satisfy the W∞ algebra. As mentioned earlier, the presence of one
higher spin conserved current demands the existence of infinitely many higher spin
conserved currents. This is so because the algebra is not closed for a finite number of
them. In case of free bosons, only the currents with even number of indices survive
(W2,W4,W6, · · ·). The 2nd rank tensor Jµν is actually T µν . We see, in 2D, that
the OPE expansions of the energy momentum tensor with a W operator of rank n,
depend on other W operators of other ranks. Naively,three point functions in the
field theory correspond to three point vertices of higher spin gauge fields in the bulk.
Thus, we see that the three point function of the stress energy tensor with other W s
would imply the coupling of spin-2 gauge field with higher spins.

Keeping the above in mind, we can pose similar questions about the relation of
observables in the bulk and in the field theory. It was shown in [2] that a decay to
a GGE in the field theory corresponds to a collapse to a higher spin black hole. In
two dimensions the relaxation to GGE was exponential and the exponent exactly
matched the imaginary part of the quasinormal frequency in AdS3. As explored by
both [2] and [1], the exponent was 2π

β
(∆k+

∑
n µ̃Qn,k), where µ̃ are like the chemical

potentials associated with the higher conserved charges and ∆k corresponds to the
conformal dimension of the operator.

The conformal dimension of an operator charges with dimension, thus if these
results were to hold true in higher dimensions we would expect the relaxation rate
to change with dimension. However, quite surprisingly for all d + 1 with d odd,
we see the same decay rate 2π

β
. What is more surprising is that for even d, the

decay is a power law and not an exponential. The power law however depends on
the dimension and the relaxation in time is ≈ t−d+2. Clearly then, the holographic
duality is not well understood. It is also true that Vasiliev theory has been studied
in 2D and 3D. Thus in principle, we should be able to compare our 2 + 1 dimesional
results with calculations in AdS4 Vasiliev theory.
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Appendix A

Thermal and GGE

The GGE 2 point function is defined as

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

Z
Tr(e−βH−µW4φ( ~x1, t1, )φ( ~x2, t2))

=
1

Z

∑
{Nk}

〈{Nk}|e−βH−µW4φ( ~x1, t1)φ( ~x2, t2)|{Nk}〉
(A.1)

Using the partial Fourier transform

φ(~x, t) =

∫
eι
~k·~xφ(~k, t)dk (A.2)

where

φ(~k, t) = a(~k)u(~k, t) + a†( ~−k)u∗( ~−k, t) (A.3)

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

Z

∑
{Nk}

〈{Nk}|e−βH−µW4

∫ ∫
ddk

(2π)d
ddq

(2π)d
eι(
~k· ~x1+~q· ~x2)

(
a(~k)u(~k, t1)

+ a†( ~−k)u∗( ~−k, t1))(a(~q)u(~q, t2) + a†( ~−q)u∗( ~−q, t2)
)
|{Nk}〉

(A.4)

Out of the resulting four terms only two terms give non-zero values. Since H =∑
kNk|~k| and W4 =

∑
kNk|~k|3

e−βH−µW4|{Nk}〉 = e−β
∑
k Nk|~k|−µ

∑
k Nk|~k|3|{Nk}〉 (A.5)

Thus we get

〈φ( ~x1, t1, )φ( ~x2, t2)〉β ,µ =
1

Z

∫ ∫
ddk

(2π)d
ddq

(2π)d
eι(
~k· ~x1+~q· ~x2)

∑
{Nk}

e−β
∑

k Nk|~k|−µ
∑

k Nk|~k|3

〈{Nk}|(a(~k)u(~k, t1)a†( ~−q)u∗( ~−q, t2) + a†( ~−k)u∗( ~−k, t1)a(~q)u(~q, t2))|{Nk}〉
(A.6)
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Using the commutation relation

[a(~k), a†(−~q)] = (2π)dδd(~k + ~q) (A.7)

and the form of the number operator

a†(−~q)a(~k) = Nk(2π)dδd(~k + ~q) (A.8)

Therefore

〈φ( ~x1, t1, )φ( ~x2, t2)〉β ,µ =
1

Z

∫ ∫
ddkddq

(2π)2d
eι(
~k· ~x1+~q· ~x2)

∑
{Nk}

e
−β

∑
k Nk|~k|−µ

∑
{Nk}Nk|~k|3(2π)dδd(~k + ~q)

[
〈{Nk}|(Nk + 1)|{Nk}〉u(~k, t1)u∗( ~−q, t2) + 〈{Nk}|Nq|{Nk}〉u∗( ~−k, t1)u(~q, t2)

]
(A.9)

Doing the q integral for the first term and k integral for the second and then writing
it in terms of a single dummy variable:

〈φ( ~x1, t1, )φ( ~x2, t2)〉β ,µ =
1

Z

∫
ddk

(2π)d

∑
{Nk}

e
−β

∑
k Nk|~k|−µ

∑
{Nk}Nk|~k|3

[
〈{Nk}|(Nk + 1)|{Nk}〉

u(~k, t1)u∗(~k, t2)eι
~k·( ~x1− ~x2) + 〈{Nk}|Nk|{Nk}〉u∗(~k, t1)u(~k, t2)e−ι

~k·( ~x1− ~x2)
]

(A.10)

Since free scalar fields are bosons the number density is that of the Bose-Einstein dis-
tribution. Directly using 〈Nk〉 = 1

Z

∑
{Nk} e

−β
∑
k Nk|~k|−µ

∑
{Nk}

Nk|~k|3 ,〈{Nk}|Nk|{Nk}〉 =
1

eβ|~k|+µ|~k|3−1
, we get

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

2

∫
ddk

(2π)d

[e−ι|~k|(t1−t2)eι
~k·( ~x1− ~x2)

|~k|(1− e−β|~k|+µ|~k|3)
+
eι|
~k|(t1−t2)e−ι

~k·( ~x1− ~x2)

|~k|(eβ|~k|+µ|~k|3 − 1)

]
(A.11)

Defining ~x = ~x1− ~x2, t = t1− t2 and G± = 1

|~k|(±e±(βk+µk3)∓1)

〈φ( ~x1, t1)φ( ~x2, t2)〉β,µ =
1

2

∫
ddk

(2π)d

[
G−e

ι~k·~xe−ι|
~k|t +G+e

−ι~k·~xeι|
~k|t
]

(A.12)
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Appendix B

Calculation Details of Ground state
correlator

The two point function (at equal times) is calculated as

〈0in|φ(~r, t)φ(0, t)|0in〉 =

∫
dk

2π
uin(~k, t)u∗in(~k, t)ei

~k·~r

=

∫
d3k

(2π)3

(
2k2 +m2 −m2Cos(2kt)

4(k2 +m2)
1
2 k2

)
ei
~k.~r

(B.1)

doing the angular integral1, we get

=

∫ ∞
−∞

dk

16π2

(
2k2 +m2 −m2 Cos(2kt)

(k2 +m2)
1
2

)(
eikr

ikr

)
(B.2)

Lets look at the time independent part first

=

∫ ∞
−∞

dk

16π2

(
2k2 +m2

k(k2 +m2)
1
2

)(
eikr

ir

)
(B.3)

Assuming r > 0 we close the contour always in the upper half plane so that integral
along C2 and along C6 is 0. Integral along C3 and C5 is identical. Now integral along
C1 +C ′1 +2 C3 = 0 and integral along C ′1 = −πi×Re(0) = −m

16πr from half residue theorem.
The integral along C3 after change variables, k = im (1 + u/mr) then (dk = i

r du) is in
the following form

−C3 =
e−mr

16π2 r2

∫ ∞
0

du e−u
(
1 + 2 u

mr

(
2 + u

mr

))(
1 + u

mr

)√
u
mr

(
2 + u

mr

) (B.4)

1∫
d3k

(2π)3
ei
~k.~rf(|k|) =

1

2π2 r

∫ ∞
0

dk k f(k) sin(kr) =
1

4π2r i

[∫ ∞
0

eikrkf(k)dk +

∫ 0

−∞
eikrkf(−k)dk

]
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Figure B.1: Singularity Structure of Integrand in ground state Fourier integral

In the asymptotics of mr we expand above function around u
mr = 0

−C3 =
e−mr

16π2 r2

[ ∫ ∞
0

e−u
√
mr√

2u
du +

∫ ∞
0

e−u 11
√
u

4
√

2 mr
du +

∫ ∞
0
O
(

(mr)
−3
2

)
e−uu

3
2du

]
(B.5)

−C3 =
e−mr

16π2 r2

[√
mr

2
Γ

(
1

2

)
+

11

4
√

2 mr
Γ

(
3

2

)
+ O

(
1

(mr)
3
2

)]
(B.6)

In the asymptotic limit mr � 1 we only consider the first term∫ ∞
−∞

dk

16π2

(
2k2 +m2

k(k2 +m2)
1
2

)(
eikr

ir

)
= −

(
C ′1 + 2C3

)
=

m

16 π r
+

(
m2

8
√

2 π
3
2

)
e−mr (mr)−

3
2

(B.7)

now lets look at time dependent part, we follow the exact same procedure followed for the
time independent part.

=

∫ ∞
−∞

dk

32π2

(
−m2

i r k (k2 +m2)
1
2

)
eik(r+2t) +

∫ ∞
−∞

dk

32π2

(
−m2

i r k (k2 +m2)
1
2

)
eik(r−2t)

(B.8)

We consider a general form of the above two integrals∫ ∞
−∞

dk

32π2

(
−m2

i r k (k2 +m2)
1
2

)
eika

We try to integrate it along branch cuts, we will have to choose the contour depending upon
the Sign(a), when a > 0, C1 = (iπRe(0)− 2C3) and when a < 0 C1 = −(iπRe(0) + 2C3),
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iπ × Re(0) = −m/32πr and integral along C3 is evaluated using the same techniques as
before.

C1 =
−m Sign(a)

32π r
+

e−|a|m

16π2|a|r

[√
|a|m

2
Γ

(
1

2

)
− 5

4
√

2|a|m
Γ

(
3

2

)
+O

(
1

(m|a|)
3
2

)]
(B.9)

Using above results, for r > 2t and in the limit m(r + 2t)� 1, m(r − 2t)� 1∫ ∞
−∞

dk

16π2

(
−m2 Cos(2kt)

(k2 +m2)
1
2

)(
eikr

ikr

)
≈ −m

16 π r
+

m2

16
√

2 π
3
2

(
e−m(r+2t)

mr
√
m(r + 2t)

+
e−m(r−2t)

mr
√
m(r − 2t)

)
(B.10)

for r < 2t and in the limit m(r + 2t)� 1, m(2t− r)� 1∫ ∞
−∞

dk

16π2

(
−m2 Cos(2kt)

(k2 +m2)
1
2

)(
eikr

ikr

)
≈ m2

16
√

2 π
3
2

(
e−m(r+2t)

mr
√
m(r + 2t)

+
e−m(2t−r)

mr
√
m(2t− r)

)
(B.11)

Hence in (1+3) dimension 2 point function after critical quench in the asymptotic limit
from Equation B.7, Equation B.10 and Equation B.11 following expression

〈0in|φ(r, t)φ(0, t)|0in〉 =


m

16 π r + m2

16
√

2 π
3
2

(
2e−mr

mr
√
mr

+ e−m(r+2t)

mr
√
m(r+2t)

+ e−m(2t−r)

mr
√
m(2t−r)

)
+ · · · r < 2t

m2

16
√

2 π
3
2

(
2e−mr

mr
√
mr

+ e−m(r+2t)

mr
√
m(r+2t)

+ e−m(r−2t)

mr
√
m(r−2t)

)
+ · · · r > 2t

(B.12)

We are interested in the long time behavior of the correlation function. Thus taking t→∞,
in which case r < 2t.

=
m

16πr
+

√
me−mr

8
√

2π
3
2 r
√
r

+ · · · (B.13)

Thus the decay rate as seen from the slowest spatial transient is −mr.
For the 〈∂iφ∂iφ〉 correlator, the derivatives pull an extra factor of k2. This kills the double
pole at the origin. Moreover we can do the integral directly in Mathematica to get the
answer quoted in the main text.
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Appendix C

Calculation Details GCC/CC
correlator

We have

〈f4|φ(~0, t1, )φ(~r, t2)|f4〉 =

∫
d3k

(2π)3

eι
~k·~r

2|~k|

(
coth

(
2|~k|(κ2 + κ4k

2)
)
− cos(2kt) csch

(
2|~k|(κ2 + κ4k

2)
))

=

∫ ∞
0

k2dk

(2π)2

sin(kr)

k2r

(
coth

(
2k(κ2 + κ4k

2)
)
− cos(2kt) csch

(
2k(κ2 + κ4k

2)
))

=
1

8π2ιr

∫ ∞
∞

dkeιkr
(

coth
(
2k(κ2 + κ4k

2)
)
− cos(2kt) csch

(
2k(κ2 + κ4k

2)
))

=
1

8π2ιr

∫ ∞
∞

dk
(
eιkr coth

(
2k(κ2 + κ4k

2)
)
− 1

2
eιk(r+2t) csch

(
2k(κ2 + κ4k

2)
)

− 1

2
eιk(r−2t) csch

(
2k(κ2 + κ4k

2)
))

(C.1)

For the CC case (κ4 = 0), the Fourier Transform is evaluated directly in Mathematica.
The harder case is gCC. For simplicity we break the integral as follows

=

∫ ∞
−∞

dk

16 π2 i r

2 eikr coth(2k(κ2 + κ4 k
2))︸ ︷︷ ︸

T1(k)

−eik(r+2t) cosech(2k(κ2 + κ4 k
2))︸ ︷︷ ︸

T2(k)

−eik(r−2t) cosech(2k(κ2 + κ4 k
2))︸ ︷︷ ︸

T3(k)


(C.2)

The integrand has poles at the solutions of

2k κ2 + 2κ4 k
3 = i n π (C.3)

here we introduce a dimensionless parameter κ̄4 = κ4/κ
3
2, in the small expansion roots of

the above equation are

k1(n) =
iπ

2κ2

(
n+

π2n3

4
κ̄4 +O(κ̄4

2)

)
k2(n) =

i

κ2

(
1√
κ̄4
− πn

4
− 3π2n2

32

√
κ̄4 +O(κ̄4)

)
k3(n) = − i

κ2

(
1√
κ̄4

+
πn

4
− 3π2n2

32

√
κ̄4 +O(κ̄4)

) (C.4)
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The singularity structure for the integrand in Equation C.2 is given in Figure C.1 Consider

C1

C2

C ′1

C ′2

Im(k)

Re(k)

Figure C.1: Singularity Structure of Integrand in Equation C.2

general form of each term in the integral

=

∫ ∞
−∞

dk

16 π2 i r
eikaf(k) (C.5)

for a > 0 we close the contour in the upper half of the complex plane and for a < 0 we
close it in the lower half, then principle value of Equation C.5

C1 + C ′1 + C2 = [Sum of all the poles sitting on positive Im(k) axis] a > 0

C1 + C ′1 + C ′2 = − [Sum of all the poles sitting on non-positive Im(k) axis] a < 0
(C.6)

Integral along C2 = C ′2 = 0 and integral along C ′1 = −πi×Re(0) from half residue theorem.

C1 = πi×Re(0) + [Sum of all the poles sitting on positive Im(k) axis] a > 0

C1 = −πi×Re(0)− [Sum of all the poles sitting on negative Im(k) axis] a < 0
(C.7)

We will try to obtain result perturbatively in κ̄4, for any value of n with κ̄4 � 1, k2(n)
and k3(n) will give us very fast decaying transients and k1(0) = 0 will give us the slowest
decaying transient, next immediate fast decaying transients will be given by poles at k1(1)
and k1(−1). hence in the small κ̄4 limit we only consider contribution from poles at k1(0),
k1(1) and k1(−1). Contribution of a pole at k1(n) for each term in Equation C.2 is

2πi×Re[T1(k1(n))] =
eik1(n)r

8πrκ4 (k1(n)− k2(n)) (k1(n)− k3(n))

2πi×Re[T2(k1(n))] =
(−1)n+1 eik1(n)(r+2t)

16πrκ4 (k1(n)− k2(n)) (k1(n)− k3(n))
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2πi×Re[T3(k1(n))] =
(−1)n+1 eik1(n)(r−2t)

16πrκ4 (k1(n)− k2(n)) (k1(n)− k3(n))
(C.8)

To evaluate Equation C.8 perturbatively in κ̄4 we consider expansion of the following
quantity

1

16πrκ4(k1(n)− k2(n))(k1(n)− k3(n))
≈ 1

16πrκ2

(
1 +

3π2 n2

4
κ̄4 + · · ·

)
(C.9)

For r > 2t, we can see from Equation C.8 that contribution from pole at k1(0) from all three
terms add up to 0 (a > 0 case for all three terms). We close the contour in the upper half of
the complex plane and using Equation C.4,Equation C.7, Equation C.8 and Equation C.9,
we obtain expression for leading order (contribution from k1(1)) perturbatively in κ̄4,

≈ 1

16πr κ2

(
1 +

3π2

4
κ̄4 + · · ·

)[
2 exp

(
− π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
r

)
+

exp

(
− π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
(r + 2t)

)
+ exp

(
− π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
(r − 2t)

)]
(C.10)

now when r < 2t we evaluate first 2 terms in Equation C.2 by using results for a > 0 case
in Equation C.7 and for the third term we use results for a < 0 case. we get contributions
from poles at k1(0) and k1(1) for first 2 terms and contribution from k1(0) and k1(−1) for
the last term, again using Equation C.4,Equation C.7, Equation C.8 and Equation C.9, we
obtain expression for leading order and first transient perturbatively in κ̄4.

≈ 1

16πr κ2
+

1

16πr κ2

(
1 +

3π2

4
κ̄4 + · · ·

)[
2 exp

(
− π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
r

)
+

exp

(
− π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
(r + 2t)

)
− exp

(
− π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
(2t− r)

)]
(C.11)

Taking t→∞ limit

=
1

16πrκ2

(
1 +

3π2

4
κ̄4

)
[2 exp

(
− π

2κ2

(
1 +

π2

8κ2
κ̄4 + · · ·

)
r

)
] (C.12)

When κ̄4 = 0 this squeezed state calculation will be reduced to CC state calculation. Again
the 〈∂iφ∂iφ〉 calculation is very similar and we do not include it in here.
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Appendix D

Calculation Details of Thermal/GGE
correlator

The GGE 2-point function is

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

Z
Tr(e−βH−µW4φ( ~x1, t1, )φ( ~x2, t2)) (D.1)

=
1

Z

∑
{Nk}

〈{Nk}|e−βH−µW4φ( ~x1, t1)φ( ~x2, t2)|{Nk}〉 (D.2)

Using the partial Fourier transform for the field and the ‘mode expansion’

φ(~x, t) =

∫
eι
~k·~xφ(~k, t)dk (D.3)

where

φ(~k, t) = a(~k)u(~k, t) + a†( ~−k)u∗( ~−k, t) (D.4)

We use the occupation number representation of the Hamiltonian to continue further.

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

Z

∑
{Nk}

〈{Nk}|e−βH−µW4

∫ ∫
ddk

(2π)d
ddq

(2π)d
eι(
~k· ~x1+~q· ~x2) (D.5)

(a(~k)u(~k, t1) + a†( ~−k)u∗( ~−k, t1))(a(~q)u(~q, t2) + a†( ~−q)u∗( ~−q, t2))|{Nk}〉
(D.6)

Out of the resulting four terms only two terms give non-zero values. Since H =
∑

kNk|~k|
and W4 =

∑
kNk|~k|3

e−βH−µW4 |{Nk}〉 = e−β
∑
k Nk|~k|−µ

∑
k Nk|~k|3 |{Nk}〉 (D.7)

Thus we get

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

Z

∫ ∫
ddk

(2π)d
ddq

(2π)d
eι(
~k· ~x1+~q· ~x2)

∑
{Nk}

e−β
∑
k Nk|~k|−µ

∑
k Nk|~k|3

(D.8)
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〈{Nk}|(a(~k)u(~k, t1)a†( ~−q)u∗( ~−q, t2) + a†( ~−k)u∗( ~−k, t1)a(~q)u(~q, t2))|{Nk}〉
(D.9)

Using the commutation relation

[a(~k), a†(−~q)] = (2π)dδd(~k + ~q) (D.10)

and the form of the number operator

a†(−~q)a(~k) = Nk(2π)dδd(~k + ~q) (D.11)

Therefore

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

Z

∫ ∫
ddk

(2π)d
ddq

(2π)d
eι(
~k· ~x1+~q· ~x2)

∑
{Nk}

e
−β
∑
k Nk|~k|−µ

∑
{Nk}

Nk|~k|3(2π)dδd(~k + ~q)

(D.12)(
〈{Nk}|(Nk + 1)|{Nk}〉u(~k, t1)u∗( ~−q, t2) + 〈{Nk}|Nq|{Nk}〉u∗( ~−k, t1)u(~q, t2)

)
(D.13)

Doing the q integral for the first term and k integral for the second and then writing it in
terms of a single dummy variable:

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

Z

∫
ddk

(2π)d

∑
{Nk}

e
−β
∑
k Nk|~k|−µ

∑
{Nk}

Nk|~k|3
[
〈{Nk}|(Nk + 1)|{Nk}〉

(D.14)

u(~k, t1)u∗(~k, t2)eι
~k·( ~x1− ~x2) + 〈{Nk}|Nk|{Nk}〉u∗(~k, t1)u(~k, t2)e−ι

~k·( ~x1− ~x2)
]

(D.15)

Directly using 〈Nk〉 = 1
Z

∑
{Nk} e

−β
∑
k Nk|~k|−µ

∑
{Nk}

Nk|~k|3〈{Nk}|Nk|{Nk}〉 = 1

eβ|~k|+µ|~k|3−1
,

we get

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

2

∫
ddk

(2π)d

[e−ι|~k|(t1−t2)eι
~k·( ~x1− ~x2)

|~k|(1− e−β|~k|+µ|~k|3)
+
eι|
~k|(t1−t2)e−ι

~k·( ~x1− ~x2)

|~k|(eβ|~k|+µ|~k|3 − 1)

]
(D.16)

Defining ~x = ~x1− ~x2, t = t1− t2 and G± = 1

|~k|(±e±(β|k|+µ|k|3)∓1)

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =
1

2

∫
ddk

(2π)d

[
G−e

ι~k·~xe−ι|
~k|t +G+e

−ι~k·~xeι|
~k|t
]

(D.17)

For d = 3, doing the angular integral∫
d3k

(2π)3
e±ιkr cos θ =

∫ ∞
0

k2dk

(2π)2

2 sin(kr)

kr
(D.18)

=

∫ ∞
−∞

k2dk

4π2

sin(kr)

kr
(D.19)

=
1

8π2ιr

∫ ∞
−∞

kdk(eιkr − e−ιkr) (D.20)
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=
1

4π2ιr

∫ ∞
−∞

kdkeιkr (D.21)

gives

〈φ( ~x1, t1, )φ( ~x2, t2)〉β,µ =

∫ +∞

−∞

dk

8π2ιx

[ eιk(x+t)

eβk+µk3 − 1
+

e+ιk(x−t)

−e−βk−µk3 + 1

]
(D.22)

which is what we reported in the main report. For the thermal case (µ = 0 ), the ’Fourier
transform’ can be done directly in Mathematica, giving

〈φ( ~x1, t1, )φ( ~x2, t2)〉β =
coth

(
π(r+t)
β

)
8πβr

+
coth

(
π(r−t)
β

)
8πβr

(D.23)

while for the GGE case we have to perform a careful contour integral. The singularity
structure for the above integral is shown in the figure below

Singularity Structure of Integrand of (30) in 1+3 dimensions

C1

C2

C ′1

C ′2

Im(k)

Re(k)

The poles are at the solution of the equation

β

2
k +

µ

2
k3 = i n π (D.24)

This is the exact same singularity structure for squeezed states with β = 4κ2 and µ = 4κ4

identification. So following the same procedure the smallest singularity is at k = 0, when
r > t for both the terms in the integrand we choose a contour which closes in the upper
half of the complex plane. Both of them have the same contribution from the pole at k = 0
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which is 1
4βπr when integrated along C ′1 and along C1 both terms get 0 contribution from

k = 0 poles hence the average along C ′1 and C1 is 1/(4βπr).
In the case when t > r for the 2nd term we have to choose C ′2 which gives a -ve sign

for the contribution from the second term and hence for r > t contribution from pole at
k = 0 is 0.

Defining µ̄ = µ
β3 . Lets look at the contribution from the next smallest poles which is

n = ±1 we can write β k + µ k3 = µ(k − k1)(k − k2)(k − k3) + I 2nπ where k1, k2 and k3

are same as before with the β = 4κ2 and µ = 4κ4 identification.

Now when t > r for the first term k1(1) is the closest pole and for the second term
k1(−1) is the closest pole hence we have

≈ 1

4πrβ

(
1 + 12π2µ̄+ · · ·

) [
exp

(
−2π

β

(
1 + 4π2µ̄+ · · ·

)
(t+ r)

)
− exp

(
−2π

β

(
1 + 4π2µ̄+ · · ·

)
(t− r)

)]
(D.25)

when t < r for both terms next smallest pole is at k1(1) and in that case we have

≈ 1

4πrβ
+

1

4πrβ

(
1 + 12π2µ̄+ · · ·

) [
exp

(
−2π

β

(
1 + 4π2µ̄+ · · ·

)
(t+ r)

)
+ exp

(
−2π

β

(
1 + 4π2µ̄+ · · ·

)
(r − t)

)]
(D.26)

The 〈∂iφ∂iφ〉 correlator is not very different. All it does is that the derivatives pull
an extra factor of k2. This kills the pole at the origin. and the above calculation is
almost same so we do not repeat it here.
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