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Abstract

A 2N × M - node spider network is a set of M -layers each of which has 2N

nodes which can be represented by N -bit binary numbers. A site in layer r may
be represented by an N -bit integer. The site in the rtℎ layer with the bit label
abcd...ij is connected to two sites with labels bcd...ij0 and bc....ij1 in the layer r+1.
The layer M is connected in the same way to layer 1. We enumerate self-avoiding
walks(SAWs) and self-avoiding polygons(SAPs) on a spider-web network. The high-
temperature expansion of the Ising model on this network is discussed. Then we
consider a spring network on this graph, with a mass m placed at each node, and
for each link, there is a spring of spring constant K connecting the masses at the
ends. I discuss the normal modes of this lattice.
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Chapter 1

Introduction

This project was aimed at understanding some graphical enumeration techniques in
statistical physics. There are not many problems in statistical physics which can be
solved exactly. A useful general technique to study these problems is series expan-
sions which involve diagram counting. As an example of this technique we find the
number of self-avoiding walks(SAWs) and self-avoiding polygons(SAPs) on a class of
graphs which are called spider-web networks precisely defined later. We calculated
the high temperature expansion of the Ising model on this network. We also look
at the normal modes of a spring network on this graph. These networks have some
very interesting properties which we will allude to in the next section.

Such networks were first seen in the telecommunications industry in the middle
of the 20tℎ century. Spider-web networks were introduced by Ikeno[[1]], though the
term appears first in Feiner and Kappel[[2]]. For a sequence of such networks that is
optimal, Ikeno proved that the linking probability tends to a limit and conjectured
the limit is true even for spider-web networks. Takagi[[3]] showed that in a certain
class of interconnection designs, the spider-web network is optimal in the sense that
it has the highest linking probability. But, Chung and Hwang[[4]]showed, by giv-
ing a counter-example , that they are not optimal in the larger class of networks.
Pippenger[[5]] proved, within the model of Lee[[6]] and Le Gall[[7, 8]], that they are
only asymptotically optimal.

From the early 1940s, since the introduction of such networks in automatic tele-
phony, their performance, in terms of the blocking probability, under various traffic
conditions with different number of switches have been a source of interesting and
challenging problems. Hwang[[9]] gave an efficient method to compute this prob-
ability for these networks and Pippenger[[10, 11]] later showed, as conjectured by
Ikeno[[1]], that if the occupancy probability is below the threshold 2−

√
2 = 0.5857...,

then the blocking probability tends to zero, whereas above this threshold it tends
to unity.
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Figure 1.1: The seven configurations of a 2 × 2 crossbar with only one to one
connections between the inlets and outlets. The two nodes on the left are the inlets
and the two on the right are the outlets.

With the advent of digital electronics, these networks lost their technological in-
terest, yet it still remains of interest to graph-theorists, probabilists and combina-
toricians. We look at three problems on this network namely,

1. High-temperature expansion of the Ising model

2. The number of self-avoiding walks(SAWs) and self-avoiding polygons(SAPs)

3. Normal modes of the spring problem on this network

We’ll use the word polygons and loops interchangeably. The first two problems are
looked at in detail in the second chapter. We show that the free energy function has
an expansion of the form:

F (x) =
x4

2
+

15

4
x8 +O(x12) (1.1)

where x = tanh(�J) is the high temperature expansion parameter.

The third chapter is devoted to the vibrational spectra of spider networks. We
obtain the entire spectrum for small values of N and also describe the qualitative
features of the spectrum in the thermodynamic limit of M → ∞.

1.1 Spider-web Networks[10]

The basic component of this network is a 2 × 2 ”crossbar”. A crossbar has four
terminals, two inlets and two outlets. It has four simple on-off switches(the two ter-
minals are either connected together or disconnected from each other) to establish
one to one or many to one connections between some or all of the inlets and outlets.
If we allow only one to one connections, then there are seven possible configurations
of the crossbar. There are shown in Figure(1.1).
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Figure 1.2: Shuffle Pattern: ab → b0(red) and ab → b1(green) where a and b are
either 0 or 1

A "spider-web" has, for some integer N ≥ 3, 2N−1 ”layers/stages”, each having
2N−1 crossbars. The inlets of the crossbar at the first layer are the inputs of the
network. For, 1 ≤ k ≤ 2N − 2, the outlets of the ktℎ layer serve as inputs for the
(k + 1)tℎ layer, i.e. the outlets of the crossbar at the ktℎ layer are connected by
”links” to the inlets of the crossbar in the (k + 1)tℎ layer according to a "shuffle"
pattern. The shuffle pattern can be defined by numbering the inlets and outlets
with binary representation of integers from 0 to 2N − 1 such that the inlets of each
crossbar receive the same numbers as the outlets and these numbers differ only in
their least significant bit in the binary representation. The outlets of the crossbar
in the last layer are the ”outputs” of the network. In a spider-web network there
are 2N−1 paths between each input and each output.

Our network is a slight modification of the spider-web network. There is no
restriction on the number of layers, it can be any integer(≥ l). We denote the num-
ber of layers in the network by M(M ≥ N), where M is even. The M tℎ layer is
connected back to the first layer. Hence, there is no input or output to the network.
We will have two to one connections between the crossbars of the ktℎ and (k + 1)tℎ

layer(last layer connects back to the first layer) defined by the following two shuffle
patterns: connect each outlet in the ktℎ layer to two inlets in the (k + 1)tℎ whose
number has the binary representation obtained by cyclically shifting one place to
the left the representation of the outlet and putting a 0 or a 1 in the least significant
bit.

For us, a 2N ×M - node spider-web network is a set of M -layers each of which
has 2N nodes which can be represented by N -bit binary numbers. A site in layer r
may be represented by an N -bit integer. The site in the rtℎ layer with the bit label
abcd...ij is connected to two sites with labels bcd...ij0 and bcd...ij1 in the layer r+1.
The layer M is connected in the same way to layer 1.

The N = 2,M = 4 network is shown in Figure(1.2). It is easy to see that the
spider-web network is bipartite since we have an even number of layers in all. The
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vertices can be grouped into two sets with the vertices of the odd layers in one and
the vertices of the even ones in the other. This explicit construction of the two sets
shows that the graph is bipartite. The network is locally tree-like though it does
have loops of small sizes. Also, all sites in the network are exactly equivalent. We
will label sites in the first layer as i1, i2, ..., iN in the second layer as i2, i3, ..., iN+1

and so on. We will always require M such labels from i1 to iM to denote the sites
in the lattice. Each layer is denoted by such a set of N consecutive labels and then
each particular site in the layer is obtained by giving those variables values namely
0 and 1. This scheme will work if and only if M ≥ N .
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Chapter 2

Self-Avoiding Walks and Polygons

and High-Temperature Expansion

2.1 Ising Model

Consider a one-dimensional lattice with N sites, labeled by integers from 1 to N . At
each site i, there is a spin �i which can take value either +1 or −1. The Hamiltonian
of this system in the absence of an external magnetic field is:

H = −
N−1
∑

i=1

Ji,i+1�i�i+1 (2.1)

For each pair, if

1. Ji,i+1 > 0 the interaction is called ferromagnetic

2. Ji,i+1 the interaction is called antiferromagnetic

3. Ji,i+1 = 0 the spins are noninteracting

A ferromagnetic interaction tends to align spins, and an antiferromagnetic tends
to antialign them. We assume the this coupling between the spins is the same
for all pairs, i.e.,Ji,i+1 = J . Our first problem is to find the partition function
which is obtained by exponentiating the Hamiltonian and summing over all the 2N

configurations:

Z =
∑

C

e−�H (2.2)

The system is in contact with a heat bath at temperature T and each configuration
C occurs in the canonical ensemble, with a probability Prob(C) = exp−�H(C)/Z,
where Z is given by Equation(12).� is 1/kBT , where kB is the Boltzmann’s constant
and cancels whatever dimensions the Hamiltonian may have.

We do a change of variables. Define variables {�i} with {�1} = �1, and {�i} = �i−1�i,
for i > 1. These variables are again Ising in the sense that �i = ±1. Then, we get
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H = −J
∑N

i=2 �i. Now the summations over all configurations is easy to do in terms
of the {�i}. And we get,

Z =
∑

{�i}

e�H({�i})

= 2ΠN
i=22 cosh(�J)

= 2N [cosh(�J)]N−1 (2.3)

The free energy per site in the tℎermodynamic limit of large N can be defined
as f(�) = limN→∞ = −kBT (logZ)/N . Hence,

f(�) = −kBT (log[2 cosh(�J)]) (2.4)

From the partition function one may in principle derive all the important thermo-
dynamical features of the physical system being modeled: magnetization, specific
heat, susceptibility, internal energy and so on. Phase transitions will show up as
discontinuities in f or in one of its derivatives. It is not always possible to find
a closed-form, analytic expression for the function f . In these cases we resort to
graphical enumeration techniques such as high and low temperature expansions.
In the next section we will give the general idea of high-temperature expansion
for Ising systems and work out an explicit example for the two-dimensional square
lattice zero-field Ising model. The exact solution for this problem is known. The
general d-dimensional hypercube lattice Ising model has the form:

H = −
∑

<i,j>

Ji,j�i�j (2.5)

where < i, j > denotes nearest neighbor spins. We will use a "wrap-around" lattice,
i.e., a lattice with periodic boundary conditions. As in the one-dimensional case we
will set all the couplings Ji,j to a constant J .

2.2 High-Temperature Expansion for Ising systems[12]

We shall begin by converting the partition function from exponentials into polyno-
mials. This is based on the identity:

e±y = cosh y ± sinh y = cosh y(1± tanh y) (2.6)

Now since the variables �i take on the values ±1, we have:

Z =
∑

±1

e
∑

<i,j> �J�i�j

=
∑

±1

(eΠ<i,j>�J�i�j)

=
∑

±1

(Π<i,j> cosh(�J)(1 + �i�jx))

= cosh(�J)B
∑

±1

(Π<i,j>(1 + �i�jx)) (2.7)
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where B is the number of bonds, x = tanh(�J). Since were are using periodic bound-
ary conditions, B = dN , where d = 1, 2, 3, ... is the dimension of the model. We can
now introduce the factor of 2N which is the total number of possible configurations:

Z = [2 coshd(�J)]N
1

2N

∑

±1

(Π<i,j>(1 + �i�jx)) (2.8)

The free energy function now consists of two parts:

F = lim
N→∞

1

N
logZ = log(2 coshd(�J)) + lim

N→∞

1

N
logZ ′ (2.9)

where

Z ′ =
1

2N

∑

±1

(Π<i,j>(1 + �i�jx)) (2.10)

The first part log(2 coshd(�J)), is always analytic for real values of � and J ;
hence it does not exhibit any discontinuity. We will not look at "non-trivial" part
Z ′. Since �2

i = 1 for all i, we have:

Π<i,j>(1 + �i�jx) = P0(x) + �1P1(x, �1, ..., �N ) (2.11)

+�1P2(x, �3, ..., �N ) + ...+ �NPN(x)

for polynomials P0,P1,...,PN . Note that P0 is of degree dN in x. When we do the
sum over all configurations, each �lPl term vanishes:

∑

±1

�lPl(x, �1 + 1, ..., �N ) = (
∑

±1

�l)(
∑

±1

Pl(x, �1 + 1, ..., �N ))

= 0 (2.12)

This implies that the non-trivial part of the partition function is:

Z ′ =
1

2N

∑

±1

P0(x) = P0(x) (2.13)

Since the degree of P0 in x is dN , we can write it as:

P0(x) = 1 + c(1)x+ c(2)x2 + ...+ c(dN)xdN (2.14)

where c(i) are the coefficients of the polynomial. These coefficients have a simple
combinatorial interpretation. If we think of the lattice as a graph with the sites
being the vertices and the bonds between nearest neighbor sites being the edges,
then c(n) counts the number of "even" subgraphs with n edges, where by "even" we
mean that each vertex has positive, even coordination number. This can be seen
by letting the presence of absence of the bond < i, j > in a subgraph correspond
to the choice of �i�jx or 1 in the expansion of Π<i,j>(1 + �i�jx). Each subgraph
corresponds to a term in the expansion: Π

�
�i
i xn , where �i is the coordination number

of vertex i and n = 1
2

∑

i �i is the number of edges. Unless each �i is raised to an
even power, there is no contribution of this subgraph to Z ′. Therefore, only even
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subgraphs contribute to the non-trivial partition function Z ′.

Each connected component of an even subgraph forms a closed path in the
original lattice. Now it is easy to see the solution of the one-dimensional Ising
model: with periodic boundary conditions, there is one and only one close path,
namely, the complete circuit of length N . Therefore, Z ′ = 1 + xN , so that:

F = log(2 coshd(�J)) + lim
N→∞

log(1 + xN)

= log(2 coshd(�J)) (2.15)

since ∣x∣ = tanh(�J) < 1. If we did not have periodic boundary conditions, then
there are no closed paths, hence log(Z ′) = 0 directly.

In dimensions 2 and 3, clearly closed paths exist, but they must be of even length
unless they are long enough to make use of the wrap around. Also, the shortest paths
are of length 4, so we have

P (x) = 1 + c(4)x4 + c(6)x6 + c(8)x8 + ... (2.16)

if the lattice is sufficiently large. We shall show the computation of the coefficient
c(n) for n = 4, 6 and 8 for d = 2.

An even subgraph with n = 4 edges is a square. For every lattice point there is a
square with a specified corner(top-right-hand) at that lattice point, so this implies
that c(4) = N . Now, an even subgraph with n = 6 edges is either a 2× 1 or a 1× 2
rectangle, which can be located at any of the N lattice sites. Hence c(6) = 2N .

From n = 8 onwards, the subgraphs need not be connected. For n = 8 a dis-
connected subgraph has to necessarily be two disjoint squares. The "first" square
maybe placed with its top-right-hand corner are any of the lattice points, while the
same corner of the "second" square needs to avoid exactly nine sites(see Figure(2.1)).
Hence in all there are N(N − 9)/2 disconnected even subgraphs with exactly eight
edges. We need to divide by 2 to remove the distinction between "first" and "sec-
ond".

The connected paths of length 8 are shown in Figure(2.2). These four dif-
ferent types, with a total of 9 orientations give 9N connected subgraphs with
exactly 8 edges. An exhaustive enumeration of octagons shows that there are
c(8) = N(N + 9)/2 of them.
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Figure 2.1:

Figure 2.2: a) N of these, b) 4N of these since there are 4 possible orientations(┌,┐,┘
and └) c) 2N of these for 2 orientations(horizontal and vertical)and d) 2N of these
for two orientations(∖ and /)

Knowing the first few terms in Z ′ allows us to compute the corresponding terms
in the power series for the thermodynamic limit. We can do the formal Taylor series
expansion of the logarithm,

log(1 + x) = x− x2

2
+
x3

3
− ... (2.17)

Therefore,

log(Z ′) = log[1 + c(4)x4 + c(6)x6 + c(8)x8 + ...]

= [1 + c(4)x4 + c(6)x6 + c(8)x8 + ...]

− [1+c(4)x4+c(6)x6+c(8)x8+...]2

2
+ ... (2.18)

= c(4)x4 + c(6)x6 + [c(8)− c(4)2

2
]x8 +O(x10)

Using the value of c(n) from our computations above, we get:

F ′ = lim
N→∞

logZ ′

N
= x4 + 2x6 +

9

2
x8 + ... (2.19)

After taking the thermodynamic limit, we get a power series for the modified(non-
trivial) free energy F ′. That the coefficients of F ′ are independent of the lattice size
N is a consequence of the extensivity of the free energy.

Truncating the power series expansion for log(1 + x) and looking at only terms
of small orders is going to be valid only in the limit of high-temperature, since then
as � → 0, x→ 0 and the contribution from higher orders becomes vanishingly small.
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2.3 Self-Avoiding Walks and Polygons on Spider-

web networks

To count the number of self-avoiding polygons(SAPs) and self-avoiding walks(SAWs)
we use a depth first search with backtracking algorithm. Using the number of SAPs
we can in turn infer the number of even subgraphs which will enable us to do the
high-temperature expansion of the Ising model on the network.

Backtracking is a general algorithm for finding all (or some) solutions to a computa-
tional problem, that incrementally builds candidates to the solutions, and abandons
each partial candidate c("backtracks") as soon as it determines that c cannot possi-
bly be completed to a valid solution. When it is applicable, however, backtracking
is often much faster than brute force enumeration of all complete candidates, since
it can eliminate a large number of candidates with a single test.

The famous "Eight Queens Puzzle" is an example where the depth first search with
backtracking algorithm gives the most efficient way to find solutions[13].

In the spider network each node in a layer l is connected directly to four nodes,
two in layer l − 1 and two in l + 1. We will call these four operators as:

1. a cyclically shifts one place to the left the representation of the node and puts
a 0 in the least significant bit. Therefore, a takes a node in layer l to l + 1.

2. b cyclically shifts one place to the left the representation of the node and puts
a 1 in the least significant bit. Therefore, b takes a node in layer l to l + 1.

3. c cyclically shifts one place to the right the representation of the node and
puts a 0 in the most significant bit. Therefore, c takes a node in layer l to
l − 1.

4. d cyclically shifts one place to the right the representation of the node and
puts a 1 in the most significant bit. Therefore, d takes a node in layer l to
l − 1.

Since the spider-web network is bipartite, there are no odd loops. We can start with
any given node, since all nodes are equivalent. We define a preference order in the
following way: a > b > c > d. Let the size of the even loop, the number of which we
wish to count be n. A set of operators of the form f = abdcacba... acts on a node i
and forms an n-sized loop. We denote by f(i) the set of nodes which occur at every
step. For example: if f = abdc, then abdc(i0) = abd(i1) = ab(i2)i1 = a(i3)i2i1 =
i4i3i2i1 = f(i0), where i1 = c(i0) and i2 = d(i1) and so on. For a 4-loop to occur
i0 = i4. Similarly for n-loop, i0 = in. Since the operator f generates loops, the
number of a + b in f must match the number of c + d and this number has to be
necessarily equal to n/2, else we will not be able to return to the starting node on

10



Loop-size(n) Number of SAPs per site(pn)
pn+2

pn

4 0.5 0.000
6 0 undefined
8 4 0.000
10 0 undefined
12 32 6.000
14 192 2.333
16 448 7.142
18 3200 6.570
20 21024 5.065
22 106496 5.593
24 595712 5.966
26 3554304 -

Extrapolated Value(∞) - 5.280

Table 2.1: The number of self-avoiding polygons per site in a spider-web network

applying f on the starting node.

Also as we are interested in SAPs, there is an additional check which needs to
be added. We need to make sure that every node(other than the starting node)
appears only once, i.e., none of the ik other than i0 should appear more than once
in f(i0). For self-avoiding walks, none of the nodes including the first one should
appear more than once. Using these checks, I wrote a depth first search with back-
tracking program in C++ to count the number of SAPs and SAWs on the spider-web
network. The numbers are shown in Table(2.1) and Table(2.2) respectively.

Let us take a closer look at Tables(2.1,2.2). We will denote steps taken in the
forward direction, i.e from a layer r to r+ 1 by an F and in the backward direction
by B and the loop or walk-size by n and the number of loops and walks of a given
size n by pn and cn respectively. There are two choices each for F and B. F k and
Bk will denote k steps in the forward and backward directions respectively. Since
these are polygons, the number of F is equal to the number of B is equal to half
the polygon size. Due to the self-avoiding property, whenever an F and a B occur
together, there is only one unique specification that can be made, i.e of the two
choices only one will work. Without loss of generality we can always choose F to
be the first step. Now there is one and only one polygon of size-4 which is denoted
by FBFB. Once we choose the the first F as obtained by applying say operator a
on the site, the whole polygon gets fixed. We necessarily have to choose operators
dbc in that order to form a 4-loop because of the above reason. Now we could have
chosen c instead of a for the first step, but that gives the same 4-loop, just traversed
in the opposite orientation. Hence, there is only one unique 4-loop which can be
constructed starting at any arbitrary site. Now since a 4-loop has two sites in a
single layer, the number of these per lattice site is 1/2.

11



Walk-size(n) Number of SAWs per site(cn)
cn+1

cn

1 4 3.000
2 12 3.000
3 36 2.888
4 104 2.923
5 304 2.921
6 888 2.918
7 2592 2.895
8 7504 2.901
9 21776 2.921
10 63624 2.888
11 183774 2.899
12 532832 2.901
13 1545792 2.897
14 4479424 2.899
15 12986688 2.898
16 37639936 2.898
17 109109248 2.897
18 316174464 2.898
19 916331776 2.897
20 2654878208 2.897
21 7692865792 -

Extrapolated Value(∞) - 2.897

Table 2.2: The number of self-avoiding walks per site in a spider-web network

None of the possible combinations of 3 F ’s and 3 B’s lead to a 6-loop. There is
only one type of 8-loop denoted by F 2B2F 2B2 and there are exactly 8-such polygons
possible. The eight polygons correspond to the two choices of the three bold face
steps in FFBBFFBB. For n = 10 there are no loops possible and for n = 12 there
is exactly one loop denoted by F 3B3F 3B2FB2 and there are 64 polygons of this
type. From n = 14 onwards, we have more than one type of loop. For n = 14, there
are six types of loops namely F 3B2F 2B3F 2B2, F 3B2FB2F 3B3, F 3B3F 3B2FB2,
F 3B3F 2BF 2B3, F 2BF 2B3F 3B3 and F 2B2F 3B2F 2B3. There are 26 number of
loops of each type giving a total of 384 loops. We have done this analysis for all
loop-sizes till 20. We fit a function of the form An�

n
SAP for pn, �SAP is called the

connective constant of SAPs. We find that �SAP for SAPs on a spider-web network
is close to 2.298.

We do a similar analysis for walks as we did for polygons. It is straightforward
to see that the number of SAWs of sizes 1, 2 and 3 are respectively 4, 12 and 36
respectively. We have 4 choices for the first step corresponding to choosing either of
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a, b, c or d as the first operator and from the second step we have 3 choices. This
will hold only for walk-size ≤ 4. From n = 4 onwards we get loops, so we need
to eliminate them while counting walks. There are 4 different walks that one can
construct from a given site. This corresponds to the 4 choices of the operators. Now
we need to subtract these from all possible walks of size 4. Hence, the number of
SAWs of size 4 is 4×33−4 = 104. Similarly one can show that the number of SAWs
of size 5 is 3 × 104 − 8 = 304 and so on. We fit a function of the form Bn�

n
SAW

for cn, �SAW is called the connective constant of SAWs. It is trivial to see that for
this network 2 < �SAW < 3. From the fitting function, we find that �SAP for SAPs
on a spider-web network is close to 2.90. For most lattices, �SAP = �SAW , but for
our lattice this is not true. Another example of a lattice where �SAP ∕= �SAW is the
Bethe lattice, where you can construct SAWs of arbitrary length, but there are no
loops at all.

2.4 High-Temperature Expansion of Ising Model on

Spider-Web Network

An even subgraph with n = 4 edges is a 4-loop an example of which is shown in
Figure(2.3). c(4) = N/2 and c(6) = 0 from the above table. For c(8) we need to do
a little more work. Other than the self-avoiding polygons(connected) which are 4N
in number, we can now have two 4-loops which together will form an even subgraph
with n = 8 edges. As can be inferred from Figure(2.3), the number of these would be
N(N − 2)/8. The "first" 4-loop maybe placed with either of its left-hand corners at
any of the lattice points, while the left-hand corners of the "second" square needs to

avoid exactly two sites(see Figure(2.3)). Hence in all there are
N
2

(N−2)
2

2
disconnected

even subgraphs with exactly eight edges. We need to divide by 2 to remove the
distinction between "first" and "second". An exhaustive enumeration of octagons
shows that there are c(8) = 4N +N(N − 2)/8 = N(N + 30)/8 of them.

From Table(??) we see that there are no SAPs of size 10. Also, since c(6) = 0,
we cannot have 4-loop and a 6-loop combining to give a 10-loop as would have hap-
pened in the two-dimensional Ising model on the square lattice. Hence, c(10) = 0.
Using Equation(2.19), we can find the free energy function as follows:

log(Z ′) = c(4)x4 + c(6)x6 + [c(8)− c(4)2

2
]x8 +O(x10)

= N
2
x4 + [N(N+30)

8
− (N

2
)2

2
]x8 +O(x10) (2.20)

As explained above, there will be no x10 term as well. Hence,

F ′ =
Z ′

N
=
x4

2
+

15

4
x8 +O(x12) (2.21)

Similarly, higher order terms can be computed.
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Figure 2.3: An example of a 4-loop. Two sites in a layer form one 4-loop.
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Chapter 3

Vibrational Spectra of Spider-Web

Networks

3.1 The Spring Problem

In the spring problem, for displacement xi at vertex i (i = 1 to N0 = 2N ×M), the
Hamiltonian is(Equation(3.1)):

H =
1

2

∑

i

(dxi/dt)
2 +

1

2

∑

i,j

K(xi − xj)
2 (3.1)

=
1

2

∑

i

(dxi/dt)
2 +

1

2

∑

i,j

xiKijxj

The matrix K is given in terms of the Adjacency matrix of the graph. Ki,j = −1 if i
is directly connected to j, 0 otherwise. Ki,i = 4 in our problem, for all i since there
are 4 springs emanating from each site. Hence if Λ is the Adjacency matrix of this
graph, then the matrix K is given by(Equation(3.2)):

Kij = 4− Λij (3.2)

Therefore, K = 4I− Λ where I is the 2N ×M size identity operator.
The eigenvalue problem is(Equation(3.3)):

K � = E� � (3.3)

here  � is the eigenvector for eigenvalue E�.
If there is symmetry of K, then there is a set of symmetry operators Fr[r =

1, R] such that [Fr, F
′
r] = 0, and [K, Fr] = 0 then K and Fr can be simultaneously

diagonalized. If the eigenvectors of F ’s are known by other means, they must also
be eigenvectors of K.

For the problem of vibrational modes of a harmonic crystal, F is the translation
operator, and its eigenvalues are exp(�ka), which then reduces it to a finite matrix
diagonalization problem[[14]].
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In our case, one symmetry is flipping jtℎ bit. Call this Fj, then FjFj = I. Hence
eigenvalues of Fj are +1 and −1. When all Fj = +1, then translational invariance
exists. If we denote the translational operator by T , then [Fj, T ] = 0 for all j. We
can find out the eigenvalues of the translation operator using the fact that TM = I,
hence the M eigenvalues of T are the M roots of unity denoted by exp(ik) with
k = 2�n/M with n = 0, 1, 2, ...,M − 1. Here we have M independent commut-
ing operators F1, F2, ..., FM . That gives decomposition of the large K matrix into
2M × 2M blocks and several of these blocks are of zero size as will be shown below.

There are in all 2M values for the set of operators {Fi}, since there are two choices
for each Fi. But it turns out that not all of these result in non-zero values for the dis-
placement xi. The wavefunction at each node is labeled by two entities: 1. its layer
number, the variable for which we will call as x and 2. an N -bit integer, the variable
for which we will call y. Hence  ≡  (x, y). Therefore, Fi (x, y) = ± (Fi(x, y)).
We cannot set the eigenvalue of Fi and Fj both equal to −1 if ∣i− j∣ ≥ N since that
results in identically zero amplitudes at each of the nodes.

For example, let us look at the N = 3 case. We will label the sites in layer 1 as
i1i2i3 in layer 2 as i2i3i4 and so on and in the M tℎ layer as iM i1i2 so that it connects
back to the 1st layer. Let us see what happens if F1 = −1 and F4 = −1. Note that
there is no site which has a label which has both i1 and i4 in it. The action of F4 on
i1i2i3 is F4 (i1i2i3) = − (F4(i1i2i3)) = − (i1i2i3) which implies that  (i1i2i3) = 0
since F4 (i1i2i3) is just  (i1i2i3) as there is no i4. Hence F4 will set amplitudes of
all sites in which there is no i4 to 0. Similarly, F1 will set all amplitudes in which
there is no i1 to 0. As noted earlier we don’t have any site which has both i1 and
i4 in its label, hence the amplitudes of all sites identically vanish. From the same
line of argument, if within a set of N consecutive operators, Fi = −1 and Fj = −1
such that ∣i − j∣ is maximum and the rest of M − N F operators have eigenvalue
+1, then there are exactly N − ∣i− j∣ modes coming from this set of F ’s.

We just need to deal with the eigenvalue problem for Λ since the identity oper-
ator is anyway diagonal. Therefore, if �� and  � is an eigenvalue and eigenvector of
Λ, then the corresponding eigenvalue and eigenvector for K will be 4− �� and  �.
We will have 2N ×M eigenmodes for the N -bit M -layer problem. We will also set
the spring constant and the mass of each atom to unity, i.e K,m = 1. The frequency
of an eigenmode is denoted by !� and !2

� = E�.

We will denote by D(!2
�), the fractional number of times an eigenvalue !2

� appears,
i.e number of times the eigenvalue appears divided by 2N × M in the limit that
M → ∞. Hence, 0 ≤ D(!2

�) ≤ 1. This is called the spectral density function and
D(!2

�)d!
2
� denotes the fractional number of modes between !2

� and !2
� + d!2

�. We
will always plot the spectrum in the limit as M → ∞ since that is of interest to us.
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Figure 3.1: N = 1 spider network, Rule: a→ 0(green) and b→ 1(red) where a and
b are either 0 or 1

3.1.1 N=1

There are 2M modes. The network looks as follows(see Figure(3.1): Since all sites
are just labeled by a single iL, we can at max set one of the Fp = −1. The moment
we set an Fp = −1, the wavefunction amplitude of all sites other than those in the
layer p vanish identically. Let us now look at the sites in this p-layer. The eigenvalue
equation for any site in this layer will be �� � = 0 since all the four sites to which it
is connected have identically zero amplitudes. Hence !2

� = 4. The eigenvector upto
an overall multiplicative constant is  � = (0, 0, 0, ..., 1,−1, ..., 0), where the first two
entries are the amplitudes of the wavefunction at the first(0) and second(1) site of
layer 1, the next two entries are for the sites in layer 2 and so on; 1 and −1 are the
amplitudes of the two sites in the ptℎ layer. From now on we will not worry about
the overall multiplicative constant. Now we have M choices for p which gives us
M of the modes each of which has !2

� = 4. We will always get these set of modes
whenever we have a set of N consecutive Fp’s equal to −1.

The other M modes come from translational invariance when we set all the Fp = +1.
The eigenvalue equation for any site is(Equation(3.4)):

�� � = 2(��exp(�k) � + ��exp(−�k) �) (3.4)

�� = 4cosk

k = 2�n/M, n = 0, 1, 2, ...,M − 1

These are the other M modes with:

!2
� = 4− 4cosk (3.5)

= 8sin2(k/2)

!2
� = 4− 4cosk (3.6)

= 8sin2(k/2)

By equating the number of modes in k-space with that in frequency space, we
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Figure 3.2: In the case of translational invariance, the problem reduces to that of
finding the normal modes of a 1−D monatomic lattice

get
∫

dk

2�
=

∫

D(!2
�)d!

2
�

D(!2
�) =

1

2�
∣ dk
d!2

�

∣. (3.7)

Using Equation(3.6), one can show that:

D(!2
�) =

1

2�[!2
�(8− !2

�)]
1
2

(3.8)

The eigenvectors obtained for the firstM modes were of the form  � = (0, 0, 0, ..., 1,−1, ..., 0),
where the 1 and −1 are the amplitudes of the two sites in the ptℎ layer for which
Fp = −1. Now the other M modes have to be orthogonal to all these modes.
Hence the most general wavefunction which satisfies this condition is of the form
(�1, �1, �2, �2, ..., �M , �M) where the amplitude of the sites in a given layer are exactly
the same. This wavefunction by construction is orthogonal to any eigenmode which
we obtained by setting Fp = −1. Now since the amplitude of the two sites in a layer
are identical, we can as well combine the two sites into one. This now reduces to the
problem of finding the normal modes of a one-dimensional monatomic lattice with
periodic boundary conditions. The only change is that each atom now has a mass
m′ = 2m and is connected to its neighbours with a spring constant K ′ = 4K(See
Figure(3.2)). The eigenmodes have a frequency !(k) = 2

√

K/m∣sin(k/2)∣[[14]].
Plugging in the values of K ′ and m′ we get Equation(3.6). These translational-
invariant modes also exist for all N when all the Fp = +1. Hence, from now on we
will only discuss rest of the modes other than these 2M . Of the 2N ×M modes, M
of the modes are extended. These are the translationally-invariant modes. Rest of
the modes can be chosen to be localized.
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Figure 3.3: Rule: ab→ b0(red) and ab→ b1(green) where a and b are either 0 or 1

Figure 3.4: Rule: ab→ b0(red) and ab→ b1(green) where a and b are either 0 or 1

3.1.2 N=2

The network for M = 4 is shown in Figure(3.3). In all there are 4M modes, but as
explained above, 2M of these come from translational invariance(M modes) and by
setting 2 consecutive F ’s equal to −1(M modes). Hence, we just need to find out
the other 2M modes. We can set any of the Fp = −1 and all other Fr = +1 ∀r ∕= p.
For example, let us set F2 = −1. The wavefunction at sites in all layers other than
1 and 2 vanishes identically as explained above(3.1). The wavefunction amplitudes
at sites in layers 1 and 2 will be as shown in Figure(3.4). The eigenvalue equation
now becomes(Equation(3.9)):

� 1 = 2 2 (3.9)

� 2 = 2 1

Solving this, we get two values for �, namely −2 and +2. These are the other 2M
modes corresponding the M choices for p. One can similarly work out the modes
for other values of N . In the next section, we will present the general framework to
deal with this problem.
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3.2 General Framework for the N-bitM-layer spring

problem

In all there are 2N ×M modes since there are those many sites in the lattice. We
know the identity(Equation(3.10)):

(1 + x)N =
N
∑

k=0

NCkx
k (3.10)

= NC0x
0 +N C1x

1 +N C2x
2 + ...+N CNx

N

Setting x = 1 in the above equation and multiplying both sides by M we get
Equation(3.11):

2N ×M = (NC0 +
N C1 +

N C2 + ...+N CN)×M (3.11)

In our context NCk means that of a set of N consecutive F operators, k are
such that the eigenvalues of these are −1, the other N − k have eigenvalue +1.
Rest of the M − N [F ] operators have eigenvalue +1. Now, NC0 represents the
case of translation symmetry, when Fi = +1 ∀ i. Let us denote the translation
operator by T . Then TM = I. Hence the eigenvalues of T are exp(2��j/M)
with j = 0, 1, ...,M − 1. Call 2�j/M as �. Then the eigenmodes have eigenval-
ues � = 2(exp (��) + exp (−��)) = 4cos(�). This gives us a set of M eigenvalues
which are 4cos(�), where � = 2�j/M with j = 0, 1, 2, ...,M − 1. NCN represents
the case when a set of N consecutive Fi’s have eigenvalue −1 and all the other Fi’s
have eigenvalue +1. This gives us M of the eigenvalues which are all 0. The other
(2N − 2)M eigenvalues need to be looked at a little more carefully. Each of the
other NCk’s are further partitioned. To fix up the notation, I’ll label the symmetry
operators as Fi with i going from 1, 2, ...,M .

3.2.1 N = 1

Here we have only 1C0 which is the case of translation symmetry and 1C1 in which
of the M operators, for exactly one i, Fi = −1 and Fj = +1 ∀ j ∕= i. In the
case of translation symmetry, the eigenvalues are 4cos(�), where � = 2j�/M with
j = 0, 1, 2, ...,M − 1 and for the other case all eigenvalues are 0. The spectrum is
shown in Figure(3.5).

Since these modes exist for all other values of N as well, I have given explana-
tion only for the rest of the (2N − 2)×M eigenvalues.

3.2.2 N = 2

There are these 2C1×M = 2M extra eigenvalues. These are such that any Fi = −1
and Fj = +1 ∀ j ∕= i. We get two eigenvalues for each i which are � = −2 and
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� for N = 2 and M → ∞

� = +2. And there are M choices for this i, hence the 2M eigenvalues. These are
the 2M values which we will always get when a set of 2M modes are generated.
Including the 2M eigenvalues which appeared for N = 1, we have the complete set
of 4M eigenmodes. Note that 2C2 gives us one eigenvalue which is 0. The spectrum
is shown in Figure(3.6).

3.2.3 N = 3

Case of exactly 1 F being negative

One of the Fi = −1 and rest of the Fj = +1, ∀ j ∕= i. So for example we can
take F1 = −1 and F2, F3 = +1 and ∀i > 3, Fi = +1. This has 3 eigenmodes with
eigenvalues � = 0,−2

√
2,+2

√
2. These are the 3M values which we will always

get when a set of 3M modes are generated. These are eigenvalues of the following

tridiagonal matrix(see Appendix(.1)):

⎛

⎝

0 2 0
2 0 2
0 2 0

⎞

⎠ So this gives us 3M modes.
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Case of 2 F ’s being negative

This gets divided into following 2 sets:

F1 = −1, F2 = −1, F3 = +1 and Fi = +1 ∀ i > 3 This has 2 eigenmodes with
eigenvalues � = −2 and � = +2. These are 2M in number.

F1 = −1, F2 = +1, F3 = −1 and Fi = +1 ∀ i > 3 This has 1 eigenmode with
eigenvalue � = 0 These are the rest of the M modes.

Including the 2M eigenvalues which appeared for N = 1, we have the complete
set of 8M eigenmodes. Now let us look at eigenmodes obtained from 3C3 and 3C2.
It results in two sets of M eigenmodes and a set of 2M eigenmodes. The spectrum
is shown in Figure(3.7).

3.2.4 N = 4

Case of exactly 1 F being negative

One of the Fi = −1 and rest of the Fj = +1 ∀ j ∕= i. So for example we can take
F1 = −1 and F2, F3, F4 = +1 and ∀i > 4, Fi = +1. This has 4 eigenmodes with
eigenvalues � =

√
5− 1,

√
5+ 1,−

√
5− 1,−

√
5+ 1. These are the 4M values which

we will always get when a set of 4M modes are generated. These are eigenvalues of

the following tridiagonal matrix(see Appendix(.1)):

⎛

⎜

⎜

⎝

0 2 0 0
2 0 2 0
0 2 0 2
0 0 2 0

⎞

⎟

⎟

⎠

So this gives

us 4M modes.
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Case of 2 F ’s being negative

This gets divided into following 3 sets:

F1 = −1, F2 = −1, F3 = +1, F4 = +1 and Fi = +1 ∀ i > 4 This has 3 eigenmodes
with eigenvalues � = 0,−2

√
2,+2

√
2. These are 3M in number.

F1 = −1, F2 = +1, F3 = −1, F4 = +1 and Fi = +1 ∀ i > 4 This has 2 eigenmodes
with eigenvalues � = −2 and � = +2. These are 2M in number.

F1 = −1, F2 = +1, F3 = +1, F4 = −1 and Fi = +1 ∀ i > 4 This has 1 eigenmode
with eigenvalue � = 0 These are M in number.
Adding up all these we get the 6M modes.

Case of 3 F ’s being negative

This gets divided into following 3 sets:

F1 = −1, F2 = −1, F3 = −1, F4 = +1 and Fi = +1 ∀ i > 4 This has 2 eigenmodes
with eigenvalues � = −2 and � = +2. These are 2M in number.

F1 = −1, F2 = −1, F3 = +1, F4 = −1 and Fi = +1 ∀ i > 4 This has 1 eigenmode
with eigenvalue � = 0 These are M in number..

F1 = −1, F2 = +1, F3 = −1, F4 = −1 and Fi = +1 ∀ i > 4 This has 1 eigenmode
with eigenvalue � = 0 These are M in number.
Adding up all these we get the 4M modes.

Now let us look at eigenmodes obtained from 4C4,
4C3 and 4C2. It results in four

sets of M eigenmodes, two sets of 2M eigenmodes and a set of 3M eigenmodes.
Including the 2M eigenvalues which appeared for N = 1, we have the complete set
of 16M eigenmodes. The spectrum is shown in Figure(3.8).

The same analogy can be extended for higher values of N . It is evident that
we can forget about M and just concentrate on any set of N consecutive symme-
try operators. Without loss of generality, henceforth, we’ll always choose the set
F1, F2, ..., FN as our set of N consecutive operators. The number of partitions of
NCk is always going to be N−1Ck−1 since we’ll set F1 = −1 in all cases which will
leave us with a choice of k−1 among N−1 operators. I have written down F1 = −1
in each of the cases just for the sake of completeness. Also set Fi = +1 ∀i such that
N < i ≤M .
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3.2.5 N = 5

Case of exactly 1 F being negative

One of the Fi = −1 and rest of the Fj = +1 ∀ j ∕= i. So for example we can take
F1 = −1 and F2, F3, F4, F5 = +1. This has 5 eigenmodes. This has 5 eigenmodes
with eigenvalues � = 2

√
3, 2, 0,−2,−2

√
3. These are the 5M values which we will

always get when a set of 5M modes are generated. These are eigenvalues of the

following tridiagonal matrix(see Appendix(.1)):

⎛

⎜

⎜

⎜

⎜

⎝

0 2 0 0 0
2 0 2 0 0
0 2 0 2 0
0 0 2 0 2
0 0 0 2 0

⎞

⎟

⎟

⎟

⎟

⎠

Case of 2 F ’s being negative

This gets divided into following 4(4C1) sets:

F1 = −1, F2 = −1, F3 = +1, F4 = +1, F5 = +1 This has 4 eigenmodes with
eigenvalues � =

√
5− 1,

√
5 + 1,−

√
5− 1,−

√
5 + 1.

F1 = −1, F2 = +1, F3 = −1, F4 = +1, F5 = +1 This has 3 eigenmodes with
eigenvalues � = 0,−2

√
2,+2

√
2.

F1 = −1, F2 = +1, F3 = +1, F4 = −1, F5 = +1 This has 2 eigenmodes with
eigenvalues � = −2 and � = +2.

F1 = −1, F2 = +1, F3 = +1, F4 = −1, F5 = +1 This has 1 eigenmode with
eigenvalue � = 0
The above add up to 10(4 + 3 + 2 + 1).
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Case of 3 F ’s being negative

This gets divided into following 6(4C2) sets:

F1 = −1, F2 = −1, F3 = −1, F4 = +1, F5 = +1 This has 3 eigenmodes with
eigenvalues � = 0,−2

√
2,+2

√
2.

F1 = −1, F2 = −1, F3 = +1, F4 = −1, F5 = +1 This has 2 eigenmodes with
eigenvalues � = −2 and � = +2.

F1 = −1, F2 = +1, F3 = −1, F4 = −1, F5 = +1 This has 2 eigenmodes with
eigenvalues � = −2 and � = +2.

F1 = −1, F2 = −1, F3 = +1, F4 = +1, F5 = −1 This has 1 eigenmode with
eigenvalue � = 0

F1 = −1, F2 = +1, F3 = −1, F4 = +1, F5 = −1 This has 1 eigenmode with
eigenvalue � = 0

F1 = −1, F2 = +1, F3 = +1, F4 = −1, F5 = −1 This has 1 eigenmode with
eigenvalue � = 0
The above add up to 10(3 + 2 + 2 + 1 + 1 + 1).

Case of 4 F ’s being negative

One of the Fi = +1 and rest of the N−1 Fj’s have eigenvalue −1. This gets divided
into following 4(4C3) sets:

F1 = −1, F2 = −1, F3 = −1, F4 = −1, F5 = +1 This has 2 eigenmodes with
eigenvalues � = −2 and � = +2.

F1 = −1, F2 = −1, F3 = −1, F4 = +1, F5 = −1 This has 1 eigenmode with
eigenvalue � = 0

F1 = −1, F2 = −1, F3 = +1, F4 = −1, F5 = −1 This has 1 eigenmode with
eigenvalue � = 0

F1 = −1, F2 = +1, F3 = −1, F4 = −1, F5 = −1 This has 1 eigenmode with eigen-
value � = 0 Adding up all these we get the 5(2 + 1 + 1 + 1) modes.

Now let us look at eigenmodes obtained from 5C5,
5C4,

5C3 and 5C2. It results
in 25−2 = 8 set of M eigenmodes, 25−3 = 4 set of 2M eigenmodes, 25−4 = 2 set of
3M eigenmodes and 25−5 = 1 set of 4M eigenmodes. Including the 2M eigenvalues
which appeared for N = 1, we have the complete set of 25 × M = 32M eigen-
modes.The spectrum is shown in Figure(3.9).
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We saw that there are always a set of 2N−2 set of M eigenmodes, 2N−3 set of
2M eigenmodes, 2N−4 set of 3M eigenmodes and 2N−5 set of 4M eigenmodes. This
pattern continues for higher values of N as well. The reason for this is as follows:
Let will look at the case of N = 5 a little more carefully. The eigenvalues of the
F operators are denoted as (f1, f2, f3, f4, f5), where fi is + if eigenvalue of Fi = +1
and fi is − if eigenvalue of Fi = −1.
1) Case of all five F ’s being negative:
(−,−,−,−,−): There is exactly one possible way to do it, which gives us M modes.
2) Case of four F ’s being negative:
2a) (−, ., ., .,−): We need to set 2 more F ’s equal to −1 and we have three operators
left "F2, F3 and F4". Hence there are 3C2 = 3 ways to do it, which gives us 3 sets of
M modes.
2b) (−, ., .,−,+): We cannot set F5 = −1 since that will again result in case 2a. We
still need to set 2 more F ’s equal to −1 and we have exactly two operators left "F2

and F3. Hence there are 2C2 = 1 ways to do it, which gives us a set of 2M modes.
3) Case of three F ’s being negative:
3a) (−, ., ., .,−): We need to set 1 more F equal to −1 and we have three operators
left "F2, F3 and F4". Hence there are 3C1 = 3 ways to do it, which gives us 3 sets of
M modes.
3b) (−, ., .,−,+): We need to set 1 more F equal to −1 and we have exactly two
operators left "F2 and F3. Hence there are 2C1 = 2 ways to do it, which gives us a
2 sets of 2M modes.
3c) (−, .,−,+,+): We need to set 1 more F equal to −1 and we have exactly one
operators left namely F2. Hence there are 1C1 = 1 way to do it, which gives us a
set of 3M modes.
4) Case of two F ’s being negative:
4a) (−, ., ., .,−): We need to set no more F ’s equal to −1. Hence, we can think of
this as if there are 3C0 = 1 way to do it, which gives us a set of M modes.
4b) (−, ., .,−,+): We need to set no more F ’s equal to −1. Hence, we can think of
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this as if there are 2C0 = 1 way to do it, which gives us 1 set of 2M modes.
4c) (−, .,−,+,+): We need to set no more F ’s equal to −1. Hence, we can think
of this as if there are 1C0 = 1 way to do it, which gives us a set of 3M modes.
4c) (−,−,+,+,+): We need to set no more F ’s equal to −1. Hence, we can think
of this as if there are 0C0 = 1 way to do it, which gives us a set of 4M modes.

So in all, we see that there is a set of 4M modes, two sets of 3M modes, four sets
of 2M modes and eight sets of M modes. This put together with the modes arising
from 5C0 and 5C1 give us the 32M modes. We get (N+1)×M modes from NC0 and
NC1. The other binomial coefficients give

∑N

k=2 2
N−k(k − 1)M modes. This is an

arithmetic-geometric series the sum of which is (2N −N + 1)M . This when added
to the (N + 1)M modes coming from NC0 and NC1 give us exactly 2N ×M modes.

Note that whenever a set of mM modes are generated, we get a set of m eigen-
values which are each M fold-degenerate. These m modes are the eigenvalues of the
following m×m tridiagonal matrix A(Equation(3.12)):

Aij =

{

2 for ∣i− j∣ = 1

0 otherwise
(3.12)

The eigenvalues of this matrix are given by(see Appendix(.1))(Equation(3.13)):

�s = 4cos(
�s

m+ 1
), s = 1, 2, ...,m (3.13)

The sum of the eigenvalues is always 0 since trace(A) = 0. The eigenvalues are also
symmetric about 0 since cos(� − �) = −cos(�). Also note that within a set of m
modes, no eigenvalue repeats. Also since −4 ≤ �s ≤ 4, !2

��[0, 8].
Whenever we have an odd set of modes, we always have � = 0 as one of

the eigenvalues by symmetry. So this eigenvalue has a degeneracy of at least
2N−2 + 2N−4 + 2N−6 + ... (summing over all the m modes). This sum equals 2N/3
for large N . We say at least because we are ignoring the eigenvalues generated from
NC0 and NC1. Now in the limit of N → ∞, we can ignore the (NC0+

N C1) = N +1

eigenvalues in comparison to the 2N . Hence, D(4) = limN→∞
2N

3.2N
= 1/3.

Similarly, the eigenvalue � = +2 and � = −2 will occur with a degeneracy of
2N−3+2N−6+2N−9+..., which in the limit of largeN implies thatD(6) = D(2) = 1/7.

The other values for D(!2
�) as follows: D(4− 2

√
2) = D(4 + 2

√
2) = 1/15

D(3−
√
5) = D(3 +

√
5) = D(5−

√
5) = D(5 +

√
5) = 1/31

D(4− 2
√
3) = D(4 + 2

√
3) = 1/63.

Hence, the spectrum in the thermodynamic limit of N → ∞(and consequently
M → ∞) looks like(Figure(3.10)). These set of values alone account for more than
90% of the total eigenvalues. Hence, D(!2

�) can be written as

27



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  1  2  3  4  5  6  7  8

D
(ω

α2 )

ωα
2

N tends to ∞

Figure 3.10: Plot of D(!2
�) vs !2

� for N,M → ∞. We only show eigenvalues which
have a weight≥ 1/63

D(!2
�) =

1

3
�(!2

� − 4) +
1

7
�(!2

� − 2) +
1

7
�(!2

� − 6) + ... (3.14)

We can clearly see that eigenvalues coming from mM modes but not coming from
kM modes where k < m modes has a fractional frequency 1/(2m+1 − 1) which in
the limit of large m goes to 2−m.

The integral of the spectral density function D is called the cumulative distribu-
tion function F and is defined as:

F (!2
�) =

∫ !2
�

0

D(!2
1)d!

2
1 (3.15)

F (!2
�) gives us the fractional number of modes with frequencies less than equal to !2

�.
We wish to know what F (!2

�) is as F (!2
�) → 0. If we ignore the extended modes the

smallest eigenvalue from a set of mM modes is 4−4cos( �
m+1

) = 8sin2( �
2(m+1)

) = !2
0.

Now as explained above for the limit of large m, the fractional degeneracy of this
mode is 2−m and these modes will only occur for kM modes where k ≥ m. For large
m we can approximate the sine by which we get m2 ∼ 1

!2
0
. Therefore the fractional

number of eigenvalues which are less than !0 are given by

F (!2
0) =

∫ ∞

m

2−xdx (3.16)

Therefore, we get:

F (!2
0) ∼ 2−m ∼ exp(−A

√

1

!2
0

) (3.17)

where A = ln 2. Similarly when !2
1 ≈ 8, F (!2

1) goes as:

F (!2
1) ∼ 1− exp(−A

√

1

(8− !2
1)
) (3.18)
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Chapter 4

Summary and Conclusions

Graphical enumeration techniques such as series expansions and diagram counting
are an extremely useful tool to handle problems in statistical physics. We enumer-
ated the number of self-avoiding walks(SAWs) and self-avoiding polygons(SAPs) on
a spider-web network using a depth-first search with backtracking algorithm. The
series we get for the number of SAWs and SAPs are new. The High-temperature
expansion of the Ising model was implemented on the same network and we cal-
culated the expansion of the free energy up to O(x10), where x = tanh(�J) is the
high-temperature expansion parameter. Finally, we look at the normal modes of the
spring problem on this graph. An exact procedure to find the complete vibrational
spectra for a finite number of sites in a layer of the lattice is illustrated. Qualitative
features of the spectra in the thermodynamic limit are also discussed. The spectra
has not been reported in literature.
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.1 The eigenvalues of a special tridiagonal matrix[[15]]

We want to find the eigenvalues ofm×m tridiagonal matrix of the form(Equation(1)):

Aij =

{

a for ∣i− j∣ = 1

0 otherwise
(1)

We solve the eigenvalue problem Ax = �x, where ��R and x = [x1, x2, ..., xm]
T ∕= 0.

The eigenvalue problem for A results in the following difference equation:

axj−1 + axj+1 = �xj, j = 1, ...,m (2)

x0, xm+1 = 0

We try a series solution of the form crj and find that the solution of such an equation
can be expressed in terms of the roots of the characteristic polynomial which in this
case is:

p(r) = ar2 − �r + a (3)

Assume the the roots of p are given as r1 and r2. Then the solution of the difference
equation is:

xj = c1r
j
1 + c2r

j
2 (4)

for j = 0, ...,m + 1. We determine the unknown coefficients by using the initial
condition:

x0 = c1 + c2 = 0 ⇔ c2 = −c1 (5)

which gives
xj = c1(r

j
1 − rj2), j = 0, ...,m+ 1 (6)

Furthermore we have
xm+1 = c1(r

m+1
1 − rm+1

2 ) = 0 (7)

since x ∕= 0 we need c1 ∕= 0, so we find that

rm+1
1 = rm+1

2 ⇔ (
r1
r2
)m+1 = 1 (8)

We can eliminate r2 from this equation using the product of roots r1r2 = 1. Thus:

(
r1
r2
)m+1 = (

r21
r1r2

)m+1 = (
r21
1
)m+1 = 1 (9)

The roots of this quadratic polynomial are in general complex, so the above equation
can be written in the form:

r21 = e2��(
s

m+1
), s = 1, ...,m (10)

We immediately see that the possible roots are:

r1,s = e��(
s

m+1
) (11)

r2,s = e−��( s
m+1

),
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where s = 1, ...,m. For every s = 1, ...,m there is thus an eigenvalue �s given by
the equation(use the sum of roots):

r1,s + r2,s =
�s
a

(12)

2cos(
��s

m+ 1
) =

�s
a

�s = 2acos(
��s

m+ 1
)

In our case a = 2, hence the eigenvalues turned out to be �s = 4cos( ��s
m+1

). The
corresponding eigenvector is:

xs,j = 2�c1sin(
��js

m+ 1
) (13)

i.e

xs = [sin(
��s

m+ 1
), sin(

��2s

m+ 1
), ..., sin(

��ms

m+ 1
)] (14)

for s = 1, ...,m.
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