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Abstract

This thesis studies three problems of mathematical finance. We address the appropri-
ateness of the use of semi-Markov regime switching geometric Brownian motion (GBM) to
model risky assets using a statistical technique. Component-wise semi-Markov (CSM) pro-
cess is a further generalization of the semi-Markov process, which becomes relevant when
multiple assets are under consideration. In this thesis, we would present the solution to
the optimization problem of portfolio-value, consisting of several stocks under risk-sensitive
criterion in a component-wise semi-Markov regime-switching jump diffusion market. Fi-
nally, the solution to locally risk minimizing pricing of a broad class of European style
basket options would be demonstrated under a market assumption where the risky asset
prices follow CSM modulated time inhomogeneous geometric Brownian motion.
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Introduction

Mathematical finance began its journey with the pioneering work of a French mathe-
matician L. Bachelier in 1900. Bachelier first introduced randomness to model risky asset
price. In his work, he used Brownian motion by using the time limit of random walk to
model the stock price. After a long time, P. A. Samuelson proposed the geometric Brown-
ian motion (GBM) to model the stock price in 1965 to capture the non-negativity of stock
price dynamics. But only after the groundbreaking works of Black, Scholes, and Merton in
1973, GBM became popular in modeling the risky asset price dynamics. Several empirical
studies are against the GBM modeling. The main two drawbacks with the GBM hypothesis
are:

1. GBM model implies the simple returns are normally distributed,

2. this model assumes that the volatility is constant.

In view of these, the researchers became interested in the regime switching models, in-
troduced in mathematical finance by J. D. Hamilton in 1989 [33]. In regime switching
models, it is assumed that there are several unobserved states in the market whose jump
is governed by a pure jump process and the market parameters changes their values as the
state changes. We call each state of the coefficients as a regime and the dynamics as a
regime switching model. Many researchers have implemented the Markov switching models
or hidden Markov models in various studies, e.g., see [2], [48], [37], [18], [17], [63], [64] etc.
By an empirical study in [55], the authors have claimed that all the stylized facts of daily
return series can not be captured by using hidden Markov models. Semi-Markov switching
models are the other possible alternatives, relatively new to the theoretical studies. One
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Introduction

may find applications of these models in [25], [29], [10], [11]. This list is merely indicative
but not exhaustive by any means. In [7], the authors have shown by empirical studies, the
hidden semi-Markov models can describe the stylized facts better to the previous model.

As per our knowledge, there is no comprehensive statistical analysis which helps discrim-
inating among the cases of GBM, Markov-modulated GBM(MMGBM) and semi-Markov
modulated GBM(SMGBM) for modeling a given asset price time series data. We inves-
tigate the appropriateness of the use of SMGBM by developing a statistical technique.
We propose a discriminating statistic whose sampling distribution varies drastically, under
the regime switching assumption, with varying values of instantaneous rate parameter. We
utilize this statistics to test the model hypothesis for Indian sectoral indices. Strictly speak-
ing, modeling of a market consisting of different assets, governed by a single semi-Markov
process is rather restrictive. Ideally those could be driven by independent or correlated pro-
cesses in practice. Although two independent Markov processes jointly becomes a Markov
process, the same phenomena is not true for semi-Markov processes. For this reason con-
sideration of independent regimes are important where regimes are not Markov. We call
the joint process (with each component as independent semi Markov) as component wise
semi-Markov process which is abbreviated as CSM.

In this thesis, we consider a market with several stocks which are governed by a CSM
process. Under this market assumptions, we address two theoretical problem (1) a portfolio
optimization problem, (2) a European type basket option pricing problem.

A new characterization of general semi-Markov process was explored in [27]. In that,
the semi-Markov process {Xt}t≥0 on X := {1, . . . , k} ⊂ R is specified by a collection of
measurable function λ : {(i, j) ∈ X2|i 6= j} × [0,∞)→ (0,∞) and is defined by the strong
solution of the following system of stochastic integral equations

Xt = X0 +
∫

(0,t]

∫
R
hλ(Xu−, Yu−, z)℘(du, dz) (1)

Yt = t−
∫

(0,t]

∫
R
gλ(Xu−, Yu−, z)℘(du, dz), (2)

where ℘(du, dz) is a Poisson random measure with intensity dudz, independent of X0 and
hλ, gλ are appropriately chosen by

hλ(i, y, z) :=
∑

j∈X\{i}
(j − i)1Λij(y)(z), gλ(i, y, z) := y

∑
j∈X\{i}

1Λij(y)(z),

where for each y ≥ 0, and i 6= j, Λij(y) are the consecutive (with respect to the lexicographic
ordering on X×X) left closed and right open intervals on the real line, each having length
λij(y) starting from the origin. We clarify that if {(Xt, Yt)}t≥0 is the solution to (1)-(2),
then Yt is called the age process. It is shown in (Th. 2.1.3, [50]) that λ becomes the
instantaneous transition rate of X.

First we describe in brief the original contribution of this thesis in in portfolio opti-
mization problem. Because of the abrupt nature of the stock price return, given an outlay,
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it is challenging to make an optimal portfolio of an investor. Among a plenty of investment
options, a rational investor need to set his/her investment policy according to the risk
tolerance. There are few mathematical methods available in order to make decisions under
risky investments. Among them

1. the mean-variance analysis,

2. the utility optimization,

are very popular among the market practitioner.
Following the seminal work of Markowitz [45], the problem of optimization of an in-

vestor’s portfolio based on different criteria and market assumptions are being studied by
several authors. In the mean-variance optimization approach, as done by Markowitz, either
the expected value of portfolio wealth is optimized by keeping the variance fixed or the vari-
ance is minimized by keeping the expectation fixed. Though Markowitz’s mean-variance
approach to portfolio is immensely useful in practice, its scope is limited by the fact that
only Gaussian distributions are completely determined by their first two moments.

The utility optimization technique is easier and robust for decision making than the
mean-variance approach. In a pioneering work, Merton [46], [47] has introduced the utility
maximization to the optimal portfolio selection. In this approach, instead of optimizing
the expected value of wealth R, the expected value of some continuous increasing function
U(R) is to be optimized. The function U is known as utility function. Some standard utility
functions are −e−ax, ln(x), bxb, etc, where the parameter a and b are the risk tolerance of
the investor.

Merton’s approach is based on applying the method of stochastic optimal control via
an appropriate Hamilton-Jacobi- Bellman (HJB) equation. The corresponding optimal
dynamic portfolio allocation can also be obtained from the same equation. Although this
approach has greater mathematical tractability but does not capture the tradeoff between
maximizing expectation and minimizing variance of portfolio value.

There is another approach, namely risk sensitive optimization, where a tradeoff be-
tween the long run expected growth rate and the asymptotic variance is captured in an
implicit way. The aforesaid utility maximization method can be employed to study the
risk-sensitive optimization by choosing a parametric family of exponential utility functions.
In such optimization, an appropriate value of the parameter is to be chosen by the investor
depending on the investors degree of risk tolerance. We refer to [3], [20], [21], [43] for this
criterion under the geometric Brownian motion (GBM) market model.

Risk sensitive optimization of portfolio value in a more general type of market is also
studied by various authors. Jump diffusion model is one such generalization, which captures
the discontinuity of asset dynamics. Empirical results support such models [15]. Terminal
utility optimization problem under such a model assumption is studied by [39]. In all
these references, it is assumed that the market parameters, i.e., the coefficients in the asset
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Introduction

price dynamics, are either constant or deterministic functions of time. We study a class of
models where these parameters are allowed to be finite state pure jump processes.

Risk sensitive portfolio optimization in a GBM model with Markov regimes is studied
in [24] whereas [26] studies that in a semi-Markov modulated GBM model. In [26] the
market parameters, r, µl and σl are driven by a finite-state semi-Markov process {Xt}t≥0,
where µl and σl denote the drift and volatility parameters of l-th asset in the portfolio.
Here we consider a market consisting of several stocks is modeled by a multi-dimensional
jump diffusion process with CSM modulated coefficients.

We study the finite horizon portfolio optimization via the risk sensitive criterion un-
der the above market assumption. The optimization problem is solved by studying the
corresponding HJB equation, where we employ the technique of separation of variables to
reduce the HJB equation to a system of linear first order PDEs containing some non-local
terms. In the reduced equation, the nature of non-locality is such that the standard theory
of integro-PDE is not applicable to establish the existence and uniqueness of the solution.
In this thesis, to show well-posedness of this PDE, a Volterra integral equation(IE) of the
second kind is obtained and then the existence of a unique C1 solution is shown. Then it
is proved that the solution to the IE is a classical solution to the PDE under study. The
uniqueness of the PDE is proved by showing that any classical solution also solves the IE.
In the uniqueness part, we use conditioning with respect to the transition times of the
underlying process. Besides, we also obtain the optimal portfolio selection as a continuous
function of time and underlying switching process. The expression of this function does
not involve the market transition rate parameter λ. Thus the optimal selection is robust.
This study, as alluded above is presented in Chapter 4 of this thesis. In the 5-th Chapter
we investigate an option pricing problem.

The modern theory of option pricing is fathered by L. Bachelier. Though his work did
not get the recognition for a long time. Bachelier derives the theoretical option prices where
the stock price is modeled as a Brownian motion with drift. The main flaw of his modeling
was the chances of negative stock prices. In 1973 Black, Scholes and Merton considered
a different mathematical model of asset price dynamics to find an expression of the price
of a European option on the underlying asset. In their model, the stock price process is
modeled with a geometric Brownian motion. The drift and the volatility coefficients of the
price were taken as constants. Though this model is widely accepted because of simplicity,
the variability of market parameters can not be captured by using this model. One serious
drawback of their assumptions is the Gaussianity of stock price return.

Since then, numerous different improvements of their theoretical model are being stud-
ied. Regime switching models are one such extension of the Black-Scholes-Merton (BSM)
model. Extensive research has been done to study markets with Markov-modulated regime
switching [2],[6],[12],[13],[16],[31],[32],[36],[44]. However, the consideration of Markov
regimes is not confined in generalizing BSM model only. Regime switching GARCH op-
tion models has been studied in [14]. There are also some studies, carried out by several
authors, involving regime switching extension of other alternative models of asset price.
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These include jump diffusion models, stochastic volatility model etc. In all these works the
possibility of switching regimes is restricted to the class of finite state Markov Chains.

In comparison with Markov switching, the study of semi-Markov switching is relatively
uncommon. In this type of models one has opportunity to incorporate some memory effect
of the market. In particular, knowledge of the past stagnancy period can be fed into the
option price formula to obtain the price value. Hence this type of models have greater
appeal in terms of applicability than the one with Markov switching. It is shown in [7],
by studying sectoral daily data, that the sojourn times of certain regimes have heavier tail
than exponential. In particular, the standard deviations are consistently larger than mean.
Hence, their study suggests that, the semi-Markov switching models have the capabilities
to describe the stylized facts better than Markov model.

The pricing problem with semi-Markov regimes was first solved in [25]. It is impor-
tant to note that the regime switching models lead to incomplete markets. Since there
might be multiple no arbitrage prices of a single option, one needs to fix an appropriate
notion to obtain an acceptable price. Locally risk minimizing option pricing with a special
type of age-independent semi-Markov regime is studied in [25] using Föllmer-Schweizer
decomposition [23]. There it is shown that the price function satisfies a non-local system
of degenerate parabolic PDE. In a recent paper [30] the same problem for a more general
class of age-dependent semi-Markov processes is studied. The option pricing problem un-
der stochastic volatility model with age-dependent semi-Markov parameters is addressed
in [4].

In many regime-switching models of asset price dynamics, the volatility coefficients do
not posses explicit time dependence (see [2],[6],[12],[13],[16],[25],[30],[31],[32],[36],[44]). In
such time homogeneous models the volatility σ can take values from a finite set only. Such
models fail to capture many other stylized facts including periodicity feature of σ. In the
present model, we allow σ to be time inhomogeneous.

We consider a market with one locally risk free asset with price process S0, and n risky
assets with prices {Sl}l=1,...,n, and address locally risk-minimizing pricing for a contingent
claim K(ST ). Here we consider a class of Lipschitz continuous functions K : Rn

+ →
R+, which includes vanilla basket options. We show that the locally risk minimizing
price of the claim at time t, when (Slt, X l

t , Y
l
t ) is (sl, xl, yl), for each l, is a function ϕ of

(t, s = (s1, s2, . . . , sn), x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn)) and that satisfies a Cauchy
problem. In order to write the equation we use a notation Rl

jv, for a vector v ∈ Rn+1 to
denote the vector v + (j − vl)el, in which the l-th component of v is replaced with j. The
system of PDE is given by

∂ϕ

∂t
(t, s, x, y) +

n∑
l=0

∂ϕ

∂yl
(t, s, x, y) + r(x)

n∑
l=1

sl
∂ϕ

∂sl
(t, s, x, y)

+ 1
2

n∑
l=1

n∑
l′=1

all
′(t, x)slsl′ ∂2ϕ

∂sl∂sl′
(t, s, x, y)
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+
n∑
l=0

∑
j 6=xl

λlxlj(yl)
[
ϕ(t, s, Rl

jx,R
l
0y)− ϕ(t, s, x, y)

]
= r(x) ϕ(t, s, x, y), (3)

defined on

D := {(t, s, x, y) ∈ (0, T )× (0,∞)n × Xn+1 × (0, T )n+1 | y ∈ (0, t)n+1},

and with conditions

ϕ(T, s, x, y) =K(s); s ∈ [0,∞)n; 0 ≤ yl ≤ T ; xl ∈ X, l = 0, 1, . . . , n, (4)

where the diffusion coefficient a := (all′)n×n is continuous in t.
We note that (3) is a linear, parabolic, degenerate and non-local PDE. The non-locality

is due to the occurrence of the term ϕ(t, s, Rl
jx,R

l
0y). Furthermore the terminal data (4)

need not be in the domain of the operator in (3). We establish existence and uniqueness
of the classical solution of (3)-(4) in this thesis via a Volterra integral equation (VIE) of
second kind. Using the Banach fixed point Theorem, we show that the integral equation has
a unique solution. We show that the VIE is equivalent to the PDE. Thus we show that one
can find the price function by solving the integral equation which is computationally more
convenient (see [31] for more details) than solving the PDE. We also obtain an expression
of optimal hedging involving integration of price function.

A concise effort is made to prepare this thesis self contained and accessible. This
thesis consists of 5 chapters and an appendix. Some background material of probability,
stochastic processes and mathematical finance is recalled in Chapter 1. In chapter 2 we
describe a continuous time model testing technique and its application in financial market.
In this chapter, we also present some results of Indian stock market, which suggests semi-
Markov regime switching models are more appealing. In view of the results in Chapter 2,
we present some theories of component wise semi-Markov processes (CSM) which is more
general than semi-Markov process in Chapter 3. In Chapter 4, we study a risk sensitive
portfolio optimization problem in a CSM modulated jump diffusion market. A European
type basket option has been studied in a CSM modulated geometric Brownian motion
market in Chapter 5. The appendix consists of some algorithms used in Chapter 2.
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1

Preliminaries

We introduce the established theories we have used throughout this thesis briefly. This
chapter intends to review some basic theories such that this thesis become readable. We
also give references to some excellent texts where they can be found.

1.1 Stochastic Process
Let (Ω,F, P ) be a probability space. The set Ω is said to be the sample space and

F is the σ-algebra containing all the events and P is the probability measure. We say
a probability space is complete if F contains all the P -null sets. All the definitions and
theorems can be found in some excellent texts, e.g. Çınlar [9], Shiryaev [58], Protter [52],
Karatzas & Shreve [40], Ikeda & Watanbe [35] etc.

1.1.1 Probability
In this subsection, we recall some basic definitions and theorems of probability theory.

We also provide brief information of some distribution, which is useful in this thesis. We
begin with the definition of a random variable.

Definition 1.1.1. Let (E,G) be a measurable space. A map X : Ω → E is said to be a
random variable taking the values in (E,G) such that it is measurable relative to F and
G, i.e., if for any A ∈ G, X−1A ∈ F.

Now we define one of the most fundamental concepts of the theory of probability, the expec-
tation, and conditional expectation. The concept of conditional expectation is extensively
used in applied probability.

7



CHAPTER 1. PRELIMINARIES

Definition 1.1.2. Let X be a random variable on a probability space (Ω,F, P ). Then the
integral of X with respect to measure P is said to be expectation of X, denoted by EX,
and defined by EX :=

∫
Ω

X(ω)P (dω).

Definition 1.1.3. Let H be a sub σ-algebra of F. The conditional expectation of
a non-negative random variable X with respect to H is a non-negative random variable,
denoted by EH(X) or by E[X|H] such that

i. EH(X) is H-measurable.

ii. for every A ∈ H, ∫
A
XdP =

∫
A
EH(X)dP.

The conditional expectation of any random variable X with respect H, if EX exists, is
given by EH(X) := EH(X+)−EH(X−), where X+ := max{X, 0} and X− := max{−X, 0};
Otherwise, if EX+ = EX− =∞, then EH(X) is undefined.

Now we state one of the most fundamental properties of conditional expectation, namely
the Tower Property:.

Theorem 1.1.4. Let H1,H2 be two sub-σ algebras of F, then the following holds.

(a) If H1 ⊆ H2, then E [E [X|H2] |H1] = E [X|H1] (a.s.).

(b) If H1 ⊇ H2, then E [E [X|H2] |H1] = E [X|H2] (a.s.).

Now we shall define two most important distributions which play a crucial role in this
thesis namely the exponential distribution and the log-normal distribution.

Definition 1.1.5. A random variable X taking values in R+ is said to follow exponential
distribution with parameter λ (we write X ∼ Exp(λ)), if it has the p.d.f of the following
form

f(x) =
{
λe−λx x ≥ 0
0 otherwise.

It is important to note that if X ∼ Exp(λ) then EX = 1
λ
and Var(X) = 1

λ2 , where Var(·)
denote the variance.

Definition 1.1.6. A random variable X taking values in R is said to follow lognormal
distribution with parameters µ and σ (we write X ∼ LN(µ, σ)), if it has the p.d.f of the
following form

f(x) =

 1
xσ
√

2πe
− (ln x−µ)2

2σ2 x > 0
0 otherwise.

8



1.1. Stochastic Process

We note that if X ∼ LN(µ, σ) then its logarithm lnX is normally distributed,

lnX ∼ N(µ, σ),

where N(µ, σ) to denote normal distribution with mean µ and standard deviation σ. The
mean and variance of a random variable X following LN(µ, σ) is given by

EX = exp(µ+ σ2

2 ) (1.1)

Var(X) =
[
exp(σ2)− 1

]
exp(2µ+ σ2). (1.2)

1.1.2 Stochastics
In this subsection we present some basics of stochastic process, which would be useful

in our future studies.

Definition 1.1.7. Let (Ω,F, P ) be a probability space and (E,G) be a measurable space.

1. For each t ≥ 0, let Xt be a random variable taking values in E. Then the collection
{Xt}t≥0 is said to be a stochastic process with state space (E,G).

2. For each t ≥ 0, let Ft be a sub σ-algebra of F. The family {Ft}t≥0 is said to be
filtration such that Fs ⊂ Ft for s < t.

3. A random variable T : Ω → [0,∞] is said to be a stopping time, if the event
{T ≤ t} ∈ Ft, for all t ≥ 0.

4. A process X is adapted to a filtration {Ft}t≥0 if Xt is Ft-measurable for all t ≥ 0.

5. A stochastic process X is said to be rcll or càdlàg or corlol 1 if it has sample paths
right continuous and left limit exists almost surely.

The concept of martingale and local martingale plays a crucial role in this thesis. We
first define them and then state the necessary theorems used in this thesis. We refer Protter
[52], Karatzas & Shreve [40] for further details.

Definition 1.1.8. Let (Ω,F, {Ft}t≥0, P ) be a filtered probability space on which X =
{Xt}t≥0 be an adapted, rcll process.

1. Let E|Xt| <∞, ∀ t ≥ 0. Then X is said to be martingale (resp. sub-martingale,
super-martingale) if E [Xt|Fs] = Xs a.s. (resp.E [Xt|Fs] ≥ Xs, resp. E [Xt|Fs] ≤
Xs ) holds for all 0 ≤ s < t <∞.

1Throughout this thesis we use the term rcll.

9
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2. The process X is a local martingale if there exists a sequence of increasing stopping
times, {Tn}n≥1, with lim

n→∞
Tn =∞ a.s. such that Xt∧Tn is a martingale for each n.

We present the concept of quadratic variation, which plays a central role in the theory of
stochastic integration. For further details, we refer Föllmer [22].

Definition 1.1.9. Let X = {Xt}t≥0 and Y = {Yt}t≥0 be two stochastic processes on a
probability space (Ω,F, P ).

1. Let {Πn}n=1,2,... be a sequence of finite partitions of the form Πn = {0 = t0 ≤ t1 ≤
. . . ≤ tin} with |Πn| = sup

ti∈Πn
|ti+1 − ti| → 0 and tin → ∞. If for all t ≥ 0, the weak*

limit of

µn :=
∑
ti∈Πn
ti≤t

|Xti+1 −Xti |2δ{ti},

exists then the distribution function t 7→ [X]t of the limit µ given by [X]t :=
t∫

0

dµ, is

said to be the quadratic variation of X. Furthermore,

[X]t = [X]ct +
∑
s≤t

∆X2
s ,

where, [X]c denotes the continuous part, ∆Xs := Xs − Xs− its jump and ∆X2
s :=

(∆Xs)2 the quadratic jump of X.

2. The cross variation of X and Y is denoted by [X, Y ] and is defined by [X, Y ]t :=
1
4 [[X + Y ]t − [X − Y ]t].

The next theorem demonstrates an excellent property of a martingale which is also well
known as Novikov’s condition for martingales. We refer to [35] (Theorem 5.2) for more
details.

Theorem 1.1.10. Let X := {Xt}t≥0 be a continuous, square integrable {Ft}t≥0 martingale
in a filtered probability space (Ω,F, {Ft}t≥0, P ). Let Mt = exp{Xt− 1

2 [X]t}. If for all t ≥ 0,
E[e

[X]t
2 ] <∞, then {Mt}t≥0 is a continuous {Ft}t≥0- martingale.

Now we shall state an important theorem involving the conditions for which a local mar-
tingale becomes a martingale. We refer to [52] (Theorem I.51 & Corollary 4 of Theorem
II.27) for more details.

Theorem 1.1.11. Let X be a local martingale.

(1) Then X is a martingale if E[ sup
s≤t
|Xs|] <∞, for all t ≥ 0.

10



1.1. Stochastic Process

(2) If E[[X]∞] <∞, then X is a square integrable martingale.

We recall the definition of Brownian motion, the most important stochastic process in our
thesis.

Definition 1.1.12. Let (Ω,F, {Ft}t≥0, P ) be a filtered probability space. An adapted process
W = {Wt}t≥0 with W0 = 0 a.s. is said to be a Brownian motion if

(i) Wt −Ws is independent of Fs for 0 ≤ s < t <∞.

(ii) Wt −Ws follows Gaussian distribution with mean 0 and variance t− s.

(iii) t 7→ Wt is continuous with probability 1.

We recall the result of quadratic variation of a Brownian motion. We refer to [53]
(Theorem 1.2.4) for details.

Theorem 1.1.13. Brownian motion is of finite quadratic variation and [B]t = t a.s.

Definition 1.1.14. Let (Ω,F, {Ft}t≥0, P ) be a filtered probability space. An adapted process
X = {Xt}t≥0 with X0 = 0 a.s. is said to be a Lévy process if

(i) Xt −Xs is independent of Fs for 0 ≤ s < t <∞.

(ii) Xt −Xs has the same distribution as Xt−s for 0 ≤ s < t <∞.

(iii) X is stochastically continuous, i.e. for all δ > 0 and for all s ≥ 0

lim
s→t

P (|Xt −Xs| > δ)→ 0.

Although in Protter [52], the following class is termed as a decomposable processes, a
subclass of semimartingales, but we use the general term following [38].

Definition 1.1.15. Let (Ω,F, {Ft}t≥0, P ) be a filtered probability space. An adapted process
X = {Xt}t≥0 is said to be a semimartingale if it can be decomposed P a.s. as

Xt = X0 +Mt + At t ≥ 0,

where Mt is a local martingale and At is an rcll adapted process with locally bounded
variation.

The stochastic integral with respect semimartingale with full generality can be found in
Protter [52]. We shall only state Itô’s formula below.

11
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Theorem 1.1.16 (Itô’s formula). Let X be a semimartingale and f be real valued, twice
continuously differentiable function. Then the following hold

f(Xt)− f(X0) =
t∫

0+

f ′(Xs−)dXs + 1
2

t∫
0+

f ′′(Xs−)d[X]cs

+
∑

0<s≤t
[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs.]

Now we state a very useful theorem, known as Girsanov’s Theorem. For more details
we cite [40] (Theorem 3.5.1).

Theorem 1.1.17. LetW = {Wt = (W (1)
t , . . . ,W

(d)
t )} be a d-dimensional Brownian motion

with covariance matrix I in a filtered probability space (Ω,F, {Ft}t≥0, P ). Let t ≥ 0, X =
{Xt = (X(1)

t , . . . , X
(d)
t )}t≥0 be a vector valued Ft-adapted process satisfying

P

 T∫
0

(X(i)
t )2dt <∞

 = 1; 1 ≤ i ≤ d, 0 ≤ T <∞.

Let Zt(X) := exp
 d∑
i=1

t∫
0

X(i)
s dW (i)

s −
1
2

t∫
0

‖Xs‖2ds

 be a martingale. Define a Ft-

measurable process W̃ = {W̃t = (W̃ (1)
t , . . . , W̃

(d)
t )} by W̃ (i)

t := W
(i)
t −

t∫
0

X(i)
s ds, 1 ≤ i ≤ d,

0 ≤ t <∞. Then for each fixed T ∈ [0,∞), the process {W̃t} is a d-dimensional Brownian
motion on (Ω,F,FT , P̃T ), where P̃T (A) := E [1AZT (X)], A ∈ FT .

1.1.3 Poisson random measure & Integration
In this section, we first prepare ourselves with the definition of Poisson process and

Poisson random measure. A nice presentation of Poisson process and Poisson random
measure can be found in [9] and [41]. Then we shall concentrate in the construction of
pure jump process with Poisson random measure. Throughout this section we assume that
(Ω,F, P ) is the underlying probability space.

Definition 1.1.18. A random variable X taking values in {0, 1, 2, . . .} is said to be follow
a Poisson distribution with parameter λ if P (X = i) = e−λ λ

i

i! for i = 0, 1, 2, . . ..

Definition 1.1.19. The process X = {Xt}t≥0, taking values in non-negative integers, de-
fined by Xt(ω) :=

∑
n≥1

1{t≥Tn(ω)}, where {Tn}n≥1 is a strictly increasing sequence of stopping

times, is called a counting process associated to {Tn}n≥1.

12
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Definition 1.1.20. A counting process X is said to be a Poisson process if

(i) Xt −Xs is independent of Fs for 0 ≤ s < t.

(ii) X has a stationary increment.

From the Definition 1.1.20, it is clear that if T1, T2, . . . are the jump times of X, then Xt

counts the total number of jumps between [0, t] i.e.

Xt := #{i ≥ 1, Ti ∈ [0, t]}.

Now we introduce the random measure. For more details we refer [9].

Definition 1.1.21. Let (E,G) be a measurable space. A map M : Ω×G→ R+ is said to be
a random measure if ω →M(ω,A) is a random variable for all A ∈ G and A→M(ω,A)
is a measure on (E,G) for all ω ∈ Ω.

Definition 1.1.22. Let (E,G) be a measurable space and µ be a σ-finite measure on it. A
random measure M on (E,G) is said to be a Poisson random measure if

1. M(A) is a Poisson random variable for all A with mean µ(A),

2. if for disjoint A1, A2, . . . , An ∈ G, the random variables M(A1),M(A2), . . . ,M(An)
are independent.

Integration

Let (E,G) be a measurable space and µ be a σ-finite measure on it. LetM be a Poisson
random measure with mean measure (or intensity measure) µ. We now describe the class
of functions L2(µ) for which the integral with respect to M to be defined is the following

L2(µ) :=

f : E → R : f is measurable and
∫
E

f 2 dµ <∞.


Then the space L2(µ) is a Banach space with under the norm ‖f‖ =

∫
E

f 2 dµ. It is easy to

see that the space of all simple functions on E is dense on L2(µ). Now we state the key
lemma for integration.

Lemma 1.1.23. Let f =
n∑
j=1

cj1Aj where A1, . . . , An are measurable on (E,G) be a simple

function. Then

Mf (ω) =
∫
E

f(x)M(ω, dx) =
n∑
j=1

cjM(ω,Aj).

13
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1.1.4 Stochastic Differential Equation
Let b : [0, T ]×Rn → Rn and σ : [0, T ]×Rn → Rn×m be two Borel-measurable functions.

Now consider the following stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

X0 = Z,

}
(1.3)

whereW = {Wt}t≥0 is a m-dimensional Brownian motion and X = {X}t≥0 is the solution
of the equation (1.3), a real valued stochastic process with rcll sample paths. First we recall
the definition of strong solution of the SDE (1.3) following [40] (Definition 5.2.1).

Definition 1.1.24 ( Strong Solution to SDE). Let (Ω,F, {Ft}, P ) be a filtered probability
space, where {Ft} is the augmentation of the filtration generated by Z and W . A rcll
process X = {Xt}t≥0 is said to be a strong solution of (1.3), if

(i) Xt is {Ft}-adapted,

(ii) P (X0 = Z) = 1,

(iii)
t∫

0

[
|bi(s,Xs)|+ σ2

ij(s,Xs)
]
ds <∞ a.s. for all 1 ≤ i ≤ n, 1 ≤ j ≤ n and t ∈ [0, T ] ,

(iv) the integral version of (1.3)

Xt = X0 +
t∫

0

b(s,Xs)ds+
t∫

0

σ(s,Xs)dWs, 0 ≤ t ≤ T,

holds almost surely.

The following theorem asserts the existence and uniqueness of strong solution of the SDE
(1.3) under certain conditions. For more details we refer [40] (Theorem 5.2.9).

Theorem 1.1.25 (Existence and Uniqueness of Strong Solution to SDE). Let b(t, x), σ(t, x)
satisfies Lipschitz and linear growth conditions

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K‖x− y‖, (1.4)
‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ K2

(
1 + ‖x‖2

)
, (1.5)

for t ∈ [0, T ], x ∈ Rn, y ∈ Rn, ‖·‖ denotes the Euclidean norm and K is a positive constant.
Let Z be a random vector, independent of the Brownian motion W = {Wt,F

W
t ; 0 ≤ t < T}

and E‖Z‖2 < ∞. Let {Ft}t≥0 be as in Definition 1.1.24. Then there exists a continuous,
adapted process X = {Xt,Ft; 0 ≤ t < T} which is a strong solution of the SDE (1.3).

14
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Let N be a Poisson random measure with intensity measure L × µ, where L denotes
the Lebesgue measure and Ñ be its compensated Poisson random measure. Consider the
following Lévy SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt +
t∫

0

∫
Rn
K(s,Xs−, z)Ñ(dt, dz)

X0 = Z,

 (1.6)

where b : [0, T ]× Rn → Rn, σ : [0, T ]× Rn → Rn×m and K : [0, T ]× Rn × Rn → Rn×l are
Borel measurable functions. We state the following theorem from [49] (Theorem 1.19) to
ensure the conditions for which the Lévy SDE has a unique strong solution.

Theorem 1.1.26 (Existence and Uniqueness of Solution to Lévy SDE). Let b(t, x), σ(t, x)
satisfies Lipschitz and linear growth conditions

‖b(t, x)− b(t, y)‖2 + ‖σ(t, x)− σ(t, y)‖2

+
l∑

j=1

t∫
0

‖Kj(t, x, zj)−Kj(t, x, zj)‖2µj(dzj) ≤ K‖x− y‖2, (1.7)

‖b(t, x)‖2 + ‖σ(t, x)‖2 +
t∫

0

l∑
j=1
‖Kj(t, x, zj)‖2µj(dzj) ≤ K2

(
1 + ‖x‖2

)
, (1.8)

for t ∈ [0, T ], x ∈ Rn, y ∈ Rn and K is a positive constant. Let Z be a random vector,
independent of the Brownian motion W = {Wt,F

W
t ; 0 ≤ t < T} and E‖Z‖2 < ∞. Let

{Ft}t≥0 be the augmentation of the filtration generated by Z, W and N . Then there exists
a rcll, adapted process X = {Xt,Ft; 0 ≤ t < T} which is a strong solution of the SDE
(1.6).

Definition 1.1.27. A process X = {Xt}t≥0 is said to be Diffusion if it satisfies the
following SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

where b : [0, T ]× Rn → Rn and σ : [0, T ]× Rn → Rn×m are two Lipschitz functions in the
space variable. The n× n matrix a(t, x) := 1

2σσ
T is known as Diffusion matrix.

1.2 Semigroup of Operators
Throughout this section we assume that B is a Banach space. We present some impor-

tant definitions from Ethier & Kurtz [19].

Definition 1.2.1. A family of bounded linear operators {Tt}t≥0 on B is said to be a semi-
group of operators if

15
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(i) T0 = I, I is the identity operator,

(ii) Tt+s = TtTs.

Definition 1.2.2. A semigroup of operators {Tt}t≥0 on B is said to be a strongly con-
tinuous or C0 semigroup if lim

t→0
Ttf = f for all f ∈ B.

Definition 1.2.3. An operator A : D(A) ⊂ B → B defined by

Af = lim
t→0

Ttf − f
t

∀f ∈ D(A),

is said to be a generator of the semigroup {Tt}t≥0. The domain of A, D(A) contains
f ∈ B such that the above limit exists.

1.3 Analysis and Control Theory
We shall state a convergence theorem namely Vitali convergence theorem, which can

be found in chapter 18 of Royden & Fitzpatrick [54].

Theorem 1.3.1 (Vitali Convergence Theorem). Let (E,G, ν) be a measure space and {fn}
be a sequence of functions on E which is both uniformly integrable and tight over E. Let
{fn} → f a.e. on E pointwise and f is integrable over E. Then

lim
n→∞

∫
E

fn dν = lim
n→∞

∫
E

f dν.

The multivalued function plays a crucial role in the context of control theory. Our
main intention is to state the maximum theorem. To do this we need some introductory
definitions, which can be found in the lecture note of Srivastava [59]

Definition 1.3.2. Let Γ and ∆ be two topological spaces and O be the family of all open
subsets of Γ.

1. A multifunction Φ : Γ→ ∆ is a map from A to non-empty subsets of B.

2. A multifunction Φ : Γ → ∆ is said to be O-measurable if for every open subset X
in ∆ ,

{x ∈ Γ : Φ(x) ∩X 6= ∅} ∈ O.

3. A multifunction Φ : Γ → ∆ is said to be lower semi-continuous(resp. upper
semi-continuous) if for every open(resp. closed) subset X in ∆ ,

{x ∈ Γ : Φ(x) ∩X 6= ∅},

is open(resp. closed) in Γ.
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4. A multifunction Φ : Γ → ∆ is said to be continuous if it is both lower and upper
semi-continuous.

The maximum theorem is one of most useful selection theorem in control theory. The
version we would present here can be found in Rangarajan [60] (Theorem 9.14).

Theorem 1.3.3 (The Maximum Theorem). Let Γ and ∆ be two subsets of Rm and Rn.
Let f : Γ × ∆ → R be a continuous function, and Φ be a compact valued, continuous
multifunction from ∆ to Γ. Let a function f ∗ : ∆→ R and a multifunction Φ∗ : ∆→ Γ be
defined by

f ∗(z) := max{f(x, z)|x ∈ Φ(z)}
Φ∗(z) := arg max{f(x, z)|x ∈ Φ(z)}.

Then f ∗ is continuous on ∆, and Φ∗ compact-valued and upper semi-continuous on ∆.

1.4 Finance
Our aim in this section is to introduce some basics of portfolio optimization and option

pricing. Now we shall recall some ideas of option pricing.

Definition 1.4.1. An option is a contract between two parties which gives the holder the
right but not obligation to trade (buy or sell) an underlying asset at a specified price (strike
price) on a specified date.

Classification of options. Options can be classified according to right, styles, underlying
assets etc.

1. Rights. There are two types of options in this category call and put options.

(a) A call option is an option which gives holder the right but not obligation to
buy a stock from the writer at a fixed strike price.

(b) A put option is an option which gives holder the right but not obligation to
sell a stock at a fixed price.

2. Styles. We can classify options according to the styles as following

(a) European type options are the options which can only be exercised at expiry.
(b) American type options are the options which can be exercised on or before

expiry.
(c) There are further classification e.g. Asian options, barrier option, binary op-

tions, etc are in this class. In this thesis, we shall not discuss about these type
of options. For more details one can check chapter 26 of [34].
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Before we end our discussion about the classification of options, we must include vanilla
and exotic options. The vanilla option is a European/American type call/put options.
Whereas the options other than vanilla options is known as exotic options. Therefore
Asian options, barrier options are exotic options. There are another important exotic
option namely the basket option.

Definition 1.4.2 (Basket option). A basket option is an exotic option whose underlying
asset is the weighted average of different asset which are grouped together into a basket.

Let (Ω,F, {Ft}t≥0, P ) be a filtered probability space on which the n + 1 assets
{S0, . . . , Sn} where Si = {Sit}t≥0, be defined. Let S0 be a locally risk free asset. Now
we shall talk about some useful definitions which can be found in [38], [42], [57].

Definition 1.4.3. (1) An (n + 1)-dimensional process π = {πt = (ξt, εt), 0 ≤ t ≤ T} is
said to be a trading strategy if the n-dimensional process ξ is predictable and ε is
adapted.

(2) Let π be a trading strategy with initial value V0. Then for 0 ≤ t ≤ T the process

Vt(π) :=
n∑
i=1

ξitS
i
t + εtS

0
t ,

is said to be the value process with initial wealth V0.

(3) The process

V̂t(π) :=
n∑
i=1

ξitŜ
i
t + εt,

where Ŝi = Si/S
0 is said to be the discounted value process.

(4) Let Ŝ = {Ŝ1, . . . , Ŝn} be semimartingale, then the process

Ct = Vt −
t∫

0

ξs dŜs,

is known as consumption process.

(5) A strategy π is said to be self-financing if the consumption process C is constant over
time, i.e.

Vt = V0 +
t∫

0

ξs dŜs

Definition 1.4.4 (Arbitrage). Let π be trading strategy with initial value V0 = 0. Then π
is said to be arbitrage opportunity if

V̂T (π) ≥ 0 a.s. P, and P
(
V̂T (π) > 0

)
> 0.
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Definition 1.4.5 (Contingent Claim). An FT -measurable random variable ZT is said to
be a contingent claim if

ZT ≥ 0 a.s. P and EZT <∞.

Example 1. One of the well known example of contingent claim is European call option.
Let St be the stock price at time t and K be the strike price. Then the contingent claim for
European call option is given by ZT = (ST −K)+.

Definition 1.4.6. (1) A trading strategy π is said to be a hedging strategy of the
contingent claim ZT if V̂T (π) = ZT a.s. P.

(2) A market is said to be a complete market if for given any contingent claim there
exists a hedging strategy.

Example 2. The best known example of complete market is BSM market. In this market
there is one bond and one stock satisfying geometric Brownian motion.

Now we recall one of the most important concept of finance, namely risk-neutral measure
or equivalent martingale measure (EMM) .

Definition 1.4.7. (1) Let P and Q be two measures on a measure space (Ω,F). The
measure P is said to be absolutely continuous with respect to Q if P (A) = 0 for
each set A ∈ F for which Q(A) = 0 and denoted by P � Q.

(2) Two measures P and Q on a measure space (Ω,F) are said to be equivalent mea-
sure if P � Q and Q� P and is denoted by P ≈ Q .

(3) Let (Ω,F, P ) be a probability space. A probability measure Q is said to be equivalent
(local) martingale measure if Q ≈ P and the discounted stock price is (local)
martingale with respect to Q.

The following theorems are known to be as first and second fundamental theorem. They
can be found in [38] (Theorem 7.1 and Theorem 9.7).

Theorem 1.4.8. Let (Ω,F, P ) be a probability space on which Ŝ = {Ŝt}0≤t≤T be an Rn

valued discounted stock prices. If there exists an EMM Q, then the market is arbitrage free.
Moreover, if there exists a unique EMM Q, then the market is complete.
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2

Testing of binary regime switching models using
squeeze durations

2.1 Introduction
This chapter concerns about the testing of appropriateness of the use of binary regime

switching models. However in order to avoid computational complexity, we restrict our-
selves in a particular parametric class of geometric Brownian motion (GBM) and its sub-
sequent generalizations in terms of binary regime switching. By a binary regime switching,
we mean that there exists an unobserved two-state stochastic process whose movement
allows to change the market parameters i.e. drift and volatility coefficients. Let St denote
the asset price at time t, under the binary regime switching GBM. Then

dSt = St (µ(Xt) dt+ σ(Xt) dBt) , (2.1)

where {Xt}t≥0 is a {1, 2}-valued stochastic process and µ(Xt), σ(Xt) are the drift and the
volatility coefficients and Bt is the standard Brownian motion. In general {Xt}t≥0 is chosen
to be Markov or semi-Markov process.

We construct the discriminating statistics using some descriptive statistics of squeeze
duration of Bollinger band, which seems to be the most natural approach. The sampling
distribution of the descriptive statistics of occupation measure of Bollinger band under a
particular model hypothesis need not have a nice form and thus one may not be able to
identify that as one of a few known distributions.

In spite of the lack of mathematical tractability, one may surely obtain empirical dis-
tribution using a reliable simulation procedure. This is a standard approach in such cir-
cumstances. We refer to [62] for further details. In Theiler et al [61] this is termed as the
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typical realization surrogate data approach. The surrogate data approach is generally per-
ceived one of the most powerful method for testing of hypothesis. The available algorithms
to generate surrogate can be categorized into two classes namely typical realizations and
constrained realization (see [56]). In this thesis, we shall be using the typical realization
approach.

The rest of this chapter consists of two section. In Section 2, we propose a test statistic
using Bollinger band squeeze. Section 3 concerns about the empirical results.

2.2 Discriminating statistics based on Squeeze Dura-
tion

In this section, a discriminating statistics is proposed whose sampling distribution varies
drastically, under the regime switching assumption, with varying values of instantaneous
rate parameter. The discriminating statistics is taken as vector valued where every com-
ponent is a descriptive statistics of squeeze duration of Bollinger band. This section is
dedicated in describing the statistics and the numerical methods for obtaining its sampling
distributions. The actual numerical experiments are deferred to the next section. This
section is organized in four subsections.

2.2.1 Bollinger Band
Keltner channel and Bollinger bands based on the empirical volatility are the most

popular indicators for trading. John Bollinger introduced the concept of Bollinger band
for pattern recognition in 1980s. Bollinger bands provide a time varying interval for any
financial time series data. The end points of the intervals are computed based on the moving
average and the moving sample standard deviation of the past data of fixed window size.
Now we present a formal definition of the Bollinger bands of an asset.

Definition 2.2.1. A Bollinger band of a given time series data consists of three lines on
the time series plot, computed based on immediate lag values of fixed length n say. The
middle line is the moving average of the time series with window size n. The upper and
the lower lines are exactly kσ unit away from the middle line where k is a fixed constant
and σ is the sample standard deviation obtained from the last n numbers of lag values.

It is important to note that the main focus of the Bollinger band is to capture the
fluctuation, to be more precise, the volatility coefficient of the time series. Hence the
closeness of the upper and lower line is termed as squeeze, and is the indication of low
volatility of a particular time series. On the contrary, when the boundaries of band are far
from each other, that corresponds to a high volatility. For more details about Bollinger
bands and squeeze we refer to [5].

22



2.2. Discriminating statistics based on Squeeze Duration

2.2.2 p-Squeeze Durations
In this chapter, we consider the Bollinger bands of the simple return of a financial

time series. We introduce some important notations and definitions which would be used
subsequently. Let S = {Sk}Nk=1 denote an equispaced financial time series. The simple
return of S is defined by

rk := Sk − Sk−1

Sk−1
, k = 2, 3, . . . , N. (2.2)

Definition 2.2.2 (µ̂, σ̂). By fixing the window size as n, the moving average {mk}Nk=n+1
and the sample standard deviation {σk}Nk=n+1 are given by

mk := 1
n

n−1∑
i=0

rk−i, (2.3)

σk :=

√√√√ 1
n− 1

n−1∑
i=0

(rk−i)2 − n

n− 1m
2
k, (2.4)

for k ≥ n + 1. The empirical volatility σ̂ = {σ̂k}Nk=n+1 is given by σ̂k := σk√
∆

for all
k ≥ n + 1, where ∆ is the length of the time step in year unit. Similarly, the empirical
drift µ̂ = {µ̂k}Nk=n+1 is given by µ̂k := mk

∆ for all k ≥ n+ 1.

Definition 2.2.3. Let y = {yk}mk=1 be a random sample of a real valued random variable.
Then the empirical cumulative distribution function or ecdf F̂y is defined as

F̂y(x) := 1
m

m∑
k=1

1[0,∞)(x− yk),

where given a subset A, 1A denotes the indicator function of A.

Definition 2.2.4 (p-percentile). Let F̂y be the ecdf of y = {yk}mk=1. Then for any p ∈ (0, 1),
the p-percentile of y, denoted by F̂←y (p), is defined as

F̂←y (p) := inf
{
x
∣∣∣F̂y(x) ≥ p

}
.

For mathematical tractability we use a particular percentile of σ̂ as threshold in defining
the squeeze of the Bollinger band.

Definition 2.2.5 (p-squeeze). Given a p ∈ (0, 1), an asset is said to be in p-squeeze at
k-th time step if the empirical volatility σ̂k, as defined above, is not more than F̂←σ̂ (p).
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We introduce the sojourn times of the p-squeeze below.

Definition 2.2.6. For a fixed p ∈ (0, 1) and a given time series {Sk}Nk=1, let {(ai, bi)}∞i=1
be an extended real valued double sequence given by

a0 = 0
bi−1 := min{k ≥ ai−1|σ̂k > F̂←σ̂ (p)}
ai := min{k ≥ bi−1|σ̂k ≤ F̂←σ̂ (p)},

for i = 1, 2, . . . and by following the convention of min ∅ = +∞, where σ̂ is as in Definition
2.2.2. Then the sojourn time durations for the p-squeezes are {di}Li=1, where di := bi − ai
and L := max{i|bi <∞}, provided L ≥ 1.

We note that one must multiply each di by ∆ to obtain the squeeze durations in year
unit. We would consider the finite sequence {di}Li=1 as a single object. In particular, we
call di as the i-th entry of the p-squeeze duration or p-SqD in short for the given time series
{Sk}Nk=1. We call L to be the length of p-SqD.

Remark 2.2.7. In a reasonably large and practically relevant time series data, the length
of p-SqD is considerably small. Hence a non parametric estimation of the entries of p-SqD
using empirical cdf is not practicable as that would have a high standard error. Hence,
only a collection of some descriptive statistics such as mean(d̄), standard deviation(s),
skewness(ν), kurtosis(κ) of p-SqD can reliably be obtained and compared.

2.2.3 A Discriminating Statistics
We first consider a discrete time version of continuous time theoretical asset price model

with the time step identical to that of the time series data. We note that, for that theoretical
model, the corresponding p-SqD is a random sequence with random length. However, the
corresponding descriptive statistics as above would constitute a random vector of fixed
length whose sampling distribution would be sought for. A comparison of (d̄, s, ν, κ) with
respect to that sampling distribution would be the central idea for statistical inference.
However, this should not lead to the only criterion for rejecting a model. Of course there
are many other natural criteria for the same. Those criteria are typically considered as
constraints on parameterization of the class of models of our interest. Here we illustrate
with an example. If we restrict ourselves to all possible MMGBM models with two regime
as in [7], then

Θ = {(µ(1), σ(1), λ1, µ(2), σ(2), λ2)|µ(i) ∈ R, σ(i) > 0, λ(i) > 0, i = 1, 2} (2.5)

is the class of parameters, where µ(i) and σ(i) are the drift and the volatility coefficients

respectively and
(
−λ1 λ1
λ2 −λ2

)
is the rate matrix for the Markov chain. Therefore the
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2.2. Discriminating statistics based on Squeeze Duration

estimation problem boils down to a constrained minimization on a set C ⊂ Θ of the
following functional f : Θ→ R given by

f(θ) = Eθ
[
(d̄θ − d̄)2 + (sθ − s)2 + (νθ − ν)2 + (κθ − κ)2

]
, (2.6)

where (d̄θ, sθ, νθ, κθ) is the descriptive statistics vector of a member with parameter θ ∈ Θ,
provided the minimizer exists.

The main difficulty in taking C = Θ is its time complexity due to a large scope of
parameter values. We introduce a fixed set of constraints, p-admissible class(Cp-class),
which is a subclass of all possible regime switching models.

Definition 2.2.8 (Cp-class). Given a time series data and a fixed p ∈ (0, 1), a regime
switching model is said to be in Cp-class of models if the model satisfies the following
properties.

i. The long run average of drift coefficient matches with the time average of empirical
drift µ̂.

ii. The long run average of volatility parameters matches with the time average of em-
pirical volatility σ̂.

iii. The long run proportion of time that the volatility process stays below F̂←σ̂ (p) is p,
provided the volatility process is not constant.

In view of Remark 2.2.7, we construct a discriminating statistics T = (T1, T2, . . . , Tr)
using r number of descriptive statistics of the p-SqD. To be more specific we choose T1 :=
1
L

∑L
i=1 di, T2 :=

√
1

L−1
∑L
i=1(di − T1)2, T3 :=

1
L

∑L
i=1(di − T1)3

T 3
2

, T4 :=
1
L

∑L
i=1(di − T1)4

T 4
2

etc.
Although our test statistics is based on squeeze durations which are amenable to capture
the sojourn times of regime transitions but it is not at all obvious that it would indeed
be successful to capture those unobserved switchings. The main difficulty lies in the fact
that a larger moving window size (n) in defining σ̂ ignores more number of intermittent
transitions and a smaller window size corresponds to higher standard error. So far window
size is concerned there is a popular choice of window size by practitioners, i.e., n = 20
for computing the empirical volatility. In view of these, we fix n = 20 now onward in the
definition of T.

Next we describe the procedure, adopted in this chapter, of obtaining the sampling
distribution of T under binary regime switching model hypothesis.

2.2.4 Sampling distribution of the statistics
In this section we give a detailed description of numerical computation of sampling

distribution of T statistics under the null hypothesis using Monte Carlo method, which is
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popularly known as typical surrogate approach following [61]. It is important to note that
the hypothesis testing, relevant to us, is of composite type (see [62]). The main purpose is
to test a meaningful composite null hypothesis. The procedure is as follows
(a) Given a time series S, the p-admissible class Cp under the null hypothesis is identified.

A non-empty subclass A of Cp is fixed.

(b) For each θ ∈ A , B number of time series {X1, X2, . . . , XB} are simulated from the
corresponding model θ with the same time step as in S. We call these, the surrogate
data of S corresponding to θ.

(c) Let t∗ := T(S) be the value of T of the observed data S and t := {t1, t2, . . . , tB} be
the values of T for the surrogate data {X1, X2, . . . , XB}, where ti = (ti1, ti2, . . . , tir) =
T(X i) .

(d) By keeping a two sided test in mind we define αθr in the following manner

αθr := 2 min
j≤r

gB

(
B∑
i=1

1[0,∞)(t∗j − tij)
)
,

where gB(x) := x∧(B−x)
B

, and t∗ = (t∗1, t∗2, . . . , t∗r).

(e) Therefore the α-value for the test of the class A is given by
αr = max

θ∈A
αθr.

(f) We reject the hypothesis that S is a sample from a model in the class with confidence
100(1− αr)%, provided αr is reasonably small.

Remark 2.2.9. It is important to note, the above method has a pathetic limitation due
to the “curse of dimensionality." Or in other words for a given model θ, the probability of
observing the value of αθr to be smaller than a very small value is not so small when r is
large. But it is well known that the curse is not so fatal for the dimension r less than five.
Therefore we restrict ourselves in four dimensional testing.

For the purpose of illustration here we consider a specific time series S and r = 2
i.e., the test statistics T = (T1, T2). In the following plot Figure 2.1, the values T1 and
T2 are plotted against the horizontal and vertical axes respectively. The position of the
point t∗ = T(S) is denoted as a circle in the plot. Under the null hypothesis of GBM, the
Cp-class turns out to be singleton (see Section 2.3.1 for details). The sampling distribution
of T under the null hypothesis is computed by setting B = 200 and that is presented using
a two dimensional box plot. Furthermore, under the null hypothesis of MMGBM, followed
by fixing B = 1, and a subclass A := { 1

λ1
∈ ( 1

20N) ∩ [5, 15], σ(1) = F̂←σ̂ (p)} of Cp, the
values of T are plotted as dots.

In the following section, we implement the ideas developed here for more specific choice
of models and discuss the implementation issues in details.
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Figure 2.1: Plot of (T1, T2) for observation and various different surrogate data.

2.3 Empirical study
For empirical study, we consider, 5-minute data of several Indian stock indices from 1-st

December, 2016 to 30-th June, 2017. Assuming there are 250 trading days in a year and 6
hours of trading in each day, we set ∆ = 5

250×360 . We fix p = 15% throughout this section.
The components of t∗ for each index data are given in the Table 2.1 below. Every row of
the table corresponds to an index, which is mentioned in the second column with their id’s
in the first column. The third column gives the value of L, the number of observations of
p-squeeze duration of each index data.

2.3.1 Surrogate Data under GBM hypothesis
Let (Ω,F,P) be a probability space on which {Wt}t≥0 be a Brownian motion. The stock

price, modeled by a geometric Brownian motion (or GBM in short) is given by

dSt = St (µ dt+ σ dWt) t ≥ 0, S0 > 0, (2.7)

where µ and σ are the drift and the volatility coefficients respectively. Equation (2.7) has
a strong solution of the form

St = S0 exp
(
µt− 1

2σ
2t+ σWt

)
, t ≥ 0. (2.8)
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Table 2.1: Values of discriminating statistics (p = 15%) of a 5 -minutes data of Indian
indices during 1st Dec 2016 to 30th June 2017

Data Indices Occurence t∗1 t∗2 t∗3 t∗4
I01 NIFTY 100 159 10.52 11.31 1.17 3.41
I02 NIFTY 200 160 10.45 11.18 1.29 3.79
I03 NIFTY 50 155 10.78 11.00 1.08 3.28
I04 NIFTY 500 152 11.01 11.40 1.20 3.63
I05 NIFTY BANK 159 10.52 11.62 1.39 4.03
I06 NIFTY COMMODITY 169 9.89 10.49 1.47 4.59
I07 NIFTY ENERGY 168 9.96 11.44 1.59 4.80
I08 NIFTY FIN. SER. 168 9.95 10.72 1.46 4.39
I09 NIFTY FMCG 178 9.40 10.15 1.58 5.01
I10 NIFTY INFRA 174 9.61 11.70 1.72 5.41
I11 NIFTY IT 159 10.52 11.36 1.19 3.35
I12 NIFTY MEDIA 173 9.66 9.49 1.19 3.77
I13 NIFTY METAL 188 8.89 10.53 1.92 6.52
I14 NIFTY MNC 178 9.40 10.63 1.54 4.67
I15 NIFTY PHARMA 175 9.56 11.13 1.59 4.69
I16 NIFTY PSE 148 11.29 12.73 1.28 3.76
I17 NIFTY REALTY 177 9.45 10.49 1.83 6.02
I18 NIFTY SERVICE SEC. 172 9.72 11.13 1.33 3.77

It is important to note that, the Cp-class is singleton as µ and σ are, by using Definition
2.2.8 (i)-(ii), µ = ¯̂µ and σ = ¯̂σ, where the bar sign represents the time average.

Let S0 be the initial price of a stock consisting of N number of data points. Let
{0 = t1 < t2 < . . . < tN} be a partition of time interval of the observed data series, where
ti+1 − ti = ∆ for i = 1, 2, . . . , N − 1 and ∆ be the length of time step in year unit. Then
the Cp-class of surrogate GBM can be generated by using the discretized version of (2.8)
which is given by

Sti+1 = Sti exp
(

(¯̂µ− 1
2

¯̂σ2)∆ + ¯̂σ Zi
)
, (2.9)

where {Zi | i = 1, . . . , N − 1} are independent and identically distributed (i.i.d.) normal
random variables with mean 0 and variance. We use this notation throughout this chapter.

Testing of hypothesis

We intend to test whether the value of T of observed index prices are outliers of T
values coming from GBM models. For each index in Table 2.1, we set our null hypothesis,

H0 : the time series is in Cp-class of GBM.

28



2.3. Empirical study

We again recall that the Cp-class is indeed singleton. The following figures illustrate results
from all 18 indices. Figure 2.2 plots T1 and Figure 2.3 plots T2 only. Each box plot is
obtained by simulating the GBM model from Cp-class 200 times. The triangle plots are
the representative for original data of all the indices. Here we see that the triangles appear
far from the box plots.

Figure 2.2: Sampling distribution of T1 un-
der GBM hypothesis

Figure 2.3: Sampling distribution of T2 un-
der GBM hypothesis

Therefore the above Figures 2.2 and 2.3 indicate a strong rejection for the null hypoth-
esis of GBM model. We continue our investigation with binary regime switching Markov
modulated geometric Brownian motion in the following subsection.

2.3.2 Surrogate Data under Markov modulated GBM hypothesis
In this subsection, we study the testing of hypothesis of Cp-class of MMGBM assump-

tion with binary regimes. In this case the equation (2.1) is dependent on a two state
Markov process {Xt}t≥0. It is important to note that a continuous time Markov chain can
be characterized by its instantaneous transition rate matrix.

In this subsection, we restrict our investigation in a particular subclass A of Cp which
are embedded in

Θ = {θ = (µ(1), σ(1), λ1, µ(2), σ(2), λ2)|µ(i) ∈ R, σ(i) > 0, λi > 0, i = 1, 2}. (2.10)

Here the transition rate matrix for the Markov chain is given by

Λ :=
(
−λ1 λ1
λ2 −λ2

)
.

Therefore the sojourn time distribution of state i is Exp(λi) for i = 1, 2. Now since
A ⊂ Cp ⊂ Θ, by using Definition 2.2.8(iii), we have

1
λ1

1
λ1

+ 1
λ2

= p. (2.11)
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Using Definition 2.2.8(i), (2.11) the drift coefficients µ(i) satisfy the following relation

p µ(1) + (1− p)µ(2) = ¯̂µ. (2.12)

Also using Definition 2.2.8(ii) and (2.11) the volatility coefficients σ(i) have the relation
below

p σ(1) + (1− p)σ(2) = ¯̂σ. (2.13)

After a simple computation (2.11) becomes

λ1 =
(

1
p
− 1

)
λ2. (2.14)

Thus Cp ⊂ Θ is the set of six parameters satisfying equations (2.12), (2.13) and (2.14). We
choose A by fixing µ(1) = µ(2) and σ(1) = F̂←σ̂ (p). Thus A is a subset of the solution
space of five equations in six unknowns, or in other words, A can be viewed as a one-
parameter family of models. Next to generate surrogate data, we need to discretize the
MMGBM model corresponding to each member of A . To this end we discretize (2.1) and
perform Monte Carlo simulation. The discretization of MMGBM surrogate of the form
(2.1) is given by

Sti+1 = Sti exp
((
µ(Xi)−

1
2σ

2(Xi)
)

∆ + σ(Xi)Zi
)
,

Xi+1 = Xi − (−1)Xi Pi, (2.15)

where {Pi | i = 1, . . . , N − 1} are independent to each other and also to Zj for all j and
each Pi ∼ Bernoulli(λXi∆), a Bernoulli random variable with parameter λXi∆.

Testing of hypothesis

We intend to test whether the values of T of observed index prices are outliers of
T values coming from MMGBM models. For each index in Table 2.1, we set our null
hypothesis,

H0 : the time series is in the class A of MMGBM.

To test H0, we adopt the typical realization surrogate data approach and consider the
discrete model (2.15). For every θ ∈ A , we perform Monte Carlo simulation two hundred
times (B = 200). Then we record the α1, α2, α3 and α4 values for each index in Table
2.2. From Table 2.2 it is evident that H0 can be rejected for each index with α value 5%
or smaller. We consider the first time series I01 to illustrate the sampling distribution of
T for some models in A using the following four plots. In each of the Figures 2.4-2.7, the
circle plot represents t∗, the T value of I01. Furthermore, there are three two-dimensional
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box plots corresponding to 1
λ1

= 5, 10 and 15 respectively. It seems from Figures 2.4 that,
the least square estimate of 1

λ1
should be in between 5 and 10, so far (T1, T2) is concerned.

However, Figure 2.5 implies that the least square estimate of 1
λ1
> 15. On the other hand,

Figures 2.6 and 2.7 imply that the data is an outlier. Finally, since all the α4 are less
than 5%, in the MMGBM column of Table 2.2, we reject the null hypothesis with 95%
confidence for each index data.

Figure 2.4: T1 and T2 under MMGBM hy-
pothesis

Figure 2.5: T3 and T4 under MMGBM hy-
pothesis
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Figure 2.6: T1 and T3 under MMGBM hy-
pothesis

Figure 2.7: T1 and T4 under MMGBM hy-
pothesis

2.3.3 Surrogate Data under semi-Markov modulated GBM
In this subsection, we consider a subclass of the following all class of models

Θ = {θ = (µ(1), σ(1), λ1(·), µ(2), σ(2), λ2(·)|µ(i) ∈ R, σ(i) > 0, λi(·) > 0, i = 1, 2}.

For every θ in Cp ⊂ Θ, µ(i) and σ(i) satisfy the equation (2.12) and (2.13). The transition
rate matrix for the semi-Markov chain is a matrix valued function on [0,∞), given by

Λ(y) :=
(
−λ1(y) λ1(y)
λ2(y) −λ2(y)

)
∀ y ∈ [0,∞).

Now for illustration purpose, A is chosen in the following manner. The holding time distri-
bution of the state i is Γ(ki, λi) for i = 1, 2, where Γ(ki, λi) denote the gamma distribution
with shape ki and rate λi. Then it follows from [27] that λi(y) is the hazard rate of Γ(ki, λi)
and is given by λi(y) = λ

ki
i y

ki−1e−λiy

Γ(ki)−γ(ki,λiy) , where γ is the lower incomplete gamma function.
Since the expectation of Γ(ki, λi) is ki

λi
, it follows from Definition 2.2.8(iii), that

k1
λ1

k1
λ1

+ k2
λ2

= p,

i.e.
k2

λ2
=
(

1
p
− 1

)
k1

λ1
.
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In addition to these, as before, we further assume that µ(1) = µ(2), σ(1) = F̂←σ̂ (p) and
k1 = k2. Thus A is the solution space of six equations in eight unknowns or in other words
A is a two parameter subfamily of Θ. For drawing samples from each member of A using
Monte Carlo simulation, we first discretize (2.1). The discretization scheme for SMGBM
surrogate of (2.1) is given by

Sti+1 = Sti exp
((
µ(Xi)−

1
2σ

2(Xi)
)

∆ + σ(Xi)Zi
)
,

Xi+1 = Xi + (−1)Xi Pi,
Yi+1 = (Yi + i∆) (1− Pi) , (2.16)

where Pi and Zi are as in (2.15). The readers are referred to [27] for more details about
similar representation of semi-Markov process.

Testing of hypothesis

We set our null hypothesis for all index

H0 : the time series is in the class A of SMGBM.

From Table 2.2 below, H0 cannot be rejected for any index with a significant level of
confidence. Hence we cannot reject the superset also. Or in other words, we cannot reject
the hypothesis that the data, under study, is drawn from a SMGBM population.

2.4 Conclusion
In this chapter, we have developed a statistical technique to test the validity of the use

of binary regime switching extension of GBM. By several numerical experiments we have
shown that we cannot reject the null hypothesis that the Indian index data is drawn from
a SMGBM population.
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Table 2.2: The α-vales for all the indices

MMGBM SMGBM
Index α1 α2 α3 α4 α1 α2 α3 α4

1 I01 0.490 0.395 0.045 0.040 0.495 0.485 0.225 0.095
2 I02 0.490 0.400 0.050 0.045 0.500 0.455 0.195 0.105
3 I03 0.470 0.420 0.050 0.035 0.495 0.470 0.230 0.100
4 I04 0.435 0.395 0.055 0.040 0.500 0.455 0.180 0.105
5 I05 0.415 0.395 0.055 0.040 0.495 0.415 0.195 0.105
6 I06 0.465 0.390 0.055 0.040 0.485 0.415 0.200 0.115
7 I07 0.430 0.430 0.060 0.040 0.500 0.420 0.205 0.100
8 I08 0.475 0.420 0.050 0.035 0.495 0.455 0.235 0.100
9 I09 0.455 0.420 0.085 0.050 0.495 0.425 0.220 0.105
10 I10 0.460 0.390 0.055 0.040 0.485 0.425 0.200 0.115
11 I11 0.455 0.420 0.055 0.040 0.490 0.430 0.190 0.100
12 I12 0.480 0.395 0.050 0.050 0.500 0.470 0.210 0.115
13 I13 0.490 0.405 0.050 0.040 0.500 0.470 0.215 0.105
14 I14 0.430 0.395 0.055 0.040 0.485 0.415 0.195 0.100
15 I15 0.490 0.410 0.050 0.035 0.480 0.480 0.235 0.100
16 I16 0.435 0.395 0.055 0.040 0.495 0.425 0.200 0.105
17 I17 0.470 0.410 0.045 0.030 0.495 0.400 0.195 0.095
18 I18 0.425 0.395 0.055 0.040 0.490 0.430 0.205 0.100
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3
The CSM Process

3.1 Introduction
The most common properties of any financial time series are its dramatic change of

behavior over the time. This changes in financial markets often occur due to government
policies, economic news, etc. The regime switching models allow us to capture these abrupt
movements. In this type of models, the market parameters are allowed to be finite state
pure jump process. The empirical study based on Indian stock market, presented in the
Chapter 2, suggests the appropriateness of use of the semi-Markov process to model the
market states. This process is referred to as a hidden semi-Markov process. Age-dependent
semi-Markov process is a generalization of the semi-Markov process. In this chapter, we
recall the age-dependent process in brief and present some properties of component-wise
semi-Markov process (CSM).

3.2 Age-dependent process
The estimation of hidden semi-Markov process from a given time series is generally

known to be as a very difficult tusk. However, it is shown in [28] that the instantaneous
transition rate, i.e the rate at which the semi-Markov process moves between states, can be
estimated. In this section we describe the approach of Ghosh and Saha [27] to construct an
age-dependent process on a finite state space X := {1, 2, . . . , k}, specified by instantaneous
transition rate λ, which is a collection of measurable functions λij : [0,∞)→ (0,∞), where
(i, j) ∈ X2 and X2 := {(i, j)|i 6= j ∈ X}.

Let (Ω,F, P ) be a probability space. We make following assumption on λ

sup
y∈(0,∞)

∑
j 6=i

λij(y) <∞, (3.1)
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and we consider λii(y) = −
∑
j 6=i

λij(y).

Now let for i 6= j and for every y > 0, Λij(y) :=
 ∑

(i′,j′)≺(i,j)
λi′j′(y)

+ [0, λij(y)), using

a strict total order ≺ on X2. Now we define hλ, gλ : X× R+ × R→ R by

hλ(i, y, z) :=
∑

j∈X\{i}
(j − i)1Λij(y)(z), gλ(i, y, z) := y

∑
j∈X\{i}

1Λij(y)(z).

We define the following system of coupled stochastic integral equation

Xt = X0 +
∫

(0,t]

∫
R

hλ(Xu−, Yu−, z)℘(du, dz)

Yt = Y0 + t−
∫

(0,t]

∫
R

gλ(Xu−, Yu−, z)℘(du, dz),


(3.2)

where ℘ is a Poisson random measure on (0, t] × R with intensity dt dz. Here ℘ is a
Poisson random measure in time and space variable. We refer to [50] for the proof that,
(3.2) has a unique strong solution under the assumption (3.1). The process {Xt}t≥0 is
known to be as an age-dependent semi-Markov process and {Yt}t≥0 is the age process. We
also note that, the joint process Zt := {(Xt, Yt)}t≥0 is a time homogeneous Markov process.

The CSM process is further generalization of age dependent semi-Markov process, where
each component is an age-dependent semi-Markov process. If we consider a market with
multiple asset, then it is better to use a CSM process rather than a single semi-Markov
process.

3.3 The CSM Process
In this section we present some properties of CSM process. First we define the CSM

process.

Definition 3.3.1. A pure jump process X on a finite state space S is called a CSM if there
is a bijection Γ : S→ Xn+1 for some non-empty finite set X, and some non-negative integer
n such that each component of Γ(X) is semi-Markov process, independent to each other.

To model the regimes of the market, we consider a CSM {Xt}t≥0 on Xn+1, where X l,
the l-th component of X, is an age-dependent process with instantaneous rate functions λl,
for every l = 0, . . . , n. We denote the age process of X l as Y l and Y defined as (Y 0, . . . , Y n)
is the age process of X. For each l = 0, 1, . . . , n, let {X l

t}t≥0 be the solution to (3.2) with
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℘ replaced by ℘l, λ by λl, X0 by X l
0 and Y0 by Y l

0 . In other words

X l
t = X l

0 +
∫

(0,t]

∫
R

hl(X l
u−, Y

l
u−, z0)℘l(du, dz0)

Y l
t = Y l

0 + t−
∫

(0,t]

∫
R

gl(X l
u−, Y

l
u−, z0)℘l(du, dz0),


(3.3)

where hl := hλl and gl := gλl . We denote the tuple (X0
t , X

1
t , . . . , X

n
t ) by Xt and

(Y 0
t , Y

1
t , . . . , Y

n
t ) by Yt. Let X = {1, . . . , k} ⊂ R. For every l = 0, 1, . . . , n, consider a

function λl : {(i, j) ∈ X2|i 6= j} × [0,∞) → (0,∞) with the condition (3.1) satisfying the
following assumptions:

Assumption 3.1. (i) λlii(ȳ) = −∑j 6=i λ
l
ij(ȳ),

(ii) ȳ 7→ λlij(ȳ) is continuously differentiable,

(iii) if Λl
i(ȳ) :=

ȳ∫
0

∑
j 6=i

λlij(v)dv, then lim
ȳ→∞

Λl
i(ȳ) =∞.

Remark 3.3.2. It is important to note that Assumptions 3.1 (ii), is not required to con-
struct a CSM process. We need this assumption to establish some regularity of holding time
distribution.

For l = 0, 1, . . . , n, let us consider the following function

F l(ȳ|i) := 1− e−Λli(ȳ) for ȳ ≥ 0.

Let f l(ȳ|i) be the derivative of F l(ȳ|i) with respect to ȳ. Now for each l = 0, 1, . . . , n, we
consider the matrix pl, where for all i and ȳ

plij(ȳ) :=


λlij(ȳ)
|λlii(ȳ)| if i 6= j

0 if i = j
(3.4)

Now by setting p̂lij =
∞∫
0

plxlj(ȳ)dF l(ȳ|i), we make further assumption.

Assumption 3.2. The matrix (p̂lij) is irreducible for each l = 0, 1, . . . , n.

From the definition of F l and the assumptions on λ we observe F l(ȳ|i) < 1, ∀ȳ > 0. We
also note that λlij(ȳ) = plij(ȳ) f l(ȳ|i)

1−F l(ȳ|i) hold for i 6= j. It is shown in [27] that F l(ȳ|i) is the
conditional c.d.f of the holding time of X l and plij(ȳ) is the conditional probability that X l

transits to j given the fact that it is at i for a duration of ȳ.
Now we will define some important notations for our future work.
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Notation 3.1. T ln denote the time of n-th transition of the l-th component of Xt, whereas
T l0 = 0 and τ ln := T ln − T ln−1.

Notation 3.2. For a fixed t, let nl(t) := max{n : T ln ≤ t}. Hence T lnl(t) ≤ t ≤ T lnl(t)+1 and
Y l
t = t− T lnl(t).

Notation 3.3. τ l(t) := time period from time t after which the l-th component of Xt would
have a first transition. Note that τ l(t) is independent of every component of X other than
l-th one.

Notation 3.4. We denote the conditional c.d.f of τ l(t) given X l
t = i and Y l

t = ȳ as
Fτ l(·|i, ȳ), and the conditional p.d.f of τ l(t) given X l

t = i and Y l
t = ȳ as fτ l(·|i, ȳ).

Notation 3.5. Let `(t) be the component of Xt, where the subsequent transition happens.

Remark 3.3.3. It is important to note that this c.d.f does not depend on t mainly because
(Xt, Yt) is time-homogeneous. We also notice that τ l(t) + Y l

t is the duration of stagnancy
of X l

t at present state before it moves to another.

From now we denote P (·|Xt = x, Yt = y) by Pt,x,y(·) and the corresponding conditional
expectation as Et,x,y(·). Therefore, Pt,x,y(`(t) = l) represents the conditional probability of
observing next transition to occur at the l-th component given that Xt = x and Yt = y.
We find the expressions of the c.d.f and the probability defined above and obtain some
properties in the following lemmas.

Lemma 3.3.4. Consider F l, f l, Fτ l , fτ l , Pt,x,y as given above.

(i) For each l, Fτ l(r|i, ȳ) = F l(r+ȳ|i)−F l(ȳ|i)
1−F l(ȳ|i) , and fτ l(r|i, ȳ) = f l(r+ȳ|i)

1−F l(ȳ|i) , for r ≥ 0.

(ii) The joint probability distribution of τ l(t) and `(t) = l is given by

Pt,x,y(τ l(t) ≤ r, `(t) = l) =
r∫

0

∏
m 6=l

(1− Fτm(s|xm, ym))fτ l(s|xl, yl)ds.

(iii) For each l, Pt,x,y(`(t) = l) =
∞∫
0

∏
m 6=l

(1− Fτm(s|xm, ym))fτ l(s|xl, yl)ds.

(iv) Let Fτ l|l(·|x, y) be the conditional c.d.f of τ l(t) given Xt = x, Yt = y and `(t) = l.
Then Fτ l|l(r|x, y) = Pt,x,y(τ l(t)≤r,`(t)=l)

Pt,x,y(`(t)=l) .
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Proof. (i) One can compute the conditional c.d.f Fτ l(·|i, ȳ) in the following way

Fτ l(r|i, ȳ) = P (0 ≤ τ l(t) ≤ r|X l
t = i, Y l

t = ȳ)
= P (τ l(t) + Y l

t ≤ r + ȳ|X l
t = i, Y l

t = ȳ)
= P (Y l

T l
nl(t)+1

− ≤ r + ȳ|Y l
T l
nl(t)
− ≥ ȳ, X l

t = i, Y l
t = ȳ)

= F l(r + ȳ|i)− F l(ȳ|i)
1− F l(ȳ|i) l = 0, 1, . . . , n. (3.5)

We denote the derivative of Fτ l(r|i, ȳ) by fτ l(r|i, ȳ), given by

fτ l(·|i, ȳ) = f l(·+ ȳ|i)
1− F l(ȳ|i) . (3.6)

This proves (i).

(ii) We introduce a new variable τ−l(t) := min
m6=l

τm(t). We denote the conditional c.d.f of
τ−l(t) given Xt = x and Yt = y as Fτ−l(·|x, y) which is equal to

1−
∏
m 6=l

(1− Fτm(·|xm, ym)) .

It is easy to see that Pt,x,y(τ l(t) ≤ r, `(t) = l) = Pt,x,y(τ−l(t) > τ l(t), τ l(t) ≤ r). To
compute this probability we use a conditioning on τ l(t). Thus

Pt,x,y(τ l(t) ≤ r, `(t) = l) = Et,x,y[Pt,x,y(τ−l(t) > τ l(t), τ l(t) ≤ r|τ l(t))]

=
r∫

0

Pt,x,y(τ−l(t) > τ l(t)|τ l(t) = s)fτ l(s|xl, yl)ds

=
r∫

0

(1− Pt,x,y(τ−l(t) ≤ s))fτ l(s|xl, yl)ds

=
r∫

0

∏
m 6=l

(1− Fτm(s|xm, ym))fτ l(s|xl, yl)ds. (3.7)

This proves (ii).

(iii) It is obvious that, Pt,x,y(`(t) = l) = Pt,x,y(τ l(t) ≤ ∞, `(t) = l) and this completes the
proof of (iii).

(iv) From the definition of Fτ l|l(r|x, y) we have,

Fτ l|l(r|x, y) = Pt,x,y(τ l(t) ≤ r|`(t) = l)
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= Pt,x,y(τ l(t) ≤ r, `(t) = l)
Pt,x,y(`(t) = l) . (3.8)

Now using (3.7), and (3.8), we completed the proof of (iii).

In the next lemma, we shall discuss about the regularity structure of Pt,x,y(`(t) = l) and
Fτ l|l(v|x, y), which will be used in the forthcoming Chapters.

Lemma 3.3.5. Let Fτ l(r|i, ȳ), fτ l(r|i, ȳ), Fτ l|l(r|x, ȳ) be as in Lemma 3.3.4.

(i) Let fτ l|l(r|x, ȳ) is the derivative of Fτ l|l(r|x, ȳ) in r variable. Then the following
identity holds

fτ l|l(0|x, ȳ)Pt,x,ȳ(`(t) = l) = fτ l(0|xl, yl) = f l(yl|xl)
1− F l(yl|xl)

.

(ii) For each l, fτ l(r|i, ȳ) is differentiable in r. Furthermore, Fτ l(r|i, ȳ) and fτ l(r|i, ȳ) are
differentiable in ȳ .

(iii) Pt,x,y(τ l(t) ≤ r, `(t) = l) is differentiable in y variable and

n∑
i=0

∂

∂yi
Pt,x,y(τ l(t) ≤ r, `(t) = l) =

n∑
i=0

fτ i(0|xi, yi)Pt,x,y(τ l(t) ≤ r, `(t) = l)

+
∏
m6=l

(1− Fτm(r|xm, ym)) fτ l(r|xl, yl)− fτ l(0|xl, yl)
 .

(iv) Pt,x,y(`(t) = l) is differentiable in y and

n∑
i=0

∂

∂yi
Pt,x,y(`(t) = l) =

n∑
i=0

fτk(0|xi, yi)Pt,x,y(`(t) = l)− fτ l(0|xl, yl).

(v) Fτ l|l(r|x, y) is differentiable with respect to y and

n∑
i=0

∂

∂yi
Fτ l|l(r|x, y) = fτ l(0|xl, yl)

Fτ l|l(r|x, y)− 1
Pt,x,y(`(t) = l) −

∏
m6=l

(1− Fτm(r|xm, ym)) fτ l(r|xl, yl)

Proof. (i) Consider the expression of Lemma 3.3.4(iii) and differentiating it with respect
to r, we obtain the result.
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(ii) Since λl is C1 in r, so is fτ l(r|i, ȳ) ∀ l . Again since for all l, F l and f l are differentiable
in ȳ, it follows from 3.3.4(i) that Fτ l(r|i, ȳ) and fτ l(r|i, ȳ) are differentiable in ȳ. By
a straight forward calculation, we can obtain

∂

∂ȳ
Fτ l(r|i, ȳ) = fτ l(r|i, ȳ)− fτ l(0|i, ȳ) (1− Fτ l(r|i, ȳ)) (3.9)

∂

∂ȳ
fτ l(r|i, ȳ) = fτ l(r|i, ȳ)fτ l(0|i, ȳ) + f̄ l(r + ȳ|i)

1− F l(ȳ|i) , (3.10)

where f̄ l denotes the derivative of f l with respect to ȳ.

(iii) We first recall the Definition of Pt,x,y(τ l(t) ≤ r, `(t) = l) from Lemma 3.3.4(ii),

Pt,x,y(τ l(t) ≤ r, `(t) = l) =
r∫

0

∏
m6=l

(1− Fτm(s|xm, ym))fτ l(s|xl, yl)ds.

Since f̄τ l(s|xl, ȳ) is bounded for ȳ ∈ [0, r] and it is differentiable with respect to ȳ,
then by using Fatou’s lemma we can interchange the limit and integration. Therefore,

∂

∂yj
Pt,x,y(τ l(t) ≤ r, `(t) = l)

=



r∫
0

∏
m 6=l

(1− Fτm(s|xm, ym)) ∂

∂yl
fτ l(s|xl, yl)ds, j = l

−
r∫

0

∏
m 6=l 6=j

(1− Fτm(s|xm, ym)) ∂

∂yj
Fτ j(s|xj, yj)fτ l(s|xl, yl)ds, j 6= l.

Now,
∑
j

∂

∂yj
Pt,x,y(τ l(t) ≤ r, `(t) = l)

=
r∫

0

∏
m 6=l

(1− Fτm(s|xm, ym)) ∂

∂yl
fτ l(s|xl, yl)ds

−
∑
j 6=l

r∫
0

∏
m6=l 6=j

(1− Fτm(s|xm, ym)) ∂

∂yj
Fτ j(s|xj, yj)fτ l(s|xl, yl)ds

Now using (3.9) and (3.10), we have
∑
j

∂

∂yj
Pt,x,y(τ l(t) ≤ r, `(t) = l)
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=
r∫

0

∏
m6=l

(1− Fτm(s|xm, ym))
(
fτ l(s|xl, yl)fτ l(0|xl, yl) + f̄ l(s+ yl|xl)

1− F l(yl|xl)

)
ds

−
r∫

0

∑
j 6=l

∏
m6=l 6=j

(1− Fτm(s|xm, ym))
(
fτ j(s|xj, yj)− fτ j(0|xj, yj)

(
1− Fτ j(s|xj, yj)

))
× fτ l(s|xl, yl) ds. (3.11)

Now by using Lemma 3.3.4(i), (ii) and integration by parts in the first integral of
(3.11), we have

Pt,x,y(τ l(t) ≤ r, `(t) = l)fτ l(0|xl, yl)

+
∏
m6=l

(1− Fτm(r|xm, ym)) fτ l(r|xl, yl)− fτ l(0|xl, yl)


+
r∫

0

∑
i 6=l

∏
m6=l 6=i

(1− Fτm(s|xm, ym)) fτ i(s|xi, yi)fτ l(s|xl, yl) ds (3.12)

The second integral of (3.11) can be rewritten as

−
r∫

0

∑
i 6=l

∏
m6=l 6=i

(1− Fτm(s|xm, ym)) fτ i(s|xi, yi)fτ l(s|xl, yl) ds

+
∑
i 6=l

fτr(0|xi, yi)
r∫

0

∏
m6=l

(1− Fτm(s|xm, ym)) fτ l(s|xl, yl) ds (3.13)

Therefore by substituting (3.12) and (3.13) in (3.11), we have the desired result.

(iv) This result is obvious.

(v) Using (iii) and (iv), it can be proved.
Now we state a corollary of the preceding Lemma, which will be used in the succeeding

Chapters.
Corollary 3.3.6. Let 0 ≤ t ≤ T , then the following identity holds

( ∂
∂t

+
n∑
i=0

∂

∂yi
)Fτ l|l(T − t|x, y) = fτ l|l(0|x, y)(Fτ l|l(T − t|x, y)− 1).
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4
Portfolio Optimization

4.1 Introduction
This chapter concerns with a risk-sensitive portfolio optimization problem. We consider

a financial market consisting of several assets, governed by a CSM modulated jump diffu-
sion. Under the above market assumptions, we solve the optimization problem by studying
an HJB equation. Using some separation of variables, we reduce the HJB equation to a
linear first order system of non-local PDEs. To show the well-posedness of the linear PDE,
we study an equivalent Volterra integral equation(VIE) of the second kind.

The rest of the chapter is organized as follows. In the next section we give a rigor-
ous description of the model of a financial market dynamics and then derive the wealth
process of an investor’s portfolio. In Section 3 we describe the optimization criteria and
the equations of corresponding optimal portfolio. The problem of optimizing the portfolio
wealth under the risk sensitive criterion on the finite time horizon is presented in Section
4. Section 5 contain some concluding remarks.

4.2 Model Description

Key Assumptions of the chapter
Let (Ω,F ,P) be a complete probability space.

4.2.1 Model parameters
Let X denote a finite subset of R. Without loss of generality, we choose X = {1, 2, . . . , k}

and X2 := {(i, j)|i 6= j ∈ X}. Consider for each l = 0, 1, . . . , n, λl : X2 × [0,∞)→ (0,∞) a
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continuously differentiable function in y with λlii(y) = −∑j 6=i λ
l
ij(y) and

lim
y→∞

Λl
i(y) =∞,whereΛl

i(y) :=
y∫

0

∑
j 6=i

λlij(v)dv.

Assume that for each j = 1, 2, . . . ,m2, νj denotes a finite Borel measure on R. Let r :
[0, T ] × Xn+1 → [0,∞), µl : [0, T ] × Xn+1 → R, and σl : [0, T ] × Xn+1 → (0,∞)1×m1 be
continuous functions of the time variable for each l = 1, . . . , n, where m1 and m2 are the
positive integers. We also consider a collection of measurable functions ηlj : R→ (−1,∞)
for each l = 1, . . . , n, j = 1, . . . ,m2.

We further introduce some more notations. Fix x = (x0, x1, . . . , xn) ∈ Xn+1 and t ∈
[0, T ] and we denote b(t, x) := [µ1(t, x) − r(t, x), . . . , µn(t, x) − r(t, x)]1×n, and σ(t, x) :=
[σlj(t, x)]n×m1 , where σlj is the j-th component of σl function. For each z = (z1, . . . , zm2) ∈
Rm2 , we denote η(z) := [ηlj(zj)]n×m2 . We use [·]∗ to denote transpose of a vector.

4.2.2 Asset price model
Let {X l

0 | l = 0, . . . , n} be a collection of (n+ 1) X valued random variables, and {Y l
0 |

l = 0, . . . , n} be a collection of (n+1) non negative random variables. Let W = {Wt}t≥0 =
{[W 1

t , . . . ,W
m1
t ]∗}t≥0 be a standard m1-dimensional Brownian motion. We further assume

that, {Nj(dt, dz)|j = 1, . . . ,m2} on (0,∞)×R and {℘l(dt, dz0) | l = 0, . . . , n} on (0,∞)×R
are two sets of Poisson random measures with intensity νj(dz)dt and dtdz0 respectively
defined on the same probability space. For each j, νj denotes a finite Borel measure. It is
important to note that the random variables, processes and measures are defined in such
a way that they are independent. Let X := {Xt}t≥0 where Xt = (X0

t , X
1
t , . . . , X

n
t ) be a

CSM process whose each component is a solution of the following stochastic differential
equation

X l
t = X l

0 +
∫

(0,t]

∫
R

hl(X l
u−, Y

l
u−, z0)℘l(du, dz0)

Y l
t = Y l

0 + t−
∫

(0,t]

∫
R

gl(X l
u−, Y

l
u−, z0)℘l(du, dz0),

where

hλl(i, y, z) :=
∑

j∈X\{i}
(j − i)1Λlij(y)(z), gλl(i, y, z) :=

∑
j∈X\{i}

y1Λlij(y)(z).

We consider a frictionless market1 consisting of (n + 1) assets whose prices are denoted
by {S0

t , S
1
t , . . . , S

n
t } and are traded continuously. We model the hypothetical state of the

1a financial market without any transaction cost.
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assets at time t by the pure jump process Xt. The state of the asset indicates its mean
growth rate and volatility. We assume

dS0
t = r(t,Xt)S0

t dt, S0
0 = s0 ≥ 0.

Thus the corresponding asset is (locally) risk free, which refers to the money market account
with the floating interest rate r(t, x) at time t corresponding to regime x. The other n
asset prices are assumed to be given by the following stochastic differential equation

dSlt = Slt−

µl(t,Xt)dt+
m1∑
j=1

σlj(t,Xt) dW j
t +

m2∑
j=1

∫
R

ηlj(zj)Nj(dt, dzj)
 , (4.1)

Sl0 = sl, sl ≥ 0, l = 1, 2, . . . , n.

These prices correspond to n different risky assets. Therefore, µl represents the growth
rate of the l-th asset and σ the volatility matrix of the market. Consider the filtration Ft

be the right continuous augmentation of the filtration generated by W,X,Nj j = 1, . . . ,m2
such that F0 contains all the P-null sets. Here we further assume the following.
Assumption 4.1. (i) For each l = 1, . . . , n and j = 1, . . . ,m2, we assume ηlj ∈ L1(νj)∩

L2(νj).

(ii) For each l = 1, . . . , n and j = 1, . . . ,m2, we further assume ln(1 + ηlj) ∈ L2(νj).

(iii) Let a(t, x) := σ(t, x)σ(t, x)∗ denote the diffusion matrix. Assume that there exist
a δ1 > 0 such that for each t and x, ξ∗a(t, x)ξ ≥ δ1‖ξ‖2, where ‖ · ‖ denotes the
Euclidean norm, and we use [·]∗ to denote transpose of a vector.

The next lemma asserts the existence and uniqueness of the solution to the SDE (4.1).
Lemma 4.2.1. Under the Assumption 4.1(ii) the equation (4.1) has a strong solution,
which is adapted, a.s. unique and a rcll process.

Proof. First we show the uniqueness by assuming that the SDE (4.1) admits a solution,
{Slt}t≥0, say, the stopping time τ = min{t ∈ [0,∞) | Slt ≤ 0}. By applying Itô’s lemma
(Lemma 1.1.16 ) on ln(Sls) for 0 ≤ s < t ∧ τ we get,

d ln(Sls) = Sls−
Sls−

µl(s,Xs−)ds+
m1∑
j=1

σlj(s,Xs−) dW j
s

− 1
2(Sls−)−2(Sls−)2all(s,Xs−)ds

+
m2∑
j=1

∫
R

[
ln(Sls− + ηlj(zj)Sls−)− ln(Sls−)

]
Nj(ds, dzj)

Integrating both sides from 0 to t ∧ τ yields,

ln
(
Slt∧τ

)
− ln sl =

t∧τ∫
0

(
µl(s,Xs−)− 1

2all(s,Xs−)ds
)

+
m1∑
j=1

t∧τ∫
0

σlj(s,Xs−) dW j
s
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+
m2∑
j=1

t∧τ∫
0

∫
R

ln(1 + ηlj(zj))Nj(ds, dzj),

where all the integrals have finite expectations almost surely by using Assumption 4.1(ii).

Slt∧τ = sl exp
 t∧τ∫

0

(
µl(s,Xs−)− 1

2all(s,Xs−)
)
ds+

m1∑
j=1

t∧τ∫
0

σlj(s,Xs−) dW j
s

+
m2∑
j=1

t∧τ∫
0

∫
R

ln(1 + ηlj(zj))Nj(ds, dzj)
 (4.2)

Thus any solution to (4.1) has the above expression. Under Assumption 4.1(ii),
τ∫

0

∫
R

ln(1+

ηlj(zj))Nj(ds, dzj) has finite expectation for any finite stopping time τ .
Let Ω1 := {ω ∈ Ω : τ(ω) < ∞}. Now if possible, assume P (Ω1) > 0. By letting

t→∞ in the above expression, we obtain that Slτ(ω)− is exponential of a random variable
which is finite for almost every ω ∈ Ω1. Thus Slτ(ω)− > 0. But for almost every ω ∈ Ω1

Slτ(ω) ≤ 0. Hence non-positivity occurred only by jump. In other words ηlj(zj) ≤ −1 for
some zj. But that is contrary to the assumption on η. Hence τ = ∞ P a.s. Therefore,
Slt > 0 P a.s. ∀ t ∈ (0,∞) and is given by

Slt = Sl0 exp
m1∑
j=1

t∫
0

σlj(s,Xs−) dW j
s +

m2∑
j=1

t∫
0

∫
R

ln(1 + ηlj(zj)) N̄j(ds, dzj)

+
t∫

0

µl(s,Xs−)− 1
2(σl(s,Xs−)σl(s,Xs−)∗)

+
m2∑
j=1

∫
|zj |<1

(ln(1 + ηlj(zj))− ηlj(zj)) νj(dzj)
 ds

 . (4.3)

Thus by equation (4.3), {Slt}t≥0 is an adapted and rcll process and is uniquely determined
with the initial condition Sl0 = s0. Hence the solution is unique.
It is easy to show by a direct calculation that the process Slt, given by (4.3) indeed solves
the SDE (4.1).

Remark 4.2.2. We note that Assumption 4.1(i) and Assumption 4.1(ii) follow for special
case where

−1 < inf
z∈R

ηlj(z) ≤ sup
z∈R

ηlj(z) <∞.
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By Assumption 4.1(ii) the diffusion matrix a(t, x) is uniformly positive definite, which
ensures that a(t, x) is invertible. We will use this condition in Section 3. This condition
also implies that m1 ≥ n.

4.2.3 Portfolio value process
Consider an investor who is employing a self-financing portfolio of the above (n + 1)

assets starting with a positive wealth. If the portfolio at time t comprises of πlt number of
units of l-th asset for every l = 0, . . . , n, then for each ω ∈ Ω the value of the portfolio at
time t is given by

Vt :=
n∑
l=0

πlt S
l
t.

We allow πlt be real valued, i.e., borrowing from the money market and short selling of
assets are allowed. We further assume that {πlt}t≥0 is a {Ft}t≥0 adapted, rcll process for
each l. Then the self-financing condition implies that

dVt =
n∑
l=0

πlt− dS
l
t.

If πlt are such that Vt remains positive, we can set ult := πltS
l(t)
Vt

, the fraction of investment

in the l-th asset. Then we have
n∑
l=0
ult = 1 and hence u0

t = 1 −
n∑
l=1
ult. We call ut =

[u1
t , u

2
t , . . . , u

n
t ]∗ as the portfolio strategy of risky assets at time t. Then the wealth process,

{Vt}t≥0, now onward denoted by {Vt}t≥0, takes the form

dV u
t

V u
t−

=
n∑
l=0

ult−
dSlt
Slt−

.

Thus we would consider the following SDE for the value process,

dV u
t = V u

t

(
r(t,Xt) +

n∑
l=1

[
µl(t,Xt)− r(t,Xt)

]
ult

)
dt

+ V u
t

n∑
l=1

m1∑
j=1

σlj(t,Xt) ultdW
j
t

+ V u
t−

n∑
l=1

m2∑
j=1

ult−

∫
R

ηlj(zj)Nj(dt, dzj). (4.4)

Now we denote b(t, x) := [µ1(t, x) − r(t, x), . . . , µn(t, x) − r(t, x)]1×n, and σ(t, x) :=
[σlj(t, x)]n×m1 , where σlj is the j-th component of σl function. For each z = (z1, . . . , zm2) ∈
Rm2 , we denote η(z) := [ηlj(zj)]n×m2 . Using (4.1), (4.5) can be rewritten as

dV u
t = V u

t ( r(t,Xt) + b(t,Xt)ut)dt+ V u
t u
∗
tσ(t,Xt)dWt
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+ V u
t−

m2∑
j=1

∫
R

[
u∗t−η(z)

]
j
Nj(dt, dzj), (4.5)

where u∗tη(z) =
[
n∑
l=1

ultηl1(z1), . . . ,
n∑
l=1

ultηlm2(zm2)
]

1×m2

.

Remark 4.2.3. It is important to note that for all choices of u, the SDE (4.5) need not
have a strong solution. Therefore we should restrict ourselves to particular class of portfolio
strategy.

It is clear from the definition and above derivations that V u
t , the portfolio wealth

process, is a controlled process. Let A ⊆ Rn be a convex set containing the origin, denoting
the range of portfolio. The range is determined based on investment restrictions. For
example, A = Rn in the case of unrestricted short selling. The restrictions on short selling
makes A = {u ∈ Rn | ul ≥ cl,

∑
l≥1 u

l ≤ 1 − c0∀l}, where cl ≤ 0 for l = 0, . . . , n. Clearly,
cl = 0 for l = 0, . . . , n correspond to no short selling. Now we shall define the class of
admissible portfolio strategy for our problem.

Definition 4.2.4. An adapted process u = {ut}t∈[0,T ] is said to be admissible portfolio
strategy if:

(i) the process u takes values from the convex set A1 := A⋂Uδ, where Uδ := {u ∈
Rn| [u∗η(z)]j ≥ −1 + δ, ∀j, z} for some 0 < δ ≤ 1,

(ii) (4.5) has a unique strong solution,

(iii) ess sup
Ω

sup
[0,T ]
‖ut(ω)‖ <∞.

Remark 4.2.5. It is important to note that the set of admissible portfolio strategy is non
empty as the constant zero process is in the set of admissible strategies.

Lemma 4.2.6. Let N̄ be a Poisson random measure on (Ω,F , P ) with intensity ν̄(dz) dt,
where ν̄ is a finite measure. If η̄ ∈ L2(ν), then there exists a positive constant c such that

E

exp
 t∫

0

∫
R

ln(1 + η̄2(z)) N̄(ds, dz)
 = exp (ctν̄(R)) .

Proof. We first note that |N̄t| := N̄([0, t] × R) is finite a.s. as |ν̄| < ∞. Therefore the

integral
t∫

0

∫
R

ln(1 + η̄2(z)) N̄(ds, dz) can be written as
|N̄t|∑
i=1

ln(1 + η̄2(zi)), where {(ti, zi)} are
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the point masses of N̄ on [0, t] × R. To be more precise, N̄(A) =
|N̄t|∑
i=1

δ{(ti,zi)}(A) for all

A ∈ B([0, t]× R). Therefore

E

exp
 t∫

0

∫
R

ln(1 + η̄2(z)) N̄(ds, dz)
 = E

|N̄t|∏
i=1

(1 + η̄2(zi))
 . (4.6)

By conditioning on |N̄t|, the right hand side of (4.6) can be rewritten as

E

E
|N̄t|∏
i=1

(1 + η̄2(zi))
∥∥∥∥∥N̄t|

∣∣∣∣∣
 .

Since (1 + η̄2(z1)), . . . , (1 + η̄2(z|N̄t|)) are conditionally independent and identically dis-
tributed given |N̄t| = n, the above expectation becomes

∞∑
n=1

E[(1 + η̄2(z1))]nP (|N̄t| = n).

Now using E [η̄2(z1)] = c, and P (|N̄t| = n) = e−tν̄(R) (tν̄(R))n
n! in the above expectation, we

have
∑
n

(1 + c)ne−tν̄(R) (tν̄(R))n
n!

= e−tν̄(R) exp (tν̄(R)(1 + c))
= exp (ctν̄(R)) .

Lemma 4.2.7. Under Assumption 4.1(i) and with admissible control u, (i) the SDE (4.5)
has a unique positive strong solution with finite expectation for an admissible control u. (ii)
The solution has finite moments of all positive and negative orders, which are also bounded
on [0, T ] uniformly in u.

Proof. (i) We first note that, since ut ∈ Uδ and satisfies Definition 4.2.4(iii),

| ln(1 + [u∗s−η(z)]j)| < max (| ln δ|, C‖η·j(zj)‖) ,

where C := ess sup
Ω

sup
[0,T ]
‖ut(ω)‖ and η·j is the j-th column of the matrix η. Again using

Assumption 4.1(i) and finiteness of measure νj, the integration of RHS with respect to

Nj has finite expectation. This implies that E
t∫

0

∫
R

ln(1 + [u∗s−η(z)]j)Nj(ds, dzj) < ∞.
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Therefore in the similar line of proof of Lemma 4.2.1, we can show under the Assumption
4.1(i) and admissibility of u, (4.5) has an a.s. unique positive rcll solution, which is an
adapted process, and the solution is given by

V u
t = V u

0 exp
 t∫

0

r(s,Xs) + b(s,Xs)us −
1
2u
∗
sa(s,Xs)us

ds +
t∫

0

u∗sσ(s,Xs) dWs

+
m2∑
j=1

t∫
0

∫
R

ln(1 + [u∗s−η(z)]j)Nj(ds, dzj)
. (4.7)

(ii) We first consider the first order moment. To prove for each t, V u
t has a bounded

expectation, we first note that the right hand side can be written as a product of a con-

ditionally log-normal random variable and exp
∑m2

j=1

t∫
0

∫
R

ln(1 + [u∗s−η(z)]j)Nj(ds, dzj)
,

where both are conditionally independent, given the process u. We further note that the
log-normal random variable has bounded parameters on [0, T ] uniformly in u. Therefore
it is sufficient to check if

E

exp
 t∫

0

∫
R

ln(1 + C‖η·j(zj)‖)Nj(ds, dzj)
 ,

is bounded on [0, T ], for all j = 1, . . . ,m2. By applying Lemma 4.2.6, one can show
that the above expectation is bounded on [0, T ]. Thus V u

t has bounded expectation on
[0, T ], uniformly in u. Now for the moments of general order, we note that for any α ∈
R, (V u

t )α can also be written in a similar form of (4.7) where each of the integrals inside
the exponential would be multiplied by the constant α. Thus the rest of the proof follows
in a similar line of that of first order case, given above.
It is important to note that for fixed u, Z = {t,Xt, Yt, V

u
t }t≥0 is a time homogeneous

Markov process. Let A u be the infinitesimal generator of the process Z. We will derive
the generator A u in the next proposition.
Proposition 4.2.8. Let u ∈ A1 be fixed and (Xt, Yt) and V u

t be as in (3.3)and (4.5). Let
ϕ be a C∞ function with compact support then ϕ ∈ dom(A u) and

A uϕ(t, x, y, v)

= ∂

∂t
ϕ(t, x, y, v) + ∂

∂y
ϕ(t, x, y, v) + v [r(t, x) + b(t, x) u] ∂

∂v
ϕ(t, x, y, v)

+ 1
2v

2 [u∗a(t, x)u] ∂
2

∂v2ϕ(t, x, y, v)

+
m2∑
j=1

∫
R

[ϕ (t, x, y, v (1 + [u∗η(z)]j))− ϕ(t, x, y, v)] νj(dzj)
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+
n∑
l=0

∑
j 6=xl

λlxlj(yl)
[
ϕ(t, Rl

jx,R
l
0y, v)− ϕ(t, x, y, v)

]
, (4.8)

where the linear operator Rl
z is given by Rl

zx := x + (z − xl)el, l = 0, . . . , n, z ∈ R and
{el : l = 0, . . . , n} is the standard basis of Rn+1.

Proof. Applying Itô’s formula (Theorem 1.1.16) on ϕ, using (3.2), and (4.5), we obtain

ϕ(r,Xr, Yr, V
u
r ) = ϕ(t,Xt, Yt, V

u
t ) +

∫ r

t

∂

∂s
ϕ(s,Xs−, Ys−, V

u
s−)ds+

∫ r

t

∂

∂y
ϕ(s,Xs−, Ys−, V

u
s−)ds

+
∫ r

t

∂

∂v
ϕ(s,Xs−, Ys−, V

u
s−)d(V u

s )c + 1
2

∫ r

t

∂2

∂v2ϕ(s,Xs−, Ys−, V
u
s−) d[(V u)c]s

+
m2∑
j=1

∫ r

t

∫
R

[
ϕ(s,Xs−, Ys−, V

u
s− + V u

s−[u∗η(z)]j)− ϕ(s,Xs−, Ys−, V
u
s−)
]
Nj(ds, dzj)

+
n∑
l=0

∫ r

t

∫
R

[
ϕ(s, Rl

Xl
s−+hl(Xl

s−,Y
l
s−,z0)(Xs−), Rl

Y ls−−gl(Xl
s−,Y

l
s−,z0)(Ys−), V u

s−)

− ϕ(s,Xs−, Ys−, V
u
s−)
]
℘l(ds, dz0). (4.9)

It is easy to compute d[(V u)c]s = u∗a(s,Xs)u ds. Now using (3.2), and (4.5), the right
hand side of (4.9), can be rewritten as

ϕ(t,Xt, Yt, V
u
t ) +

∫ r

t

∂

∂s
ϕ(s,Xs−, Ys−, V

u
s−)ds+

∫ r

t

∂

∂y
ϕ(s,Xs−, Ys−, V

u
s−)ds

+
∫ r

t

∂

∂v
ϕ(s,Xs−, Ys−, V

u
s−)V u

t ( r(t,Xt) + b(t,Xt)u) dt

+
∫ r

t

∂

∂v
ϕ(s,Xs−, Ys−, V

u
s−)V u

t u
∗
tσ(t,Xt)dWt

+ 1
2

∫ r

t

∂2

∂v2ϕ(s,Xs−, Ys−, V
u
s−)u∗a(s,Xs)u ds

+
m2∑
j=1

∫ r

t

∫
R

[
ϕ(s,Xs−, Ys−, V

u
s− + V u

s−[u∗η(z)]j)− ϕ(s,Xs−, Ys−, V
u
s−)
]
Ñj(ds, dzj)

+
n∑
l=0

∫ r

t

∫
R

[
ϕ(s, Rl

Xl
s−+hl(Xl

s−,Y
l
s−,z0)(Xs−), Rl

Y ls−−gl(Xl
s−,Y

l
s−,z0)(Ys−), V u

s−)

− ϕ(s,Xs−, Ys−, V
u
s−)
]
℘̃l(ds, dz0)

+
m2∑
j=1

∫ r

t

∫
R

[
ϕ(s,Xs−, Ys−, V

u
s− + V u

s−[u∗η(z)]j)− ϕ(s,Xs−, Ys−, V
u
s−)
]
ds dνj(zj)

+
n∑
l=0

∫ r

t

∫
R

[
ϕ(s, Rl

Xl
s−+hl(Xl

s−,Y
l
s−,z0)(Xs−), Rl

Y ls−−gl(Xl
s−,Y

l
s−,z0)(Ys−), V u

s−)
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− ϕ(s,Xs−, Ys−, V
u
s−)
]
dsdz0 (4.10)

We note that the last term of (4.10), can be rewritten as
n∑
l=0

∫ r

t

∑
j 6=Xl

t−

λXl
t−j

(Y l
s−)
[
ϕ(s, Rl

j(Xs−), Rl
0(Ys−), V u

s−)− ϕ(s,Xs−, Ys−, V
u
s−)
]
ds. (4.11)

We denote
∫ t

0
∂
∂v
ϕ(s,Xs−, Ys−, V

u
s−)V u

t u
∗σ(s,Xs)dWs by M1

t . Therefore M1
t is a local mar-

tingale. Since ϕ is in C∞c , sup
t

E[(M1
t )2] < ∞, it follows from Theorem 1.1.11(1) that M1

t

is a martingale. Let

M2
t :=

∫ t

0

∫
R

[
ϕ(s,Xs−, Ys−, V

u
s−[1 + u∗η(z)]j)− ϕ(s,Xs−, Ys−, V

u
s−)
]
Ñj(ds, dzj),

for j = 1, . . . ,m2. Again we note that M2
t is a local martingale. To show, M2

t is a
martingale, by using Theorem 1.1.11(1), it is sufficient to check that

E

 t∫
0

(
V u
s−

∂

∂v
ϕ(s,Xs−, Ys−, V

u
s−)
)2

ds

 <∞,
which is readily follows from the previous argument. Consider another term

M3
t : =

∫ t

0

∫
R

[
ϕ(s, Rl

Xl
s−+hl(Xl

s−,Y
l
s−,z0)(Xs−), Rl

Y ls−−gl(Xl
s−,Y

l
s−,z0)(Ys−), V u

s−)

− ϕ(s,Xs−, Ys−, V
u
s−)
]
℘̃l(ds, dz0).

By the similar argument as above, we can show that M3
t is martingale. Now taking

conditional expectation given Xt = x, Yt = y, V u
t = v and denoting it by Et,x,y,v on both

the sides of (4.10) and using (4.11), we have

Er,x,y,v [ϕ(t,Xr, Yr, V
u
r )]

= ϕ(t,Xt, Yt, V
u
t ) + Et,x,y,v

[∫ r

t

∂

∂s
ϕ(s,Xs−, Ys−, V

u
s−)ds

]

+ Et,x,y,v
[∫ r

t

∂

∂y
ϕ(s,Xs−, Ys−, V

u
s−)ds

]

+ Et,x,y,v
[∫ r

t

∂

∂v
ϕ(s,Xs−, Ys−, V

u
s−)V u

t ( r(t,Xt) + b(t,Xt)ut) dt
]

+ Et,x,y,v
[

1
2

∫ r

t

∂2

∂v2ϕ(s,Xs−, Ys−, V
u
s−)u∗a(s,Xs)u ds

]
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+ Et,x,y,v

m2∑
j=1

∫ r

t

∫
R

[
ϕ(s,Xs−, Ys−, V

u
s− + V u

s−[u∗η(z)]j)− ϕ(s,Xs−, Ys−, V
u
s−)
]
ds dνj(zj)


+ Et,x,y,v

 n∑
l=0

∫ r

t

∑
j 6=Xl

t−

λXl
t−j

(Y l
s−)
[
ϕ(s, Rl

j(Xs−), Rl
0(Ys−), V u

s−)− ϕ(s,Xs−, Ys−, V
u
s−)
]
ds


(4.12)

Therefore from the Definition of Markov generator,

A uϕ(t, x, y, v) = lim
r→t

Et,x,y,v [ϕ(r,Xr, Yr, V
u
r )]− ϕ(t,Xt, Yt, V

u
t )

r
.

Using (4.12) and strong Markov property of (Xt, Yt, V
u
t ), we have the desired result.

In the previous proposition, we use the class of smooth and compactly supported func-
tions. We shall attempt to find the generator in a larger class of functions. In view of
(4.12), we introduce a new class of functions V by

V := {ψ ∈ C ((0,∞)) | sup
v∈(0,∞)

|v
θ
2ψ(v)| <∞}.

We define a linear operator

Dt,yg(t, y) := lim
ε→0

1
ε
{g(t+ ε, y + ε1)− g(t, y)}, (4.13)

where dom(Dt,y), the domain of Dt,y, contains all measurable functions g on [0, T ]× [0, T ]
such that above limit exists for every (t, y) ∈ [0, T ]× [0, T ]. We shall define a new class of
functions G .

Definition 4.2.9. Let G ⊂ {ϕ : D × (0,∞) → R} be such that for every ϕ ∈ G the
following hold

(i) ϕ(t, x, y, v) is twice continuously differentiable with respect to v ∈ (0,∞) for all t ∈
(0, T ), x ∈ Xn+1, y ∈ (0, t)n+1 and ϕ is in dom(Dt,y) for each v,x,

(ii) for fixed (t, x, y) ∈ D , ϕ(t, x, y, ·) ∈ V,

(iii) for each (t, x, y), v 7→ v ∂ϕ
∂v

is in V.

In the similar line of proof of Proposition 4.2.8, we can prove the following.

Proposition 4.2.10. Let u = {ut}t∈[0,T ] be an admissible control and (Xt, Yt) and V u
t be

as in (3.3)and (4.5). Let ϕ ∈ G , then

A uϕ(t, x, y, v)
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= ∂

∂t
ϕ(t, x, y, v) + ∂

∂y
ϕ(t, x, y, v) + v [r(t, x) + b(t, x) u] ∂

∂v
ϕ(t, x, y, v)

+ 1
2v

2 [u∗a(t, x)u] ∂
2

∂v2ϕ(t, x, y, v)

+
m2∑
j=1

∫
R

[ϕ (t, x, y, v (1 + [u∗η(z)]j))− ϕ(t, x, y, v)] νj(dzj)

+
n∑
l=0

∑
j 6=xl

λlxlj(yl)
[
ϕ(t, Rl

jx,R
l
0y, v)− ϕ(t, x, y, v)

]
,

where the linear operator Rl
z is given by Rl

zx := x + (z − xl)el, l = 0, . . . , n, z ∈ R and
{el : l = 0, . . . , n} is the standard basis of Rn+1.

4.2.4 Optimal Control Problem
In this chapter we consider a risk sensitive optimization criterion of terminal portfolio
wealth corresponding to a portfolio u, that is given by

Ju,Tθ (x, y, v) := −
(2
θ

)
lnE

[
exp

(
−θ2 ln (V u

T )
) ∣∣∣∣∣ X0 = x, Y0 = y, V u

0 = v

]

= −
(2
θ

)
lnE

[
(V u

T )− θ2
∣∣∣∣∣ X0 = x, Y0 = y, V u

0 = v

]
,

which is to be maximized over all admissible portfolio strategies with constant risk aversion
parameter θ > 0. Since logarithm is increasing, it suffices to consider the following cost
function

E
[
(V u

T )− θ2
∣∣∣∣∣ X0 = x, Y0 = y, V u

0 = v

]
,

which is to be minimized.
For all (t, x, y, v) ∈ D × (0,∞), let

J̃u,Tθ (t, x, y, v) := E
[
(V u

T )− θ2
∣∣∣∣∣ Xt = x, Yt = y, V u

t = v

]
,

ϕθ(t, x, y, v) := infu J̃u,Tθ (t, x, y, v),

 (4.14)

where infimum is taken over all admissible strategies as in Definition 4.2.4. Hence, ϕθ
represents the optimal cost.

Let u = {ut}t∈[0,T ] be an admissible strategy such that it has the following form
ut := ũ(t,Xt, Yt, Vt) for some measurable ũ : D × (0,∞) → A1. We call such con-
trols as Markov feedback control. Then the augmented process {(Xt, Yt, V

u
t )}t∈[0,T ] is

Markov where, Xt, Yt, V
u
t are as in (4.1), (4.1), (4.5). We note that for any measurable
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ũ : D × (0,∞)→ A1, the equation (4.5) may not have a strong solution. However, we will
show the existence of a Markov feedback control which is optimal and under which (4.5)
has an a.s. unique strong solution. For a given u ∈ A1, by abuse of notation, we write A u,
when ũ(t, x, y, v) = u for all t, x, y, v. We consider the following equation

inf
u∈A1

A uϕ(t, x, y, v) = 0, (4.15)

with the terminal condition

ϕ(T, x, y, v) = v−
θ
2 , x ∈ Xn+1, y ∈ [0, T ]n+1, v > 0. (4.16)

We clarify below, what we mean by a classical solution to the problem (4.15)-(4.16).
Definition 4.2.11. We say ϕ : D × (0,∞) → R is a classical solution to (4.15)-(4.16) if
ϕ ∈ G and for all (t, x, y, v) ∈ D × (0,∞), ϕ satisfies (4.15)-(4.16).

4.3 Hamilton-Jacobi-Bellman Equation
We look for a solution to (4.15)-(4.16) of the form

ϕ(t, x, y, v) = v−
θ
2ψ(t, x, y), (4.17)

where ψ ∈ dom(Dt,y). Clearly, the left hand side of (4.17) is in class G . We will establish
the following result in first two subsections.
Theorem 4.3.1. The Cauchy problem (4.15)-(4.16) has a unique classical solution, ϕM ,
of the form (4.17).

Substitution of (4.17) into (4.15), yields

Dt,yψ(t, x, y) +
∑
l

∑
j 6=xl

λlxlj(yl)
[
ψ(t, Rl

jx,R
l
0y)− ψ(t, x, y)

]
+ hθ(t, x)ψ(t, x, y) = 0, (4.18)

for each (t, x, y) ∈ D with the condition

ψ(T, x, y) = 1, (4.19)

where the map hθ : [0, T ]× Xn+1 → R is given by

hθ(t, x) := inf
u∈A1

[gθ(t, x, u)] , (4.20)

the infimum of a family of continuous functions

gθ(t, x, u) :=
(
−θ2

)
[r(t, x) + b(t, x) u] + 1

2

(
−θ2

)(
−θ2 − 1

)
[u∗ a(t, x) u]
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+
m2∑
j=1

∫
R

(
(1 + [u∗η(z)]j)(−

θ
2) − 1

)
νj(dzj).

It is important to note that the linear first order equation (4.18) is nonlocal due to the
presence of the term ψ(t, Rl

jx,R
l
0y) in the equation. It implies that Dt,yψ(t, x, y) depends

on the value of ψ at the point (t, ·, Rl
0y), which does not lie in the neighbourhood of (t, ·, y).

We now define a classical solution to (4.18)-(4.19) below.
Definition 4.3.2. We say ϕ : D → R is a classical solution to (4.18)-(4.19) if ϕ ∈
dom(Dt,y) and for all (t, x, y) ∈ D , ϕ satisfies (4.18)-(4.19).
Remark 4.3.3. It is interesting to note that other than the terminal condition (4.19),
no additional boundary conditions are imposed. The remaining parts of the boundary is
D̄ ∩ {(t, x, y)|yl = 0, x ∈ Xn+1, t ∈ [0, T ]}. We note from (4.1) that, 0 ≤ Y l

t , for all
t ∈ [0, T ]. Hence {Yt}t≥0 does not cross the boundary. Thus the value of solution on the
boundary is obtained from the terminal condition (4.19).
Theorem 4.3.4. The Cauchy problem (4.18)-(4.19) has a unique classical solution in
Cb(D̄).
Remark 4.3.5. Note that Theorem 4.3.1 may be treated as a corollary of Theorem 4.3.4
in view of the substitution (4.17) and subsequent analysis. Thus it suffices to establish
Theorem 4.3.4. We establish Theorem 4.3.4 in the subsection 4.3.2 via a study of an
integral equation which is presented in subsection 4.3.1. The following result would be
useful to establish well-posedness of (4.18)-(4.19).
Proposition 4.3.6. Consider the map hθ : [0, T ] × Xn+1 → R, given by, (4.20). Then
under Assumption 4.1(iii), we have

(i) hθ is continuous, negative valued, bounded below;

(ii) Hθ(t1, t2, x) :=
∫ t2
t1
hθ(s, x)ds is C1 in both t1 and t2 for each x;

(iii) For every (t, x), there exists a unique u?(t, x) ∈ A1 such that hθ(t, x) = gθ(t, x, u?(t, x)).
and u? : [0, T ]× Xn+1 → A1 is continuous in t;

(iv) {u?(t,Xt)}t≥0 is admissible.

Proof. (i) We recall that, A1, the range of portfolio includes origin. Therefore it follows
from the Definition of hθ in (4.20) that

hθ(t, x) ≤ gθ(t, x, 0) = −θ2r(t, x) < 0.

Thus hθ is negative valued. By the continuity assumptions on r, b and a, for fixed u and
each x ∈ Xn+1, r(t, x), b(t, x), and a(t, x) are bounded on [0, T ]. Let M ≥ 0 be such that

max
t∈[0,T ]

{|r(t, x)|, ‖b(t, x)‖, ‖a(t, x)‖} ≤M.

56



4.3. Hamilton-Jacobi-Bellman Equation

We also observe that for each u ∈ A1,∑
j

∫
R

((1 + [u∗η(z)]j)−
θ
2 − 1) νj(dzj) ≥ −

∑
j

∫
R

νj(dzj)

= −
∑
j

νj(R) > −∞,

using the finiteness of the measure νj. Also, Assumption 4.1(iii) gives u∗a(t, x)u ≥ δ1‖u‖2.
Hence by using the above mentioned bounds, we can write, gθ(t, x, u) ≥ ḡθ(u), where

ḡθ(u) =
−θ2(M +M‖u‖) + θ

4(1 + θ

2)δ1‖u‖2 −
∑
j

νj(R)
 .

Since ḡθ(u) is independent of t and ↑ ∞ as ‖u‖ ↑ ∞, hθ(t, x) is bounded below. Now we
will show that for fixed t and x, gθ(t, x, u) is a strictly convex function of variable u ∈ A1.
To see this first we take the derivative of gθ(t, x, u) in up.

∂gθ
∂up

= −θ2 b
p(t, x) + θ

4

(
θ

2 + 1
)∑

j

apjuj −
∑
j

∫
R

θ

2ηpj(zj) (1 + [u∗η(z)]j)−
θ
2−1 νj(dzj).

(4.21)

For fixed t and x, let H denote the Hessian matrix for gθ. Then we can compute (p, q)-th
element of H by using (4.21), denote it by Hpq,

1
2
θ

2

(
θ

2 + 1
)
apq(t, x) +

∑
j

∫
R

θ

2

(
θ

2 + 1
)
ηpj(zj)ηqj(zj) (1 + [u∗η(z)]j)−

θ
2−2 νj(dzj).

Since u is in A1, (1+[u∗η(z)]j is bounded below by a positive δ. Now, by using Assumption
4.1(iii) we shall show that, there existsm > 0 such thatH−mI is a positive definite matrix.

ξ∗Hξ =
∑
p,q

Hpqξpξq

= 1
2
θ

2

(
θ

2 + 1
)∑

p,q

apq(t, x)ξpξq

+
∑
p,q

∑
j

∫
R

θ

2

(
θ

2 + 1
)
ηpj(zj)ηqj(zj) (1 + [u∗η(z)]j)−

θ
2−2 ξpξq νj(dzj)

≥ θ

4

(
θ

2 + 1
)
δ1‖ξ‖2 + θ

2

(
θ

2 + 1
)
δ−

θ
2−2∑

p,q

∑
j

∫
R
ξpηpj(zj)ξqηqj(zj) νj(dzj)

= θ

4

(
θ

2 + 1
)
δ1‖ξ‖2 + θ

2

(
θ

2 + 1
)
δ−

θ
2−2∑

j

∫
R

∑
p,q

ξpηpj(zj)ξqηqj(zj) νj(dzj)
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= θ

4

(
θ

2 + 1
)
δ1‖ξ‖2 + θ

2

(
θ

2 + 1
)
δ−

θ
2−2∑

j

∫
R

(ξ∗ · η·j(zj))2 νj(dzj)

= θ

4

(
θ

2 + 1
)
δ1‖ξ‖2.

Therefore we can find an m > 0 such that ξ∗Hξ ≥ m‖ξ‖2, i.e H − mI is positive def-
inite. Therefore gθ(t, x, u) is a the strictly convex function on variable u. Therefore
A2 := A1

⋂
ḡ−1
θ ((−∞, 1]) is a non-empty convex compact set. Hence, (t, x) � A2 is a

compact-valued correspondence. Since hθ is negative, from (4.20), we can write

hθ(t, x) = inf{gθ(t, x, u)|u ∈ A2}.

We also note that (t, x, u) 7→ gθ(t, x, u) is jointly continuous. Since (t, x) � A2 is contin-
uous, then it follows from the Maximum Theorem 1.3.3 that hθ(t, x) is continuous with
respect to (t, x). Hence (i) is proved.

(ii) It follows from continuity of hθ(t, x).
(iii) The set of minimizers is defined by

u?(t, x) = argmin{gθ(t, x, u)|u ∈ A2}.

Again by using Theorem 1.3.3, (t, x) � u?(t, x) is upper semi-continuous. Since gθ(t, x, u) is
strictly convex in u, for each t ∈ [0, T ] and x ∈ Xn+1 there exist only one element in u?(t, x).
By abuse of notation, we denote that element by u?(t, x) itself. Since a single-valued upper
semi-continuous correspondence is continuous, u?(t, x) is a continuous function.

(iv) Since u? is continuous in t, there exists a positive constant M such that
‖u?(t,Xt(ω))‖ < M ∀t ∈ [0, T ], ω ∈ Ω. Since u? does not depend on v, the condi-
tions (1.7) and (1.8) of Theorem 1.1.26 are satisfied. Again since u? is bounded all growth
conditions are also satisfied. Therefore Definition 4.2.4(ii) satisfied and this completes the
proof.

4.3.1 An Equivalent Volterra Integral equation
In order to study (4.18)-(4.19) we first introduce some notations from Chapter 3.

Notation 4.1. 1. plij := probability the X l jumps from state i to state j, defined as in
(3.4).

2. τ l(t) := time period from time t after which the l-th component of Xt would have a
first transition.

3. We denote the conditional c.d.f of τ l(t) given X l
t = i and Y l

t = ȳ as Fτ l(·|i, ȳ), and
the conditional p.d.f of τ l(t) given X l

t = i and Y l
t = ȳ as fτ l(·|i, ȳ).
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4. Let `(t) be the component of Xt, where the subsequent transition happens.

5. Let Fτ l|l(·|x, y) and fτ l|l(·|x, y) be the conditional c.d.f and conditional p.d.f of τ l(t)
given Xt = x, Yt = y and `(t) = l.

Using the above notations we introduce the following integral equation on D

ψ(t, x, y) =
n∑
l=0

Pt,x,y(`(t) = l)
[
(1− Fτ l|l(T − t|x, y))eHθ(t,T,x)

+
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)ψ(t+ r, Rl

jx,R
l
0(y + r1)fτ l|l(r|x, y)

]
dr. (4.22)

Remark 4.3.7. Equation (4.22) is a Volterra integral equation of second kind. We note
that the boundary of D̄ has many facets. For t = T , we directly obtain from (4.22),
ψ(T, x, y) = 1. Hence no additional terminal conditions are required. Although the values
of ψ in facets D̄ ∩ {(t, x, y)|yl ∈ {0, t}, x ∈ Xn+1, t ∈ [0, T ]} are not directly followed but
can be obtained by solving the integral equation on the facets.

Now we shall study the regularity properties of (4.22).
Proposition 4.3.8. The integral equation (4.22) (i) has a unique solution in C(D̄), and
(ii) the solution is in the dom(Dt,y).

Proof. (i) We first observe that the solution to the integral equation (4.22) is a fixed point
of the operator A, where

Aψ(t, x, y) :=
n∑
l=0

Pt,x,y(`(t) = l)
[
(1− Fτ l|l(T − t|x, y))eHθ(t,T,x)

+
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r|x, y)

]
dr.

It is easy to check that for each ψ ∈ C(D̄), Aψ : D̄ → (0,∞) is continuous. Now since
hθ < 0 (showed in Proposition 4.3.6(i)),

‖Aψ − Aψ̃‖
= sup

D
|Aψ − Aψ̃|

= |
n∑
l=0

Pt,x,y(`(t) = l)[
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)

×[ψ(t+ r, Rl
jx,R

l
0(y + r1))− ψ̃(t+ v,Rl

jx,R
l
0(y + r1))]fτ l|l(r|x, y)dr]|

≤
n∑
i=1

Pt,x,y(`(t) = l)
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)fτ l|l(r|x, y)dr‖ψ − ψ̃‖
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< K1‖ψ − ψ̃‖,

where K1 := ∑n
l=0 Pt,x,y(`(t) = l)

∫ T−t
0 fτ l|l(r|x, y)dr. Since F l(ȳ) is strictly less than 1,

Fτ l|l(r|x, y) < 1, ∀r > 0. Hence K1 < 1. Therefore, A is a contraction. Thus a direct
application of Banach fixed point theorem ensures the existence and uniqueness of the
solution to (4.22).
(ii) We denote the unique solution as ψ. Next we show that ψ ∈ dom(Dt,y). To this end,
it is sufficient to show that A : C(D)→ dom(Dt,y). The first term of Aψ is in dom(Dt,y),
which follows from Lemma 3.3.4 (iv) and Proposition 4.3.6 (ii). Now to show that the
remaining term

βl(t, x, y) :=
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r|x, y)]dr,

is also in the dom(Dt,y) for any ψ ∈ C(D), we need to check if the following limit

lim
ε→0

1
ε

[ ∫ T−t−ε

0
eHθ(t+ε,t+r+ε,x) ∑

j 6=xl
plxlj(yl + r + ε)ψ(t+ r + ε, Rl

jx,R
l
0(y + (r + ε)1))

× fτ l|l(r|x, y + ε))dr −
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))

× fτ l|l(r|x, y)dr
]
,

exists and, the limit is continuous in D . If the limit exists the limit value is clearly
Dt,yβl(t, x, y). By a suitable substitution of variables in the integral, the expression in the
above limit can be rewritten, as

1
ε

[ ∫ T−t

ε
eHθ(t+ε,t+r,x) ∑

j 6=xl
plxlj(yl + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r − ε|x, y + ε)dr

−
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))fτ l|l(r|x, y)dr

=
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))

×1
ε

(
e−Hθ(t,t+ε,x)fτ l|l(r − ε|x, y + ε)− fτ l|l(r|x, y)

)
dr − 1

ε

∫ ε

0
eHθ(t+ε,t+r,x) ×∑

jxl

plxlj(yl + r)ψ(t+ r, Rl
jx,R

l
0(y + r1))fτ l|l(r − ε|x, y + ε)dr. (4.23)

By Lemma 3.3.4 (iv), fτ l|l(T − t|x, y) is in dom(Dt,y). Thus Dt,yfτ l|l(T − t|x, y) is bounded
on [0, T − t] by a positive constant K2. Hence by mean value theorem on fτ l|l(T − t|x, y),
the integrand of the first integral of (4.23) is uniformly bounded. Therefore, using the
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bounded convergence theorem, the integral converges as ε → 0. The second integral of
(4.23) converges as the integrand is continuous at r = 0. Now we compute

Dt,yβl(t, x, y)

=
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))

(
d

dw
e−Hθ(t,t+w,x)

∣∣∣
w=0

fτ l|l(r|x, y)

+ lim
ε→0

1
ε

[
fτ l|l(r − ε|x, y + ε)− fτ l|l(r|x, y + ε) + fτ l|l(r|x, y + ε)− fτ l|l(r|x, y)

] )
dr

−
∑
j 6=xl

plxlj(yl)ψ(t, Rl
jx,R

l
0y)fτ l|l(0|x, y),

using Lemma 3.3.4 (iii). Therefore Dt,yβl(t, x, y) can be rewritten using Lemma 3.3.5(v) as
∫ T−t

0
eHθ(t,t+r,x) ∑

j 6=xl
plxlj(yl + r)ψ(t+ r, Rl

jx,R
l
0(y + r1))(−hθ(t, x) + fτ l|l(0|x, y))×

fτ l|l(r|x, y)dr −
∑
j 6=xl

plxlj(yl)ψ(t, Rl
jx,R

l
0y)fτ l|l(0|x, y)

=− hθ(t, x) + fτ l|l(0|x, y)]βl(t, x, y)−
∑
j 6=xl

plxlj(yl)ψ(t, Rl
jx,R

l
0y)fτ l|l(0|x, y). (4.24)

Clearly (4.24) is in C(D). Hence βl(t, x, y) is in the dom(Dt,y). Hence the right hand side
of (4.22) is in the dom(Dt,y) for any ψ ∈ C(D̄). Thus (ii) holds.

4.3.2 The linear first order equation
Proposition 4.3.9. The unique solution to (4.22) also solves the initial value problem
(4.18)-(4.19).

Proof. Let ψ be the solutions of the integral equation (4.22). Then by substituting t = T
in (4.22), (4.19) follows. Using the results from the proof of Lemma 3.3.4, Proposition
4.3.8, Lemma 3.3.4(iv) and (4.24), we have

Dt,yψ(t, x, y) =
n∑
l=0

[∑
r

fτr(0|xr, yr)Pt,x,y(`(t) = l)− fτ l(0|xl, yl)
]
[1− Fτ l|l(T − t|x, y)]eHθ(t,T,x)

−
n∑
l=0

Pt,x,y(`(t) = l)
[
fτ l|l(0|x, y)(Fτ l|l(v|x, y)− 1)

]

× eHθ(t,T,x) − hθ(t, x)
n∑
l=0

Pt,x,y(`(t) = l)[1− Fτ l|l(T − t|x, y)

× eHθ(t,T,x) +
n∑
l=0

[∑
r

fτr(0|xr, yr)Pt,x,y(`(t) = l)− fτ l(0|xl, yl)
]
βl(t, x, y)
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+
n∑
l=0

Pt,x,y(`(t) = l)
(
− hθ(t, x) + fτ l|l(0|x, y)

)
βl(t, x, y)

−
∑
j 6=xl

plxlj(yl)ψ(t, Rl
jx,R

l
0y)fτ l|l(0|x, y)

)
.

Using the equality in Lemma 3.3.4 (v), the right hand side of above equation can be
rewritten as

∑
l

f l(yl|xl)
1− F l(yl|xl)

[
ψ(t, x, y)−

∑
j 6=xl

plxlj(yl)ψ(t, Rl
jx,R

l
0y)
]
− hθ(t, x)ψ(t, x, y)

= −
∑
l

∑
j 6=xl

λlxlj(yl)
[
ψ(t, Rl

jx,R
l
0y)− ψ(t, x, y)

]
− hθ(t, x)ψ(t, x, y).

Hence ψ satisfies (4.18).

Proposition 4.3.10. Let ψ be a bounded classical solution to (4.18)-(4.19). Then ψ solves
the integral equation (4.22).

Proof. If the PDE has a classical solution ψ, then ψ is also in the domain of A, where A

is the infinitesimal generator of (t,Xt, Yt). Then we have from the PDE

Aψ + hθ(t, x)ψ(t, x, y) = 0. (4.25)

Consider
Nt := e

∫ t
0 hθ(s,Xs)dsψ(t,Xt, Yt).

Then by Itô’s formula,

dNt = hθ(t,Xt)e
∫ t

0 hθ(s,Xs)dsψ(t,Xt, Yt)dt+ e
∫ t

0 hθ(s,Xs)ds(Aψdt+ dM
(1)
t ),

where M (1)
t is a local martingale with respect to Ft, the usual filtration generated by

(Xt, Yt). Thus from (4.25) Nt is a local martingale. From definition of Nt,

sup
[0,T ]

Nt < ‖ψ‖e‖hθ‖T a.s.

Thus Nt is a martingale. Therefore by using (4.19), we obtain

ψ(t,Xt, Yt) = e
∫ t

0 −hθ(s,Xs)dsNt = E[e
∫ T
t
hθ(s,Xs)ds|Ft].

Hence using the Markov property of (Xt, Yt) irreducibility of probability matrix, we have

ψ(t, x, y) = Et,x,y[e
∫ T
t
hθ(s,Xs)ds], ∀(t, x, y) ∈ D̄ , (4.26)

62



4.3. Hamilton-Jacobi-Bellman Equation

where Et,x,y[·] = E[·|Xt = x, Yt = y]. Let `(t) be the component of Xt where the transition
happens. By conditioning on `(t) and using tower property (Theorem 1.1.4)

ψ(t, x, y) = Et,x,y[Et,x,y[e[
∫ T
t
hθ(s,Xs)ds]|`(t)]]

=
n∑
l=0

Pt,x,y(`(t) = l)Et,x,y[e[
∫ T
t
hθ(s,Xs)ds]|`(t) = l], (4.27)

where Pt,x,y[·] = P[·|Xt = x, Yt = y]. Let τ l(t) be the time period from time t after which
X l would have a transition. By conditioning on τ l(t) the equation (4.27) can be rewritten
as

Et,x,y[e
∫ T
t
hθ(s,Xs)ds|`(t) = l]

= Et,x,y[Et,x,y[e
∫ T
t
hθ(s,Xs)ds|`(t) = l, τ l(t)]|`(t) = l]

= Pt,x,y(τ l(t) > T − t|`(t) = l)e
∫ T
t
hθ(s,x)ds

+
∫ T−t

0
Et,x,y[e

∫ T
t
hθ(s,Xs)ds|`(t) = l, τ l(t) = r]fτ l|l(r|x, y)dr,

where fτ l|l(·|x, y) be the conditional p.d.f of τ l(t) given Xt = x, Yt = y and `(t) = l and its
expression is given in Lemma 3.3.4(iv). Let plij be the probability of transition of X l from
state i to j. Since Xs is constant on [t, t+ r) provided `(t) = l, τ l(t) = r, above is equal to

[1− Fτ l|l(T − t|x, y)]eHθ(t,T,x) +
∫ T−t

0
eHθ(t,t+r,x)

×Et,x,y[Et,x,y[e
∫ T
t+r hθ(s,Xs)ds|X l

t+r, `(t) = l, τ l = r]|`(t) = l, τ l = r]fτ l|l(r|x, y)dr
= [1− Fτ l|l(T − t|x, y)]eHθ(t,T,x)

+
∫ T−t

0
eHθ(t,t+r,x) ×

∑
j 6=xl

plxlj(yl + r)ψ(t+ r, Rl
jx,R

l
0(y + r1))fτ l|l(r|x, y)dr,

where 1 ∈ R(n+1) with each component 1. Therefore the desired result follows.

Proof of Theorem 4.3.4. The result follows from Proposition 4.3.8, Proposition 4.3.9, and
Proposition 4.3.10.

4.3.3 Optimal portfolio and verification theorem
Now we are in a position of deriving the expression of optimal portfolio value under

risk sensitive criterion. The optimal value is given by

ϕ̃θ(v, x, y) := sup
u
Ju,Tθ (v, x, y)
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= −2
θ

ln(ϕθ(0, x, y, v))

= ln(v)− 2
θ

ln(ψ(0, x, y)), (4.28)

where the existence and uniqueness of the classical solution to (4.18) - (4.19) follows from
Theorem 4.3.4.

Remark 4.3.11. We note that the study of (4.18)-(4.19) becomes much simpler if the
coefficients r, µ, σ are independent of time t. For time homogeneous case, Proposition 4.3.6
is immediate. Furthermore, the proof of Theorem 4.3.4 does not need the results given in
Proposition 4.3.8, Proposition 4.3.9, and Proposition 4.3.10. Indeed Theorem 4.3.4 can
directly be proved by noting the smoothness of terminal condition.

We conclude this section with a proof of the verification theorem for optimal control
problem (4.14).

Theorem 4.3.12. Let ϕM be the classical solution to (4.15)-(4.16) as in (4.17) then

(i) ϕM(t, x, y, v) ≤ J̃ ū,Tθ (t, x, y, v) for every Markov feedback control ū.

(ii) Let ū? := {u?(t,Xt)}t≥0 be as in Proposition 4.3.6(iv), then

ϕM(t, x, y, v) = J̃ ū
?,T

θ (t, x, y, v)

.

Proof. (i) Consider an admissible Markov feedback control ū := {ūt}t≥0, where ūt =
ũ(t,Xt, Yt, Vt) and ϕM , the classical solution to (4.15)-(4.16) as in (4.17). Now by Itô’s
formula

ϕM(s,Xs, Ys, V
ū
s )− ϕM(t,Xt, Yt, V

ū
t )−

∫ s

t
[A ũϕM(r,Xr, Yr, V

ū
r )]dr

=
m1∑
j=1

∫ s

t

∂

∂v
ϕM(r,Xr, Yr, V

ū
r )V ū

r [ũ(r,Xr, Yr, Vr)∗σ(r,Xr)]jdW j
r

+
m2∑
j=1

∫ s

t

∫
R

ϕM(r,Xr, Yr, V
ū
r−(1 + [ũ(r,Xr−, Yr−, Vr−)∗η(z)]j))− ϕM(r,Xr, Yr, V

ū
r−)
Ñj(dr, dzj)

+
n∑
l=0

∫ s

t

∫
R

ϕM(r, Rl
Xl
r−+hl(Xl

r−,Y
l
r−,z0)(Xr−), Rl

Y lr−−gl(Xl
r−,Y

l
r−,z0)(Yr−), V ū

r−)

− ϕM(r,Xr−, Yr−, V
ū
r−)
℘̃l(dr, dz0). (4.29)
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4.3. Hamilton-Jacobi-Bellman Equation

We would first show that the right hand side is an Fs martingale. Since ū is admissible,
using definition 4.2.4(iii), it is sufficient to show, the following square integrability condition

E
∫ s

0

[
V ū
r

∂

∂v
ϕM(r,Xr, Yr, V

ū
r )
]2

dr <∞,

to prove that the first term is a martingale. Again since ϕM(t, x, y, v) = v−
θ
2ψ(t, x, y). Thus

using boundedness of ψ, v ∂ϕM
∂v

= − θ
2ϕM , the above would follow if E

∫ s
0 [V ū

r ]−θ dr < ∞,
which readily follows from the Lemma 4.2.7(ii) and an application of Tonelli’s Theorem.
Similarly, using the admissibility of ū we can show that the last two terms of (4.29) are also
martingales. Taking conditional expectation on both sides of (4.29) given Xt = x, Yt =
y, V ū

t = v and letting s ↑ T , we obtain

E
[
(V ū

T ) θ2 |Xt = x, Yt = y, V ū
t = v

]
− ϕM(t, x, y, v)

= E
∫ T

t

[
A ũϕM(r,Xr, Yr, V

ū
r )
∣∣∣∣∣Xt = x, Yt = y, V ū

t = v

]
dr ≥ 0. (4.30)

The above non-negativity follows, since ϕM is the classical solution to (4.15)-(4.16) and
ūr ∈ A1 for all r. (4.14) and (4.30) implies result (i).

(ii) The right hand side of (4.30) becomes zero by considering ūt = u?(t,Xt) and this
completes the proof of (ii).
Theorem 4.3.13. Let ϕ, ϕM be classical solutions to (4.15)-(4.16), then ϕM(t, x, y, v) ≥
ϕ(t, x, y, v), where ϕM as in (4.17).

Proof. Note that in the Proof of Theorem 4.3.12(i), to show that the RHS of (4.29) is a
martingale, we have only effectively used the fact that ϕM satisfies conditions (i),(ii) and
(iii) of Definition 4.2.9. Hence for any ϕ ∈ G and ū := {ūt}t≥0, where ūt = ũ(t,Xt, Yt, Vt)
a Markov control,

ϕ(s,Xs, Ys, V
ū
s )− ϕ(t,Xt, Yt, V

ū
t )−

∫ s

t
[A ũϕ(r,Xr, Yr, V

ū
r )]dr, (4.31)

is an Fs martingale. Now consider ū? as in Theorem 4.3.12(ii). Taking conditional expec-
tation in (4.31), given Xt = x, Yt = y, V ū?

t = v and letting s ↑ T , we have

E
[
(V ū?

T )− θ2 |Xt = x, Yt = y, V u
t = v

]
− ϕ(t, x, y, v)

= E
∫ T

t

[
A ũϕ(r,Xr, Yr, V

u
r )
∣∣∣∣∣Xt = x, Yt = y, V u

t = v

]
dr,

using ϕ(T,XT , YT , V
ū?

T ) =
(
V ū?

T

)− θ2 . Now using RHS is nonnegative and Theorem
4.3.12(ii), we obtain ϕM(t, x, y, v) ≥ ϕ((t, x, y, v).
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CHAPTER 4. PORTFOLIO OPTIMIZATION

Theorem 4.3.14. Let ϕM be as in Theorem 4.3.12 and ϕA := inf{J̃u,Tθ (t, x, y, v) : u =
u(t, ω) admissible control}. Then ϕM(t, x, y, v) = ϕA(t, x, y, v).

Proof. We first note that in the proof of Theorem 4.3.12, we have only used the properties
(ii) and (iii) of Definition 4.2.4 of the Markov control ū. Since these two properties are
true for a generic admissible control u, we can get as in Theorem 4.3.12(i).

ϕM(t, x, y, v) ≤ J̃u,Tθ (t, x, y, v)

for every admissible control u. By taking infimum, we get ϕM ≤ ϕA. Now using Theorem
4.3.12(ii) and Theorem 4.3.6(iv), ū? is admissible, and ϕM(t, x, y, v) ≤ J̃ ū

?,T
θ (t, x, y, v).

Thus ϕM ≥ ϕA. Hence the result is proved.

4.4 Conclusion
In this chapter a portfolio optimization problem, without any consumption and trans-

action cost, where stock prices are modeled by multi dimensional geometric jump diffusion
market model with semi-Markov modulated coefficients is studied. We find the expression
of optimal wealth for expected terminal utility method with risk sensitive criterion on finite
time horizon. We have studied the existence of classical solution of HJB equation using
a probabilistic approach. We have obtained the implicit expression of optimal portfolio.
It is important to note that, the control is robust in the sense that the optimal control
does not depend on the transition function of the regime. The corresponding problem in
infinite horizon is yet to be investigated. This would require appropriate results on large
deviation principle for semi-Markov processes which need to be carried out. The contents
of this chapter is from [11].
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5

Option Pricing

5.1 Introduction

In this chapter we shall study an option pricing problem. We consider a market where
the asset price dynamics governed by a CSM switching geometric Brownian motion. We
also allow the volatility coefficient to be time dependent. Under these assumptions the
market become incomplete. We have also shown that under admissible strategies the
market is arbitrage free . We shall study a locally risk minimizing pricing of European
basket options. The option price can be obtained via the classical solution of a non-local
partial differential equation. Well posedness of the PDE has been studied. We have also
found a Volterra integral equation which is equivalent to the PDE.

The rest of this chapter is arranged in the following manner. We present model de-
scription in Section 2. In this section we describe the the asset price dynamics. Section
3 presents the approach of option pricing. In this section we state the main result of the
chapter. In Section 4, we establish the existence, uniqueness and regularity of solution
of a Volterra integral equation which is shown to be equivalent to the PDE in the next
section. Section 5 deals with the well-posedness of the PDE. In this section we also derive
certain properties of the solution and its derivative. Using the results of earlier sections,
F-S decomposition of contingent claim is obtained in Section 6. In Section 7 we present a
sensitivity analysis of the solution to the PDE. We calculate the quadratic residual risk in
Section 8. We end this chapter with some concluding remark in Section 9.
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5.2 Model description

Key Assumptions of the chapter
Throughout this chapter, we consider (Ω,F ,P) be a fixed probability space which is

complete. We also assume that the market is frictionless.

5.2.1 Model Parameters
Let X denote a finite subset of R. Without loss of generality, we choose X = {1, 2, . . . , k}

and X2 := {(i, j)|i 6= j ∈ X}. Consider for each l = 0, 1, . . . , n, λl : X2 × [0,∞)→ (0,∞) a
continuously differentiable function in y with λlii(y) = −∑j 6=i λ

l
ij(y) and

lim
y→∞

Λl
i(y) =∞,whereΛl

i(y) :=
y∫

0

∑
j 6=i

λlij(v)dv.

Assume that for each j = 1, 2, . . . ,m2, νj denotes a finite Borel measure on R. We assume
that r : Xn+1 → [0,∞), µl : [0, T ]×Xn+1 → R, and σl : [0, T ]×Xn+1 → Rn are continuous
functions for each l = 1, . . . , n.

5.2.2 Regime switching model for asset price dynamics
We also consider the prices of each assets in the market is governed by CSM process

{Xt}t≥0 taking values in Xn+1, where X = {1, . . . , k} ⊂ R. For every l = 0, 1, . . . , n,
X l := {X l

t} is an age dependent process with instantaneous transition rates λl and let
Yl := {Y l

t } be the age process and X l, Y l satisfies the following SDE

X l
t = X l

0 +
∫

(0,t]

∫
R

hl(X l
u−, Y

l
u−, z0)℘l(du, dz0)

Y l
t = Y l

0 + t−
∫

(0,t]

∫
R

gl(X l
u−, Y

l
u−, z0)℘l(du, dz0).


(5.1)

Suppose that there are a locally risk free asset and n risky assets. Let S0
t be the price of

money market account, with floating interest rate r(Xt) at time t. Therefore its value at
time t is given by

dS0
t = r(Xt)S0

t dt, S0
0 = 1. (5.2)

The prices of the l-th stock governed by Xt is given by the following stochastic differential
equation

dSlt = Slt

µl(t,Xt)dt+
n∑
j=1

σlj(t,Xt) dW j
t

 (5.3)
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Sl0 = sl, sl ≥ 0,

where {W j
t }t≥0 are n independent standard Wiener processes defined on (Ω,F, P ) inde-

pendent of {℘l}nl=0. Here µl and σl = (σl1, . . . , σln) represent the growth rate and volatility
coefficient of l-th asset respectively. We define the volatility matrix σ(t, x) := (σll′(t, x))ll′
with σl(t, x) its l-th row vector and we denote (S1

t , . . . , S
n
t ) by St. Let {Ft}t≥0 be

the completion of filtration generated by St, Xt satisfying the usual hypothesis. Let
a(t, x) := σ(t, x)σ(t, x)∗ =

(∑n
i=1 σ

l
i(t, x)σl′i (t, x)

)
ll′

denote the diffusion matrix, where ∗
denotes the transpose operation. Then a(t, x) is continuous on [0, T ].
Assumption 5.1. We assume that σ(t, x) is invertible for each (t, x) ∈ [0, T ]× Xn+1.

We first note that, the SDE (5.3) has a unique strong solution with positive continuous
paths and is given by

Slt = sl exp
 t∫

0

(
µl(u,Xu)−

1
2a

ll(u,Xu)
)
du+

∑n

j=1

t∫
0

σlj(u,Xu) dW j
u

 , for l ≥ 1. (5.4)

It follows from (5.4) that

ln S
l
t+v
Slt

=
t+v∫
t

(µl(u,Xu)−
1
2a

ll(u,Xu)) du+
t+v∫
t

n∑
j=1

σlj(t,Xt)dW j
t .

We define Z := (Z1, . . . , Zn), where for each l = 1, . . . , n, Z l := ln Slt+v
Slt

. Now we recall
some notations from Chapter 3. Let `(t) be the component of X where the subsequent
jump happens and τ l(t) denotes the life of l-th component of X. Clearly the conditional
distribution of Z given St = s,Xt = x, Yt = y, `(t) = m, τm(t) = v is conditional normal
with mean z̄ := (z̄1, . . . , z̄n), where

z̄l :=
t+v∫
t

(µl(u, x)− 1
2a

ll(u, x)) du, (5.5)

and covariance matrix Σ with Σll′ := cov
(
Z l, Z l′

)
. i.e

Σll′

=E

 t+v∫
t

σl(u,Xu) dWu ×
t+v∫
t

σl
′(u,Xu) dWu

∣∣∣∣St = s,Xt = x, Yt = y, `(t) = m, τm(t) = v


=

t+v∫
t

all
′(u, x)du. (5.6)
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In (5.5) and (5.6), we have used the fact that the process X remains constant on [t, t+ v)
provided `(t) = m, τm(t) ≥ v hold for some m. We summarize the above derivation in the
following lemma where, we use a function θ : (0,∞)n×(0,∞)×(0,∞)n×Xn+1×(0,∞)→ R
given by

θ(ς; t, s, x, v) := 1√
(2π)n|Σ|ς1ς2 . . . ςn

exp
(
−1

2
∑
ll′

Σ−1
ll′ (zl − z̄l)(zl′ − z̄l′)

)
, (5.7)

where |Σ| is the determinant of Σ, zl = ln( ςl
sl

) and s ∈ (0,∞)n, t ≥ 0, x ∈ Xn+1, v > 0 and
Σ−1
ll′ is the ll′th element of Σ−1 for l = 1, . . . , n.

Lemma 5.2.1. If St satisfies (5.3), then for any v > 0, t ≥ 0,

(i)

P

(Slt+v
Slt
≤ ςl

)
l=1,...,n

∣∣∣∣∣St = s,Xt = x, Yt = y, `(t) = m, τm(t) = v


=

∫
∏n

l=1(0,ςl)

θ(r; t, s, x, v)dr,

(ii) the conditional expectation is given by

E
[
Slt+v
Slt

∣∣∣∣∣St = s,Xt = x, Yt = y, `(t) = m, τm(t) = v

]
= e

∫ t+v
t

µl(u,x)du,

(iii) the conditional covariance is given by

cov

(
Slt+v
Slt

,
Sl
′
t+v
Sl
′
t

∣∣∣∣∣St = s,Xt = x, Yt = y, `(t) = m, τm(t) = v

)

= e

∫ t+v
t

(
µl(u,x)+µl′ (u,x)

)
du
(
e
∫ t+v
t

all
′ (u,x)du − 1

)
.

The following results on conditional moments of first and second order would be useful.
In particular the following lemma asserts the square integrability of the asset price process.

Lemma 5.2.2. Let {Slt}t≥0 be as in (5.3) and {FXt }t≥0 be the filtration generated by X.

(i) Then for each l = 1, . . . , n, and t ≥ 0,

E
[
Slt

∣∣∣∣∣FXt
]
≤ sle

∫ t
0 µ

l(u,Xu)du.
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(ii) For each l, E
(
Slt

2
∣∣∣∣∣FXt

)
<∞ for all t.

Proof. (i) Let T li be the time of i-th transition of X l,

E
[
Slt
Sl0

∣∣∣∣∣FXt
]

= E

 ∞∏
i=1

Sl
T li∧t

Sl
T li−1∧t

∣∣∣∣∣FXt


= E

 lim
N→∞

N∏
i=1

Sl
T li∧t

Sl
T li−1∧t

∣∣∣∣∣FXt


≤ lim
N→∞

E

 N∏
i=1

Sl
T li∧t

Sl
T li−1∧t

∣∣∣∣∣FXt
 ,

by Fatou’s lemma. Now since for each i = 1, . . . , n,
Sl
T l
i
∧t

Sl
T l
i−1∧t

are conditionally independent

to each other given time t, and using Lemma (5.2.1)(ii) the above limit can be rewritten

as lim
N→∞

∏N
i=1 e

∫ Tl
i
∧t

T l
i−1∧t

µl(u,Xu)du
, which is same as e

∫ t
0 µ(u,Xu)du.

(ii) In a similar line of proof (i), using Lemma (5.2.1)(iii), the proof follows.
We denote the joint process (Ŝ1

t , . . . , Ŝ
n
t ) by Ŝt, where Ŝlt is given by (S0

t )−1Slt and represents
the discounted l-th stock price. For each l,

dŜlt = Ŝlt

 n∑
j=1

σlj(t,Xt) dW j
t +

(
µl(t,Xt)− r(Xt)

)
dt

 , (5.8)

with Ŝl0 = sl.

5.2.3 Arbitrage opportunity
In this subsection we show that the market is arbitrage free under admissible strategy.

To see this, we seek existence of an EMM (using Theorem 1.4.8) . Consider γl(t, x) :=
n∑
j=1

(σ−1(t, x))lj
(
µj(t, x)− r(x)

)
for each l = 1, . . . , n. Under the Assumption 5.1 and the

continuity assumption on parameters, the Novikov’s condition (Theorem 1.1.10) holds, i.e.,
for every t ∈ [0, T ],

E
[

exp
1

2

n∑
l=1

t∫
0

γ2
l (u,Xu) du

] <∞.
Hence

Zt := exp
− n∑

l=1

t∫
0

γl(u,Xu) dW j
u −

1
2

n∑
l=1

t∫
0

γ2
l (u,Xu) du

 ,
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is a square integrable martingale and EZT = 1. Consider an equivalent measure P∗ defined
by dP∗ = ZTdP. It is easy to check that P∗ is a probability measure. Hence by Girsanov’s
Theorem 1.1.17, W̄t is a Wiener process under the probability measure P∗, where W̄ l

t =

W l
t +

t∫
0

γl(u,Xu)du. Thus (5.3) becomes

dSlt = Slt

r(Xt)dt+
n∑
j=1

σlj(t,Xt) dW̄ j
t

 . (5.9)

Therefore under P∗, the discounted stock price Ŝlt is a martingale and hence P∗ is an equiv-
alent martingale measure. This proves that the market has no arbitrage under admissible
strategies. The class of admissible strategy is presented in the next section.

5.3 Pricing Approach and the main result
If ξlt denotes the number of units invested in the l-th stock at time t and εt denotes the

number of units of the risk free asset, then π = {πt = (ξt, εt)}t∈[0,T ] is called a portfolio

strategy. For t ∈ [0, T ], Vt(π) :=
n∑
l=1

ξltS
l
t + εtS

0
t is said to be value process of the portfolio

and the discounted value process is given by

V̂t(π) = ξtŜt + εt.

Definition 5.3.1. A portfolio strategy π = {πt = (ξt, εt), 0 ≤ t ≤ T} is called admissible
if it satisfies the following conditions

(i) ξt = (ξ1
t , . . . , ξ

n
t ) is an n-dimensional predictable process and for each l = 1, . . . , n,

∑
ll′

T∫
0

ξltS
l
ta
ll′(t,Xt)Sl

′

t ξ
l′

t dt <∞.

(ii) ε is adapted, and E(ε2
t ) <∞ ∀ t ∈ [0, T ].

(iii) P(V̂t(π) ≥ −a, ∀ t) = 1 for some positive a.

An admissible strategy ξ is called hedging strategy for an FT measurable claim H
if VT (ξ) = H. For example, the claim associated to a European call option on S1 is
H = (S1

T − K)+, where K is the strike price and T is the maturity time. To price and
hedge an option, an investor prefers an admissible hedging strategy which requires minimal
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amount of additional cash flow. In [23] the notion of “optimal strtegy" is developed based
on this idea. There the initial capital is referred as locally risk-minimizing price of the
option. It is shown in [23] that if the market is arbitrage-free, the existence of an optimal
strategy for hedging a claim H, is equivalent to the existence of the Föllmer-Schweizer
decomposition of the discounted claim Ĥ := S0

T
−1
H in the form

Ĥ = H0 +
n∑
l=1

∫ T

0
ξlt dŜ

l
t + LĤT , (5.10)

where H0 ∈ L2(Ω,F0, P ), LĤ = {LĤt }0≤t≤T is a square integrable martingale starting with
zero and orthogonal to the martingale part of St, and {(ξ1

t , . . . , ξ
n
t )}t≥0 satisfies Definition

5.3.1. Further ξl, appeared in the decomposition, constitutes the optimal strategy. Indeed
the optimal strategy ξ∗ is given by

ξ∗
l

t :=ξlt, for l = 1, 2, . . . , n,

V̂t :=H0 +
n∑
l=1

∫ t

0
ξlu dŜ

l
u + LĤt , (5.11)

ξ∗
0

t :=V̂t −
n∑
l=1

ξltŜ
l
t,

and S0
t V̂t represents the locally risk minimizing price at time t of the claim H. Thus the

Föllmer-Schweizer decomposition is the key thing in settling down the pricing and hedging
problems in a given market. We refer to [57] for more details. In this chapter, we are
interested to price a special class of contingent claims, of the form H = K(ST ), where we
make the following assumptions on K : Rn

+ → R+.
Assumption 5.2. (i) K(s) is Lipschitz continuous function.

(ii) There exists c1 ∈ Rn, and c2 > 0 such that |K(s)− c∗1s| < c2 for all s ∈ Rn
+.

This class includes claims of all types of basket options consisting finitely many vanilla
options. As an example, a typical basket call option has a claim (

n∑
l=1

clS
l
t − K̄)+, where

K̄ is the strike price. Our primary goal in this chapter is to obtain expressions for locally
risk-minimizing price process and the optimal strategy corresponding to a claim K(ST ).

5.3.1 The pricing equation
In order to study the locally risk minimizing option pricing of the contingent claim

K(ST ), we study the following Cauchy problem

∂ϕ

∂t
(t, s, x, y) +

n∑
l=0

∂ϕ

∂yl
(t, s, x, y) + r(x)

n∑
l=1

sl
∂ϕ

∂sl
(t, s, x, y)
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+ 1
2

n∑
l=1

n∑
l′=1

all
′(t, x)slsl′ ∂2ϕ

∂sl∂sl′
(t, s, x, y)

+
n∑
l=0

∑
j 6=xl

λlxlj(yl)
[
ϕ(t, s, Rl

jx,R
l
0y)− ϕ(t, s, x, y)

]
= r(x) ϕ(t, s, x, y), (5.12)

defined on

D := {(t, s, x, y) ∈ (0, T )× (0,∞)n × Xn+1 × (0, T )n+1 | y ∈ (0, t)n+1},

and with conditions

ϕ(T, s, x, y) =K(s); s ∈ [0,∞)n; 0 ≤ yl ≤ T ; xl ∈ X, l = 0, 1, . . . , n,
(5.13)

where Rl
jv := v + (j − vl)el for v ∈ Rn+1 and el is an n + 1 dimensional vector with only

l-th component 1 and rest are zero.
Remark 5.3.2. It is important to note that, if there is one risky asset and one risk-free
asset in the market with the assumption that all the market parameters are constant, then
(5.12) reduces to the famous B-S-M equation, given by

ϕt(t, s) + rsϕx(t, s) + 1
2σ

2ϕxx(t, x) = rϕ(t, x) (5.14)

5.3.2 The main result
We study the Cauchy problem (5.12)-(5.13) and obtain expressions of price and hedging

using solution of (5.12)-(5.13). We state this result as theorems at the end of this section.
But before that we introduce some notation and definition. Again we consider a notation
from Chapter 4. We define a linear operator

Dt,yg(t, y) := lim
ε→0

1
ε
{g(t+ ε, y + ε1)− g(t, y)}, (5.15)

where dom(Dt,y), the domain of Dt,y, contains all measurable functions g on [0, T ]× [0, T ]
such that above limit exists for every (t, y) ∈ [0, T ] × [0, T ]. We rewrite (5.12) using the
above notation

Dt,yϕ(t, s, x, y) + r(x)
n∑
l=1

sl
∂ϕ

∂sl
(t, s, x, y) + 1

2

n∑
l=1

n∑
l′=1

all
′(t, x)slsl′ ∂2ϕ

∂sl∂sl′
(t, s, x, y)

+
n∑
l=0

∑
j 6=xl

λlxlj(yl)
[
ϕ(t, s, Rl

jx,R
l
0y)− ϕ(t, s, x, y)

]
= r(x) ϕ(t, s, x, y). (5.16)

Now we define the meaning of classical solution of the PDE.
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Definition 5.3.3. We say, ϕ : D → R is a classical solution of (5.16)-(5.13) if ϕ ∈
dom(Dt,y), twice differentiable with respect to s and for all (t, s, x, y) ∈ D, (5.16)-(5.13)
are satisfied.

Theorem 5.3.4. Under the Assumption 5.1, the initial value problem (5.16)-(5.13) has a
unique classical solution in the class of functions with at most linear growth.

We establish this at the end of section 5.5. We present the locally risk-minimizing
strategy in terms of the solution to the PDE (5.16)-(5.13). The proof of the following
Theorem is deferred to Section 5.6.

Theorem 5.3.5. Let ϕ be the unique classical solution of (5.16)-(5.13) in the class of
functions with at most linear growth and (ξ, ε) be given by

ξlt := ∂ϕ

∂sl
(t, St, Xt−, Yt−) ∀ l = 1, . . . , n, and εt := e−

∫ t
0 r(Xu)du

(
ϕ(t, St, Xt, Yt)−

n∑
l=1

ξltS
l
t

)
.

(5.17)
Then

1. (ξ, ε) is the optimal admissible strategy,

2. ϕ(t, St, Xt, Yt) is the locally risk minimizing price of the claim K(ST ) at time t.

In order to study the well-posedness of solution of the PDE (5.16)-(5.13), we study a
Volterra integral equation of second kind. We prepare ourself by showing the existence and
uniqueness of solution of the integral equation in the next section.

5.4 Volterra Integral Equation
For each x, consider the following Cauchy problem which is known as B-S-M PDE as

in (5.14),

∂ρx(t, s)
∂t

+ r(x)
n∑
l=1

sl
∂ρx(t, s)
∂sl

+ 1
2

n∑
l=1

n∑
l′=1

all
′(t, x)slsl′ ∂

2ρx(t, s)
∂sl∂sl′

= r(x)ρx(t, s) (5.18)

for (t, s) ∈ (0, T )× (0,∞)n and ρx(T, s) = K(s), for all s ≥ 0. This has a classical solution
with at most linear growth (see [38]), provided K is of at most linear growth. We would
like to mention that ρx is infinitely many times differentiable with respect to s.

For ζ ∈ Rn, let ‖ζ‖1 denote the norm
n∑
l=1
|ζ l|. Let

B := {ϕ : D̄→ R,measurable | ‖ϕ‖L := sup
D̄

|ϕ(t, s, x, y)|
1 + ‖s‖1

<∞}. (5.19)
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Let C2
s (D) := C0,2,0(D) be the set of all measurable functions on D, which are also twice

differentiable with respect to s.
Let Σ be an n× n matrix, whose elements are as in (5.6). We further use the notation

Σ, |Σ| and Σ−1 as in (5.7). By replacing µl(u, x) by r(x) in (5.5), we define a function
α : (0,∞)n × (0,∞)× (0,∞)n × Xn+1 × (0,∞)→ R by

α(ς; t, s, x, v) = 1√
(2π)n|Σ|ς1ς2 . . . ςn

exp
(
−1

2
∑
ll′

Σ−1
ll′ (zl − z̄l)(zl′ − z̄l′)

)
, (5.20)

where zl = ln( ςl
sl

), and z̄l :=
t+v∫
t

(r(x)− 1
2a

ll(u, x)) du for s ∈ (0,∞)n, t ≥ 0, x ∈ Xn+1, v > 0

and Σ−1
ll′ is the ll′th element of Σ−1 for l = 1, . . . , n. It is clear from (5.20) that α(ς; t, s, x, v)

is a log-normal density with respect to ς variable for a fixed (t, s, x, v).

Lemma 5.4.1. Let α(ς; t, s, x, v) be as in (5.20). Then α(ς; t, s, x, v) is C1 in t, v, and
infinite time differentiable in s.

Proof. From (5.6), we get that Σ−1 exists for all v > 0 and is differentiable in t and v.
Therefore α(ς; t, s, x, v) defined in (5.7) is differentiable in t and v. Taking logarithm on
both the sides of (5.7), we have

lnα(ς; t, s, x, v) = − ln
 1√

(2π)nς1ς2 . . . ςn

− 1
2 ln |Σ|− 1

2
∑
ll′

Σ−1
ll′ (zl− z̄l)(zl′− z̄l′). (5.21)

Now taking derivative on both the sides of (5.21) with respect to t and using Jacobi’s
formula.

αt = α

(
−1

2
|Σ|
|Σ|tr

(
Σ−1∂Σ

∂t

)
− 1

2
∑
ll′

Σ−1
ll′t(zl − z̄l)(zl

′ − z̄l′) + 1
2
∑
ll′

Σ−1
ll′ z̄

l
t(zl

′ − z̄l′)

+ 1
2
∑
ll′

Σ−1
ll′ (zl − z̄l)z̄l′t

)
(5.22)

= α
(
− 1

2tr
(

Σ−1∂Σ
∂t

)
− 1

2
∑
ll′

Σ−1
ll′t(zl − z̄l)(zl

′ − z̄l′) + 1
2
∑
ll′

Σ−1
ll′ z̄

l
t(zl

′ − z̄l′)

+ 1
2
∑
ll′

Σ−1
ll′ (zl − z̄l)z̄l′t

)
. (5.23)

Similarly

αv = α
(
− 1

2tr
(

Σ−1∂Σ
∂v

)
− 1

2
∑
ll′

Σ−1
ll′v(zl − z̄l)(zl

′ − z̄l′)
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+ 1
2
∑
ll′

Σ−1
ll′ z̄

l
v(zl

′ − z̄l′) + 1
2
∑
ll′

Σ−1
ll′ (zl − z̄l)z̄l′v

)
, (5.24)

where Σ−1
ll′t := ∂Σ−1

ll

∂t
and Σ−1

ll′v := ∂Σ−1
ll

∂v
. In similar manner one can show α is infinite times

continuously differentiable in s.
Now we are in a position to introduce the integral equation. To do this, we recall some
notations (Notation 3.3, Notation 3.4, Notation 3.5 ) from Chapter 3.
Notation 5.1. 1. plij := probability the X l jumps from state i to state j, defined as in

(3.4).

2. τ l(t) := time period from time t after which the l-th component of Xt would have a
first transition.

3. We denote the conditional c.d.f of τ l(t) given X l
t = i and Y l

t = ȳ as Fτ l(·|i, ȳ), and
the conditional p.d.f of τ l(t) given X l

t = i and Y l
t = ȳ as fτ l(·|i, ȳ).

4. Let `(t) be the component of Xt, where the subsequent transition happens.

5. Let Fτ l|l(·|x, y) and fτ l|l(·|x, y) be the conditional c.d.f and conditional p.d.f of τ l(t)
given Xt = x, Yt = y and `(t) = l.

Using Notation 5.1, consider the following integral equation

ϕ(t, s, x, y) =
n∑
l=0

Pt,x,y(`(t) = l)
ρx(t, s) (1− Fτ l|l(T − t | x, y)

)
+

T−t∫
0

e−r(x)vfτ l|l(v | x, y)×

∑
j 6=xl

plxlj(yl + v)
∫
Rn+

ϕ
(
t+ v, ς, Rl

jx,R
l
0(y + v1)

)
α(ς; t, s, x, v) dς dv

 . (5.25)

Lemma 5.4.2. The integral equation (5.25) has a unique solution in B (as in (5.19)).

Proof. We first note that a solution of (5.25) is a fixed point of the operator A and vice
versa, where

Aϕ(t, s, x, y) :=
n∑
l=0

Pt,x,y(`(t) = l)
ρx(t, s) (1− Fτ l|l(T − t | x, y)

)
+

T−t∫
0

e−r(x)vfτ l|l(v | x, y)×

∑
j 6=xl

plxlj(yl + v)
∫
Rn+

ϕ
(
t+ v, ς, Rl

jx,R
l
0(y + v1)

)
α(ς; t, s, x, v) dς dv

 .
It is simple to verify that for each ϕ ∈ B, Aϕ : D̄→ R is measurable. To prove that A is
a contraction in B, we need to show that for ϕ1, ϕ2 ∈ B, ‖Aϕ1 − Aϕ2‖L ≤ J‖ϕ1 − ϕ2‖L
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where J < 1. In order to show existence and uniqueness in the prescribed class, it is
sufficient to show that A is a contraction in B. Then the Banach fixed point Theorem
ensures existence and uniqueness of the fixed point in B. To show that for ϕ1, ϕ2 ∈ B,
‖Aϕ1 − Aϕ2‖L ≤ J‖ϕ1 − ϕ2‖L where J < 1, we compute

‖Aϕ1 − Aϕ2‖L = sup
D

∣∣∣∣∣Aϕ1 − Aϕ2

1 + ‖s‖1

∣∣∣∣∣
= sup

D

∣∣∣∣∣
n∑
l=0

Pt,x,y(`(t) = l)
T−t∫
0

e−r(x)vfτ l|l(v | x, y)
∑
jl 6=xl

plxljl(yl + v)×

∫
Rn+

(ϕ1 − ϕ2)(t+ v, ς, Rl
jx,R

l
0(y + v1))α(ς; t, s, x, v)

1 + ‖s‖1
dς dv

∣∣∣∣∣
≤ sup

D

∣∣∣∣∣
n∑
l=0

Pt,x,y(`(t) = l)
T−t∫
0

e−r(x)vfτ l|l(v | x, y)
∑
jl 6=xl

plxljl(yl + v)×

∫
Rn+

(1 + ‖ς‖1) sup
(t′,ς′,x′,y′)∈D

[
(ϕ1 − ϕ2)(t′, ς ′, x′, y′)

1 + ‖ς ′‖1

]
α(ς; t, s, x, v)

1 + ‖s‖1
dς dv

∣∣∣∣∣
= sup

D

∣∣∣∣∣
n∑
l=0

Pt,x,y(`(t) = l)
T−t∫
0

e−r(x)vfτ l|l(v | x, y)‖ϕ1 − ϕ2‖L
ᾱ(t, s, x, v)
1 + ‖s‖1

dv

∣∣∣∣∣,
where ᾱ(t, s, x, v) :=

∫
Rn+

(1 + ‖ς‖1)α(ς; t, s, x, v) dς. Replacing µl(u, x) by r(x) in Lemma

5.2.2(i), we get
ᾱ(t, s, x, v) = 1 + ‖s‖1e

r(x)v.

Thus, ‖Aϕ1 − Aϕ2‖L ≤ J‖ϕ1 − ϕ2‖L, where

J = sup
D

∣∣∣∣∣
n∑
l=0

Pt,x,y(`(t) = l)
T−t∫
0

e−r(x)vfτ l|l(v | x, y)1 + ‖s‖1e
r(x)v

1 + ‖s‖1
dv

∣∣∣∣∣
≤ sup

D

∣∣∣∣∣
n∑
l=0

Pt,x,y(`(t) = l)
T−t∫
0

fτ l|l(v | x, y) dv
∣∣∣∣∣

= sup
D

∣∣∣∣∣
n∑
l=0

Pt,x,y(`(t) = l)Fτ l|l(v | x, y)
∣∣∣∣∣

< sup
D

∣∣∣∣∣
n∑
l=0

Pt,x,y(`(t) = l)
∣∣∣∣∣ = 1,
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using r(x) ≥ 0 and the fact that F l(y|i) < 1 for all l, x, y and i. Thus A is a contraction
in B. This completes the proof.

Remark 5.4.3. By a direct substitution t = T in the (5.25), we obtain ϕ(T, s, x, y) = K(s).
It is interesting to note that we do not have to impose any other boundary conditions for
existence and uniqueness of solution of (5.25). We can directly obtain other boundary
values by substituting the boundary in the integral equation.

Lemma 5.4.4. Let ϕ be the solution of the integral equation (5.25). Then (i) ϕ ∈
dom(Dt,y) ∩ C2

s (D), and (ii) ϕ(t, s, x, y) is non-negative.

Proof. (i) Using the smoothness of ρx for each x, the first term on the right hand side of
(5.25) is in dom(Dt,y) ∩ C2

s (D). Thus it is enough to check the desired smoothness of

βl(t, s, x, y) =
T−t∫
0

e−r(x)vfτ l|l(v | x, y)
∑
j 6=xl

plxlj(yl + v)
∫
Rn+

ϕ
(
t+ v, ς, Rl

jx,R
l
0(y + v1)

)
× α(ς; t, s, x, v) dς dv.

First we check the applicability of Dt,y. It is easy to see that Dt,yβl(t, s, x, y) is the limit
of the following expression

1
ε

[ T−t−ε∫
0

e−r(x)vfτ l|l(v | x, y + ε1)
∑
j 6=xl

plxlj(yl + v + ε)

×
∫
Rn+

ϕ
(
t+ v + ε, ς, Rl

jx,R
l
0(y + (v + ε)1)

)
α(ς; t+ ε, s, x, v) dς dv

−
T−t∫
0

e−r(x)vfτ l|l(v | x, y)
∑
j 6=xl

plxlj(yl + v)

×
∫
Rn+

ϕ
(
t+ v, ς, Rl

jx,R
l
0(y + v1)

)
α(ς; t, s, x, v) dς dv

]
.

After a suitable substitution, the above expression becomes

T−t∫
ε

e−r(x)v ∑
j 6=xl

plxlj(yl + v)
∫
Rn+

ϕ
(
t+ v, ς, Rl

jx,R
l
0(y + v1)

)
β̄ε(v, ς; t, s, x, y)dς dv

− 1
ε

ε∫
0

e−r(x)vfτ l|l(v|x, y)
∑
j 6=xl

plxlj(yl + v)
∫
Rn+

ϕ
(
t+ v, ς, Rl

jx,R
l
0(y + v1)

)
α(ς; t, s, x, v) dς dv,

(5.26)
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where

β̄ε(v, ς; t, s, x, y) := 1
ε

(
er(x)εfτ l|l(v−ε | x, y+ε1)α(ς; t+ε, s, x, v−ε)−fτ l|l(v | x, y)α(ς; t, s, x, v)

)
.

Now the above defined β̄ε can be rewritten as

1
ε

[ (
er(x)ε − 1 + 1

) (
fτ l|l(v − ε | x, y + ε1)− fτ l|l(v | x, y + ε1) + fτ l|l(v | x, y + ε1)

− fτ l|l(v | x, y) + fτ l|l(v | x, y)
)
×
(
α(ς; t+ ε, s, x, v − ε)− α(ς; t, s, x, v − ε)

+ α(ς; t, s, x, v − ε)− α(ς; t, s, x, v) + α(ς; t, s, x, v)
)
− fτ l|l(v | x, y)α(ς; t, s, x, v)

]
. (5.27)

Due to the continuous differentiability results in Lemma 3.3.5 and Lemma 5.4.1, we can
use the mean value Theorem to rewrite (5.27) as
[ (
εr(x)er(x)ε0 + 1

)(
−f ′τ l|l(v − ε1 | x, y + ε1) +

n∑
i=1

∂

∂yi
fτ l|l(v | x, y + ε21) + 1

ε
fτ l|l(v | x, y)

)

×
(
εαt(ς; t+ ε3, s, x, v − ε)− εαv(ς; t, s, x, v − ε4) + α(ς; t, s, x, v)

)
− 1
ε
fτ l|l(v | x, y)α(ς; t, s, x, v)

]
,

for some ε0, ε1, ε2, ε3, ε3 < ε. After some rearrangement of terms in the above expression,
we get

β̄ε(v, ς; t, s, x, y) = α(ς; t, s, x, v)
(
r(x)er(x)ε0fτ l|l(v|x, y)− f ′τ l|l(v − ε1 | x, y + ε1)

+
n∑
i=1

∂

∂yi
fτ l|l(v | x, y + ε21)

)
+ fτ l|l(v | x, y)

(
αt(ς; t+ ε3, s, x, v − ε)− αv(ς; t, s, x, v − ε4)

)
+ εGε(v, ς; t, s, x, y),

where

Gε(v, ς; t, s, x, y)

:= r(x)er(x)ε0
(
−f ′τ l|l(v − ε1 | x, y + ε1) +

n∑
i=1

∂

∂yi
fτ l|l(v | x, y + ε21)

)
×

(εαt(ς; t+ ε3, s, x, v − ε)− εαv(ς; t, s, x, v − ε4) + α(ς; t, s, x, v))

+
(
r(x)er(x)ε0fτ l|l(v | x, y)− f ′τ l|l(v − ε1 | x, y + ε1) +

n∑
i=1

∂

∂yi
fτ l|l(v | x, y + ε21)

)
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× (αt(ς; t+ ε3, s, x, v − ε)− αv(ς; t, s, x, v − ε4)) .

We also recall from (5.22) and (5.24) that

αt(ς; t, s, x, v) = α(ς; t, s, x, v)O(log2 |ς|) and αv(ς; t, s, x, v) = α(ς; t, s, x, v))O(log2 |ς|),

where |ς| := maxi |ςi|. The expression in (5.26) has two additive terms. For showing
convergence of the first term, we intend to use above expressions for applying dominated
and Vitali convergence theorem 1.3.1 in various cases. For that, as ϕ ∈ B, it would be
sufficient if we have the following three results,

(a) v 7→
∫
Rn+

(c∗1ς + c2) log2 |ς|α(ς; t, s, x, v)dς is bounded and left continuous,

(b) t 7→
∫
Rn+

(c∗1ς + c2) log2(|ς|)α(ς; t, s, x, v)dς is continuous uniformly with respect to v,

(c) ‖ς‖2α(ς; t+ ε1, s, x, v + ε2) is uniform integrable and tight w.r.t. ς for ε1, ε2 � 1.

To prove the result (a), we introduce a functionB(v) :=
∫
Rn+

(c∗1ς + c2) log2(|ς|)α(ς; t, s, x, v)dς.

Now for ε > 0 using the mean value theorem, there exist a 0 < ε′ < ε such that

1
ε

(B(v)−B(v − ε)) =
∫
Rn+

(c∗1ς + c2) log2(|ς|)αv(ς; t, s, x, v − ε′)dς

≤
∫
Rn+

(
c3‖ς‖2

2 + c4
)
α(ς; t, s, x, v − ε′)dς,

for some positive constants c3, c4. Now Lemma 5.2.1(iii) suggests that the right hand side is
bounded in v on [ε, T ]. This implies that B is left continuous. Using the similar reasoning
the boundedness of B also follows from Lemma 5.2.1(iii). Similarly one can prove the
result (b). In order to prove (c), we first recall that a family of normal random variables
with bounded mean and variance is uniformly integrable and tight. Therefore (c) follows
as here a product of a polynomial and a lognormal density function appears.

Now we address the convergence of the second term of (5.26). Clearly the result (a)
implies boundedness of v 7→

∫
Rn+

ϕ
(
t+ v, ς, Rl

jx,R
l
0(y + v1)

)
α(ς; t, s, x, v) dς, which assures

the desired convergence. Thus βl ∈ dom(Dt,y) and hence ϕ ∈ dom(Dt,y).
Now we discuss the smoothness with respect to s. First we observe that αsl′ (ς; t, s, x, v) =
1
sl′
O(log(|ς|))α(ς; t, s, x, v). Since ϕ ∈ B, using uniform integrability and tightness of

81



CHAPTER 5. OPTION PRICING

1
sl′+ε‖ς‖

2α(ς; t, s+ε, x, v) and uniform boundedness of v 7→
∫
Rn+

1
sl′ + ε

‖ς‖2α(ς; t, s+ε, x, v)dς

for ε � 1, we conclude the differentiability of βl(t, x, y) with respect to sl. Similarly we
can establish existence of partial derivatives of any higher order successively. Thus one can
obtain twice continuous differentiability of βl.
(ii) We have already shown that A : B → B is a contraction. From the form of equation
(5.18), and non-negativity of K, it is clear that (5.18) admits a non-negative solution.
Since all the coefficients in equation (5.25) are non-negative, it follows that Aϕ ≥ 0 for
ϕ ≥ 0. Furthermore, we have shown that A has a fixed point in B. It can be easily argued
that this fixed point is, in fact, non-negative. Hence, ϕ is non-negative.

5.5 Study of The Partial Differential Equation
In this section we establish Theorem 5.3.4, i.e uniqueness and existence of (5.16)-(5.13).

Before addressing that it is important to clarify few issues regarding boundary conditions.
At s = 0 facet the partial derivative with respect to s disappear. Since the nature of the
domain is triangular, it can be shown by using the method of characteristic that the initial
condition would lead to a solution to (5.16)-(5.13). It can also be shown that the PDE
would have no solution if we impose a boundary condition which is not obtain from the
initial condition. We refer ([50],pp.32) for more details. Let W̃ be a standard n-dimensional
Brownian motion on a probability space (Ω̃, F̃, P̃ ). For each l = 1, 2, . . . , n, let S̃lt satisfies

dS̃lt = S̃lt

r(Xt)dt+
n∑
j=1

σlj(t,Xt)dW̃ j
t

 , S̃0 > 0, (5.28)

where {Xt}t≥0 is the CSM process given by equations (3.3) on (Ω̃, F̃, P̃ ) and σl is the lth
row of σ. We denote S̃t := (S̃1

t , . . . , S̃
n
t ).

Proposition 5.5.1. (i) The Cauchy problem (5.16)-(5.13) has a generalized solution, ϕ.
(ii) Under Assumption 3.1(i)-(iii) and Assumption 3.2, ϕ solves the integral equation
(5.25).(iii) ϕ ∈ B.

Proof. (i) Let S̃t be the strong solution of the SDE (5.28). Let F̃t be the filtration generated
by S̃t and Xt, that satisfies the usual hypothesis. Since (t,Xt, Yt) is Markov, then the pro-
cess (t, S̃t, Xt, Yt) is Markov process. Let A be the infinitesimal generator of (t, S̃t, Xt, Yt),
where

Aϕ(t, s, x, y)

= Dt,yϕ(t, s, x, y) + r(x)
n∑
l=1

sl
∂ϕ

∂sl
(t, s, x, y) + 1

2

n∑
l=1

n∑
l′=1

all
′(t, xl)slsl′ ∂2ϕ

∂sl∂sl′
(t, s, x, y)
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+
n∑
l=0

∑
j 6=xl

λlxlj(yl)
[
ϕ(t, s, Rl

jx,R
0
l y)− ϕ(t, s, x, y)

]
, (5.29)

for every function ϕ which is compactly supported C2 in s and C1 in y. Let

Nt := E[e−
∫ T
t
r(Xu)duK(S̃T ) | S̃t = s,Xt = x, Yt = y]. (5.30)

The above expectation is finite due to Assumption 5.2(ii) and Lemma 5.2.2. Thus (5.30)
suggests that Nt is a F̃t martingale. Since K(s) has at-most linear growth, and S̃t has
finite expectation, (5.30) suggests that E|Nt| < ∞ for each t. Hence using the Markov
semigroup of (t, S̃t, Xt, Yt) the PDE has a generalized solution ϕ : D→ R measurable given
by

ϕ(t, s, x, y) := E[e−
∫ T
t
r(Xu)duK(S̃T ) | S̃t = s,Xt = x, Yt = y]. (5.31)

(ii) By conditioning (5.31) on transition times, we get

ϕ(t, S̃t, Xt, Yt)

= E
[
E
[
e−
∫ T
t
r(Xu) duK(S̃T ) | S̃t, Xt, Yt, l(t) = l

]
| S̃t, Xt, Yt

]
=

n∑
l=0

Pt,x,y(`(t) = l) E
[
e−
∫ T
t
r(Xu) duK(S̃T ) | S̃t, Xt, Yt, l(t) = l

]

=
n∑
l=0

Pt,x,y(`(t) = l) E
[
E
[
e−
∫ T
t
r(Xu) duK(S̃T ) | S̃t, Xt, Yt, l(t) = l, τ l(t)

]
| S̃t, Xt, Yt, l(t) = l

]
.

Now,

E
[
E
[
e−
∫ T
t
r(Xu) duK(S̃T ) | S̃t, Xt, Yt, l(t) = l, τ l(t)

]
| S̃t, Xt, Yt, l(t) = l

]
= P [τ l(t) > T − t]ρx(t, S̃t)

+
T−t∫
0

E
[
e−
∫ T
t
r(Xu) duK(S̃T ) | S̃t, Xt, Yt, l(t) = l, τ l(t) = v

]
fτ l|l(v | Xt, Yt) dv.

We note that

E
[
e−
∫ T
t
r(Xu) duK(S̃T ) | S̃t, Xt, Yt, l(t) = l, τ l(t) = v

]
= e−r(Xt)v

∑
jl 6=Xl

plXljl(Y l + v)
∫
Rn+

E
[
e
−
∫ T
t+v r(Xu) du

K(S̃T ) | S̃t+v = ς,Xt+v = Rl
jx,

Yt+v = Rl
0y, l(t) = l, τ l(t) = v

]
α(ς; t, s, x, v) dς.

Therefore

ϕ(t, S̃t, Xt, Yt)
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=
n∑
l=0

Pt,x,y (`(t) = l)
ρx(t, S̃t) (1− Fτ l|l(T − t | Xt, Yt)

)
+

T−t∫
0

e−r(Xt)vfτ l|l(v | Xt, Yt)×

∑
j 6=xl

plxlj(yl + v)
∫
Rn+

ϕ
(
t+ v,Rl

ςls, R
l
jx,R

l
0y
)
α(ς; t, s, x, v) dς dv

 .
Using Assumption 3.2, and since λlij(y) > 0 for i 6= j, we can replace (S̃t, Xt, Yt) by the
generic variable (s, x, y) in the above relation. As a conclusion, ϕ is a solution of (5.25).
(iii) To show ϕ is of at-most linear growth, it is sufficient to show for all (t, s, x, y) ∈ D

|ϕ(t, s, x, y) − c∗1s| ≤ c2, where c1, c2 is as in Assumption 5.2(ii). We note that, if S̃t is
the solution of (5.28), e−

∫ t
0 r(Xu)duS̃t is a F̃t martingale. Therefore by using the Markov

property of S̃t, Xt, Yt, and the fact e−
∫ t

0 r(Xu)du is F̃t-measurable, we obtain

E
[
e−
∫ T
t
r(Xu)duS̃T

∣∣∣S̃t, Xt, Yt

]
=E

[
e−
∫ T
t
r(Xu)duS̃T

∣∣∣F̃t]
=e−

∫ t
0 r(Xu)duE

[
e−
∫ T

0 r(Xu)duS̃T
∣∣∣F̃t]

=S̃t.

Using this equality, (5.31) and Assumption 5.2(ii), we have

|ϕ(t, s, x, y)− c∗1s|

=
∣∣∣∣∣E
[
e−
∫ T
t
r(Xu)duK(S̃T ) | S̃t = s,Xt = x, Yt = y

]

− c∗1E
[
e−
∫ T
t
r(Xu)duS̃T | S̃t = s,Xt = x, Yt = y

] ∣∣∣∣∣
≤ E

[
[e−

∫ T
t
r(Xu)du|K(S̃T )− c∗1S̃T | | S̃t = s,Xt = x, Yt = y

]
≤ c2.

This completes the proof.
Proof of Theorem 5.3.4: Proposition 5.5.1 implies that the PDE (5.16)-(5.13) has a
generalized solution (see equation (1.18) from [51] for a definition) which is in B, and also
solves the integral equation. Lemma 5.4.2 suggests that the integral equation has only
one solution in B. Finally Lemma 5.4.4 asserts that this unique solution of the integral
equation is in dom(Dt,y)∩C2

s . Therefore using the above results, we conclude that (5.16)-
(5.13) has a generalized solution which is in the domain of the operators in (5.16). Hence
the generalized solution (5.31) solves (5.16)-(5.13) classically. To prove the uniqueness,
first assume that ϕ1 and ϕ2 are two classical solutions of (5.16)-(5.13) in the prescribed
class of functions. Then using Proposition 5.5.1, it follows that both also solve (5.25). By
Lemma 5.4.2, there is only one such solution in the prescribed class. Hence ϕ1 = ϕ2.
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Lemma 5.5.2. Let ϕ(t, s, x, y) be the classical solution of the Cauchy problem (5.16)-
(5.13).Under Assumption 5.2(i), ∂ϕ

∂sm
(t, s, x, y) is bounded.

Proof. Since ϕ(t, s, x, y) is the classical solution of (5.16)-(5.13) it is in dom(Dt,y)∩C2
s . In

fact ϕ has greater regularity than C2
s which is evident in the proof of Lemma 5.4.4. Indeed

due to Lemma 5.4.1(iii) and the C∞ smoothness of ρ, ϕ is C∞ in s. Let ψm(t, s, x, y) :=
∂ϕ
∂sm

(t, s, x, y), for m = 1, . . . , n. Now differentiating equation (5.16) with respect to sm and
using the fact that a(t, x) is symmetric, we obtain

Dt,yψ
m(t, s, x, y) +

n∑
l=1

sl
(
r(x) + aml(t, x)

) ∂ψm
∂sl

(t, s, x, y)

+ 1
2

n∑
l=1

n∑
l′=1

all
′(t, x)slsl′ ∂

2ψm

∂sl∂sl′
(t, s, x, y)

+
n∑
l=0

∑
j 6=xl

λlxlj(yl)
[
ψm(t, s, Rl

jx,R
l
0y)− ψm(t, s, x, y)

]
= 0. (5.32)

It is easy to check that

Âψm(t, s, x, y)

= Dt,yψ
m(t, s, x, y) +

n∑
l=1

sl
(
r(x) + aml(t, x)

) ∂ψm
∂sl

(t, s, x, y)

+ 1
2

n∑
l=1

n∑
l′=1

all
′(t, x)slsl′ ∂

2ψm

∂sl∂sl′
(t, s, x, y)

+
n∑
l=0

∑
j 6=xl

λlxlj(yl)
[
ψm(t, s, Rl

jx,R
l
0y)− ψm(t, s, x, y)

]
,

is the infinitesimal generator of the Markov process (t, S̄t, Xt, Yt), where S̄t = (S̄1
t , . . . , S̄

n
t )

and S̄lt satisfies the following SDE

dS̄lt = S̄lt
[(
r(Xt)I + Diag(al(t,Xt)

)
dt+ σ(t,Xt)dWt

]
, (5.33)

where Diag(al(t,Xt) is the diagonal matrix containing the l-th row of a(t, x) and (Xt, Yt)
is as in (5.1). Therefore the solution of the PDE (5.32) has the stochastic representation
of the following form

ψm(t, s, x, y) = E
[
K ′(S̄mT )

∣∣∣∣∣S̄mt = s,Xt = x, Yt = y

]
, (5.34)

where K ′ : Rn
+ → R is defined almost everywhere by K(s) =

sm∫
0

K ′(Rm
r s)dr, for each

s ∈ Rn
+ Since K is of at-most linear growth and it is Lipschitz continuous, K ′ is in L∞.

Hence (5.34) suggests ψm(t, s, x, y) is bounded.
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5.6 Locally risk minimizing pricing and optimal hedg-
ing

Proof of Theorem 5.3.5: Using Lemma 5.5.2 we can show that π = (ξ, ε) as given
in (5.17) is an admissible portfolio strategy. Indeed ξlt is left continuous and therefore
predictable. Hence Assumption 5.2(i) and (ii) holds for this pair π = (ξ, ε). Therefore the
discounted value function for this pair of strategy using (5.17) is given by

V̂t(π) =
n∑
l=1

ξltŜ
l
t + εt = e−

∫ t
0 r(Xu) duϕ(t, St, Xt, Yt),

where ϕ is the unique classical solution of (5.16)-(5.13). Now we shall find a decomposition
for V̂t(π). Under the measure P , we apply Itō’s formula to

e−
∫ t

0 r(Xu) duϕ(t, St, Xt, Yt).

Using (5.8), (5.16) and (4.1) and after a suitable rearrangement of terms, for all t < T , we
obtain,

e−
∫ t

0 r(Xu) duϕ(t, St, Xt, Yt)

= ϕ(0, S0, X0, Y0) +
n∑
l=1

∫ t

0

∂ϕ

∂sl
(u, Su, Xu−, Yu−)dŜlu

+
t∫

0

e−
∫ u

0 r(Xv) dv
∫
R

[ϕ(u, Su, Xu− + h(Xu−, Yu−, z), Yu− − g(Xu−, Yu−, z))

− ϕ(u, Su, Xu−, Yu−)]℘̂(du, dz), (5.35)

where ℘̂ is the compensator of ℘, i.e. ℘̂(dt, dz) = ℘(dt, dz)− dtdz. Therefore from (5.35),
we have for each t ≤ T

1
S0
t

ϕ(t, St, Xt−, Yt−) = H0 +
n∑
l=1

t∫
0

ξludŜ
l
u + Lt, (5.36)

where H0 = ϕ(0, S0, X0, Y0) and

Lt :=
t∫

0

e−
∫ u

0 r(Xv)dv
∫
R

[ϕ(u, Su, Xu− + h(Xu−, Yu−, z), Yu− − g(Xu−, Yu−, z))

−ϕ(u, Su, Xu−, Yu−)]℘̂(du, dz). (5.37)

Clearly the above choice of H0 is F0 measurable and LT is FT measurable. We know that,
the integral with respect to a compensated Poisson random measure is a local martingale.
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Hence Lt is a local martingale. The proof of Proposition 5.5.1(iii) suggests that expectation
of supremum of Lt is finite. Hence by using Theorem 1.1.11, it is a martingale. Again since

Wt and ℘ are independent, Lt is orthogonal to
t∫

0

σl(t,Xt)ŜtdWt. Thus, we obtain the

following F-S decomposition by letting t ↑ T in (5.36),

S0
T
−1
K(ST ) = ϕ(0, S0, X0, Y0) +

n∑
l=1

T∫
0

ξltdŜ
l
t + LT . (5.38)

This completes the proof.

Theorem 5.6.1. Let ϕ be the unique solution of (5.25). Set

η(t, s, x, y) :=
n∑
l=0

Pt,x,y(`(t) = l)
∂ρx(t, s)

∂sm

(
1− Fτ l|l(T − t | x, y)

)
+

T−t∫
0

e−r(x)vfτ l|l(v|x, y)

×
∑
jl 6=xl

plxljl(yl + v)
∫
Rn+

ϕ(t+ v, ς, Rl
jx,R

0
l y)∂α(ς; t, s, x, v)

∂sm
dς dv

 , (5.39)

where (t, s, x, y) ∈ D. Then η(t, s, x, y) = ∂ϕ
∂sm

(t, s, x, y),

Proof. We need to show that ψ (as in (5.39)) is equal to ∂ϕ
∂sm

. Indeed, one obtains the RHS
of (5.39) by differentiating the right side of (5.25) with respect to sm. Hence the proof is
completed.

Remark 5.6.2. We have shown in Theorem 5.3.5 that ∂ϕ
∂sm

(t, s, x, y) is a necessary quantity
to be calculated in order to find the optimal hedging. Attempting to compute ∂ϕ

∂sm
(t, s, x, y)

using numerical differentiation would increase the sensitivity of ∂ϕ
∂sm

(t, s, x, y) to small er-
rors. Equation (5.39) gives a better, more robust approach for computing ∂ϕ

∂sm
(t, s, x, y),

using numerical integration.

5.7 Sensitivity with respect to the instantaneous rate
function

In a recent paper Goswami et al. [28] gave an interesting idea to approximate the solution
by approximating the transition rate. In the previous section we have seen that for a
class of continuously differentiable transition rate function, there exists a unique classical
solution of the PDE (5.16)-(5.13). Let λ := (λ0, . . . , λn) be a vector where λl is as in section
5.2. We state and prove the important result below.
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Theorem 5.7.1. Let ϕ and ϕ̃ be two solutions of (5.16)-(5.13) with parameter λ and λ̃
respectively. Then ‖ϕ− ϕ̃‖sup ≤ 2c2T‖λ− λ̃‖sup, where c2 as in Assumption 5.2(ii).

Proof. We consider
ψ(t, s, x, y) := ϕ(t, s, x, y)− ϕ̃(t, s, x, y). (5.40)

Now, it is easy to see that ψ satisfies the following initial value problem,

Dt,yψ(t, s, x, y) + r(x)
n∑
l=1

sl
∂ψ

∂sl
(t, s, x, y) + 1

2

n∑
l=1

n∑
l′=1

all
′(t, x)slsl′ ∂2ψ

∂sl∂sl′
(t, s, x, y)

+
n∑
l=0

∑
j 6=xl

λlxlj(yl)
(
ψ(t, s, Rl

jx,R
l
0y)− ψ(t, s, x, y)

)

= r(x)ψ(t, s, x, y)−
n∑
l=0

∑
j 6=xl

(
λlxlj(yl)− λ̃lxlj(yl)

)(
ϕ̃(t, s, Rl

jx,R
l
0y)− ϕ̃(t, s, x, y)

)
, (5.41)

defined on

D := {(t, s, x, y) ∈ (0, T )× Rn
+ × Xn+1 × (0, T )n+1|y ∈ (0, t)n+1},

with condition

ψ(T, s, x, y) = 0, s ∈ Rn
+; 0 ≤ yl ≤ T ; x = 1, 2, · · · , k.

We rewrite (5.41) using (5.40) as

Aψ(t, s, x, y) = r(x)ψ(t, s, x, y)− f(t, s, x, y), (5.42)

where

f(t, s, x, y) :=
n∑
l=0

∑
j 6=xl

(
λlxlj(yl)− λ̃lxlj(yl)

)(
ϕ̃(t, s, Rl

jx,R
l
0y)− ϕ̃(t, s, x, y)

)
.

We recall that A is the infinitesimal generator of (t, S̃t, Xt, Yt). Using the proof of Propo-
sition 5.5.1(iii), one can show that for all (t, s, x, y) ∈ D

|f(t, s, x, y)| ≤ 2c2

n∑
l=0

∑
j 6=xl
‖λlxlj(y)− λ̃lxlj(y)‖sup. (5.43)

The stochastic representation of the solution of the PDE (5.42) is given by,

ψ(t, s, x, y) = E
T∫
t

exp
− v∫

t

r(Xu)du
 f(v, S̃v, Xv, Yv)dv|S̃t = s,Xt = x, Yt = y]. (5.44)
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Since ϕ̃ is a solution of (5.16)-(5.13) for parameter λ̃, then the proof of Proposition 5.5.1(iii),
|ϕ̃(t, s, Rl

jx,R
l
0y) − ϕ̃(t, s, x, y)| < 2c2. Now using (5.43) and r > 0 for all t ≤ v ≤ T , we

have

‖ψ(t, s, x, y)‖sup = sup
D̄

∣∣∣∣E
T∫
t

exp
− v∫

t

r(Xu)du
 f(v, S̃v, Xv, Yv)dv|S̃t = s,Xt = x, Yt = y]

∣∣∣∣
≤ 2c2(T − t)

n∑
l=0

∑
j 6=xl
‖λlxlj(y)− λ̃lxlj(y)‖sup

< 2c2T
n∑
l=0

∑
j 6=xl
‖λlxlj(y)− λ̃lxlj(y)‖sup.

Hence the proof is completed.
Remark 5.7.2. It is interesting to note that a weaker variant of Theorem 5.7.1 can also
be proved if the Assumption 5.2(ii) is relaxed. Indeed if K ∈ B for such case ‖ϕ− ϕ̃‖L ≤
M‖λ− λ̃‖sup. This readily follows from the fact that ϕ̃ is of at most linear growth and S̃t
has finite expectation.

5.8 Calculation of the Quadratic Residual Risk
In this section we find an expression of the quadratic residual risk corresponding to the

optimal strategy. Let ξt := (ξ0
t , . . . , ξ

n
t ) be the optimal strategy and Vt be the corresponding

value process as defined in Section 5.3. Further we assume that {Ct}t≥0 is the accumulated
additional cash flow process associated with the optimal hedging of the contingent claim
H, where

dCt := dVt −
n∑
l=0

ξltdS
l
t.

Since {S0
t }t≥0 is continuous finite variation process and Vt = ∑n

l=0 ξ
l
tS

l
t , from above we get

1
S0
t

dCt =
(
d

(
Vt
S0
t

)
− Vt d

(
1
S0
t

))
−
(

n∑
l=0

ξlt d

(
Slt
S0
t

)
−

n∑
l=0

ξltS
l
t d

(
1
S0
t

))

= dV̂t −
n∑
l=1

ξltdŜ
l
t, (5.45)

where V̂t is the discounted value process as defined in Section 5.3. Now by (5.11), we have

dV̂t =
n∑
l=1

ξltdŜ
l
t + dLĤt . (5.46)
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Now by comparing (5.45) and (5.46), we have

1
S0
t

dCt = dLĤt .

The discounted value of the accumulated cash flow during [0, t] is

Ĉt − Ĉ0 :=
∫ t

0

1
S0
t

dCt = LĤt .

Again, using above and (5.37), we get
∫ t

0

1
S0
t

dCt =
∫ t

0

1
S0
t

n∑
l=0

∫
R

[
ϕ
(
t, St, R

l
{Xt−+h(Xt−,Yt−,z)}(Xt−), Rl

{Yt−−g(Xt−,Yt−,z)}(Yt−)
)

−ϕ(t, St, Xt−, Yt−)] ℘̂l(dt, dz)

for all t ∈ [0, T ]. Thus

dCt =
n∑
l=0

∫
R

[
ϕ
(
t, St, R

l
{Xt−+h(Xt−,Yt−,z)}(Xt−), Rl

{Yt−−g(Xt−,Yt−,z)}(Yt−)
)

− ϕ(t, St, Xt−, Yt−)
]
℘̂l(dt, dz). (5.47)

Integrating the above expression, we obtain the external cash flow associated with the
optimal hedging. Hence,

CT =C0 +
∑

t∈[0,T ]
(ϕ(t, St, Xt, Yt)− ϕ(t, St, Xt−, Yt−))−

∫ T

0

n∑
l=0

∑
j 6=Xl

t−

λlXl
t−j

(Y l
t−)×

[
ϕ(t, St, Rl

j(Xt−), Rl
0(Yt−))− ϕ(t, St, Xt−, Yt−)

]
dt. (5.48)

Lemma 5.8.1. The quadratic variation process of Ct, the cash flow process corresponding
to the optimal hedge, is given by

[C]t =
∑
r∈[0,t]

(ϕ(r, Sr, Xr, Yr)− ϕ(r, Sr, Xr−, Yr−))2 , (5.49)

where ϕ is the unique classical solution of (5.16)-(5.13) with at most linear growth.

Proof. It is clear that {Ct}t≥0 as in (5.48) is an rcll process. Now, for r ∈ (0, T ) and for
sufficiently small ∆, we have

(Cr − Cr−∆)2
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= (ϕ(r, Sr, Xr, Yr)− ϕ(r, Sr, Xr−∆, Yr−∆))2 − 2 (ϕ(r, Sr, Xr, Yr)− ϕ(r, Sr, Xr−∆, Yr−∆))×
n∑
l=0

∑
j 6=Xl

r−∆

λlXl
r−∆j

(Y l
r−∆)

[
ϕ(r, Sr, Rl

jXr−∆, R
l
0Yr−∆)− ϕ(r, Sr, Xr−∆, Yr−∆)

]
∆

+

 n∑
l=0

∑
j 6=Xl

r−∆

λlXl
r−∆j

(Y l
r−∆)

[
ϕ(r, Sr, Rl

jXr−∆, R
l
0Yr−∆ − ϕ(r, Sr, Xr−∆, Yr−∆)

]
2

∆2

+O
(
∆2
)
.

Since the quadratic variation of Ct is the limit of the sum ∑
r∈[0,t](Cr − Cr−∆)2 over a

partition with ∆ → 0, we take the summation both sides. We note that the second
term on right, the multiplier of ∆ is bounded and is of O(∆) except the event of whose
probability is O(∆). Thus the summation of second, third and fourth terms in the above
expression can be ignored. Hence,

[C]t =
∑
r∈[0,t]

[ϕ(r, Sr, Xr, Yr)− ϕ(r, Sr, Xr−, Yr−)]2 . (5.50)

Given a strategy ξ, the quadratic residual risk at t = 0, denoted by R0(ξ), is defined as
R0(ξ) := E[(ĈT − Ĉ0)2|F0]. An expression for R0(π) can be found using Itō’s isometry in
the following way

R0(π) =E[(ĈT − Ĉ0)2|F0] = E

(∫ T

0

1
S0
t

dCt

)2 ∣∣∣∣ F0

 = E

[∫ T

0

1
S0
t

2 d[C]t
∣∣∣∣ F0

]
.

Thus using the above and Lemma 5.8.1, we get

R0(π) =E
 ∑
t∈[0,T ]

1
S0
t

2 (ϕ(t, St, Xt, Yt)− ϕ(t, St, Xt−, Yt−))2
∣∣∣∣ F0


=E

 ∑
t∈[0,T ]

(ϕ̂(t, St, Xt, Yt)− ϕ̂(t, St, Xt−, Yt−))2
∣∣∣∣ F0


=E

 n∑
l=1

nl(T )∑
i=1

(
ϕ̂(T li , ST li , XT li

, YT li )− ϕ̂(T li , ST li , XT li−
, YT li−)

)2
∣∣∣∣ F0

 . (5.51)

5.9 Conclusion
In this chapter, we have studied the locally risk-minimizing pricing of European basket

options, under a market where, we allow the drift and volatility coefficients to be time
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inhomogeneous and CSM modulated. In [25], the above problem was studied assuming
all the coefficients are driven by a single semi-Markov process. It is known that, unlike
Markov chains, two independent semi-Markov processes is not semi-Markov jointly. Thus
the extension to CSM is essential in view of the non-identical regimes of different assets.
It is shown in [25], that the option price can be expressed in terms of a price function
which depends on the present stock price, present regime, and the sojourn time at the
current regime. In this thesis, we have shown that even under the extended CSM setting,
option price does have similar representation involving knowledge of each component of
the regimes. However, the study of well-posedness of the option price equation turns out
to be more involved.

It should be noted that the derivations in this chapter is different from the standard
approach. Here we start with a Cauchy problem which we show to possess a classical
solution. We then construct a hedging strategy using the first order partial derivatives of
the solution so as to obtain Föllmer Schweizer decomposition of contingent claim related
to a European option. From the decomposition we conclude that the solution to the
Cauchy problem is indeed the locally risk minimizing price of the corresponding European
option. This approach avoids an a-priori tacit assumption of desired differentiability of the
option price function that is expressed using a conditional expectation with respect to an
equivalent minimal martingale measure.

Besides, we have obtained an integral equation of option price. We have also expressed
the risk-minimizing hedging strategy as a combination of delta hedge and an integral of
the price function. Expressions for the quadratic residual risk and the optimal external
cash-flow are obtained at the end. The contents of this chapter is from [10].

92



6
Conclusion

This thesis concerns the component-wise semi Markov (CSM) modulated market. The
main contribution to the thesis consists of three chapters. The first chapter contains an
empirical study to validate the appropriateness of the use of CSM process to model the
risky asset price dynamics. The rest of the thesis is about the applications of CSM market
setup in a portfolio optimization and a pricing problem.

In the first part, we propose a test statistics to examine the usefulness of one component
CSM process. We build our test statistics by using the descriptive statistics of the squeeze
duration of the famous Bollinger band. In an empirical survey on Indian stock indices,
we show using this test statistics that we can not reject our null hypothesis that the asset
price dynamics are governed by a semi-Markov process whereas the special subclass namely
GBM and the Markov modulated GBM can be rejected. But to limit time complexity of
the problem, we restrict our experiment by keeping the drift parameter insensitive to the
regime and by equating the volatility coefficient at the first regime to a low percentile of
the historical volatility.

In the second part, we solve an optimal investment problem using a utility function
based on the risk tolerance of the investor in a CSM modulated multi-dimensional jump
diffusion market. Using a stochastic control approach, we identify the value function as
a solution of a system of non-local partial differential equation. We use a probabilistic
technique to establish the well-posedness of the partial differential equation.

We address a European type basket option pricing problem in a CSM modulated ge-
ometric Brownian motion at the end of the thesis. In this part, the drift and volatility
coefficients are considered to be time inhomogeneous. Since the market is incomplete, we
employ a locally risk minimizing pricing approach. We identify the option price equation
as a classical solution of Black-Scholes-Merton (BSM) type partial differential equation.
We establish the well-posedness of the PDE equation by using a probabilistic technique.
Finally, we calculate the quadratic residual of risk.
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It is important to note that the infinite horizon counterpart of the risk sensitive control
problem, mentioned above, is open. In a recent work [8], a ground work appears where
the controlled problem is studied in one dimension. The question about multidimensional
setting is yet unanswered. For modeling purpose, continuous time semi-Markov process is
a natural object for many applications including multi class queue with general arrival. In
view of this the need for extension of the results in [8] is evident. As per our knowledge,
no such study is done yet.

In a recent paper, Biswas et al. [4] have studied the option pricing in a semi-Markov
modulated stochastic volatility model. Let {Xt}t≥0 be a semi-Markov process with state
space {1, 2, . . . , k}. In their work, they have considered one locally risk free asset with spot
rate r(Xt) and a risky asset whose price is given by the following stochastic differential
equation

dSt = St(µ(Xt) dt+
√
Vt dW

1
t ), S0 > 0

dVt = κ(Xt)(θ(Xt)− Vt)dt+ σ(Xt)
√
Vt dW

2
t , V0 > 0, (6.1)

where the market parameters µ, σ, κ and θ are driven by same semi-Markov process
{Xt}t≥0. This problem would be more interesting if the market parameters r, µ, σ, κ and θ
are governed by a CSM process. The barrier option pricing under CSM modulated market
needs to be carried out.

There might be another research direction for enhancing the implementability of the
above model. That is including a transaction cost. We have not incorporated the trans-
action costs in the problem of option pricing. The hedging strategy in our thesis requires
continuous trading. Therefore the investor will incur heavy expanses by implementing
those strategies in a market with transaction costs. The option pricing with transaction
costs via a utility optimization approach in a GBM market is studied by [1]. However this
problem is open in semi-Markov modulated GBM market.
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Appendix

A.1 Algorithms

In this section we present the algorithms used in the empirical study in Chap-
ter 2. We begin this section with the pseudocode of simple return as in (2.2).
Algorithm 1: Simple return of a time series
1 function SimpleReturn (S);
Input : Time series data of closing prices S
Output: Another series of simple return R

2 set N ← length(S)
3 let R[1 . . . N ] be a new array
4 for i = 2 to N do
5 R[i]← S[i]−S[i−1]

S[i−1]
6 end
7 return R

Although the algorithms to calculate the sample standard deviation is well known, we
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also present the algorithm for the same.

Algorithm 2: Sample standard deviation
1 function Stdev (a);
Input : An array a
Output: Sample standard deviation

2 set n← length(a); m← 0; v ← 0
3 for i = 1 to n do
4 m← m+ a[i]
5 end
6 m← m

n

7 for i = 1 to n do
8 v ← v + (a[i]−m)2

9 end
10 return sqrt( v

n−1)
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Now we present the algorithm to compute the p-squeeze duration as in Definition 2.2.6.
Algorithm 3: Squeeze duration
1 function SqD (p, S);
Input : A number p ∈ (0, 1) and a time series S
Output: p-Squeeze duration

2 set N ← length(S)
3 R← SimpleReturn(S)
4 let v[1 . . . N ] be a new array
5 for i = 1 to N do
6 a← R[i . . . i+ n− 1]
7 v[i]← Stdev(a)
8 end
9 v ← Sorted(v) \\ create a sorted list

10 q ← Celing(p ∗ length(v)) \\ the ordinal rank
11 per ← v[q] \\ number from the list
12 let T [1 . . . N ] be a new array
13 set flag ← 1
14 set l← 1
15 for j = 1 to length(v) do
16 if flag ∗ v[j] < flag ∗ per then
17 T [l]← j
18 l← l + 1
19 flag ← −flag
20 end
21 end
22 let diff [1 . . . N ] be a new array
23 for k = 1 to length(T )− 1 do
24 diff [k]← T [k + 1]− T [k]
25 end
26 let duration[1 . . . N ] be a new array
27 for k = 1 to floor(N+1

2 ) do
28 duration[k]← diff [2 ∗ k − 1] \\ getting the elements of the odd keys.
29 end
30 return duration

Now we present the algorithm for geometric Brownian motion. The discretized scheme
for the GBM is given in (2.9). We also present the algorithm for MMGBM as in (2.15). In
the similar fashion one can write algorithm for SMGBM using (2.16).
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Algorithm 4: Geometric Brownian motion
1 function GBM (N,S0,mu, sigma, dt);
Input : An integer N , initial price S0, drift mu, volatility sigma, time step dt
Output: An array of length N

2 let S[1 . . . N ] be a new array
3 set S[1]← S0
4 for i = 1 to N − 1 do
5 w ← generate-normal(0, dt)\\ generate a normal random variable with mean

zero and variance dt
6 q ← (mu− 1

2sigma
2) ∗ dt+ sigma ∗ w

7 S[i+ 1]← S[i] ∗ exp(q)
8 end
9 return S
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Algorithm 5: Binary Markov modulated Geometric Brownian motion
1 function MMGBM (N,S0,mu, sigma, la);
Input : An integer N , initial price S0, drift vector mu = array[mu1,mu2],

volatility vector sigma = array[sigma1, sigma2], transition rate vector
la = array[la1, la2]

Output: An array of length N
2 let S[1 . . . N ] and T [1 . . . N ] be two new array
3 set S[1]← S0
4 set t← 0; j = 0
5 while t ≤ N do
6 T ← generate-exponential(la[j])\\ generate an exponential random variable

with rate la[j]
7 t← T + t
8 j ← 1− j
9 end

10 set k ← 0; s0 = S0; C = 1
11 let GB[1 . . . N ] be a new array
12 for j = 1 to length(T ) do
13 n← floor(T [j])
14 if n not equal to 0 then
15 GB ← GBM(n+ 1, s0,mu[k], sigma[k])
16 for r = 1 to n do
17 S[C + r]← GB[1 + r]
18 end
19 s0 ← GB[−1]\\ last element of the array GB
20 k ← 1− k
21 end
22 C ← C + n

23 end
24 return S
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