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Abstract

The fate of information contained in an object when it falls into a black hole has been a
matter of debate since Hawking’s discovery that all black holes emit radiation and can
eventually evaporate away. Though there has been no complete resolution to the black
hole information puzzle, it is now widely accepted that black holes do not destroy infor-
mation and that one can, at least in principle, recover this information from the radiation.

As it turns out, the relevant time scale for this recovery is the time required by the black
hole to scramble the information over its degrees of freedom. This result has led to
an ongoing fruitful exchange of ideas between quantum chaos, quantum information,
quantum matter and black hole physics, which we discuss and attempt to summarise in
this thesis.

Field theories, especially the ones that are solvable, will be another focus of this thesis.
In particular, we discuss two such models, the Sachdev-Ye-Kitaev (SYK) model and
one of its variants, the charged SYK model, a generalised version of the SYK model
with Dirac fermions, with a global U(1) symmetry. We also provide a new derivation
for the effective action of the charged SYK model.
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Chapter 1

Introduction

1.1 Chaos, Scrambling and Black Holes

Trying to understand nature’s ways is an ambitious task that is made further challeng-
ing by our biases and the limitations of human intuition. It has been partly because of
such a bias, having its roots in the difficulty to analyse chaotic systems, that despite its
ubiquity, very little was understood about chaos till roughly the middle of the previous
century. This changed significantly in the sixties when computers made studying com-
plicated and strongly-interacting classical systems really easy; these numerical studies
led to some very useful and interesting insights into our understanding of chaos.

A typical manifestation of chaos is the growth of small initial perturbations to sig-
nificantly change the configuration of the system at later times — a marked sensitive
dependence on initial conditions. In a classical set-up, this notion of chaos can be
characterised as the exponential divergence of nearby phase space trajectories. For an
observable g of a chaotic classical system evolving in time #, one expects

dq(t)
dq(0)

~ expArt, (1.1)

where the Lyapunov exponent A; dictates how chaotic the system is. In contrast, the
Lyapunov exponent for a non-chaotic system is zero — the distance between two phase
space trajectories may increase, say, as a power function in time, but never exponen-
tially.

Interpreting classical chaos as the classical limit of an underlying quantum mechanical
phenomenon is rather tricky, and for a very basic reason: a complete understanding of
quantum chaos itself remains elusive [1]]. It is worthwhile pursuing this goal of decoding
the meaning of chaos in quantum systems — it turns out to be a prerequisite to answering
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many important questions, a large fraction of which come from quantum information,
quantum matter and black hole physics.

However, any attempts to directly extend our classical definition to quantum chaos are
rendered useless by the meaninglessness of the notion of trajectories in quantum me-
chanics. And because memory and processing requirements for simulating quantum
systems increases exponentially with the number of components, using computers to
study quantum systems that are complicated enough to exhibit chaos remains particu-
larly challenging as well.

Let us make a modest attempt to answer an apparently straightforward question, though:
what happens to small perturbations made to a quantum chaotic system? It is intuitive to
expect this perturbation to grow in time and spread throughout the system. The spread-
ing of the initial perturbation over the entire system can be equivalently described as the
delocalisation or scrambling of the information about the initial state over the degrees
of freedom of the system [2].

This interpretation of the growth of perturbation in quantum systems as the scrambling
of information is central to many quantum information problems and to much of what
follows here. In the recent years, these ideas have also helped us gain insights into
understanding the fate of information when something falls into a black hole [3, 4] —
a problem which in turn promises to teach us valuable lessons about the features of a
quantum theory of gravity. More on this in the next chapter, we will first focus on the
arsenal needed to tackle the challenges that lie ahead.

1.2 Out-of-Time-Ordered Correlators

The formulation of a quantitative description of quantum chaos requires us to go back
to our classical definition where the dependence of the final position on small changes
in the initial position is essentially the Poisson bracket between ¢(¢) and p(0):

={q(t),p(0)} (1.2)

which corresponds to the quantity - [g(¢), p(0)], the commutator between g(t) and p(0)
[S]. We can use this relation in our semi-classical description where after substituting
q and p with two generic Hermitian operators V and W defined on the system, we can
treat the growth of the quantity [W(z),V(0)] with time as a signature of chaos. This
quantity measures the effect of perturbations by V on W at later times ¢ and vice versa.



However, to diagnose chaos in generic quantum systems, it makes sense using a positive
definite quantity instead. This motivates the introduction of the thermal expectation
value of the square of the commutator at temperature 7 = 1/(kgf3):

Ct) = —(W(1),V(0)]*), (1.3)
the growth of which can treated as a signature of chaos in the systemE]

What does it mean for a quantity like C(t) to be a diagnostic of chaos? Chaos results
in a non-trivial growth of the operator W (¢) that appears in which is manifested
in the growth of C(¢) at large times [S]. This allows us to use C(¢) as a measure of
the strength of chaos, and equivalently, of the rate at which the system scrambles infor-
mation. Scrambling time, the time scale at which C(z) grows to become significant, is
essentially the minimum time the system takes to delocalise the initial information in a
manner that measurements, unless done over a large fraction of the degrees of freedom
of the system [2]], cannot distinguish distinct initial states.

A physical quantity of particular interest for discussions on quantum chaos is
F(1) = (W(@®)'V(0)'W()V(0)), (1.4)

the out-of-time-ordered (OTO) correlator — the ordering of the operators lending the
quantity its name. This particular correlator is related to the commutator in|1.3|through
the relation:

C(t) =2(1 —Re[F(1)]), (1.5)

where Re[F ()] denotes the real part of the quantity F (7). It can be viewed as an inner
product of two states: one given by first applying V(0) and then W(¢), and the other
given by applying W (¢) followed by V(0). It is an artefact of the chaotic dynamics of
the system, that at sufficiently large times, these states are quite different from each other
and the overlap between them is small [6]]. This is what distinguishes the behaviour of
F (t) from that of a time-ordered correlator of the form (W (t)TW (t)"V (0)V(0)) p atlarge
times, making it a suitable diagnostic of chaos.

1.3 Systems with Strongest Chaos

Early attempts to study chaos almost completely relied on numerical simulations and
random matrix analysis of the spectral statistics of chaotic systems [1, [7]. The more
recent introduction of the out-of-time-ordered correlators has been particularly fruitful

'Here (-) B = Z'tr[ePH.], with Z and H as the partition function and the Hamiltonian of the system
respectively, denotes the thermal expectation value.



— apart from helping characterise chaos, it has also resulted in improved understanding
of the connections between the physics of black holes and that of quantum many-body
systems [8, 9, [10].

For black holes, time-ordered correlators of physical observables do not change. How-
ever, at early times, but after the decay of all two-point correlation functions, the OTO
correlators for black holes take a particular form that depends on time # in the following
manner [10, [11]]:

(D(t)C(0)B(t)A(0)) — (DB)(CA) o< M (1.6)

The Lyapunov exponent A; equals 2T for a black hole at temperature T, the Hawking
temperature of the black holeEI

Maldacena, Shenker and Stanford showed that this rate of exponential growth is, in fact,
the fastest possible in quantum mechanics [5]. Nature appears to limit how chaotic a
system can be — it bounds the value of the Lyapunov exponent such that:

27'L'kBT

A < 2

(1.7)
for any quantum mechanical system at a temperature 7.

As we have come to realise, this notion of maximal chaos has a very central role to
play in understanding black holes. Quantum systems which also exhibit the saturation
of this bound are potential candidates for providing dual description to black holes [8]].
In particular, models that are solvable can possibly can help us gain useful insights into
the quantum aspects of gravity.

One such model that has attracted a lot of attention over the last few years, and is also
the primary focus of this thesis, is the Sachdev-Ye-Kitaev (SYK) model [8, 9], a one-
dimensional quantum mechanical model of N Majorana fermions.

The Hamiltonian for the SYK model is

H=Y" jiimXiXkXi Xm (1.8)
iklm

and the couplings j,, come from a random Gaussian distribution. What makes this
model hugely fascinating is that it is solvable in the large N limit and that the growth of
the OTO correlators saturates the bound on chaos [8, 9].

2We will formally define and derive the Hawking temperature in the next chapter.
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Since the SYK model and its variants (one of which we will discuss in Chapter 4)
are near conformal field theories which exhibit maximal chaos, it has been suggested
[8, 15,112, [13]] that they are dual to near extremal black holes in two-dimensional anti-de
Sitter space, making them interesting and possibly useful for understanding black holes
better.



Chapter 2

Black Holes as Scramblers

“Alice: How long is forever?
White Rabbit: Sometimes, just one second."
Lewis Carroll, Alice in Wonderland

2.1 The Information Puzzle

Alice has a secret diary, but unlike the traditional quantum information set-ups, where
Alice and Bob function by cooperation, this is a story of competition. Naively thinking
that a black hole will keep the contents of her diary safely hidden behind its event
horizon forever, Alice throws it into a black hole. What she doesn’t know (but Bob does)
is that black holes radiate everything that they swallow; albeit in a thermal fashion. But
can Bob really recover and reconstruct the information contained in Alice’s diary from
the thermal radiation emitted by the black hole? And if he indeed can, how long does it
take for the black hole to spew out information for Bob to extract it?

2.1.1 Early Lessons

In a classical description of gravity, every black hole is completely described by its
mass, charge and angular momentum. Any two black holes with the same mass, charge
and angular momentum should be completely identical (irrespective of how they would
have formed or what lies behind their horizons). A black hole can represent no other in-
formation, which also means that it carries no entropy. However, as Bekenstein pointed
out in the early seventies [14, [15]], this results in a conundrum. One can take an object
with some entropy and throw it into a black hole. The entropy of the object disappears
once the object is swallowed by the black hole. This is a clear violation of the very sa-
cred second law of thermodynamics: the entropy of a closed system can never decrease.



The issue was resolved after the realisation that a black hole must possess both entropy
and temperature [[14, [15, [16]]. If A is the surface area of the event horizon of a black
hole, then the black hole entropy, in its dimensionless form, is given by

A
4Gh

where ¢, G and 7 denote the speed of light, the gravitational constant and the reduced
Planck constant respectively.

SBH = (2.1)

Let us get down to deriving the entropy relation in (2.1)) to justify our treatment of black
holes as thermodynamic objectsE] The Schwarzschild metric is given as:

-1
2GM 2GM
ds? = — (1 _ >dt2 + (1 — —> dr? +r?(d6? + sin*6d¢?) (2.2)
r

r

where the Schwarzschild time ¢ is the time recorded by a standard clock at rest at spatial
infinity and the Schwarzschild radius r is defined such that the area of a 2-sphere at r is
Amr?. Setting ry = 2GM, we get:

~1
ds? = — (1 - 5) d? + (1 - 5) dr? +r2(d6? + sin®0de?). (2.3)
r r
We will look at the region close to the horizon which is where much of the dynamics of
interest occurs as a consequence of gravitational redshift. Expanding the metric in this
region by substituting » = r;+ 6 for small 6 gives

o
ds? = — s + %dé2 +7,%(d6° + 5in*0d¢?). (2.4)
s

Let us use the redefinition § = p?/4r to obtain

2
ds? = _4‘1_2dt2 +dp2 +r,2(d6% + sin®0dg?) (2.5)
S

and then switch to Euclidean time 7 = it:

p2

ds? =
4r2

d7? +dp? + 1,2 (d6* + sin*0d¢?). (2.6)

The metric can be rewritten as:

ds? =2 dX? 4+ dY? + r(d6? + sin>0d¢?) 2.7)

I'We will primarily follow [17]] for this derivation.

9



using
X =pcos(t/2r;) and X = psin(t/2ry). (2.8)

We can similarly write down the metric for the Lorentzian case

ds® = —dT? +dX? 4 1,2 (d6% + sin*0d¢?)

2.9)
= —dUdV +r,2(d6% + sin®0d¢?), (
where
X = pcos(t/2ry), T = psin(t/2rs) (2.10)
and
U=T-X=—pe /¥, V=T+X=pe/*. (2.11)

Understanding the causal properties of black hole geometry becomes easy in the (U,V)
coordinates (called the Kruskal-Szekeres coordinates), because here light rays and time-
like trajectories always lie within a two-dimensional light cone.

Figure 2.1: The maximal extension of the Schwarzschild geometry can
be described in the Kruskal-Szekeres coordinates (U,V).

The original geometry described by Schwarzschild coordinates (r,7) which covers only
the region with U > |T'| can be analytically continued and maximally extended to con-
tain four quadrants in total as shown in the figure.

A path integral with periodic Euclidean time T ~ 7+ 3 generates the thermal partition

function Tre B Since the smoothness of the Euclidean metric requires 7 to be peri-
odic, with period 47rg (as we can see from the coordinates in (2.8)), the path integral
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for quantum fields in the Euclidean black hole geometry describes a gas at temperature

1
Ay

Tu (2.12)

in equilibrium with the black hole. Ty is essentially the Hawking temperature of the
black hole.

Having derived the temperature of a black hole, we can compute the corresponding
entropy using the standard thermodynamic relation:

dm dTy
dS = — — — 2.13
TH 87'L'GTH ( )
from which we get the expression for the black hole entropy we saw in (2.1):
3.2 3
A
S—Spy= L _ ¢ (2.14)

Gh  4Gh

where A is the area of the black hole event horizon.

For usual thermodynamic systems, the exponential of the entropy is a measure of the
number of states available to a system — the entropy of a system acts as a point of con-
tact to the second law of thermodynamics. We expect that black hole entropy measures
something similar, and understanding what the black hole microstates correspond to is a
rather important question for which we do not have a final, conclusive answer yet. How-
ever, this has also been an aspect that string theory has found itself making significant
contributions to over the last few decades [18,[19]].

2.1.2 Black, but Not Quite So

Within a few years of the proposal that a black hole is a thermodynamic object with
temperature and entropy, Hawking did a calculation [16] that led to a further surprising
result: all black holes emit radiation. All that falls into a black hole possibly comes out
as the radiation. But what is even more profound and perplexing is that this radiation
appears to be thermal.

The spectrum of a black hole at Hawking temperature 7Ty looks exactly like the spec-
trum of a blackbody at temperature 7 — a black hole radiates away its energy in the
form of blackbody radiation Matter that falls into a black hole does not stay hidden
behind the horizon, it leaks out as the black hole evaporates away. This leaking out of

2We formally show this in Appendix A.
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information seemingly results in the violation of a basic quantum mechanical principle:
the principle of information conservation. While in classical physics, this principle is
manifested in the conservation of phase space volume, it is the unitarity of the S-matrix
that encapsulates information conservation in quantum mechanics. The evolution

|Wﬁnal> _ S|Winitial> (2.15)

denotes a process that takes pure states to pure states, consistent with Schrodinger-like
evolution
ihd;|y) = H|y). (2.16)

One can trace back the initial states from the final states by reversing the sign of the
Hamiltonian H — in a sense — by running the dynamics backward. But a black hole
appears to do something different, in fact, quite contrary to this basic tenet. [rrespective
of what a star is made of when it collapses into a black hole, or what all a black hole
engulfs during its lifetime, it evaporates in a thermal manner, the nature of which seems
to depend only the temperature of the black hole [[16]. More precisely, what a black hole
appears to be doing is taking an initial pure density matrix

pinitial — W/initial> <Winitial| (2 17)
to a final mixed density matrix

Pt = 3 pil ™) (| 218
i

To resolve this apparent conflict, one can argue that the radiation actually carries the
information in subtle correlations between the photons that constitute the Hawking ra-
diation and information can, in principle, be recovered from the radiation [[18].

Though the whole issue of the fate of information in black hole environments is far
from settled, evidences from the gauge/gravity duality and string theory strongly suggest
that black holes do not destroy information when they evaporate [[18} 19]. We will not
concern ourselves with the possible resolutions to the conundrum, though. In the rest
of this chapter, we will look at the time scales of the dynamics involved in the process
— the delocalisation of information by a black hole over its degrees of freedom and its
possible recovery from the radiation.

2.2 The Hayden-Preskill Protocol

Black holes are not completely black, and one should be able to recover information
about initial states of matter that falls into a black hole from the emitted Hawking radi-
ation, at least in principle.
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But before we jump into believing that Bob, our antagonist (or protagonist, depending
on whose side you are), can really recover and reconstruct from the radiation the infor-
mation that Alice’s diary contained, we should try to answer if he can do so in some
reasonable time.

Early estimates [20, [21], in fact, showed that Bob would need to wait for the entire of
the black hole to evaporate before he can completely recover the information. But for
most astrophysical black holes we know about this time is multiple orders of magni-
tudes longer than the present age of the universe. However, as we have come to realise
over the last decade [3, 4], this is not really so — Bob need not wait that long.

In their relatively recent work [3]], Hayden and Preskill came up with a remarkable result
using insights from quantum information theory: the time required for information to
be recovered and reconstructed from the black hole radiation is essentially the time the
black hole takes to scramble the information over its degrees of freedom, a time scale
much shorter than the black hole evaporation time scale. We will now look into the
details of this proposal.

The Hayden-Preskill analysis requires the assumption that Alice’s diary is absorbed by
black hole instantly. Since this assumption holds no danger of affecting the rigour of
our proof, we will accept it without any fuss. Let’s say we have a diary D which is
maximally entangled with a reference system S before it is thrown into a black hole B
that starts in a pure state. What we do next is to model the action of the black hole on
the joint system BD of the black hole and the diary with a random unitary operator U,
including the process of radiation in this unitary operator as well. The BD system can
be therefore reinterpreted as a tensor product of Hawking radiation R and the black hole
that remains afterwards, which we will denote by B'.

The question we had set out to answer is now essentially reduced to the following: How
large does the Hawking radiation R have to be before Bob can recover the diary? To be
able to answer this question, it needs a further (more precise) reformulation: How long
does Bob have to wait for the following to be true:

/dUHPSB'—PS®PSB/Hl <1 (2.19)

where the operator trace norm || M|, equals trv/MTM for an operator M and denotes the
closeness of the states. The integral is over the group-invariant Haar measure.

Until the Page time — the time scale at which the entropy of a black hole is reduced to

half of its initial value — the Hawking radiation carries no information as it is maximally
mixed. Since the black hole starts in a pure state, we can treat the diary as something
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Figure 2.2: The Hayden-Preskill thought experiment follows the fate of
information contained in a diary D maximally entangled with a reference
system S when it is thrown into a black hole B. B is already maximally en-
tangled with the Hawking radiation E emitted before the diary was thrown
into the black hole.

that creates the black hole. What is a subtle point to realise that if the diary is thrown
into the black hole after the Page time, that is, after half of the original black hole has
evaporated away, the black hole is already in a state of maximal entanglement with the
Hawking radiation from the earlier stage, denoted here by E. Hayden and Preskill went
on to show that

(1D = 1)(|B* = 1)
dU||psp —ps @ psp ||| < : (2.20)
[ aUlpsu —ps powl \/ DR
This can further be approximated to
|D|
/dUHpSB’ —ps@pspl; < & (2.21)

for large enough systems for which |B’||R| = |E||D| holds true. If the number of bits
that were radiated after the diary was thrown into the black hole is b bits more than what
the diary contained, then the right hand side is 2~” which becomes increasing small at
a rapid rate.

This analysis does multiple things — one, it shows that recovery of information takes
much less time than the evaporation time for black holes, and is, therefore, possible in
principle. And since a black hole scrambles information this fast (which turns out to be
the fastest allowed rate in nature [2, 4, 5]]), other systems which scramble equally fast can
be analysed to understand aspects of black hole physics. This is a theme that has been
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carried forward quite significantly over the last decade and has resulted in numerous
fruitful exchanges between the physics of quantum information, quantum matter and
black holes [2, (8, 9} [11]].
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Chapter 3

Chaos, Scrambling and Holography

The objective of this chapter is threefold. In the first section, we will formally prove
the bound on the Lyapunov exponent for quantum systems, as worked out by Malda-
cena, Shenker and Stanford in [5]], which leads to the notion of maximal chaos we have
been referring to while talking about connections between certain quantum mechanical
models and black holes. We will then move on to discuss the fast scrambling conjecture
[2, 4] and its relationship with holography. And finally, in the third section, we will
continue our discussion of the Sachdev-Ye-Kitaev model [8, 9] which we had briefly
talked about in the first chapter.

3.1 A Bound on Chaos

In the first chapter, we introduced the OTO correlator
F(1) = (W(©0)'V(0)'W()V(0)), (3.1)

the ordering of the operators making it a suitable diagnosis of chaos in quantum systems.
We also saw that this quantity is related to thermal expectation value of the square of
the commutator at temperature 7 = 1/(kgf3):

C(r) = —(W(0),V(0)*)5 (3.2)
through the relation
C(t) =2(1—RelF(1)]), (3.3)

where Re|F (1)] denotes the real part of the quantity F(z). We will now move on to using
these definitions to prove that there exists a bound on how chaotic a quantum system
can bem We discuss the implications of the bound on classical systems in Appendix B.

"'We follow [[3]] for this entire derivation.
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Let us represent F(f) on a thermal circle and rotate a pair of operators by an angle
277/ to obtain a generalised function of complex times F (f +iT).

W(t) W(t) W(t)

Figure 3.1: The thermal circle representation of F (¢ +iT) involves a par-
ticular configuration of the operators that depends on ¢ and 7. Evolution
in the Lorentzian time ¢ to produce W (¢) are indicated as folds in the cir-
cle. The configuration of operators in the second circle corresponds to
|T| < B/4 and the one in the third circle corresponds to T = 3 /4.

F(r+1i7) is analytic in a strip of width /2 in the complex plane (given by || < /4):

F(t+it) =tr [y1*4f/ﬁVy1+4f/ﬁW(z)y1*4f/BVy1+4f/ﬁW(t) , (3.4)
where y is defined as
1
yh= Ze*ﬁH . (3.5)

In the first chapter, we had defined the scrambling time (,) as the time scale at which
C(t) becomes significant. Another time scale that is relevant to quantum systems and
one that we will need in our proof here is the dissipation time (z;) which we define as the
exponential decay time for two point expectation values like (V(0)V (¢)) and is expected
to be of the order 1/A;. On the other hand, since C(t) ~ l?e**, 1, ~ (1/A)log1/h.
This provides strong motivation to the idea that there exists a parametrically large hierar-
chy between the scrambling and dissipation time scales for strongly interacting quantum
systems.

We have discussed earlier how one expects the OTO correlators to decay at large times
— scrambling causes F(¢) to decrease with time. Let us focus our attention to times after
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t4 but well before 7. At some point of time in this interval, F(¢) takes a factorised value
Fy=tr [y2Vy2V} tr [yzW(t)yzW(t)} , (3.6)

a product of disconnected correlators which is independent of 7 because of time transla-
tional invariance. Let us now introduce a conjecture that states that rate of this decrease

is bounded as
d 2
d—(Fd—F(l))S—(Fd—F(f))~ (3.7
t B
Our primary expectation from a chaotic system is that the difference (F; — F(t)) grows
exponentiallyﬂ

(Fg—F(t)) = eexpAT + ... (3.8)
Combining our conjecture in (3.6) with the above gives us

2
AL < — =2nT (3.9)
B
which is the bound on the Lyapunov exponent for quantum mechanical systems. Thus,
all we need to do now is to prove the conjecture we stated above.

We will first make and prove another claim: For a function f(¢)

1

1—f

df
dr

27
<

<5 + O (e 4mT/B) (3.10)

if it satisfies the following properties:

1. f(t+it) is analytic in the half stripz > 0and —f3 /4 <t <f /4 and f(t+it) € R
fort=0.

2. |f(t +it)| < 1 in the entire half strip.

To prove this claim, we first map the half strip to the unit circle in the complex plane
using the transformation:

B
1 +sinh [%’r(t + i”L’)] .

I —sinh [2—% + ir)]

7= (3.11)

For a function f as defined above, f(z) is an analytic function from the unit disk to a
unit disk, as |f(r+i7)| < 1.

2This was also motivated in [22].
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We will now use an important result from complex geometry, the Schwarz-Pick theorem:
An analytic map of the disk D into D that preserves the hyperbolic distance between
any two points is a disk map and preserves all distances. This theorem essentially states
that functions from unit disk into unit disk cannot increase distances in the hyperbolic
metric:

clsZ:LdZ22 (3.12)
(1—=1z%)
Therefore,
d d
sl e a3
I=[f]" " 1-g
1 |(df| _|dz| (1+f) 2= 27N (14 f)
—| < |—=|—5-= 5coth|{ — (3.14)
(1—f)|det de|(1—1z*) B <[3> 2
which essentially proves our claim
1 |df| 2=xm AT
LI< =4 0(e 4 T/BY, (3.15)
(i—p|a|=p o

Let us see how this statement is related to the original conjecture in (3.6). Let us de-
fine f = F(t)/F; (we will justify this afterwards). Plugging this definition of f in the
expression we proved above gives

d { F(t)
a\ R

which reduces to our original conjecture which we had used to prove the bound on Lya-
punov exponent. So, all we need to show now is that our definition f = F(t)/F is valid.

1

F
-0

<25 oty @16

It is rather straightforward to show that F(r)/Fy satisfies the first of the required prop-
erties. For general t and 7, we can write F (7 +iT) as

F(t+it) = %tr ¢~ BIA=DH Y= (B/A+DHy ()= (B/A=DHy = (B/A+DHy (1) (3.17)

which is clearly analytic in the strip |7| < /4. Also, for =0, f(r +it) = f(t) € R,
establishing the first property.

We now need to show that |f(r +it)| < 1 for f(zr +it) = F(t +it)/F;. However, we
will show this for (1) = F (¢ +1ty)/F; + € instead. Here, € is some small error up to the
relation will be shown to hold true for times greater than 7y. To do so, we will use the
Phragmén-Lindelof principle which states that the modulus of a holomorphic function
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in the interior of a region is bounded by its modulus on the boundary of the region. All
we need to show now is that | f(# +i7)| < 1 holds true on the three boundaries.

For T = £f3 /4, we have
F <t - ?) = [PVW(0)y VW (1)] (3.18)

which is, in fact, the inner product of two matrices [yVW (¢)y];; and [yW (t)Vy];;. There-
fore, using the Cauchy-Schwarz inequality (||@- b|| < ||a||||b]), we can write

F(z - %) < te[yPW )V VW ()] (3.19)

For times large compared to ¢;, we expect the dynamics of the system to result in the
factorisation of tr[y*W (1)Vy*VW (t)] to Fy = t[y?Vy?V] [y?W (1)y*W (1)].

To accommodate for all possible errors, we assert that this factorisation holds true for
t > top with some error €, the value of € depending on the choice of #y. To get a good
approximation, we restrict fy < z,.. This allow us to write

w[y*W (VY VW ()] = u[y?Vy* V] [y W)y W (t)] + e (3.20)
which gives
Flitio) (3.21)
Fy+¢€

This establishes the bound for the | 7| = 8 /4 boundaries. The same argument holds true
for the ¢+ = 0 boundary where one would obtain the same factorisation as well. The only
subtlety is to ensure that the ty we choose is well less than 7, to keep the error smaller
than €.

To complete the proof, we need to show that f is bounded by some constant in the
interior of the half strip as well. We proceed as follows:

F(t+it)| <tr _y1+4r/ﬁvy1—4r/ﬁwyl+4f/ﬁWy1—4r/ﬁv}

~ i 'y1+4r/ﬁ Vy374r/ﬁv} tr [yl+4r/BWy3f4r//3W} (3.22)

<tr -yVsz} tr [yWyzW]

which is some finite quantity. This establishes that f is bounded in the interior of the half
strip as well. Hence, the function F (¢ +1)/F; + € satisfies the two required properties.
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Tracing it back to where we began, we have proved our original conjecture in (3.6))
which we had used to show the existenceﬂ of the bound on Lyapunov exponent:

A< F (3.23)

3.2 Scrambling and Holography

We discussed in the previous chapter how ideas and techniques from quantum informa-
tion theory suggest that black holes scramble information quickly, in fact, at the quick-
est rate possible. Here, we discuss this idea further in connection to the fast scrambling
conjecture and talk about how holographic considerations have led to improved under-
standing of both black holes and quantum systems that scramble quantum information
rapidly.

3.2.1 The Fast Scrambling Conjecture

Building up on the motivation that came in the form of the analysis by Hayden and
Preskill [3]], Sekino and Susskind came up with the fast scrambling conjecture [2, 4],
which primarily asserts that the fastest scramblers in nature take a time logarithmic in
the number of degrees of freedom and that black holes are the fastest scramblers of
quantum information.

Solvable models which saturate the bound on the rate of scrambling appear to have
a great use in providing dual descriptions to black holes, a connection that requires a
formal correspondence between the two sides of the gauge/gravity dualityﬂ (8,19, 11,
13, 25]. One can attempt to understand sensitivity to initial conditions in the context
of holography by studying the effect of perturbations on the boundary field theory. It

3The proof depends on the assumption that OTO correlators factorise at times after #; with the added
restriction that it stays valid only till times much smaller than z.. To tackle any possible failures, we need
to impose an additional boundary on the half-strip to ensure ¢ < t,. We will require |F| < F; + € to be true
at this boundary which is in fact the case as F' becomes exceedingly smaller with time. The only other
modification one would need to do after adding a fourth boundary (and essentially changing the region
from a half strip to a full closed strip) is to choose a different and rather complicated transformation
instead of the transformation in (3.11).

4The gauge/string duality, first proposed formally by Juan Maldacena in 1997 [23] 24], conjectures
that all the physics in the bulk of a region of spacetime with a theory of gravity can be described by
a quantum field theory that lives on the boundary. The simplest examples of the duality exist between
theories of gravity defined on a (d 4 1)-dimensional anti-de Sitter spacetime (AdS) and conformal field
theories (CFTs) defined in d dimensions.
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turns out, as Shenker and Stanford showed in [11], that the scrambling timeﬂ in such
considerations (with N being the number of degrees of freedom) is
B

t, ~ —log N> 3.24
5 -log (3.24)

which substantiates the fast scrambling conjecture [4]. In the next section, we will
discuss a particular example — that of the thermofield double state and the eternal black
hole — to better understand this idea.

3.2.2 The Thermofield Double State

The thermofield double formalism is a clever technique to treat a thermal, mixed state
as a pure state in a bigger system. Consider a conformal field theory (CFT) with Hamil-
tonian H and a complete set of eigenvalues |n). Taking two copies of the CFT, one can
construct a thermofield double state:

|
ITFD) :mZe BEI2|1)  |n) . (3.25)

One can compute the total density matrix corresponding to the prescribed state:
Protal = |TFD> <TFD| (3.26)

and show that the thermofield double state describes a particular pure state in the dou-
bled system. Also, the reduced density matrix for each of the subsystems can be com-
puted as:

pL =1tru |TFD) (TFD| (3.27)

One can look at the effect of scrambling in the thermofield double state by perturbing
one of the CFTs at some time ¢,, in the past and then analysing how quantities like the
correlations and the mutual information between subsystems on the two sides decay in
time due to the growth of the perturbation [[11].

The perturbed state can be represented as
‘T/fl/)> — ¢~iHitv g, pHitw |TF D) (3.28)

where O is an operator defined on the left CFT [[11]. The thermofield double has been
used to a good extent both in understanding effect of scrambling in quantum systems
and also because it is dual to an eternal black hole, a two-boundary black hole in AdS,
with each of the copies of the CFT living on each of the two boundaries.

>Since the effect of the perturbation is to drive the system from an atypical state to a state of typicality,
the time taken for the entanglement in the system to be disrupted is essentially the scrambling time of the
system.
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Figure 3.2: An eternal black hole is a black hole with the full, two-sided
Penrose diagram. It has a past singularity, a future singularity, two asymp-
totic regions, and is dual to the thermofield double state.

It was for one such set-up that Shenker and Stanford studied the effect of scrambling in
[[11], where using holography, they probed the sensitive dependence on initial conditions
for both the thermofield double state and the corresponding bulk geometry.

3.3 The Sachdev-Ye-Kitaev Model

A maximally chaotic model is naturally a strong candidate for a black hole dual. Ki-
taev’s proposal of a variant of the Sachdev-Ye model has held particular promises in this
regard [8, 9]]. The Sachdev-Ye-Kitaev (SYK) model is a quantum mechanical model of
N Majorana fermions with a Hamiltonian given by:

H=Y jiuXiXjXX (3.29)
ikl

where the couplings j;j; come from a zero-mean random Gaussian distribution with
a width of order J /N 3/2. The random interactions, which represent a disorder in the
system, lend the model a number of interesting features. One of them of particular
significance from the point of view of chaotic dynamics is the saturation of the chaos
bound by the SYK model in the large N, low energy limit.

In the large N limit, the IR theory has an emergent time reparametrisation symmetry
[8,19]. As we will derive in the next chapter, the first correction to the effective action is
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the Schwarzian action:

Isen = ~NG [ de{f. ), (3.30)
where the Schwarzian derivative
f/// 3 f// 2
{f,f}:7—§ 7 (3.31)

is invariant under SL(2) symmetry f — Zﬁfl and ao is a numerically determined con-

stant.

We will also derive the effective action for a variant of the SYK model in the next
chapter — the charged SYK model with a global U (1) symmetry [13[26]. In particular,
we will see how the added symmetry gives rise to a further correction to the Schwarzian
action.
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Chapter 4

Deriving the Effective Action

We discussed in the previous chapter the properties of the Sachdev-Ye-Kitaev (SYK)
model that make it interesting and and possibly useful in gaining insights into the
physics of black holes. In this chapter, we will derive the effective action for the SYK
model using a method similar to one used by Kitaev and Suh in [8]. We will also use
the method to provide a new derivation for the effective action for a generalised SYK
model with Dirac fermions, with a global U (1) symmetry, introduced in [26] where the
effective action was originally written down using symmetry arguments.

4.1 The SYK Model

The SYK model is a quantum mechanical model with N Majorana fermions with ran-
dom interactions. The Lagrangian is

L =Y X0+ Y ik XiXi XX (4.1)
i ikl

with ( jz'2jk1> = J?31/N3. The couplings come from a random Gaussian distribution and
the model can be analysed in both its quenched and annealed Versionsm

We will use the annealed version of the SYK model and sum over the fermions and

10One can show, as in [27], that the quenched and the annealed versions of the model are identical at
leading order in 1/N.
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average over all the random couplings to obtain the partition function:

> N
ZZ/-@X-@J'WCXP —JijMz 2 CXP<—/dT$>
» N
:/@X@jiﬂdexp —JijMz 72 eXP(—/dTZXiain+Zjijkz%i%ijX1>
2
= [22ex0(# (L [ a0 mu@um))

4

:/@xexp(]z//dﬁdfz(%Z%i(ﬁ)%i(@)) )

We use the O(N) symmetry of the expression to introduce bilocal fields ¥(7,7>) and
G(Tl , Tz) with

4.2)

. 1Y
G(n, 1) = NZ%i(Tl)%i(’Q) (4.3)
i=1

and
N

/@i@@exp(—i(ﬁ,q) (G(Tl,fz) — ]%in(fl)xi(rz))) =1 (4.4)

i=1
We can now write down the effective action:

N - N - ~ J? >
Legr = —5 log det(&r — Z) + 5 /dT]de (Z(Tl R Tz)G(Tl R Tz) — ZG(Tl R ’L'z) ) 4.5)

where the J; term features because of the kinetic term in the Lagrangian.

At the leading order in 1/N, we have the Schwinger-Dyson equations:

(11,1) = J2G(11,1)° (4.6)
G (o) =—-io—Z(w) (4.7)

which we can write down after summing up the melonic diagrams.

For free fermions, we have

1
Go(7) = 5sen() (4.8)

Gol(®) = / dte® Gy (1) = —(im) ", 4.9)
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On including interactions, we obtain the following:
G = Go+GoXG (4.10)
= L=Gy '-G! (4.11)

where Gy is the bare propagator and X is the self-energy.

What we have achieved from the above is a reduction of the original theory of Majorana
fermions to a theory of bilocal fields. We will proceed with this and compute the first
correction to the IR action. We expand perturbatively around the saddle to get

(G(11,12)G(T1, 7)) ~ Z Xi(T1) 2 (72) 2i(73) %, (T4)) (4.12)
where the right hand side has a manifest O(N) symmetry.

In the infrared limit of the theory, we can drop o; in the action. This results in an
emergent time-reparametrisation invariance which can be used to write

Gla,m) = (F (0)f (2)*G(f(n). /(). (4.13)
The infrared solution at zero temperature is

sgn(T2)

G(’L’],’Cz) =b 12

(4.14)
|T12|

where T = 7] — T». To obtain the solution at non-zero temperature, we choose f(7) =
tan (t7/B) and use it along with (4.13). This gives

1/2
G(71,72) = b-sgn(112) [+] : (4.15)
B sin (le)

We will use this along with a change of variable £ — ¥4 ¢ to compute the first correc-
tion to the action. Here
o(11,m) =0:6(11 — ). (4.16)

We now write down the effective action after implementing the above:

N . J? .

Lo = —Elogdet /d’ﬁd’t’z T] , 7,'2) + G(’F] Tz)) G(T] , Tz) — ZG(T] , Tz)z>
N g - - J? . 2

= —Elogdet(a, —Z) + E /dTld‘L'z Z(’L’l, Tz)G(Tl, Tz) — ZG(TI’ ’L'z) )

N ~
+ E/drldrz (G(Tl,fz)G(ThTZ))'
(4.17)
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The first two terms in the expression are time-reparametrisation invariant. The third
term essentially becomes a perturbation to the IR action to get the first correction term.

Let us take G to be the IR solution at non-zero temperature:

T

2A
B sin (ﬂﬂﬁ)ﬂ—f(h))) ] '

am@yms@mmfmvwmﬂ (4.18)

Since 6(71, ) = 9,8(11 — T2) picks up G(71, 72) in (4.17)) for which 7| ~ 75, we expand

G(t11, 1) about 713 ~ 0. We define

7, = 0t" (4.19)
2
and Taylor expand around 7. to obtain
112 4 7122 /" T132 1
f(m) :f(T+)+7f (T+)+?f (ﬁ)*‘@f (T4)+ - (4.20)
T12 7122 7 sz 11
f() = f(ty) — -/ (74) + 37/ (74) — T (T4) + ... (4.21)
We have, up to third order:
3
f(m) = f(n) = tiaf'(74) + %f”/(ﬁ)- (4.22)
Also,
/ / T12 o1 T122 1
o) = o) + () + =2 () + (4.23)
2
fmpqwg—%wmgy%ﬂwg+“ (4.24)

from which we get

2 2
P (@) = (FEDP+ 27 ()" (1) - 2(F (1) @25)

Putting these in

2A
G(s1.7) > bsen(m) ( (7)1 ()" [ G )fm»)] a=ta=1/4,

(2
B sin ( lﬁ w26
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we get, for small 717,

/ 2 Tiz / 111 _iz 1 2 1/4
s (f(r0)"+ 2 f (v " (r) = 2 (" (7))
G(Tl,Tz) = sgn(’clz) 172 (4.27)
[E]l/z [E (‘L’ ! iz 1"
= 5 m2f (to)+ 271" (14)
) ) 1/4
i (P + £ (201" (01) = B (F(21))]
G(71,72) = sgn(712) ; 7 (4.28)
T f'(T4) + 92 "'(ﬁ)}
Simplifying further we get
2 f”/(”L’) 2 f”(T) 2-1/4
. sgn(tpn) 1+ -2 ()]
G(11, 1) = N 2 o)1 1V2
[1 +24 f(T4) }
L) (g 1) g ey (s )| @29
IT10|'/ 16 f(try) 16\ f'(74) 48 f'(t4)

2
_ sgn(1p2) H_Tiz () 3 () '
IT12|1/? 24\ f(t) 2\ f(7y)
We will now use this to derive the first correction term to the action where we integrate
the above expression after subtracting out the ground state energy:

N sgn(7y2)
Isch = E/dfldTZO'(ThTZ) |r12|11/22 {f(z) 74} (4.30)
where 5
) 3 ()
= i 4.31

is the Schwarzian derivative. Evaluating the integral gives us the first correction to the
action, the Schwarzian action

21
Isen = N /O de{f(1),7} 4.32)

where the coefficient g can be computed up to a constant. This can be done by choosing
an appropriate representation of 6(7;,7) = d;0(1; — 7p) with a cutoff proportional to
J. The sharp peak of the delta function represents its UV characteristic. Since the
formalism depends on implementing ¥ — ¥ + o, where ¥ itself is a bilocal field defined
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in IR, o should also be defined appropriately in IR as a function that peaks when 7| ~ 7,
as well (as a Gaussian, for example). The kernel o has a sharp, delta function-like
behaviour in UV but is more appropriately represented in IR as a function with a wider
base but one that peaks at the same value. This modification is also necessitated by the
fact that the scaling dimension of ¥ in UV does not match that of ¢ in IR, the quantity
we are adding it to — the kernel o needs to be changed from UV to IR in a way that fixes
the issue of the scaling dimension.

4.2 The Charged SYK Model

We will now derive the effective action for the charged SYK model, a generalised ver-
sion of the SYK model with Dirac fermions, with a global U(1) symmetry, for which
we have the Hamiltonian

12((q/2)1>2

. . 2
H =Y diigWiy- Ve oVt Vi i) = —5 7 (433)
ji],...7iq/2,iq/2+],...,iq - jit[/2+17...7iq7i1,4..,iq/2‘ (434)
We will again work with ¢ = 4, for which (| i, ., [*) = £4.

Following the derivation for the standard SYK model in the previous section, we will
introduce bilocal fields £(7;, 7,) and G(71, ) with

- 1 ¥
G(t1,12) = - YW (m)yi () (4.35)
i=1
and
.. - ~ 1 Y
/@Z@Gexp(—Z(ﬁ,Tz) <G(T1,Tz) - Nzwj(rl)wi(rz))) ~1. (4.36)

i=1

The effective action in terms of the bilocal fields can then be written as:

N ~ N ~ ~
Lo = —Elogdet((ét — ,LL) —Z) — E /dfldTQ <Z(‘L’1, TQ)G(Tl, Tz)

2o i (4.37)
~ 5 (6(n,2) (G(mm)?)
for which we derive the Schwinger-Dyson equations:
¥(1) = ~47%(G(1))*(G(~7))* (438)
Glion) = ((ion + 1) — Z(ie,)) . (4.39)
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In the IR limit, we can drop the (i@, + i) term from the equations above. As a result of
this, we obtain an emergent time-reparametrisation and U (1) symmetry. This allows us
to write

G(m1, %) = (£ (0)F (22)) G(f(11), F(22))exp(id (71) = i9 (7)) (4.40)

We will use this along with a change of variable £ — ¥ + o to compute the first correc-

tion to the action. Here
o(11,m) =0:6(11 — ). (4.41)

Implementing the above, we write down the effective action:
N ~
legr = —Elogdet — —/d’ﬁde T],Tz)+G(T1 Tz))G(Tl,Tz)

2
— ZG(TI Tz) G(’L’z, ’Cl) )
N J? . ~
= —Elogdet (0 — /dfldfz (11,72)G(11,72) — ZG(ThTz)ZG(Tzaﬁ)z)
+ 3 /drldrz o(11,7)G(1, 1'1)>

(4.42)
where the first two terms in the expression are invariant under time-reparametrisation
and U(1) transformations. The third term essentially becomes a perturbation to the IR
action to get the first correction term. Since 6'(7;,7,) = 9,8 (7] — 72) picks up G(12, 71)
in (4.42) for which 7 =~ 7>, we expand G(‘Cz, 7)) about 717 & 0. Similar to the derivation
for the standard SYK model, we define

7, =4 ;Tz (4.43)
and Taylor expand around 7. to obtain, up to third order:
3
T
f(m) = f(m) = maf'(74) + ﬁf’”(ﬁ) (4.44)
3
T
9(t1) = (1) = 1129/ (24) + 29" (71) (4.45)
o o
@) () = (Fe) 4 27 ()" (1) - (" (w))° o)
We take the IR solution
G(t) = exp(—27meT7)(sinnT )~ !/? (4.47)

and use it in
G(t1,1) = (f (1) f(2)) *G(f (1), £ (22) )explig (71) — i (12)) (4.48)
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where

G(f(12), /(1)) = exp(—27eT (f () — £ (1)) (sin AT (f(72) — f(71))) "/
~ eXp(_ZEST(f(TZ) _f(fl)))' (449)
373 —1/2

; (f(m) = f(1)))

(2T (f(n2) — f(71)) —

Simplifying the above expression, we get

G(‘L‘z, ) = (f’(’fl)f’(’cz))l/4 exp(i(9(11) — @ (12)) —27meT (f(11) — f(12))

U@ o Er )
_ . exp(i(¢(t1) — ¢(12)) —27eT (f(11) — f(72))
(1= 22 (f(e2) - f(=)*)
where the first factor
>
y=m<1+%{f@+)aﬁ}) (4.51)

as we had evaluated in the derivation for the standard SYK model. We can now write

G(n,11) = W

[exp(iw(m —9(n)) —27eT (f(n) — f()) |
(122 (f(r) - f(z))

1 T]22 ]
+ ﬁ{f(ﬂ), T}
3 (4.52)

We will put the expressions for f(7;) — f(72) and ¢(7;) — ¢(72) in the above to get

2 ]
- T
G(TZ’TI):r—P/Z 1+ﬁ{f(f+),f+} :
12 |
q 4.53
[exp<i<m¢'<r+>+% "(1,)) — 2meT (raf (2,) + B2 (2.)) (>3
2 12 ’

(1= 2L (20 f/(v) + 2f7(11)) )
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Expanding the above and retaining the term up to third order gives

2

2
G(mm)~ T+ 2 (), 1)+ 2 ((9'(2))

T12’1/2

+(f(24)) —2f(v}) +4imeT (z,) f (zy) — 4imeT ¢/ (1;) — 27TET>]

2

2
o |1 22 (e, m )+ 2 (9" 4 2mieT (7/(7) ~ 1))

- |T12’l/2

(4.54)
which we use to compute the correction to the effective action of the standard SYK
model due to added U (1) symmetry. The second term in the above expression gives the
Schwarzian part of the effective action.

After subtracting the ground state energy, similar to how we evaluated the Schwarzian
action for the standard SYK model, we use the above expression to obtain the effective
action:

L = /d’L’ld”Ez (G(TI,TQ)G(TQ,T1)> (4.55)
which on evaluating gives the effective action for the charged SYK model:
e ‘ )
Ieff:ISch+(XN/() [/ +2mieT (f'(7) - 1))] (4.56)
where the first term -
Isch = 0N A dt{f(7), 7} (4.57)

is the Schwarzian action that we had derived for the uncharged SYK model at finite
temperature. The second term in the effective action describes the correction to the
Schwarzian part of the action due to the added global U (1) symmetry. The coefficients
can be fixed up to constants — in a manner one would do it for the SYK model — by
choosing an appropriate representation of ¢ to describe it in IR.
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Chapter 5

Discussion

“Exactly!" said Deep Thought.

“So once you do know what the question actually is,
you’ll know what the answer means."

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

First discovered as a solution of the Einstein field equations by Karl Schwarzschild in
1915E black holes have held us in awe for over a century now. Every time we have
discovered something new about them, they have appeared to pose even further chal-
lengesE] The field of black hole physics which has largely been theoretical till recently
has begun getting new insights from astrophysical observations, primarily from the more
recent gravitational-wave detections of binary black hole mergers [28]. Though these
discoveries will stand as one of the finest achievements of human endeavours, we will
possibly have to wait for quite a while before we can probe the quantum aspects of black
holes using our observatories.

Since theoretical set-ups are all we have at the moment to work our way through the dif-
ficulties posed by the at-times-counter-intuitive physics of black holes, we can expect
to make some steady progress by harnessing what we have. The Sachdev-Ye-Kitaev
model and its variants are a few such models that can act as useful toy models to study
black holes. At the same time, given how closely questions from quantum chaos, quan-
tum information and black holes are to each other, there is a great deal of physics to be
learnt from working on the solutions to these problems.

We began this thesis discussing the difficulties in developing a complete understand-
ing of quantum chaos. Recent advances in the study of chaos have led to the belief

Interestingly, Schwarzschild worked out the solution while serving the German army on the Russian
front during World War I and published it after a few months in early 1916.
2Such is the nature of almost all of scientific research.
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that understanding chaotic dynamics has an important role to play in solving the issues
that have been hindrances to completely resolving the black hole information puzzle
(3,14, 117].

Models like the Sachdev-Ye-Kitaev model and its variants have possibly crucial roles
to play in solving such issues. That these models are solvable makes them particularly
important. In the previous chapter, we looked at the derivation for the effective action
for the SYK and the charged SYK models and tried to see how the low energy physics of
these models is encoded in the Schwarzian action and the correction to the Schwarzian
action in the case of the charged SYK model. It will be really interesting in the com-
ing years to see how much we are able to understand in terms of the bulk dual to these
theories, instances of which have been explored in [13, 22} [25]. A slightly more ambi-
tious problem would be to learn how to use these models to explore the region behind
the black hole horizon. This can, in turn, help us more conclusively understand what
transpires in black hole environments.

More generally, it will also be interesting to see how the confluence of ideas from quan-
tum chaos, quantum information and quantum matter, that has helped us discover sur-
prising new results about black holes, leads us further into better understanding the
quantum aspects of gravity.
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Appendix A

Deriving the Hawking Radiation

Imagine a futuristic space-traveller, Ringo, who attempts to jump into a black hole just
out of sheer curiosity. As he falls toward the black hole, his speed keeps on increasing,
and in his time frame, which we will denote here as fg, he takes a finite time to fall
through the future horizon of the black hole. Ringo’s mate, George, who is slightly less
adventurous, chooses to observe Ringo from far, far away, far enough from the black
hole to essentially make him an asymptotic observer. But George never really sees
Ringo reaching the horizon till an infinite time tg, indicating that there is a nonlinear
relation between the two times. In the proper time 7 of the infalling observer, U goes
through zero linearly, while V' is approximately constant. Therefore,

dig < e "6/ d1g. (A.1)

The two time coordinates are characteristically different. While Ringo, with the g coor-
dinate crosses the horizon freely, George with the /g coordinate interprets space ending
at the horizon. We will use the difference between the coordinates used by George and
Ringo that to see how the black hole emits radiationE]

Ringo, in his g coordinate, expands the quantum fields in modes of fr-frequency v,
while George expands them in modes of 7g-frequency @. One should make a note here
that these are two different expansions with positive and negative frequencies mixed.
Here, for simplicity, we treat our set-up as a (1 + 1)-dimensional systenﬂ with ¢, a

I'We have followed [17] for this derivation.
ZWe have just ignored the angular directions.
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massless scalar. The metric can therefore be written as

-1
ds2:—<1—ﬁ)dz2+ (1—5> ar?
r r
— (1 - 5) dudv (A-2)
r

2
_ M rinquav
r

where we have used the following definition:

u=t—(r+riln(r—ry)) = =2r;In(=U/ry), v=t+(r+riln(r—ry) =2r;In(V/ry).

(A.3)
The coordinates above (u,v)are defined only in the first quadrant but are conformally
related to the KruskalaASSzekeres (U, V) coordinates. One can simply write the Klein-
Gordon equation as

9u0y9 = dydyp =0 (A4)

which can be used to obtain both the modes.

We expand the right-moving part in modes:

*© dv - .
¢R — / —1 (ave_NU +aT elVU)
/2 v
0 2m(2v) (A5)

© do _ ;
:/0 —277:(20))1/2 (bwe le—f—bLele).

Here ay and by, are the modes for Ringo and George respectively. Using mode expan-
sions, we can show that the two are related as:

< dv
by = / —(opvay + ﬁwvai) (A.6)
0 2T

where
Oy = 2rs(@ V) /2 (2rv) 2595 (=2ir,m),

. AT
Boy = 2r5(@/ V)2 (2r,v) 10 e TOD(_2ir ). (A-D

Since ay|y) = 0 holds true because of the adiabatic principle, the eternal modes have
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the following behaviour:

* dv dv’ .
(Whhbol ) =200) 2 [ o ey (Wlaval )
< dv _,
:Z(ww/)l/z 0 Mﬁwvﬁa)’v’
A8
2w (o — ') (A-8)
- e47rrsa)_1
_2né(w— o)
S e®/Tu—

This is exactly the spectrum of a blackbody at temperature 7y — a black hole radiates
away its energy in the form of Hawking radiation which is thermal.
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Appendix B

The Bound on Classical Chaos

While discussing the bound on the Lyapunov exponent for quantum systems, we did not
address the issue of the validity of our proof for classical mechanics.

It may appear that Lyapunov exponents for classical systems which can take any value
violate the Maldacena-Shenker-Stanford bound [5]. However, the expression for the
bound on the Lyapunov exponent with the dimensionful factors is

27'L'kBT

A< = (B.1)

Since in the strict classical limit, we take 7 — 0, the Lyapunov exponent in the classical
case is allowed to take any possible value. Hence, there is no possible violation of the
bound that classical chaos can exhibit.
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