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Abstract

Many processes in nature and society show long memory. In recent years

research towards the return intervals of extreme events has picked a signif-

icant pace due to its practical application in several different fields ranging

from geophysics,medical sciences,computer science to finance and economics.

Earlier results on the return interval distribution of extreme events for long

memory process with single scaling exponent have shown that the distribu-

tion is a product of power law and stretched exponential function. In this

report, we have obtained an analytical expression for the return interval dis-

tribution of long memory processes with two different scaling exponents. We

also provide numerical simulations to support our analytical results.
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Chapter 1

Introduction

Study of extreme events is an active area of research presently for its inher-

ent scientific value and its practical application to diverse fields ranging from

medical sciences, geophysics, computer science to economics and finance[1][2].

The consequences of extreme events such as earth quakes or cyclones are

generally catastrophic to human society. Hence the study of extreme events

assume special significance. For instance, in the field of geoscience it could

help us in the prediction of next earthquake. In the field of finance these

kind of studies can help us to make better prediction about market crashes.

Several natural and socio-economic phenomenon such as atmospheric pres-

sure, temperature, volatility etc. show long term memory and hence it is

relevant to study the return interval distribution of extreme events for long

memory processes. Time series which show power law type autocorrelation

function1[3] with very slow decay in correlation for large lags, as compared

to other uncorrelated processes, generally represent long memory processes.

1Autocorrelation function(ρk) for a given time series x(t) at lag k is defined as

ρk =
∑

n

t=k+1
(xt−x)(xt−k−x)

∑
n

t=1
(xt−x)2 for k = 1, 2, ..
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Let x(t) be a given time series such that 〈x〉 = 0, all those events for which

x(t) > q will be called extreme events. q is the threshold value.
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t
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x(
t)

threshold

r1 r2 r3

Figure 1.1: a schematic diagram shows the return intervals for a threshold

value q=1.5 as a function of time t

The return interval r is defined as the time interval between the consec-

utive extreme events. So we will get a series of return intervals rk , k =

1, 2, 3, ....., N

For uncorrelated processes the return interval distribution is[1]

P (R) = e−R. (1.1)

For long memory process autocorrelation function is ρk ∼ k−γ, where 0 <

γ < 1 and return interval distribution of extreme events is [8]

P (r) = ar−(1−γ)e−(a
γ
)rγ . (1.2)
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In this a is a constant to be determined from normalisation condition. The

result in Eq. 1.2 is obtained for a long memory time series with one scaling

exponent. What happens to time series with more than one scaling exponent

(one of the example for such time series is high frequency financial data) ?

Figure 1.2 shows one of such case.

Figure 1.2: Log log plot of fluctuation function F (τ) of log returns for the

high-frequency data of the S and P 500 stock index, circles represent actual

data, line represents linear fitting. (figure taken from Podobnik et al [10])

Figure 1.3(a) and 1.3(b) shows a comparison between time series with one

scaling exponent and two scaling exponents based on fluctuation analysis (Ex.

DFA, R/S analysis)[4][5].In these figures x-axis represents time scale n and

y-axis F (n) represents averaged fluctuation function. The core of this report

will address this problem and provide analytical and numerical solutions to

it. In chapter 2, we will present a detailed study of a model for long memory
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Figure 1.3: Fluctuation analysis of time series

process. Using a variant of this model, we generate time series with long

memory and two time scales. Chapter 3 will be dedicated to the analytical

solution for return interval distribution while in chapter 4 we will present a

numerical solution. In chapter 5 we will present long memory probability

process whose return intervals are uncorrelated and compare the analytical

results with the numerically simulated data. In chapter 6 we will discuss our

analytical and numerical results and also discuss some practical limitations

of our results.
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Chapter 2

Long memory process

The plot of sample autocorrelation function (ACF) (ρk) against lag k is one

of the most useful tool to analyse a given time series. If the ACF tends to

zero after some lag k, then the traditional stationary ARMA process[3] are

good enough to describe the time series. However if the ACF decays slowly,

it means that even after very large lags the value of ACF is sufficiently large

and describing the time series with traditional ARMA models will result in

excessive number of parameters.

So how we can describe these kind of processes ?

The answer is “long memory process ”. Formally, “a stationary process will

have long memory, if its autocorrelation function can be represented as

ρk → Cρk
−γ as k → ∞ (2.1)

where Cρ > 0 and γ ∈ (0, 1)

ARFIMA process introduced by Granger and Joyex in 1980 are known

to be capable of modelling long memory processes. The general form of

9
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Figure 2.1: Autocorrelation function for a long memory process

ARFIMA model of order (p, d, q) is [7]

φ(B)(1−B)dxt = θ(b)at. (2.2)

This equation can also be written as

(1− B)dxt =
θ(B)at
φ(B)

.

In equation(2.2), d is the differencing parameter and it is a fraction, xt is

the original time series, B is the backshift operator defined as Bxt = xt−1 ,

B2xt = xt−2 and so on..

In this, φ(B) is the autoregressive operator

φ(B) = 1− φ1B − φ2B
2 − ................φpB

p,

θ(B) is the moving average operator

θ(B) = 1 + θ1B + θ2B
2 + ................θqB

q,
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and at is the white noise with zero mean and variance σ2.

at ∼WN(0, σ2).

Now for further discussion of ARFIMA process we will consider that p

and q are both zero. So the Eq. (2.2) will become

(1− B)dxt = at, (2.3)

which is known as fractionally differenced white noise (FDWN). Equation(2.3)

can also be written as

xt = (1−B)−dat. (2.4)

We will discuss both Eqs. (2.3) and (2.4) later. First we start with equation

(2.3)

(1− B)dxt = at.

We can represent fractionally differenced white noise (FDWN) as an infinite

order autoregressive process

xt =

∞
∑

k=0

πkxt−k + at.

Using the binomial expansion we can write

(1−B)d = {1− dB +
d(d− 1)B2

2!
−
d(d− 1)(d− 2)B3

3!
+ ...............}. (2.5)

Equation(2.5) can also be represented in terms of Hypergeometric function

(1− B)d =

∞
∑

k=0

Γ(k − d)Bk

Γ(k + 1)Γ(−d)
. (2.6)

Using equation(2.6) we can calculate the value of πk

πk =
Γ(k − d)

Γ(−d)Γ(k + 1)
. (2.7)
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Similarly we can also represent FDWN as an infinite order moving average

process (2.4).

xt = (1− B)−dat (2.8)

=
∞
∑

k=0

ψkat−k

(1−B)−d = {1+dB+
d(d− 1)B2

2!
+
d(d− 1)(d− 2)B3

3!
+ .................} (2.9)

(1− B)−d =

∞
∑

k=0

Γ(k + d)

Γ(d)Γ(k + 1)
Bk (2.10)

Using above equation we can calculate the value of ψk

ψk =
Γ(k + d)

Γ(d)Γ(k + 1)
. (2.11)

Based on the results derived by Granger(1980) the autocorrelation function

of Fractional white noise is

ρk =
Γ(k + d)Γ(1− d)

Γ(k − d+ 1)Γ(d)
. (2.12)

For large value of k, this can be approximated as

ρk =
Γ(1− d)

Γ(d)
k2d−1. (2.13)

As we have already mentioned the main characteristic of Long memory pro-

cess is that autocorrelations ρk at very long lags are nonzero and hence
∞
∑

k=−∞

|ρk| = ∞ (2.14)

Now using equation(2.13) and (2.14) we obtain

−1 < 2d− 1 < 0 =⇒ d ∈ (0, 0.5).

In this section we have seen the formal definition of long memory time se-

ries, mathematical model to represent the long memory time series and their

properties.
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Chapter 3

Return interval distribution of

long memory process with two

scaling exponents

We consider long memory time series with two different scaling exponents.

Detrended fluctuation analysis [5][4] is one of the most widely used techniques

to identify the presence of long memory in a given time series. In Figure 3.1,

we show the fluctuation function. It displays two different slopes α1 and α2.

These slopes are known as DFA exponent. DFA exponent α is related to

autocorrelation exponent γ (used in equation(2.1)) according to the relation

given in equation (3.1).[9]

γ = 2− 2α (3.1)

In Figure(3.1), the x−axis represents time scale n and y−axis F (n) rep-

resents averaged fluctuation function. We can also see a crossover location

where scaling exponent changes. Our probability model is the statment that

13



0 1 2 3 4 5 6
log (n)

0

1

2

3

4
lo

g 
F(

n)

DFA analysis of time series

crosso
ver  r

egion

Figure 3.1: DFA figure for time series with two scaling exponent

for a stationary gaussian process with long memory, given an extreme evant

at time t = 0, the probability to find an extreme event at t = r is given by

Pex(r) =















a1r
−(2α1−1) = a1r

−(1−γ1) for 0 < r < nx

a2r
−(2α2−1) = a2r

−(1−γ2) for nx < r <∞

(3.2)

where 0.5 < α1, α2 < 1 are DFA exponents and 0 < γ1, γ2 < 1 , a1, a2 are

normalization constant which we will fix later. According to Equation(3.2)

after an extreme event it is highly probable to expect the next event to be

an extreme one too; and this is a resonable result for long memory persis-

tent time series. After every extreme event one resets the time to zero and

process starts again, independent of previous return interval(actually it is

an assumption as we will further see during our numerical simulations that

even return intervals have long memory).The range of γ is such that after a

finite return intervals the process will stop. Next we will calculate, given an

14



extreme event at t = 0, what will be the probability such that there is no

extreme event in the interval (0, r). To calculate this, we will first divide the

interval r into m subintervals indexed by j = 0, 1, 2, 3, .....(m− 1) and then

we calculate the probability in each subinterval. We have two cases, case(1)

is that when r ∈ (0, nx) and in case(2) r ∈ (nx,∞)

For case(1): 0 < r < nx

Here for the jth subinterval,the probability of extreme event is given by

(using Trapezoidal rule for integration[12])

h1(j) =
a1r

m
(
(j + 1)r

m
)−(1−γ1) +

a1r

2m
[(
jr

m
)−(1−γ1) − (

(j + 1)r

m
)−(1−γ1)] (3.3)

after simplying this expression,the probability that no extreme event occurs

in the jth subinterval is given by

1− h1(j) = 1−
a1r

2m
(
r

m
)−(1−γ1)[(j + 1)−(1−γ1) + j−(1−γ1)] (3.4)

so probability of no extreme event in (0, r)

Pnoex(r) = lim
m→∞

m−1
∏

j=0

(1− h1(j)) (3.5)

we require the probability P (r)dr that given an extreme event at t = 0, no

extreme event occurs in (0, r) and an extreme event occur in the infinitismal

interval r + dr. This will be simply the product of Pnoex(r) with the proba-

bility Pex(r). This can be wirtten as

P (r)dr = Pnoex(r)Pex(r)dr (3.6)

= lim
m→∞

[1− φ1][1 − φ1(2
−(1−γ1) + 1)]
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×[1 − φ1(3
−(1−γ1) + 2−(1−γ1))]..........

×[1 − φ1(m
−(1−γ1) + (m− 1)−(1−γ1))]a1r

−(1−γ1)dr (3.7)

where φ1 =
a1
2
[
r

m
]γ1

The value of m can be extremely large and equation(3.7) can be written in

a simplified form as

P (r)dr = lim
m→∞

exp[−
a1
2
(
r

m
)γ1{2Hγ1−1

m−1 +m−(1−γ1)}]a1r
−(1−γ1)dr (3.8)

Where H
(γ1−1)
m−1 is the generalized Harmonic number[11]. When we take the

limit m→ ∞, we get

lim
m→∞

Hγ1−1
m−1

mγ1
=

1

γ1
, 0 < γ1 < 1. (3.9)

Using equation (3.8) and (3.9) we obtain the following results for return

interval distribution

P (r)dr = a1r
−(1−γ1)e−(a1/γ1)rγ1dr (3.10)

For case(2) : nx < r <∞

Now in case(2) we will again follow the same kind of procedure that we

have followed earlier to solve our problem in case (1) but the difference will

start coming into the picture from equation (3.5) onwards. As we recall

equation(3.5) is:

Pnoex(r) = lim
m→∞

m−1
∏

j=0

(1− h1(j)).

16



But now r is of length greater than nx. Hence in place of equation(3.5) we

have to use a new equation which reflects the problem that we are trying to

solve in case(2). Now, the correct equation will be

Pnoex(r) = lim
m→∞

[

λ
∏

j=0

(1− h1(j))

m−1
∏

j=λ+1

(1− h2(j))] (3.11)

where,

1− h1(j) = 1−
a1r

2m
(
r

m
)−(1−γ1)[(j + 1)−(1−γ1) + j−(1−γ1)]

and

1− h2(j) = 1−
a2r

2m
(
r

m
)−(1−γ2)[(j + 1)−(1−γ2) + j−(1−γ2)]

We require the probability P (r)dr that given an extreme event at t = 0,no

extreme event occurs in (0, r) and an extreme event occur in the infinitismal

interval r+dr. this will be simply the product of Pnoex(r) with the probability

Pex(r). This can be written as

P (r)dr = Pnoex(r)Pex(r)dr (3.12)

now use equation(3.11) and equation(3.2) we can write equation(3.12) as

P (r)dr = lim
m→∞

[(1− h1(0))(1− h1(1))....(1− h1(λ))

×(1 − h2(λ+ 1))(1− h2(λ+ 2))....(1− h2(m− 1))]

×(a2r
−(1−γ2))dr (3.13)

equation(3.13) can also be written as:

P (r)dr = lim
m→∞

[[(1− h1(0))(1− h1(1)).....(1− h1(λ))]

17



×
[(1 − h2(0))(1− h2(1))....(1− h2(λ))....(1− h2(m− 1))]

[(1− h2(0))(1− h2(1))....(1− h2(λ))]

×a2r
−(1−γ2)dr

which is equivalent to writing:

P (r)dr = C lim
m→∞

[
m−1
∏

j=0

(1− h2(j))]a2r
−(1−γ2)dr (3.14)

where C is:

C = lim
m→∞

[(1− h1(0))(1− h1(1))....(1− h1(λ))]

[(1− h2(0))(1− h2(1))....(1− h2(λ))]
(3.15)

repeating the same kind of calculations that we have done for case(1) we can

write:

P (r)dr = C lim
m→∞

exp
[

−
a2
2
(
r

m
)γ2{2Hγ2−1

m−1 +m−(1−γ2)}
]

a2r
−(1−γ2)dr (3.16)

again using equation(3.9) we can show that:

P (r)dr = Ca2r
−(1−γ2)e−(a2/γ2)rγ2dr (3.17)

So final results for return interval distribution for extreme events are

P (r) =















(a1r
−(1−γ1)e−(a1/γ1)rγ1 ) for 0 < r < nx

Ca2r
−(1−γ2)e−(a2/γ2)rγ2 for nx < r <∞

(3.18)

In equation(3.18) there are three unknowns a1,a2 and C. To solve for these

values we can use three equations. First of this is the normalization equation:

∫

∞

0

P (r)dr = 1. (3.19)

We will get second equation by normalizing 〈r〉 to unity

∫

∞

0

rP (r)dr = 1 (3.20)
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and the third equation will be obtained using continuity condition for equation(3.2)














a1r
−(1−γ1) = a2r

−(1−γ2) at r = nx

a1n
−(1−γ1)
x = a2n

−(1−γ2)
x

(3.21)

now using all three equations given above, we can find values of a1,a2 and C

in terms of γ1,γ2 and nx

using equation(3.19):
∫

∞

0

P (r)dr =

∫ nx

0

a1r
−(1−γ1)e−(a1/γ1)rγ1dr+

∫

∞

nx

Ca2r
−(1−γ2)e−(a2/γ2)rγ2dr = 1

This integral can be done by substituting t = e−(a1/γ1)rγ1 . This leads to a

simple equation

Ce−(a2/γ2)n
γ2
x = e−(a1/γ1)n

γ1
x . (3.22)

using equation(3.20):
∫

∞

0

rP (r)dr =

∫ nx

0

ra1r
−(1−γ1)e−(a1/γ1)rγ1dr+C

∫

∞

nx

ra2r
−(1−γ2)e−(a2/γ2)rγ2dr = 1

to solve the above integral we should use integration by parts, after a very

lengthy solving we will end up with not so pretty equation given below:

C(γ2/a2)
1/γ2

nxE γ2−1

γ2

(nγ2
x )

γ2
− (γ1/a1)

1/γ1
nxE γ1−1

γ1

(nγ1
x )

γ1
= 1 (3.23)

Here En(x) =
∫

∞

1
e−xt

tn
dt =

∫ 1

0
e−x/ηη(n−2)dη

En(x) is known as exponential integral function.

Now using equation(3.21), (3.22) and (3.23), we can solve for values of

a1 ,a2 and C. Since there are three variables and three equations we can get

analytical solutions, but the form of equations is very complex. Hence, we

prefer to solve them numerically. Hence with the known values of γ1, γ2 and

nx, we can obtain the corresponding values of a1,a2 and C.
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Chapter 4

Simulation results

In previous chapter, we have solved our problem of return interval distri-

bution analytically. To support those analytical results we would like to

mention a model which will artificially generate a time series with different

scaling exponents. The main idea behind this model is based on the discus-

sions presented in in chapter(2)

Before describing our model we would like to mention that there are variety

of models proposed to generate time series with two different exponents [10].

Quite similar to these other models, we also use use fractional differencing

concept.

What we needed in our project work was the return interval distribution of

time series, so our main focus is on return intervals, not on the time series.

So we compromise just a bit with the model to generate time series within

our specific needs.

Model described by Boris Podobnik[10] was taking almost sixteen hours to

complete one simulation and if we want to generate an ensemble of hundred

time series, it will take a really long time and hence it will be computationally

20



very expensive. Hence we will use a different model which takes significantly

less time and also generates time series with two different scaling exponents.

Next we will discuss the model that we have used to generate the time series.

Step 1:

set the length of time series, say, l = 105.

Step 2:

generate a series of random numbers yi i = 0......(l−1) which follow gaussian

distribution with mean 0 and variance 1

Step 3:

generate a series of coefficients defined as:

Cα
i =

Γ(i− α)

Γ(−α)Γ(i+ 1)
= −

α

Γ(1− α)

Γ(i− α)

Γ(i+ 1)

α =















α1 for 0 < r < nx

α2 for nx < r <∞

(4.1)

Both α1 and α2 belong to the interval (−0.5, 0)

The asymptotic behaviour of Cα
i for large i can be written as

Cα
i ≃ −

α

Γ(1 − α)
i−(1+α) for i≫ 1

Step 4:

Now, get a series yαi using yi and C
α
i according to the relation

yαi =

i
∑

j=0

yi−jC
α
j i = 0.....(l − 1) (4.2)

When we do DFA on the series yαi , we will obtain the figure given below

which shows that the generated time series has two DFA exponent (two
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different scaling exponent). This was the desired characteristic for the time

series that we want to generate. So for the model described above according

to equation(4.2) if we put nx = 30 and use two different values of α let

say α1 (for 0 ≤ i ≤ nx) and α2 (for nx ≤ i ≤ (l − 1)), we can generate

a time series with two different scaling exponents. After getting the time

series we will apply DFA analysis on the time series. If we look at the DFA

figure given below we will find that there are two different slopes and the

crossover location of slope is consistent with the crossover location that we

have supplied to generate the time series (crossover location is 2nx)[10] Now

0 1 2 3 4 5 6
log (n)

0

1

2

3

4

lo
g 

F(
n)

DFA analysis of time series

crosso
ver  r

egion

Figure 4.1: DFA of time series with nx = 30,α1 = 0.61 and α2 = 0.78

since we have the time series in hand and we also know the autocorrelation

exponents γ1 = 0.78 and γ2 = 0.44(use relation γ = 2−2α,here α is the DFA

exponent...also cite the paper for this relation), we can move on to calculate

the return interval distribution of extreme events for this time series. In
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chapter(1) we have already described how we are going to calculate the return

interval distribution for the time series. We will use the same approach here

as well. If we notice the Figure(4.2) we see that there is a breakpoint in

-5 -4 -3 -2 -1 0 1 2
ln (R)

-8

-7

-6

-5

-4

-3

ln
 P

(R
)

segment 1

segm
ent 2

break point

Figure 4.2: return interval distribution of time series with nx = 30 and

q = 2.2 and R is the scaled return interval defined as r/〈r〉. Points represent

numerical data, line represents fitting of Equation(4.3)

the figure at R = nx/〈r〉 (for the specfic example shown above the value of

〈r〉 is 65 units) So we can see that there are two segments in return interval

distribution figure; first segment contains all those return intervals for which

r < nx and the second segment contains the return intervals for which r > nx.

The return interval distribution figure that we have shown above is the result

of our analysis on an ensemble of hundread time series. This is done to avoid

the excessive fluctuation for the return interval distribution calculation. Next

we have tried to fit both the segments of return interval distribution with a
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curve of the form,

P (r) = ar−(1−γ)e−(c/γ)rγ . (4.3)

These fits are shown in Figure(4.3(a)) and Figure(4.3(b)). One can raise a

quesition about equation(4.3) that why should two different values a and c

be used, why not one single value a or c ? The explanation for the ques-

tion is that since return interval distribution also follow long memory and we

have taken the assumption that return intervals are completely uncorrelated.

Hence, a significant difference will arise between our numerical and analytical

results. Considering the long memory dependence of return intervals will be

a problem in itself and we are not going to solve that issue in this report. So

in our results, we assume that return intervals are completely uncorrelated.

One more problem with the equation(4.3) is that the γ values are not com-

pletely consistent with the γ values based on the DFA exponents of the time

series. There are two possible cause for this inconsistency:

(1) There is a transition region for the crossover, ideally the transition should

be sharp enough to get better results. We can’t control the adverse effect of

this problem on our results.

(2)We are not able to understand what is the effect of different threshold

values(q) on the curve described by equation(4.3).

So the main conclusion that we can derive from this section is that both the

return interval segments follow a distribution which is of the form equation(4.3).

We can say that return interval distributions still follow a form which con-

tains product of power law and a stretched exponential. These results are

kind of same as results shown in Santhanam et,al(cite his reference here),

the only difference is the apperance of a break point which is consistent with
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Figure 4.3: Return interval distribution of long memory time series with

two scaling exponent. Circle represents numerical simulations,broken line

represents analytical results
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the crossover in DFA figure. In next section we will generate a long memory

probability process with two scaling exponents. This closely follows the the-

oretical assumptions and hence we can expect a better agreement with the

analytical results.
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Chapter 5

Long memory probability

process with two scaling

exponents

In previous section, we have seen that our numerical results are deviate to

some extent from our analytical results. One of the reason that we have sug-

gested for this discrepancy is the presence of long memory in return intervals.

So if we somehow manage to get rid of this problem our analytical results

should be consistent with the numerical results. Now we will try to numer-

ically simulate the probability process in equation(3.2), we first determine

the constants a1 and a2 by normalizing it in the region kmin = 1 and kmax.

Using equation(3.2) we can set the normalization condition,

∫ kmax

1

Pex(r)dr =

∫ nx

1

a1r
−(1−γ1)dr +

∫ kmax

nx

a2r
−(1−γ2)dr = 1 (5.1)

except this normalization condition we will also use the continuity condition

3.21 to calculate the values of a1 and a2.
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After solving equation(3.21) and (5.1) the values of a1 and a2 are given below.

a1 =
1

[n
γ1
x

γ1
− 1

γ1
+ k

γ2
maxn

γ1−γ2
x

γ2
− n

γ1
x

γ2
]

(5.2)

a2 =
1

[n
γ2
x

γ1
− n

γ2−γ1
x

γ1
+ k

γ2
max

γ2
− n

γ2
x

γ2
]

(5.3)

So now we have the values of a1 and a2,we can use the probability distribution

given below.

Pex(r) =















a1r
−(2α1−1) = a1r

−(1−γ1) for 1 < r < nx

a2r
−(2α2−1) = a2r

−(1−γ2) for nx < r < kmax

(5.4)

where r = 1, 2, 3...... Now generate a random number ξr from a uniform

distribution at every r and compare it with the value of P (r). A random

number is accepted as an extreme event if ξr < P (r) at any given value of r.

If ξr ≥ P (r), then it is not an extreme event. Using this procedure we can

generate a series of extreme events which follow equation(5.4). Now we will

calculate the return interval distribution after scaling it by average return

interval.

In the Figure(5.1) we have two segments for return interval distribution.

According to the result shown in equation(3.18), we can fit both of these

segments. In equation(3.18) we have three constants a1, a2 and C, we have

already solved for the values of a1 and a2 in equation(5.2) and equation(5.3).

To calculate the value of C, we will use the normalization condition for total

probability,
∫ kmax

1

P (r)dr =

∫ nx

1

P (r)dr +

∫ kmax

nx

P (r)dr = 1

=

∫ nx

1

a1r
−(1−γ1)e−(a1/γ1)rγ1dr +

∫ kmax

nx

Ca2r
−(1−γ2)e−(a2/γ2)rγ2
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Figure 5.1: return interval distribution of long memory probability process

for γ1 = 0.1,γ2 = 0.5,nx = 50 and kmax = 1000, points represent numerical

resuts, line represents analytical results given in Equation(3.18)

On solving the integrals given above we will get an equation containing a1,

a2 and C.

[e−(a1/γ1) − e−(a1/γ1)n
γ1
x ] + C[e−(a2/γ2)n

γ2
x − e−(a2/γ2)k

γ2
max ] = 1 (5.5)

If we use equation(5.2), (5.3) and substitute the values of a1 and a2 in

equation(5.5), we will get C in terms of nx, γ1 and γ2. Since the equa-

tions describing C, a1 and a2 are of very complex form, it will be better to

solve them numerically using the values of γ1, γ2 and nx. As we have seen

in the Figure(5.2(a)) and Figure(5.2(b)), we are able to fit both of these seg-

ments according to results shown in equation(3.18). But if we inspect these

figures closely we will find that for first segment the the actual fitting is not

a1r
−(1−γ1)e−(a1/γ1)rγ1 , instead the fiting is something like ar−(1−γ1)e−(b/γ1)rγ1 .
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So for this probability process we need to explain,why the return interval

distribution expression of segment(1) have two different constants a and

b(inplace of one single constant a1 according to equation(3.18)). Accord-

ing to equation(5.4), the minimum size of return interval possible is 1 unit.

If we do scaling on this by the average return interval 〈r〉 then the scaled

minimum return interval will be 1/〈r〉. So in equation(3.19) and (3.20), we

should replace the lower limit of integral by 1/〈r〉 in place of 0. It also reflects

the general idea that all power laws in practice have a lower bound. So the

replacement of lower limit in the integrals will lead to different constants a

and b instead of a single constant a1.
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Chapter 6

Conclusion

We have studied the distribution of return intervals for long memory process

with two different scaling exponents. We have obtained an analytical ex-

pression for the return interval distribution and verified it with simulations.

We have shown that for a long memory time series with two different scaling

exponent there will be a crossover point in the return interval distribution.

We have shown that if a time series has different scaling exponents, then this

is also reflected in the return interval distribution. For each scaling exponent

there will be a corresponding segment in the return interval distribution and

the common thing about all the segments is that all of them still follow a

distribution which is the product of a power law and stretched exponential.

The only difference is the scaling exponent that is going to appear for dif-

ferent segments. The previous studies in the field of extreme events mainly

focus on time series with single scaling exponent although many of the time

series observed in nature contain more than one scaling exponent. So the

results that we have shown in this report could help us deal with real life

series more accurately. Although the results shown in this report are quite
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encouraging, there are a many issues which are needed to be resolved for

much better analysis; (a) the model that we have used to generate time se-

ries with more than one scaling exponent need a fine tuning so that we can

test our analytical results more accurately, (b) we should also think of the

effects of long memory in return intervals itself. Future research in this field

should address some of these issues.
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