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Abstract

The main goal of this study is to present an application of recurrence-based
techniques in analyzing certain aspects of interrelations among stock indices of the
world. In the past, financial data has been extensively studied for correlations using
Pearson’s cross-correlation coefficient ρ. In the current study, an estimator based
on recurrence plots — the Correlation of Probability of Recurrence (CPR) — is
used to analyze connections between nine stock indices spread worldwide. A slight
modification of the CPR is suggested here in order to get more robust results.

Temporal trends in the CPR are examined by moving an approximately 19-
month window along the time series and the results obtained are then compared to
those obtained by carrying out a similar analysis with ρ. Binning CPR into three
levels of connectedness: strong, moderate and weak, temporal trends in the number
of connections in each of these three bins are extracted. Furthermore, the behavior
of CPR during the Dot-Com bubble is observed by shifting the time series to align
their peaks. This was done to observe the manner in which different stock markets
behave during financial crisis.

This analysis, using the extended CPR approach, reveals that the markets
move in and out of periods of strong connectivity erratically, instead of moving
monotonously towards increasing global connectivity. This is in contrast to ρ, which
gives a picture of ever increasing correlation. CPR also exhibits that time shifted
markets have high connectivity around the Dot-Com bubble of 2000, indicating that
markets have similar dynamical nature during a crisis irrespective of the actual date
when they crash.

The importance of significance testing in interpreting measures applied to field
data is highlighted in this work, especially the use of Twin Surrogates as a reliable
method to generate surrogate data sets required for significance testing. CPR proves
to be more robust to significance testing than ρ. It also has the additional advan-
tages of being robust to noise, as well as being reliable for short time series lengths
and low and irregular frequency of sampling. Further, it is more sensitive to changes
than ρ as it captures correlations between the essential dynamics of the underlying
systems.

The work done in this project forms the subject of the following paper.

On interrelations of recurrences and connectivity trends between stock indices,
B. Goswami, G. Ambika, N. Marwan, J. Kurths, arXiv:1103.5189v1, — submitted
to Physica A, 2011.
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Chapter 1

Introduction

Einmal ist Keinmal.

What occurs but once, might as well not have occurred at all.

Recurrence is a ubiquitous phenomenon. Man has forever observed the seeming
repetitive patterns in changing seasons, the turning night skies, and the migrations
of birds. In philosophy, the question of ‘eternal return’ remains an issue of interest-
ing debate till date. From a fundamental viewpoint of science, the recurrence of a
phenomenon allows us to investigate the patterns it generates and raise questions
regarding the causes underlying it. Towards the end of the nineteenth century, the
notion of recurrence was given a mathematical form in Poincaré’s famous theorem
on recurrences, wherein he stated that, for a conservative system: “. . . it can be
shown, that the system recurs infinitely many times as close as one wishes to its
initial state” (translated from [1], as given in [2]). Since then, mathematicians have
extensively explored the utilities, characteristics, and implications of the idea of ‘re-
currence’.

Eckmann, Kamphorst and Ruelle’s 1987 report [3] defined what would later
become a novel tool for the analysis of time series and the characterization of dy-
namical systems – the recurrence plot. It was a simple visual tool that captured the
patterns of recurrences of a sequence of vectors by graphically representing recurring

vectors, i.e., those pairs of vectors in the sequence which are close to each other, the
closeness being defined by some chosen norm and neighbourhood. Eckmann et. al.
showed that these plots could extract essential information about the time scales
typical to a dynamical system.

This gave rise to numerous studies that expanded on the theory of recurrence
plots and the measures extractable from them. One of the first examples of the
application of recurrence plots to natural systems was its use in determining the
dynamical nature of cardiac data [4]. Measures based on recurrence plots were
used to characterize the nature of various model systems [5–8], as well as exper-
imental [9, 10] and natural systems [11–13], in terms of the level of determinism,
stationarity, and complexity in the data sets. These measures allowed the investi-
gator to go past the the visual impressions obtained from recurrence plots and soon
came to be known as Recurrence Quantification Analysis (RQA), a data analysis
technique that could extract dynamical information “without necessitating any a
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priori constraining mathematical assumptions” [5] on the data sets.
Studies in the past decade (such as [14]) have further extended the utility of

recurrence plots by showing that they can be used to estimate dynamical invariants
and that the results are quite robust to embedding choices. These studies illustrated
various procedures by which topological information about the underlying systems
could be deciphered, e.g., as discussed in [15]. In a 2005 study by Romano et. al. [16],
recurrence plots were used to defined measures that helped estimate the extent of
different regimes of chaotic synchronization, even from non-phase-coherent and non-
stationary data sets. The numerous ways in which recurrences and recurrence plots
can be constructed and used to gain insight into complex systems have been pre-
sented in detail in a 2007 report by Marwan et. al. [2]

In this dissertation we present the use of recurrence plots to study financial
systems and understand the patterns of interrelations between various stock indices
spread over the globe. Financial systems, and stock indices in particular, are well-
recognized as complex systems [17, 18]. Over the past two decades, investigations
have increasingly shown the underlying nonlinearities that dominate the dynamics
of stock indices and thus, numerous studies have been done to characterize financial
systems using nonlinear statistics (see, e.g., [19, 20]). However, in analyzing the
interrelations among different financial data sets, the use of linear correlation statis-
tics, in particular the Pearson correlation coefficient ρ, is still widespread [18, 21–37].
The primary objectives of the current work are to re-examine commonly held notions
of connectedness and explore the potential of using a slightly modified extension of
the Correlation of Probability of Recurrence (CPR) (presented first in [16]) to serve
as a new measure that can quantify the level of connectedness between different
stock indices.

The potential of recurrences in analyzing financial data has been explored in
several studies, e.g., in correlation analysis among currencies [38], identification of
high dimensional determinism underlying various index returns [39], in estimation
of initial time of a bubble [40], identification of nature of crashes [41] and in quan-
tifying the behavior of global stock markets during financial crises [42]. However,
very few studies have attempted to study connectivities between financial markets
using recurrence-based measures; only one such recent study used cross recurrence
analysis on synchronicity and convergence of the GDP among member nations of
the Euro region [43].

A secondary objective of this thesis is to stress on the importance of signifi-
cance testing in the analysis and interpretation of measures calculated from natural
systems. Most econometric studies are lacking in this regard. In particular, we
apply the Twin Surrogates algorithm [2, 44], another recurrence-based algorithm,
for generating surrogates of our financial time series. We then carry out statistical
significance tests using these surrogate data sets for a more correct interpretation of
the results.

This dissertation is organized as follows:
Chapter 2 first talks about the fundamental notion behind using a recurrence-

plot-based measure to estimate interrelations between financial data sets and lists
out the assumptions involved in the analysis. It then outlines the concepts essential
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to this study, viz., recurrence plots, probabilities of recurrence and the correlation of
the probabilities of recurrence; and talks about the idea behind significance testing
of measures obtained from time series and the advantages of the Twin Surrogates
algorithm that was used to generate surrogate data sets for the significance tests.

In Chapter 3 the steps involved in analyzing the data are detailed, which in-
cludes a mention of the exact data sets used and their source, the pre-processing
of the data sets before the actual analysis (aligning of the dates and normalization
of the various time series), and the selection of the various parameters essential to
recurrence analysis of the data sets.

The results obtained in the work are discussed in Chapter 4. This chapter
talks about the initial static picture of the network of connections that was ob-
tained and the subsequent sliding window analysis done to obtain temporal trends
of the connections among the various stock markets; and it highlights the primary
results of observed erratic cycles of long bands of strong connectedness interspersed
by shorter periods of low connectivity. It also discusses the behavior of financial
markets during the Dot-Com crisis of 2000 and the advantages of the methods used
in this work.

Chapter 5 summarizes the primary novel features of the work and presents
possible avenues of future work related to recurrence-plot-based measures and their
applications to interrelations of financial data sets.

3
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Chapter 2

From recurrences to interrelations

The first step in understanding natural dynamical systems is to look at dif-
ferent features of time series arising from them. Time series have the ability to
reveal various characteristics of the macroscopic dynamics of the systems. In at-
tempting to quantify the interrelations between different stock indices of the world,
we look at time series data from the stock markets and ask the question: “How do
connections between stock markets change over time?” To answer this, a measure
of connectedness must first be arrived at. In earlier studies, the Pearson’s cross-
correlation coefficient ρ served as a proxy for ‘links’ between financial data sets
and its extensive usage has made ρ become synonymous with the notion of corre-
lation, and thereby connections, itself. Recent advances in nonlinear data analysis
have, however, opened up possibilities of using newer techniques that can potentially
substitute Pearson’s ρ, e.g., the study of recurrences, Recurrence Plot (RP), Cross
Recurrence Plot (CRP), and Joint Recurrence Plot (JRP) [2]. In this study, we
estimate connections between financial data sets from the recurrences of dynamical
systems. We use (a slightly modified version of) the Correlation of Probability of
Recurrence (CPR), which is based on RPs and was originally devised to quantify
phase synchronization between non-phase-coherent and non-stationary time series
[2, 16]. As the notion of synchronization is innately bound to those of connectedness
and co-movement, we argue that CPR too can serve as a measure for connectedness.

This chapter outlines the fundamentals of our approach and explains the theo-
retical basis for it. The last section of the chapter deals with the need of significance
testing (using surrogate data sets and, in particular, Twin Surrogates (TS)) in in-
terpretation of measures obtained from time series data.

2.1 Measuring connectivity

The common thread in connectivity studies of financial data has been co-

movement, and it has been referred to with varied terms like correlation [21, 22],
synchronization [45] and cointegration [46, 47]. Each of them incorporates a mathe-
matical formulation that captures some aspect of co-movement for a time series pair.
In measuring connectivity we look at another feature that can imply connectedness:
similarity. If two data sets are similar in an aspect that can be measured, then
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they are closer to each other than, say, with a third data set with which neither
of them share as much common ground. Similarity is a more general feature, one
of whose manifestations might be co-movement. In our analysis based on a recur-
rence approach, we take into account the real evolution typical for financial markets
better than the classic correlation analysis. Therefore, we make the following basic
assumptions:

i. The time series that are dealt with, in this study, are the output of black boxes,
i.e., those systems whose dynamics and model equations are unknown.

ii. The dynamics of such systems may change over time (non-stationarity).

iii. The change in dynamical nature is itself a characteristic feature of the system.

iv. The time series may have features that are common to all of them (e.g. power
spectra and clustered volatilities) and further, these similarities are quantifi-
able.

v. The quantifiable features are representative of the underlying dynamical nature
of the system.

The quantifiable feature studied here is the probability of recurrence (see
Sec. 2.3) and the similarity is captured by the cross-correlation between the proba-
bilities of recurrence of pairs of time series (see Sec. 2.4).

2.2 Recurrence Plots

A Recurrence Plot (RP) is a visual tool that shows the recurrence patterns of
a dynamical system [3]. A recurrence is defined as the return of the trajectory of a
system to an earlier state. In practice, a recurrence is said to occur when the system
returns to the neighborhood of an earlier point in the phase space. Mathematically,
given a point ~xi ∈ R

m of a trajectory ~x1, ~x2, . . . , ~xN , the recurrence matrix R is
estimated as:

Ri,j(ε) = Θ(ε− ‖ ~xi − ~xj ‖), i, j = 1, . . . , N, (2.1)

where N is the number of points, ε is an appropriate threshold distance, Θ(·) is the
Heaviside function (i.e., Θ(a) = 0 if a < 0, and 1 if a ≥ 0) and ‖ · ‖ is an appropriate
norm. R is a matrix of 0s and 1s and an RP is a graphical representation of R

obtained by, e.g., marking a black dot for every 1 and a white dot for every 0.
RPs capture the essential dynamical features of a system [2, 3]. RPs of three

different types of data sets, viz., uniform white noise, chaotic Lorenz system, and
daily financial data, are shown in Fig. 2.1. All three plots are distinct from each
other and characteristic of the system.

Next, we present some measures to characterize RPs.
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Figure 2.1: Recurrence plots for three different types of data. (a) Uniform
white noise. (b) The Lorenz System with σ = 10, ρ = 28 and β = 10/3. (c) Daily
data from DAX. Here, i and j are the index values for the time series entries.

2.3 Probability of Recurrence

The Probability of Recurrence p(τ), also called the τ -recurrence rate, is the
recurrence rate of a diagonal line situated at τ steps from the main diagonal, i.e.,
Ri,i+τ ∀ i = 1, . . . , N − τ [2]. It is a probabilistic measure that gives the probability
of an (i+ τ)th point falling in the ε-neighborhood of the ith point:

p(τ) =
1

N − τ

N−τ∑

i=1

Ri,i+τ . (2.2)

It can be considered as a generalized form of an autocorrelation function that
statistically reflects the time scales of the system in which it tends to return to a pre-
vious configuration. For instance, the uniform white noise time series of Fig. 2.1(a)
has almost the same probability of recurring to an earlier state for all values of τ
(Fig. 2.2(a)), while the chaotic Lorenz system of Fig. 2.1(b) has periodic tendencies
for high recurrences but with decreasing intensity (Fig. 2.2(b)), and the probabilities
of recurrence for the daily DAX data from Fig. 2.1(c) decreases (without periodici-
ties) with increase in τ , indicating the chances of a drift in the data set (Fig. 2.2(c)).

2.4 Correlation of Probability of Recurrence (CPR)

The Correlation of Probability of Recurrence (CPR) is defined as the cross-
correlation coefficient between the probabilities of recurrence of two trajectories ~x
and ~y [2, 16]:

CPR = 〈 p̄~x(τ) p̄~y(τ) 〉, (2.3)

where 〈·〉 represents the expectation value and x̄ is the series x normalized to zero
mean and standard deviation one (henceforth, ‘normalization’ refers to this partic-
ular way of normalizing a time series).
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Figure 2.2: p(τ) curves for the three different types of data given in Fig. 2.1.
(a) Uniform white noise. (b) The Lorenz System with σ = 10, ρ = 28 and β = 10/3.
(c) Daily data from DAX.

However, all the p(τ) curves in Fig. 2.2 start from p(0) = 1, because the
recurrence rate is always 1 at τ = 0, the main diagonal. This initial portion of
the p(τ) curve, common to all trajectories, introduce a bias towards a high CPR
value. To evaluate CPR correctly, we suggest to consider only p(τ) for such τ larger
than the autocorrelation time τc of the system (defined as the delay τ at which the
autocorrelation function of the system falls to 1/e):

CPR = 〈 p̄~x(τ > τc) p̄~y(τ > τc) 〉, (2.4)

where

τc = max { τc(~x), τc(~y) }. (2.5)

This is shown in Fig. 2.3 which illustrates the steps involved in estimating
CPR. The CPR between the two time series according to Eq. (2.3) is 0.892, whereas
it is 0.575 according to Eqs. (2.4) and (2.5).

CPR characterizes the degree of phase synchronization between two time se-
ries, with CPR ≈ 1 implying that the two systems are phase synchronized [2, 16].
However, it can be interpreted more generally as a measure denoting the level to
which two trajectories ~x and ~y have similar time scales of recurrence. In this study,
this means that two financial time series with a high CPR tend to recur at similar
times, suggesting some similarity in their underlying dynamics.

2.5 Pearson correlation

The Pearson correlation coefficient (ρ) is commonly used to analyze correla-
tions between financial data. It is then used to define the distance between the
data sets as given in [21]. It is simply the expectation value of the product of the
normalized time series:

ρ~x,~y = 〈 ~̄x ~̄y 〉, (2.6)

where 〈·〉 and x̄ are the same as before.
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Figure 2.3: Calculating CPR from p(τ). (a) Normalized daily data for 200 days
from two stock indices. (b) p(τ) curves for these time series. τc = 13 is shown with
a vertical line. (c) Normalized p(τ) curves beyond τc . (d) The product of the two
series in (c). The horizontal line is the mean of this series, which is the CPR.

2.6 Significance testing and Twin Surrogates

To use the CPR alone for interpretations might be misleading. In an active

experiment (such as laboratory experiments or numerical simulations of model sys-
tems) where the parameters of the system can be controlled, the CPR for different
parameter sets can be compared and thus, a consistent interpretation is possible.
However, the financial time series used here are the only realizations of the black
boxes generating them. In such a passive experiment, where the parameters of the
system cannot be changed or controlled, or its dynamics are unknown, it is crucial
to generate surrogate time series and check for the statistical significance of the
observed CPR against the distribution of CPR obtained from the surrogate data
sets. This is done using a statistical test and an appropriate null hypothesis.

The Twin Surrogates (TS) algorithm is a recurrence-based method of generat-
ing surrogate time series [44]. A pair of points ~xi and ~xj of a trajectory ~x (of length
N) are called twins if, for k = 1, 2, . . . , N ; Rk,i = Rk,j. This means that, barring
their exact positions in the trajectory, these two points have the same neighborhood
in phase space. The TS method is an iterative algorithm that involves:

i. Identifying twins from the recurrence plot of the trajectory ~x.
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ii. Taking any arbitrary point ~xk ∈ ~x as the starting point of the surrogate
trajectory ~s.

iii. Iteratively adding subsequent points to ~s as: if ~xl ∈ ~x is the previous point
of ~s, and ~xl has no twins, then the next point of ~s is simply ~xl+1; whereas if
~xl belongs to a set of n twins, the next point of ~s is any one of the remaining
n− 1 twins of that set, chosen with equal probability.

Although there are several methods to generate surrogate time series, it is nat-
ural to use TS in this study. In the widespread iterative Amplitude Adjusted Fourier

Transform (iAAFT) method, surrogates are created with the assumed null hypoth-
esis that the observed time series is the result of a Gaussian process seen through a
static linear filter whereas, in TS, each surrogate is an independent realization of the
observed time series differing only in the initial conditions. iAAFT surrogates do not
preserve nonlinear characteristics such as mutual information, whereas TS preserves
linear as well as nonlinear properties of a system [44]. Fig. 2.4(a) shows the original
time series from DAX and both the surrogates via iAAFT and TS. Although the
errors in autocorrelation for both methods are comparable, the iAAFT surrogate
has much larger error in mutual information than the TS (Figs. 2.4(b)-(e)).

We use TS to generate a test distribution using which the significance of the
observed measure M (which can be either CPR or ρ) is tested. The null hypothesis
for this significance test is that each surrogate is an independent trajectory of the
same dynamical system which gave rise to the observed time series. This means
that when we test for significance, we simply check for the probability that an inde-
pendent realization of one of the time series (as given by its TS) can give a similar
value of M . The steps involved in the test are:

i. The value of M between time series A and B is estimated and designated as
Mo (say).

ii. TS are generated from the series B.

iii. M is calculated between each surrogate and the series A. This gives the test
distribution of M . We assume that this distribution is roughly normal as
each TS corresponds to a distinct trajectory of system B starting from an
independent initial condition.

iv. The mean µ and standard deviation σ are estimated for this test distribution.

v. The test statistic Z is then evaluated as:

Z =
Mo − µ

σ
, (2.7)

which can be used to infer the probability with which Z belongs to a standard
normal distribution of mean µ and standard deviation σ.

A prefixed cut-off for the probability is decided below which M is said to be
significantly different from the test distribution, and this is the significance level of

10



Figure 2.4: Comparison of Twin Surrogates and the iAAFT methods. (a)
Daily data for 1942 days from DAX (bold) (scaled to lie between 0 and 1), and
a realization of its corresponding Twin Surrogate (dashed) and iAAFT surrogate
(dotted). (b) The autocorrelation functions of the three sets of data in (a). (c) The
error in autocorrelation of the Twin Surrogate (dashed) and the iAAFT surrogate
(dotted). (d) Mutual information of the data sets in (a). (e) The error in mutual
information of the Twin Surrogate and iAAFT surrogate. Keys for (c) and (e) are
the same as in (b) and (d) respectively.

the test. The probability value (or p-value) obtained from the standard normal table
for the test statistic Z represents the probability that M might actually be from
the test distribution. In terms of the null hypothesis — that the two time series
are independent — the p-value represents the probability that the null hypothesis
cannot be rejected.

11



Once a measure is obtained during an analysis of field data, any interpretation
based on its value has to be done in the light of the results of a corresponding
statistical test done using surrogates and only after considering the corresponding
p-values. This is a safe way to avoid pitfalls and oversights in investigations done
on natural systems.
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Chapter 3

Analysis of stock market data

The overall connectivity analysis done in this study is divided into three major
components: (a) creating a static picture of the network of connections by estimating
CPR for the entire length of time series, (b) analyzing the temporal evolution of
CPR by sliding a window of fixed size over the time series, and finally (c) looking
at the behavior of the connections (defined by CPR) during the crisis period of the
Dot-Com bubble of 2000.

However, before the actual estimation of CPR (and ρ), the various time series
had to be aligned so that their dates were lined up, then they had to be normalized
and further, several parameters required for the analysis had to be figured out.
This chapter lists out the data sets that were used in the analysis and reports the
steps involved in the preliminary analysis (of preprocessing the data and selection
of parameters).

3.1 The data set

The daily close values ranging from 3rd December 1990 to 30th April 2010
of nine stock indices (given in Table 3.1) from around the world were used in the
analysis. Three were from Asia, three from Europe and three from the U.S.A. The
data was obtained from http://finance.yahoo.com/. Each data set contained a
numerical value (representing the close value of the index on a particular date) and
its corresponding date.

3.2 Preprocessing the data set

The data sets had unequal lengths because of the unequal distribution of hol-
idays for stock indices in different regions of the world. To align them temporally,
mismatched dates (and the corresponding close values) were deleted, i.e., any date of
a particular market not present in any one (or more) other market(s) of the remain-
ing eight resulted in the deletion of that date (and the corresponding close value)
from all the markets. Simply put, a common intersect of all the nine data sets, in
terms of dates, was obtained, which was of length 4238 time points.
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Table 3.1: Test data: Market indices and their locations

Label Stock Index Location
A CAC 40 France
B FTSE 100 U.K.
C DAX Germany
D NASDAQ U.S.A
E DJIA U.S.A
F S&P 500 U.S.A
G Nikkei 225 Japan
H Hang Seng China
I Strait Times Singapore

Figure 3.1: Normalizing the data. (a) Daily close values for Dow Jones Industrial
Average (DJIA) (bold)and Strait Times (dotted). (b) The time series in (a) after
normalization (note the difference in the vertical axes in both figures). The left
vertical axis is for DJIA while the right vertical axis is for Strait Times.

Moreover, the index values of the different indices were arbitrary (Fig. 3.1(a)).
To make qualitative comparisons possible, they were normalized to mean zero and a
standard deviation of one (Fig. 3.1(b)). This enabled us to compare the scaled time
series and all the recurrence-based measures obtained from them using the same
value of the parameters, e.g., the same value of the recurrence threshold ε.
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Figure 3.2: Selecting the window size. (a)-(c) Range of days contained in win-
dows of sizes 150, 250 and 350 time points as they move along the time series in
steps of 10 time points. The horizontal dashed lines are the mean number of days.
(d) Standard deviation of the distribution of range of days contained in windows
sized between 150 to 350 time points.

3.3 Selection of parameters: Preliminary analysis

3.3.1 Window size

A primary step in this study is to slide a window of fixed width along the time
series and then estimate CPR or ρ. However, because of the deletion of dates (see
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Figure 3.3: Recurrence plots for different thresholds. (a) RP for 1000 days
of FTSE 100, ε = 10% of maximum distance. (b) RP obtained by normalizing the
data in (a), and ε = 0.1, which is around 2% of the maximum distance. This gives
a clearer visualization of the finer structure. For both RPs, the time series were not
embedded.

Sec. 3.2), if a window of, say, 500 consecutive time points is chosen, the actual range

of days contained in it is larger than 500 and further, this range changes as the
window moves along the time series (Fig. 3.2(a)-(c)). In order to get an understand-
ing of the variation in the range of days contained in a window with respect to the
number of time points in the window, the window size was varied from 150 to 350
time points and the standard deviation of the range of days contained in each win-
dow was estimated: the standard deviation increases (almost) monotonically with
increasing window size (Fig. 3.2(d)).

Ideally, the window should have a negligible standard deviation. However, this
would mean reducing the window size which would reduce the effectiveness of the
RP and, in turn, the measures estimated from it. As a compromise, a window of
250 time points is chosen, which is partly arbitrary but it is (reasonably) assumed
that the qualitative features of the results are not severely effected by increasing or
decreasing the window size from 250 by a small margin. The mean range of days
contained in a 250 time point window is approximately 416 days, which is roughly
equal to 19 months (considering a 5-day week).

3.3.2 Recurrence Plot parameters

There are several ways of constructing an RP from data [2], e.g., with a fixed
threshold ε or a varying one, with or without embedding. In the current analysis,
the time series are not embedded. Also, there is no fixed rule to select ε. It depends
on the objectives of the study and the nature of the data set. The choice of ε should
ensure that the recurrence matrix R represents the dynamics of the system. It should
neither be too large (to avoid counting spurious recurrences) nor be too small (to
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Figure 3.4: Recurrence plots for the nine stock indices. (a) CAC 40. (b)
FTSE 100. (c) DAX. (d) NASDAQ. (e) DJIA. (f) S&P 500. (g) Nikkei 225. (h)
Hang Seng. (i) Strait Times. Recurrence threshold ε = 0.1; RPs obtained without
embedding.

avoid excluding crucial recurrences). One rule of thumb is to ensure that ε does
not exceed 10% of the maximum distance between the points in the time series [48].
Another approach is to consider the recurrence-based measure as a signal detector
and then choose the ε value that yields the maximum power from the signal for the
detector being considered [49].

However, we find that keeping ε ≈ 10% of the maximum distance often results
in a ‘dense’ RP (Fig. 3.3(a)). Therefore, to capture the finer recurrence structures
while still allowing for sufficient statistics in the CPR, we choose ε = 0.1 as the
threshold for all RPs and normalize the time series (or any segments thereof) before
the recurrence-based calculations. This effectively reduces the recurrence threshold
to about 2% of the maximum distance and gives a ‘clearer’ RP (Fig. 3.3(b)). The
RPs given in Fig. 3.4 were obtained with ε = 0.1, where it corresponds to around
2-3% of the maximum distance.

We find that the qualitative features of recurrences are robust to this choice
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Figure 3.5: p(τ) curves for Hang Seng index. ε = 1% (bottom curve), ε = 2%
(middle curve), and ε = 3% (top curve) of the maximum distance. All three curves
have that same pattern. Inset: The p(τ) curves for τ = 950 to τ = 2050 to give a
better view of the similar qualitative nature of the three curves.

of ε. In Fig. 3.5, the p(τ) curves for the Hang Seng index obtained from its RP
(Fig. 3.4(h)) are shown for ε = 1%, 2% and 3% of the maximum distance. Although
the magnitude of recurrences increases with increasing threshold, the qualitative
nature of the curves remains the same throughout.

The results obtained in this study are thus robust to small changes in ε.
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Chapter 4

Cycles of connectivity

As mentioned in Chapter 3, we first visualize the network of connections given
by CPR among all the nine stock markets (Sec. 4.1). The CPR values are thus
estimated for the entire time series spanning almost two decades and the values
obtained are binned in three categories:

i. Strong connectedness (|CPR | > 0.8),

ii. Moderate connectedness (0.5 < |CPR | < 0.8), and

iii. Weak connectedness (|CPR | < 0.5).

In the second part, a window of 250 time points was moved along pairs of
time series and the CPR and ρ values were estimated (Secs. 4.2 and 4.5). This was
done for all 36 pairs possible between the nine time series. Next, the number of
connections (out of the 36) in each of the three bins mentioned above were counted
for every window (Sec. 4.3).

Finally, in the last part, the behavior of CPR during the Dot-Com bubble of
2000 was considered (Sec. 4.4), in which: (a) taking a pair of time series, the dates
when they peaked during the Dot-Com were made to coincide, (b) a window of 250
time points was moved from 500 time points before the peak to 250 time points
after, and (c) the respective CPR (or ρ) was obtained.

At every step, all CPR (or ρ) values were tested for significance with 100 Twin
Surrogates at 10% significance.

4.1 Network of connections

Tables 4.1 and 4.2 list the matrices of CPR and Pearson correlation respec-
tively (labels from Table 3.1) for the entire time series from Dec-1990 to Apr-2010.
Statistically non-significant values are listed as “NS”. We note that several values in
Table 4.2 are non-significant, unlike those in Table 4.1.

The data contained in Tables 4.2 and 4.2 are visualized in Fig. 4.1, which
shows the different connections that fall in each of the three bins of connectivity
(strong, moderate and weak). NASDAQ has the highest number of connections in
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Table 4.1: Matrix of CPR values

Label A B C D E F G H I
A 1 0.492 0.716 0.927 0.898 0.878 0.685 0.700 0.493
B 0.492 1 0.766 0.689 0.444 0.799 0.746 0.764 0.242
C 0.716 0.766 1 0.867 0.583 0.792 0.768 0.746 0.455
D 0.927 0.689 0.867 1 0.863 0.922 0.819 0.862 0.467
E 0.898 0.444 0.583 0.863 1 0.717 0.592 0.769 0.647
F 0.878 0.799 0.792 0.922 0.717 1 0.781 0.779 0.412
G 0.685 0.746 0.768 0.819 0.592 0.781 1 0.795 0.283
H 0.700 0.764 0.746 0.862 0.769 0.779 0.795 1 0.428
I 0.493 0.242 0.455 0.467 0.647 0.412 0.284 0.428 1

Table 4.2: Matrix of Pearson correlation values

Label A B C D E F G H I
A 1 0.931 0.954 0.922 0.905 0.949 NS 0.718 0.432
B 0.931 1 0.952 0.908 0.920 0.965 NS 0.754 NS
C 0.954 0.952 1 0.907 0.923 0.947 NS 0.838 0.535
D 0.922 0.908 0.907 1 0.861 0.925 NS 0.716 NS
E 0.905 0.920 0.923 0.861 1 0.980 -0.545 0.813 NS
F 0.949 0.965 0.947 0.925 0.980 1 -0.449 0.771 0.441
G NS NS NS NS -0.545 -0.449 1 NS NS
H 0.718 0.754 0.838 0.716 0.813 0.771 NS 1 0.828
I 0.432 NS 0.535 NS NS 0.441 NS 0.828 1

the strong connectedness scenario (Fig. 4.1(a)). Also, Nikkei and Hang Seng are
connected to NASDAQ strongly (Fig. 4.1(a)). Strait Times shares weak connec-
tions with all indices (Fig. 4.1(c)) except for DJIA, with which it has a moderate
link (Fig. 4.1(b)).

Most of the connections fall in the moderate category (Fig. 4.1(b)), and it
might be argued that this is not surprising as having a moderate connection might
be a good strategy that markets have evolved over the years to insulate themselves
against crises. However, one thing that must be kept in mind is that the picture
in Fig. 4.1 is a static one — it does not say anything about how the connectivity
scenario was before this time.

Moreover, this picture involves information for almost twenty years and might
thus incorporate critical events of the past that might not (or, if we assume that they
should not) have direct bearing on the connectivity trends of the present. This is
why, in order to get a handle on the dynamic evolution of the connections between
the stock markets, we slide a window over the entire length of the time series to
construct temporal trends for both CPR and ρ, the results of which are discussed
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Figure 4.1: Network of connections for stock indices using CPR. (Labels A,
B, . . . , I are as in Table 3.1). (a) Strong connectedness (CPR > 0.8), (b) Moderate

connectedness (0.5 < CPR < 0.8), and (c) Weak connectedness (CPR < 0.5).
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in the following sections of this chapter.

4.2 Trends in CPR

Three points are evident from Fig. 4.2 (which shows trends in CPR for six
pairs of indices along with the corresponding p-values, viz., (a) CAC 40 and FTSE
100, (b) DAX and NASDAQ, (c) DAX and Nikkei 225, (d) DJIA and S&P 500,
(e) S&P 500 and Strait Times, and (f) Nikkei 225 and Hang Seng).

i. The CPR does not have a monotonous trend over time. Rather it oscillates
erratically with short periods of low CPR interspersing broader bands of high
CPR.

ii. The regions of low CPR values have high p-values (and vice versa), mean-
ing that the lower ranges of CPR tend to be less statistically significant in
comparison to the higher values.

iii. These patterns in the CPR are same for all index pairs, of which only six are
shown in Fig. 4.2.

Thus, if CPR were to be interpreted as a measure of similarity, and hence
connectedness, it means that the financial world is not moving monotonously to a
globally connected scenario, but is rather oscillating between long periods of strong
connectedness and short spans of low connectivity. (Nothing conclusive can be said
about the nature of connections in the short periods of low CPR as the estimates
therein are not statistically significant.) In a sense, what it says is that the more
things change the more they remain the same.

4.3 Patterns of connectivity

The patterns in the number of connections in each of the three bins, summed
up among all pairs of indices, reinforce the picture put forth in Fig. 4.2. This is
shown in Fig. 4.3. The strong and moderate connections are always statistically
significant except for a few instances. The weak connections are clearly more prone
to be statistically non-significant. Again, we see that there is no global trend in
Fig. 4.3, i.e., there is no indication for an increasing global connectivity. Instead,
we see that the number of strong and moderate connections oscillate erratically,
implying that these nine indices come close to each other, and then move apart, and
then come close again, and so on. Had all of them moved to higher connectivity
over time, the number of connections in the strong category would have increased
progressively, and the numbers in the other two bins would have gone down with it.

The strong and moderate connections move (loosely) in phase with each other
(see Fig. 4.4). Starting from the dip in Jan-1999, consecutive dips occur roughly at
Dec-2000, Jul-2002, Sep-2003, Feb-2005, Sep-2006, Feb-2008, and Oct-2009, mean-
ing that the periods of these dips lie between 14 to 20 months. This might be
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Figure 4.2: Trends in CPR. CPR (bold curve) and corresponding p-values (dotted
curve) for six pairs. (a) CAC 40 and FTSE 100. (b) DAX and NASDAQ. (c) DAX
and Nikkei 225. (d) DJIA and S&P 500. (e) S&P 500 and Strait Times. (f) Nikkei
225 and Hang Seng. Window size = 250 time points. Step size = 10 time points.
The horizontal dotted line denotes the test significance level, p = 0.1.

indicative of the Kitchin business cycle [50].
Also, the number of ‘weak’ connections (Fig. 4.3(c)) is anti-phase to the num-

ber of ‘strong’ and ‘moderate’ connections (Figs. 4.3(a)-(b) and Fig. 4.4), because
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Figure 4.3: Patterns of connectivity. Number of connections in each bin along
time. (a) Strong, (b) Moderate, and (c) Weak. The bold curves represent the
number by counting statistically significant CPR values alone, while the lighter
curves represent the number by counting all CPR values in each bin. Window size
= 250 time points. Step size = 10 time points.

the total number of connections has to be conserved while the number in each of
the three levels of connectedness go through cyclical patterns.

4.4 CPR in the Dot-Com bubble

Figs. 4.5 and 4.6 give an insight into the way stock indices approach a crisis
and then recede from it. Even though the indices peaked and crashed on distinct
days (sometimes months apart), once the time series is shifted to align the peak-
off dates (Fig. 4.5(a)), the CPR increases around the peak-off date and decreases
thereafter. For CAC 40 and Strait Times, the decrease in CPR starts almost at
the peak-off date (Fig. 4.5(b)). On the other hand, for DAX and NASDAQ it
occurs after the peak-off date (Fig. 4.6(a)) and for NASDAQ and DJIA it happens
before (Fig. 4.6(b)). The increase-and-decrease of CPR is common to all of them.
Thus, the probabilities of recurrence have strong correlation around the peak, i.e.,
irrespective of the actual date on which a particular index may peak, all indices
approach and recede from a crisis similarly.
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Figure 4.4: Strong and moderate connections. Strong (solid) and moderate
(dotted) connections (from Fig. 4.3 (a) and (b)) shown together. Only statistically
significant CPR values were counted.

Figure 4.5: CPR in the Dot-Com bubble (around the year 2000). (a) The
series CAC 40 (bold) and Strait Times (dotted) with their peak-off date during the
bubble coinciding. The vertical dotted line marks the peak-off date. (b) Corre-
sponding CPR (circles) and Pearson’s ρ (squares) values. Statistically significant
and non-significant values are represented by filled and empty markers respectively.

Pearson’s ρ also captures this behavior, but CPR is a more sensitive measure,
as ρ does not change as sharply as CPR around the peak-off date. Also, the CPR
values tend to pass the statistical significance test more often than ρ (see Fig. 4.5(b)
and Fig. 4.6). This point is further elaborated in Sec. 4.6.

25



Figure 4.6: CPR in the Dot-Com bubble. (a) DAX vs. NASDAQ. (b) NASDAQ
vs. DJIA. Figure keys and markers are the same as in Fig. 4.5.

4.5 Trends in Pearson’s ρ

The trend in Pearson’s ρ is strongly different from CPR, as shown for S&P 500
and Strait Times in Fig. 4.7 (which is the same pair as in Fig. 4.2(e)). Fig. 4.7 shows
an overall movement towards higher correlation as time progresses, in contrast to
the oscillating pattern of Fig. 4.2(e). The question then arises: which is the correct

picture? Here, it is crucial to emphasize that these two measures capture different
aspects of the time series. While ρ measures the tendency of the time series values to
move together in one direction (or opposite directions), CPR measures the tendency

Figure 4.7: Trends in Pearson’s ρ. Pearson’s ρ (bold curve) and its corresponding
p-values (dotted curve) for the pair S&P 500 and Strait Times. The horizontal dotted
line denotes the test significance level, p = 0.1.
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Figure 4.8: Patterns of significance. (a) CPR, and (b) Pearson’s ρ, along with
p-values.

of the time series values to return to earlier values at similar time scales. Hence,
it is expected that their results are different. However, the case for CPR can be
interpreted as follows: being based on recurrence rates it captures the essential
dynamical nature of the system. This is in contrast to Pearson’s ρ which is simply
a statistical comparison of co-evolution of states. Pearson’s ρ is less sensitive to
changes in the time series as pointed out earlier. Thus, while it may be true that
stock indices tend to show more co-movement towards the latter half of our data sets,
this does not necessarily imply that they will continue to do so as the corresponding
system dynamics move in and out of strong periods of correlation (see Sec. 4.2).

4.6 Advantages of CPR

We highlight the following advantages of CPR as a measure for estimating
connections between financial data sets.

i. It is able to extract patterns even from noisy data sets, as is the case with most
financial data. Moreover, it does not require that the data are distributed
normally, as is required for the proper usage of ρ.

ii. The data sets need not necessarily be embedded for its estimation.

iii. It can be estimated for short time series as well, as is done in the current work.

iv. It does not require high-frequency sampling of the data, which is common in
most financial analyses. Our analysis was done with daily sampled data which
was freely available on the internet.

v. It tends to have lower p-values than ρ, as seen from the spread of points in the
top-left corners of the plots in Fig. 4.8. Most CPR values are grouped close to
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the p = 0 axis, whereas the ρ values have a broader spread. This implies that
the probability of rejecting the null hypothesis tends to be lower with CPR.

CPR not only has several advantages over Pearson’s ρ as a measure that
captures the similarity between two financial time series, but it also tells us that
Pearson’s ρ is not the only way to look at correlations between markets, along with
the critical fact that the stock markets of the world might not be moving in any
general direction at all. This provides a crucial understanding of the financial world
and reinforces the notion that financial markets are, in fact, complex systems that
are not amenable to trivial conclusions.
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Chapter 5

Conclusion

The primary goal of this study had been to extend the domain of application
of recurrence plots as a tool for nonlinear data analysis by using it to analyze con-
nections among financial data sets, based on recent developments in recurrence-plot-
based theory. In doing so it has been shown that recurrence-plot-based measures
have the potential to extract crucial dynamical information about the interrelations
between financial systems. It is hoped that in the light of these results, newer
possibilities for data analysis in the financial world shall be opened up.

5.1 Primary findings

5.1.1 Connectivity cycles

The main result obtained in this study is that the stock markets of the world
are not necessarily progressing towards higher connectivity monotonically, as might
be trivially assumed by most people in light of the perception that the financial
world is getting increasingly globalized with each passing day. The CPR provides
an alternative view of the interrelations among the stock indices which shows that the
global markets mostly co-exist in periods of high connectivity which are interspersed
irregularly by short periods of low connectivity. This has been the characteristic
feature of all pairs of stock indices chosen and for the entire length of the time
span considered in the analysis. This was contrasted to the image of connectivity
trends given by Pearson’s correlation coefficient, which showed market pairs having
a trend towards higher and higher correlation as time progressed from 1990 to 2010.
The contrast among these two pictures tells us that Pearson’s correlation does not
capture all aspects of similarity and co-movement and thus, for a more wholesome
perspective of the connections among the financial markets, other measures are
necessary.

5.1.2 Similarity during crises

The results obtained from the analysis of the behavior of CPR during the
Dot-Com bubble of 2000 showed the way in which financial markets approach and
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recede from a financial crisis. In shifting the time series to align their peak-off dates
and then measuring the temporal change in CPR, it was found that CPR had high
values around the peak-off date. This showed that irrespective of the historic nature
of the stock index, its global location, and the exact date at which it finally starts
to crash, the way in which any two stock markets behaved during a financial crisis
was greatly similar, implying that their underlying dynamical systems share similar
properties during these critical periods. This feature was also captured by Pearson’s
correlation but CPR turned out to be a more sensitive measure.

5.2 Methodological aspects

5.2.1 Extension of CPR

A crucial aspect of this study is that the definition of the CPR had been
modified slightly before being used in the analysis. This novel modification was
motivated by the fact that all probability of recurrence curves start from 1 and
this introduces a bias towards a higher correlation value between two probability
of recurrence curves. In considering the probability of recurrence for only those
values of the time delay which lay beyond the maximum autocorrelation time of
the system, the correlation CPR among them was made more robust and a better
representative of the underlying similarities of the time scales of recurrence of the
two sub-systems.

5.2.2 Significance tests with Twin Surrogates

Another objective of this study was to stress on the need to do significance
tests on the measures that are obtained from financial time series. This fact was
highlighted because significance tests are not frequently used in financial time series
analysis. Also, the use of the Twin Surrogates method of generating surrogate
data sets for the significance tests was pointed out as a better way of generating
surrogates. This was because Twin Surrogates retain linear as well as nonlinear
characteristics of the original time series and correspond to different trajectories of
the same system differing only in the initial conditions; and thus it is equivalent to
sampling data sets from the same dynamical system from nature itself, which is the
fundamental idea behind using a surrogate data set in the first place.

5.2.3 Advantages of using Recurrence Plots

CPR, being a recurrence-plot-based measure, has some of the inherent advan-
tages that come with the use of recurrence-based data analysis. It does not have any
limitations on the distribution of the time series values, nor does it need the data
sets to be stationary. It works well with noisy data sets as well. The analysis can be
done with or without embedding depending on the need and objectives of the study
and the exact nature of the data sets. CPR also works well with data series that
are very short and that have low frequency of sampling. It does not even need the
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sampling interval to be constant throughout the length of the times series. In fact,
in our case, the data sets finally used in the analysis were short, irregularly sampled,
had a minimal sampling frequency of one day, contained systemic and observational
noise and were not embedded. We carried out the entire study with freely available
data sets obtained from the internet. That the CPR manages to extract patterns
even in such adverse conditions is a commendable feature of this measure.

5.3 Future perspectives

To the best of our knowledge, this is the first study in which the modified
version of the CPR has been applied to stock indices. This opens up newer pos-
sibilities of extending this measure to other financial data sets such as individual
stocks within a particular index, foreign exchange rates, and commodities indices.
Considering this only as a test run for the CPR, a next step would be to include
a larger number of stock indices that spans all the continents and then create a
dynamic picture of the interrelations among them. This study also sets the stage
for the use of other recurrence-based synchronicity measures to be also applied in
the financial world for a better understanding of its interrelations.

Another interesting aspect would be to use CPR to define a ‘distance’ among
the different financial data sets and construct minimum spanning trees from them,
as has been done in numerous econometric studies based on the Pearson’s correlation
coefficient. The network based on these distances would clearly be different from the
ones obtained from Pearson’s correlation and their temporal evolution might throw
new light on the nature and structure of financial data sets.

Lastly, it would be also be interesting to try and devise model systems that
would replicate the behavior of the financial time series such as those used in this
study, i.e., the model should give rise to time series for which the Pearson’s ρ shows
an increasing trend over time and the CPR shows erratic cycles of connectivity. In
the ideal case, one would want a single system, which under different parameter
values, give rise to the different dynamics observed in all of the nine time series
considered here. If this were achieved, it would grant us a better understanding of
financial systems on the whole.
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