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Abstract

Stochastic Synchronization in uncoupled oscillators is a well studied phenomenon for

many naturally occuring oscillators. The idea of this phenomenon is quite counter-intutive

since in this process, introduction of noise in a dynamical system brings about order and

synchrony. The basic idea is that when two uncoupled oscillators are undergoing their

cycles and are subjected to some noises coming from common sources and thus having

a correlation, they can tend to synchronize due to the perturbations of the correlated

noises. The theory of stochastic synchronization is based on the concept of Phase Response

Curve (PRC) which is the charecteristic of a given oscillator. It has been studied many

times through numerical and experimental methods in simple oscillators but has not been

much explored for the bursting oscillators. In this study, I have tried to investigate the

phenomenon of stochastic synchronization in Hindmarsh Rose (HR) oscillator which is a

basic model type of neuronal bursting oscillators. This class of oscillators, called bursters,

is complicated one as the system alternates between oscillations and stable �xed points.

The aim of this project was to compute an accurate Phase Response Curve of HR using

di�erent methods and then to use it to simulate the noise perturbed HR oscillations and

�nally trying to determine wether the stochastic synchronization is exhibitted in HR or

not and if not, what could be the possible reasons.
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Chapter 1

Introduction

Stochastic e�ects on dynamical systems are known to lead to counter-intuitive behaviors

unpredictable by deterministic theory. They seem to increase the orderly behavior in

certain dynamical systems in several instances. These e�ects are counter-intuitive because

any addition of noise into a dynamical system is generally seen as having a detrimental

e�ect on the coherence and order of the system. It has been studied that a common noise

source can synchronize oscillators that are uncoupled (see [1]). When two non-interacting

oscillators are subjected to the same noisy forcing simultaneously, they tend to synchronize.

Many studies were undertaken in this direction to study this stochastic synchronization

[20-23]. In this study I have tried to delve into the stochastic e�ects on the uncoupled

bursting oscillators.

1.1 Phase formulation of an oscillator

A bursting oscillator is a many variable system whose dynamics can be quite complex to

study [17,18]. The study of its oscillations becomes much simpler when we consider the

oscillator through phase formulation [19].

Consider a many variable oscillating system in a stable limit cycle Γ [13]. Let the

system be governed by system of ordinary di�erential equations

x′ = f(x), x ∈ Rn, n ≥ 2

then each point x ∈ Γ is associated with a unique phase θ. Suppose the time period of

the oscillation is T and at time t = 0 the system is at x0on the limit cycle. The phase is

actually the mapping of the points on the phase trajectory of the limit cycle of the system

to a scalar variable θ ∈ [0, 1). This mapping is characterized by:

dθ

dt
= ω

6
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where ω = 1/T . Now if x0 on the limit cycle is taken as a reference point i.e. θ(x0) = 0

and x(t) = x, the phase of the point x on the limit cycle will be

θ(x) = t/T mod 1

Figure 1.1: Schematic representation of the phase of an oscillator and its limit cycle.

This mapping can be extended to the points on the basin of attraction of the limit cycle.

For a point x0 on the limit cycle with phase θ = θ(x0) and with subsequent trajectory x(t),

a point y0 in the neighborhood of x0 in the phase space, with its subsequent trajectory

y(t), has the asymptotic phase ϑ(y0) = θ if :

lim

t→∞
‖ x(t)− y(t) ‖= 0

for t → ∞. The set of all such points y0 is called the isochron of phase θ or the isochron

[28] of x0.
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Figure 1.2: Points on the limit cycle and the neighboring points of same phase θ form an
isochron.

When we are studying synchronization, it is convenient to study the dynamics of the

phase of an oscillator. The oscillator is then reduced to a single variable problem. Here, I

studied the dynamics of the oscillator under stochastic �uctuations. Hence to incorporate

the stochastic noise in the dynamical system I used the stochastic di�erential equation

(SDE) [8,24] as described in Galan et al. [1] :

dθi
dt

= ωi + Z(θi)ηi(t) (1.1)

Here, θi(0) = θi(2π), θi is the instantaneous phase of the oscillator i, ωi is the average

regular bursting frequency, Z(θ) is the in�nitesimal Phase Response Curve (PRC) of the

oscillator, and η(t) are the zero mean, white noise or Brownian noise stochastic inputs

with 〈ηi(t)ηi(t− τ)〉 = σ2
i δ(τ), σi being the noise amplitude of the oscillator i and δ the

Dirac delta function. The Brownian noise not have any temporal correlation but when

there are noises from distinct sources, noise can be spatially correlated ie. noise acting on

two di�erent oscillators can have a positive cross correlation such that 〈ηi(t)ηj(t)〉 = cδ(0),

for some oscillators i and j. Here, the correlation coe�cient of the inputs is r = c/σiσj .

This correlation is due to a common sourse of noise among the two oscillators out of many

di�erent sources.

Using this phase formulation of the oscillator instead of direct dynamical equations we

simplify the study of its dynamics and synchronization. To study the e�ect of noise inputs

on the individual oscillators as well as on the group of oscillators as a whole, we need to

solve the stochastic di�erential equations for every oscillator, whose solutions would be the

time evolution of individual phases of the oscillators.
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1.2 Phase Response Curve

The e�ect of a perturbation on the phase an oscillator is measured by its Phase Response

Curve or the Phase Resetting Curve [4]. Suppose we perturb a dynamical system in its

limit cycle at point x0 ∈ Γ (limit cycle) having phase θ(x0) = θ and original time period of

the oscillator is T. Due to a weak perturbation, the system would typically get displaced

to some point in the basin of attraction of the limit cycle. For a weak perturbation, we

consider the system to fall back into the limit cycle (or close enough to be considered in

the limit cycle) during the completion of that cycle in which it was perturbed and hence

cross the isochron of θ(x0) after time T ′. Without any perturbation, it would return to

the same point after the time period T . The di�erence between T ′ and T is due to the

fact that the perturbation has shifted the system to a point y0 with phase θ(y0) = θ′. The

shift of phase due to perturbation is

∆θ = θ′ − θ

Figure 1.3: When the system is perturbed by ∆x , the phase is shifted as the system jumps
to another isochron.
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Now, since after time T ′ it returns to the the same phase θ whereas if the system is

unperturbed the phase would return to θ after time T . The phase displacement for both

cases, perturbed and unperturbed, can be equated as

θ′ + ωT ′ = θ + ωT

θ′ − θ = ωT − ωT ′

and thus,

∆θ = 1− T ′

T
(1.2)

Figure 1.4: When the system is perturbed at phase θ the time taken to return to phase θ
is T ′ , whose relation to time period T is displayed in the diagram. θ′ + ωT ′ = θ + ωT .

This phase shift ∆θ is a function of x, the point on the limit cycle where the pertur-

bation is given as well as the perturbation itself. Hence this function ∆θ(x) is called the
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Phase Response Curve.

Positive phase response (phase shift) indicates phase advancement and negative phase

response indicates phase delay. Since θ(x) is a scalar de�ned over the limit cycle and the

neighboring points we can de�ne for in�nitesimally small perturbation i.e. ‖ 4x ‖→ 0 ,

the in�nitesimal phase response [2,4] is given by:

∆θ(x) = ∆x · ∇θ(x) =

〈
(∆x1, ....,∆xn), (

∂θ

∂x1
(x), ...,

∂θ

∂xn
(x))

〉
(1.3)

Here we call ∆θ(θ(x)) as Phase Response Curve (PRC) and ∇θ(x) as in�nitesimal PRC

or iPRC, then we have

PRC = ∆x · iPRC (1.4)

When the perturbation is along only one variable, such as V, the trans membrane

potential of the system,

∆x = (∆V, 0, 0....0)

then the phase response becomes

∆θ(x) = ∆V
∂θ

∂V
(x) (1.5)

To �nd the iPRC ∇θ(x) , there is a direct analytical method called the adjoint method.

This method is encoded in XPPaut using Graham Bowtell algorithm [7]. There are other

two numerical methods developed and explored in this study :

1. The direct perturbation method

2. The pulse method

1.3 Hindmarsh-Rose neuronal bursting model

The Hindmarsh Rose model is a prototypical model of neuronal bursting which was orig-

inally introduced to model the neurons of the pond snail Lymnea and the R15 neuron of

the mollusc Aplysia [11]. The HR equations are :

V ′ = n− aV 3 + bV 2 − h+ I (1.6)
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n′ = c− dV 2 − n (1.7)

h′ = r(σ(V − V0)− h) (1.8)

The parameter set used here is a = 1, b = 3, c = 1, d = 5, r = 0.001, σ = 4, V0 =

=1.6, I = 2, as described in Sherwood et al. [2] which produces a bursting periodic orbit

with nine spikes per burst (Fig.(1.5)). V is the membrane voltage of the neuron and I is

the applied current. Variable h is a slow variable here and the alternate shifts between

quiescence and spiking depend upon its dynamics. Parameter r represents the seperation

of the time scales between V and h (for further details see [2] or [11]). A typical one cycle

of an HR bursting looks like the one shown in Fig.(1.5).
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a)

b)

Figure 1.5: Single cycle of neuronal bursting oscillation in HR model in which V oscillates
in alternate active and quiescent phases (a) and the limit cycle in the 3-D space (b) are
shown. These �gures have been plotted using Matlab.

Here the time has been rescaled to make the time period 1. Thus Fig.(1.5, (a)) e�ec-

tively plots voltage as a function of phase rather than time. This was done since we want
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to calculate PRC as a function of phase of the system in which it is perturbed.



Chapter 2

Computation of PRCs

To study the e�ect on an oscillator by perturbations in general and particularly noise in this

case, we require the PRC of the oscillator. In this part I tried to compute PRC and iPRC

of HR bursters. There is an analytical method called the adjoint method [4,6,26,27], to

compute the iPRC of any oscillator. The adjoint method has its own limitations [29]. Hence

I also tried to develop some numerical strategies using the de�nition of PRC (Eq.(1.2))

and relation between iPRC and PRC (Eq.(1.4)), calling them Direct Perturbation method

(or Impulse Method) and Pulse method. I tried to compute an accurate and consistent

iPRC of one simple bursting oscillator which is Hindmarsh-Rose oscillator through three

di�erent methods. By consistency, I mean that the iPRCs computed through the di�erent

methods must agree amongst each other and hence must be accurate and trustable.

2.1 Adjoint method for the calculation of iPRC:

The description of the adjoint method here is taken from in Brown et al. [4]. Consider a

non-linear dynamical n-dimensional system

dx

dt
= F (x)

Suppose the system is in its stable limit cycle and is perturbed by a small quantity ∆x

at a point xγ in its trajectory (see Fig.(1.3)). Applying Taylor's expansion in the above

equation and then the linear approximation for small perturbation, we get an equation for

the evolution of the perturbation of the system:

d∆x

dt
= DF (xγ)∆x

here, DF is the Jacobian matrix of F .

15
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Now, since every point in the trajectory and in the neighborhood of the trajectory, x,

is mapped into a scalar quantity called phase i.e. θ(x), we can denote the shift in the phase

due to perturbation

∆θ = θ(x)− θ(xγ)

= ∇θ |xγ ·∆x

Di�erentiating the above equation with time,

d∆θ

dt
=
d∇θ |xγ
dt

·∆x+∇θ |xγ ·
d∆x

dt
= 0

and the phase shift ∆θ is constantly maintained throughout the trajectory. Hence

d∇θ |xγ
dt

·∆x = −∇θ |xγ ·
d∆x

dt

= ∇θ |xγ ·(DF |xγ ∆x)

therefore,

d∇θ |xγ
dt

·∆x = (DF † |xγ ·∇θ |xγ )† ·∆x (2.1)

DF † is the adjoint of DF (just transpose in this case since DF is real). Now, since

Eq.(2.1) holds for arbitrary ∆x we get :

d∇θ |xγ
dt

= (DF † |xγ ·∇θ |xγ ) (2.2)

Also, noting that

ω =
dθ

dt
= ∇θ · dx

dt
= ∇θ · F (x)

where ω is the oscillation frequency, we get one boundary condition for solving Eq.(2.2)

∇θ |xγ ·F (x) |xγ= ω (2.3)

at time t = 0. It gives 1 of the n required boundary conditions. Remaining conditions

arise from the constraint of periodicity of the solution with time period T
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∇θ(x(t)) |t=0= ∇θ(x(t)) |t=T (2.4)

Adjoint method is implemented in XPPaut to solve the Eq.(2.2) using Eq.(2.3) and

Eq.(2.4) as boundary conditions and obtain the solution for iPRC ∇θ(xγ). In XPPaut,

this adjoint method is inbuilt to compute the iPRC [7]. If for a system ω 6= 1, the PRC

produced by XPP (say we call it QXPP ), is di�erent from the iPRC ∇θ by a scaling factor
equal to ω, that is:

∇θ = ωQXPP (2.5)

Results with Adjoint Method

Fig.(2.1) shows the iPRC of HR bursting using the adjoint method. This is actually the

V component of the solution ie. ∂θ
∂V vs phase.

Figure 2.1: In�nitesimal PRC of neuronal bursting in HR model

When this method was used to compute iPRCs of islet bursters [5] (not shown), the

result it produced was very low amplitude (upto order 1e-6) in a major portion, even in the

active region, and at few points it steeply rose to peaks of values as high as 1000. Moreover,

as the iPRC was calculated with a single cycle of the same burster with the initial and the

�nal point changed, that is to say with the reference point θ = 0 shifted to some other
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point, the peak values also changed. This should not be the case if the calculated iPRC

was correct. This meant that atleast the peaks in the islet iPRCs were not being calculated

accurately. One reason could be the numerical limitations of the software and the machine

used itself. The time step used in the solving algorithm by XPP might not have been small

enough to solve for the peaks accurately. Hence, before accepting the solution for HR iPRC

as an accurate iPRC I had to verify its validity with respect to Eq.(1.4) which relates the

observed phase response due to a perturbation to the iPRC and the perturbation. To

obtain the phase response curve due to a given perturbation, I explored two numerical

approaches :

1. The direct perturbation method, or, the impulse method

2. The pulse method

2.2 The direct perturbation method

Perturbation to any of the variables of a dynamic system causes the phase of the system

to shift. This phase shift is given by the PRC as we have seen earlier. If this perturbation

occurs within an in�nitesimal time, the perturbation would be said to caused by an impulse.

Suppose the perturbation is caused due to an impulse to one of the system variables, say

membrane voltage V , so as to shift the phase of a system instantaneously, then this can

be expressed as

V ′ = f(V ) + Iδ(t− t∗) (2.6)

Here, I is the amplitude of the impulse applied (current in this case) at time t*, V

is the membrane voltage and δ is the Dirac-delta function. The perturbation ∆V would

be the di�erence between the V value before the impulse and after the impulse. In this

case, the perturbation ∆V = I. From section 1.2, we see that assuming the perturbation

is weak, the PRC would be given by Eq.(1.2)

∆θ = 1− T ′

T

By weak perturbation, here it is meant that the system falls back into the limit cycle or

comes close enough to be called in the limit cycle within one time period of perturbation.

Thus by simulating this impulse perturbation in an oscillating system having time period

T , if we record the altered time period T ′, we can get the PRC.



CHAPTER 2. COMPUTATION OF PRCS 19

2.2.1 Determining the size of a perturbation useful for computing iPRC

One condition for the appropriate perturbation for this method of computing PRC is that

it should be weak. One more condition is required to be ful�lled for computing the iPRC

from the PRC obtained through this method and that is given by Eq.(1.4). The PRC

must be linearly related to ∆V and iPRC. Thus by computing PRC and multiplying it

with 1
∆V must give the iPRC if ∆V is small enough for linear approximation. Hence an

appropriate size of perturbation must be weak as well as valid for the linear approximation.

The following procedure was followed to determine the appropriate perturbation size.

To simulate the impulse at a phase point θ numerically, I used XPP integrator. First I

simulated the dynamical system with appropriate parameters and an initial conditions for

a long duration so as to pass the transient period and take the system to the stable limit

cycle where the oscillations become uniform in time. Then I set the point of maximum of

V as an initial condition with θ = 0 at maximum V . Starting with this as an initial point

I simulated the system upto to the phase point θ. At that point, I changed replaced V by

V + ∆V and continued the simulation from that perturbed point upto the point of next V

maxima. Thus by picking the phase point of maximum of V after the perturbation I could

obtain the altered time period T ′ and hence ∆θ. It is because of this direct change of V at

a point by adding ∆V for simulation of impulse, this method is called direct perturbation

method or the impulse method. Fig.(2.2) shows this schematically.

Figure 2.2: Graphical representation of the direct perturbation method to compute PRC

I obtained phase response with varying perturbation size at few phase points. Then

I plotted the phase response with the magnitude of perturbation ∆V at few given phase
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points. For ∆V of the order 1e-3, I obtained a linear plot with slope approximately equal

to the iPRC obtained at that point by the adjoint method, as shown in Fig.(2.3). This

was in agreement with Eq.(1.4). This con�rmed that the perturbations used here were

the appropriate for the method. This also veri�ed the validity of the iPRC from adjoint

method in this case as well as the PRC obtained from the direct perturbation method.

Figure 2.3: The plot between phase response and ∆V is linear as expected from (Eq.1.4).
This validates the range of perturbations used as weak perturbations and can be used
to calculate the PRCs and iPRCs. The two phase points shown here, θ = 0.3022 and
θ = 0.2419, are the points where there are peaks in the iPRC (Fig.(2.1)). The iPRC value
given by the slope is close to the one given by adjoint method.

The phase points in Fig.(2.3) are of that of the peaks in the adjoint iPRC. The relative

error in impulse method iPRC with respect to the adjoint iPRC must be maximum for

these peak points since the absolute values of iPRC are maximum there. Since the impulse
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method is showing so less deviation from the adjoint iPRC even at the peaks (as shown in

the �gure), the relative error is expected to be very low throughout the iPRC. Thus using

this perturbation size, I computed the PRC and the iPRC for HR.

2.2.2 Results for HR iPRC by Direct Perturbation method.

Using Matlab, I computed the PRC using direct perturbation at 100 points within one

cycle of oscillation with the weak perturbations (Fig.(2.4)). For this I used the Matlab

integrator 'ode23s' instead of XPP for simulating the system, with relative tolerance 1e-9

and absolute tolerance 1e-9. PRC through direct perturbation was multiplied by a factor

of 1
∆V to get the iPRC (Eq.(1.4)) and was then compared with the adjoint iPRC. Using

this method, iPRC was obtained through the di�erent PRCs corresponding to di�erent

∆V values.
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a)

b)

Figure 2.4: iPRCs through the direct perturbation and the adjoint method are compared
and there is remarkable agreement between them. (a) ∆V = 0.002, (b) ∆V = 0.05. This
shows that the method is valid even for perturbation order of 1e-2 mV

The iPRCs thus obtained showed clear agreement with the iPRC through adjoint

method even for high order of perturbation magnitude of 1e-2 mV. Henceforth this method

can be used to obtain the PRC of any oscillator but within the appropriate size of pertur-

bation.

2.3 The pulse method

Instead of direct perturbation at desired points, we can also perturb the system by giving a

sharp pulse at those points. By sharp pulse here it is meant that the pulse must be very thin

and with a high amplitude. In other words a a sharp pulse is a numerical approximation
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Figure 2.5: Graphical representation of the pulse method to compute PRC

of the delta function mentioned in the earlier section. The process of calculating the PRC

is same as that in the direct perturbation method, only the process of perturbing the

system is di�ering. Instead of directly changing V , I gave a rectangular current pulse

of very small width and �nite amplitudes, at di�erent time points to get the respective

PRCs in XPP. Here also, the maximum marks the beginning and the end of the cycle

(as shown in Fig.(2.5)) and the altered time period T ′, could be automatically picked by

stopping the simulation at the next maxima. This pulse method is the method closest

to the experimental method of �nding out the phase response in which a sharp current

pulse is given to the neurons [25]. In a way pulse method is more realistic simulation than

the adjoint method and the impulse method since direct perturbation or the Dirac-delta

impulse is not possible to be applied in the laboratory.

2.3.1 Determining e�ective ∆V by a pulse

The e�ective perturbation ∆V can not determined for this method using any direct rela-

tion. The impulse is not a delta-function, and hence there is no direct way to calculate

the e�ective value of the perturbation. Since ∆V , as we have seen earlier, is required for

obtaining the iPRC from the PRC, it is important to know its value. Following the de�ni-

tion of perturbation used previously, ∆V is the di�erence between the V values before and

after the instance of perturbation, I manually found the ∆V caused by the pulse directly

from the data generated by XPP integrator. This was done as follows. I ran the simulation
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for one period without any pulse and obtained the data series for V at all the time steps.

Time step size for integration was of 1e-6s. Then I simulated the period again with the

applied current pulse at a phase point with a small width and a �nite amplitude. I then

compared the data series obtained now with the previous one and found the di�erence at

the phase point corresponding to the termination of the pulse. For example if the pulse

was applied at 0.25 and the pulse width was 0.001, then ∆V was the di�erence between

the V values of both the series at point (0.25+0.001) 0.251. This process I repeated for

several pulse amplitudes and applied at di�erent phase points. This exercise showed that

the e�ective ∆V due to a pulse of a given amplitude was uniform all over the time period

wherever I gave the pulse. Moreover this ∆V was proportional to the pulse amplitude, as

shown in Fig.(2.6).

Figure 2.6: E�ective ∆V due to di�erent pulse perturbations at di�erent phase points
are shown here. ∆V was computed by giving pulses at some phase points with di�erent
amplitudes and then �nding the di�erence of the V value at the end of the pulse with the
V value at the same phase if there was no pulse. This showed that the e�ective ∆V due
to a pulse of a given amplitude was uniform all over the time period wherever we give the
pulse. Moreover this ∆V was proportional to the pulse amplitude.

2.3.2 Results for HR iPRC by Pulse Method

Instead of computing PRC for each point singularly, we can automate the application of

pulse at di�erent phase points in a loop. This is done in XPP [7] by setting the phase

point of pulse application, say τ as a variable (which remains constant valued for a single

simulation run) and de�ning a range of values for initial value of τ . It runs the simulations

for every value of τ and compute phase response for every point. To obtain the iPRC,

the PRC is multiplied with 1
∆V as was done for the direct perturbation method. Below in
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Fig.(2.7) are the iPRCs computed for 3 di�erent pulse widths : 1e-6, 1e-5 and 1e-3. While

for thin pulses of 1e-6 and 1e-5 widths, the iPRCs coincide with that from the adjoint

method, the one for thicker pulse width of 1e-3 show some deviations at some regions.
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a)

b)

c)

Figure 2.7: The iPRCs computed through pulse method is compared with the adjoint
iPRC. The iPRCs by pulse method almost agree with adjoint iPRC. Though in (a), there
are deviations in some regions. This is due to the fact that the e�ective ∆V in (a) is quite
large for the in�nitesimal linear relationship of Eq.2.3. (a) pulse width = 1e-3, pulse height
= 1mV, (b) pulse width = 1e-5, pulse height = 10mV, (c) pulse width = 1e-6, pulse height
= 10mV.
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2.4 Conclusive Remarks

We have seen so far that for the study of perturbations in the phase dynamics of any system

we need to have an in�nitesimal Phase Response Curve of the system. We saw that the

iPRC and the PRC are related for small perturbations through Eq.(1.4). Using a known

analytical method to compute the iPRC called adjoint method, I tried to obtain the iPRC

by computing the phase response through di�erent numerical approaches which could be

used when the analytical method was not viable. These were based on the de�nition of the

PRC (Eq.(1.2)) and the relationship between PRC and iPRC (Eq.(1.4)). Those methods

produced results which were con�rmed by the known results on PRC of Hindmarsh-Rose

bursting oscillators. The perturbations used in the other numerical methods must be

within some range of orders of magnitude for getting accurate results and I succeeded in

�nding that range for the HR PRC. However this could not be achieved for pancreatic

islet bursters. It is rather a complex dynamical system with seven variables. The adjoint

iPRC could not be obtained using XPP as mentioned earlier. The iPRC it produced was

very low amplitude (upto order 1e-6) in a major portion, even in the active region, and at

few points it steeply rose to values as high as 1000. Moreover the results with this same

method on this same oscillator showed variations in the peak values for di�erent positions

of the reference point θ = 0. Even the other methods failed to produce results consistent

with each other. Using direct perturbation on islet bursters, the linear relation of Eq.(1.4)

was observed at few phase points but the iPRC did not agree with the adjoint one. The

pulse method provided a di�erent result altogether, with some iPRC values for every point

in the active phase whereas negligible iPRC for the quiescent phase. However, I obtained

a reliable HR iPRC which was to be used further.



Chapter 3

Studying the Stochastic

Synchronization numerically

In Galan et al. [1], the stochastic dynamics of a system of uncoupled neural oscillators

have been studied using the phase formulation which involves solving the SDE in Eq.(1.1)

dθi
dt

= ωi + Z(θi)ηi(t)

and hence generating the time series of the evolution of respective phases of the neurons

and then studying their statistical properties like the coe�cient of variation (CV) and the

output correlation of the two neurons. In the same study they applied stochastic theory and

determined the relevant statistical properties of the system by solving the Fokker-Planck

equations [8,9].

I used the �rst approach in the study of bursting oscillators. I set up a code for

solving the SDE using Euler Maruyama method [3,8]. I �rst tried to reproduce the results

published in Galan et al. to verify the validity of my codes and the algorithm used. In that

work, they had studied the two oscillator system of neurons, both of which receive noises

that are correlated to each other or in other words, spatially correlated noise. Based on

the two basic types of PRCs, there were two types of neurons studied :

Type I : Z(θ) = M(1− cos(θ)) and Type II : Z(θ) = Nsin(θ).

Here M and N are normalization constants used to make the absolute value of area

under the PRCs 1.

28
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Figure 3.1: Basic types of PRCs of the neural oscillators

I set up the codes in C as well as Matlab with the Euler-Maruyama method described

below.

3.1 Generation of Noise

I used the discretized Brownian Noise, also called White Noise [3], for all the simulations.

It is a time series in which di�erence between any two consecutive points is a random

variable with normal distribution with mean 0 and variance δt (time step). Suppose there

are N discrete points between time 0 to T and δt = T/N , we generate the Brownian Noise

series {Wi} such that

W0 = 0

Wi = Wi−1 + dWi

where dWi is an independent random variable of the form
√
δtN(0, 1). N(0,1) denotes the

normally distributed random variable with mean 0 and variance 1.

Spatially Correlated Noise : The properties of two spatially correlated white noises

η1(t) and η2(t) in Eq.(1.1) as stated in section 1.1 are :

〈ηi(t)ηi(t− τ)〉 = σ2
i δ(τ)

〈η1(t)η2(t)〉 = cδ(0)

for i = 1, 2, σi = noise amplitude, δ(τ) = Dirac delta function, and coe�cient of the

noises r = c/σ1σ2.



CHAPTER 3. STUDYING THE STOCHASTIC SYNCHRONIZATION NUMERICALLY30

Now, to generate two streams of discretized correlated white noise η1and η2 with the

above properties, there is a standard method which involves generating three independent

streams of white noise and then mixing them to obtain two streams of correlated noise of

desired cross correlation and noise amplitude as discussed in Gardiner [8]. I modi�ed the

method by using just two independent noise streams instead of three to get the correlated

noise. It helped greatly in reducing the load of running the codes on the memory as there

were many more computations to follow after the generation of noise. I �rst generated

two independent series of normally distributed random variables of the form
√
δtN(0, 1),

say {dW1} and {dW2}. In C++, I used the Box-Muller algorithm to convert uniform

distribution to normal distribution [12]. Then I obtained the correlated noises η1 and η2

with correlation coe�cient r and amplitudes σ1 and σ2 as follows:

η1 =
σ1

δt
dW1

η2 =
σ2

δt
(r � dW1 +

√
1− r2 � dW2)

The cross correlation of the above generated noise :

c = 〈η1η2〉 =
σ1σ2

δt2

〈
dW1 � (rdW1 +

√
1− r2dW2)

〉

=
σ1σ2

δt2
[r �
〈
dW 2

1

〉
+
√

1− r2 � 〈dW1dW2〉]

=
σ1σ2

δt2
[r � δt+

√
1− r2 � 0]

= σ1σ2r
1

δt

The auto correlation of the noise streams:

〈η1η1〉 =
(σ1

δt

)2
〈dW1 • dW1〉

=
(σ1

δt

)2
(
√
δt)2

〈
{N(0, 1)}2

〉
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=
(σ1

δt

)2
(
√
δt)2(1) =

σ2
1

δt

and,

〈η2η2〉 =
(σ2

δt

)2 〈
(r � dW1 +

√
1− r2 � dW2)2

〉

=
(σ2

δt

)2 〈
r2(dW1)2 + (1− r2)(dW2)2 + r

√
1− r2(dW1 • dW2)

〉

=
(σ2

δt

)2
{r2(
√
δt)2(1) + (1− r2)(

√
δt)2(1) + r

√
1− r2(

√
δt)2(0)}

=
(σ2

δt

)2
(
√
δt)2(r2 + 1− r2) =

σ2
2

δt

Hence the statistical properties of this discretised are retained in this discretization

with r being the input correlation coe�cient of the above generated noises and σ1 and σ2

are the noise amplitudes.

3.2 Solving the SDE using Euler-Maruyama (EM) method

A scalar, autonomous SDE like the one in Eq.(1.1) can also be written in the di�erential

form as

dθ(t) = f(θ(t))dt+ g(θ(t))dW (t) , 0 ≤ t ≤ T

Here, f and g are scalar functions and W is the Brownian function. We �rst discretize

the interval as described by Higham [3]. Let ∆t = T/L for some positive integer L and

τj = j∆t. Denoting θj = θ(τj), the Euler-Maruyama (EM) method takes the form

θj = θj−1 + f(θj−1)∆t+ g(θj−1)(W (τj)−W (τj−1))

The EM algorithm has low order of convergence (strong order of convergence 0.5, weak

order of convergence 1) and hence low accuracy [8]. This requires the ∆t to be very small.

However it serves as a simple and convenient method especially when complicated functions

are involved. Other more accurate methods like Milstein algorithm are cumbersome to use

since they require the derivatives of the functions as well.
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In my simulations, I used EM algorithm for setting up an SDE solving code. The

structure of the code is such that it �rst generates the white noise whose amplitude can

be changed and adjusted, and then it uses the EM method to solve the SDE Eq.(1.1) to

generate the time evolution series of the phases on every time step whose step size is ∆t.

I fed the Type 1 and Type 2 PRCs in my SDE solving code and obtained the solutions

for phase evolution which, when plotted with time look like the one given in Fig.(3.2).

This �gure is an example with Type 2 PRC.

Figure 3.2: Phase evolution of neural oscillator of Type 2 PRC is shown here. The noise
given to the oscillator is also shown in the �gure. Here the phase is wrapped at 2π rather
than 1.

3.3 Computing the Coe�cient of variation

Since I was studying the synchronizing e�ect of noise on a bursting oscillator, it was

important to measure the e�ect which a noise could bring upon the oscillations. Coe�cient

of variation (CV) is one appropriate index to gauge the magnitude of this e�ect. CV is the

measure of robustness of an oscillator to noise. Large CV values indicate strong deviations

from the regular oscillations ie. a low robustness and low CV indicates high robustness.

For su�ciently large number of cycles, if Ti is the time duration of ith cycle, then CV is

de�ned as:

CV =

√
〈T 2
i 〉−〈Ti〉2
〈Ti〉 ,

where numerator is the standard deviation of Ti and denominator is the mean.
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The other method to compute the CV in the same study of Galan et al. was through

the Fokker-Plank equations (FPE) which are partial di�erential equations (PDE) rather

than SDE.

In terms of Fokker-Plank solution as described by Galan et at. [1]

CV =

√
T2(0)−T 2

1 (0)

T1(0)

Where T1(θ) and T2(θ) are the temporal moments , calculated from FPE as:

−1 = ω
∂T1(θ)

∂θ
+
σ2

2
Z2(θ)

∂2T1(θ)

∂θ2
(3.1)

−2T1(θ) = ω
∂T2(θ)

∂θ
+
σ2

2
Z2(θ)

∂2T2(θ)

∂θ2
(3.2)

with boundary conditions T ′1(0) = T ′2(0) = 0 and T1(2π) = T2(2π) = 0, T1(θ) is the

meantime required to go from θ to the end of the cycle θ = 2π and T2(θ) − T 2
1 (θ) is the

variance.

I computed the Coe�cients of Variation (CV) of di�erent oscillators using the solutions

obtained from the SDE. The procedure I used to do this was the following: I extracted

out the wrapping points of the solution where the phase reaches the end of a period (2π

or 1, according to the scale for a given oscillator). They are represented by the peaks in

Fig.(3.3). The time intervals between the consecutive points are the time periods Ti for

each cycle.
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Figure 3.3: The coe�cient of variation was computed by picking the wrapping points
(peaks) of the phase and the intervals between the consecutive points them are the time
periods Ti. CV was then calculated using these Ti.

The accuracy of the SDE solution could be gauged by comparing the CVs obtained

through the SDE solutions with that obtained from FPE solutions (Eq.(3.1) and Eq.(3.2)).

I obtained the CV values from FPE solution, computed by Pranay Goel for Type 1 and

Type 2 PRCs as a function of noise amplitude σ and compared them with the CV values

I computed through SDE solutions with di�erent values of σ. The solution to FPEs were

computed using the Finite Element Method [10] using COMSOL [30]. To ensure the better

and more accurate results, I simulated the code up to su�cient number of cycles (T upto

the order of 1e3 cycles) with optimum size of time step for integration (∆t = 1e− 4). By

optimum here it is meant that the time step must not be quite large so as to decrease the

resolution and the accuracy of the solving algorithm, at the same time it must not be so

small so as to increase the data points and �ood the memory of the machine. In C and

C++, there are memory limitations which show 'Segmentation Error' when the memory

limit is surpassed. Hence after trying di�erent values for T and ∆t, and comparing the

results with the FPE results, I kept improving the results until I determined the optimum

value for ∆t and su�cient value of duration T .

The results ultimately showed reasonable agreement.
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Figure 3.4: CV vs σ as computed through SDE and through FPE show consistency with
each other. This con�rmed that the amount of data computed was su�cient and the time
step size used for the EM method was optimal.

These results were also in accordance with those produced in the Galan et al. [1] study.

Using the same procedure of solving SDE, I computed the CV values for the Hindmarsh

Rose oscillator as well (Fig.(3.5)).
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Figure 3.5: The CV vs σ plot for Hindmarsh Rose (HR) PRC shows a smoothly increasing
trend and the CV values are relatively higher as compared to Type 1 and Type 2.

Here we see that the CV values are quite high relative to the Type 1 and Type 2

oscillators. This means that the HR oscillators are far less robust to the noise than the

Type 1 and 2 PRCs even though the amplitude of the HR PRC (Fig.(2.1)) is quite low

except for the peaks in between. The HR oscillators are quite unstable with respect to

noise. This was one important aspect to know while studying the e�ect of noise on the HR

bursters. To visualize the e�ect of noise on the HR oscillator owing to its characteristic

PRC, here is the phase evolution plot of the HR oscillator when noise amplitude is 1

(Fig.(3.6)).
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Figure 3.6: The phase evolution plot for an HR oscillator qualitatively shows the distur-
bance which noise produces in its oscillation cycle. Though the PRC function has few and
sharp peaks (Fig.1.3), and major parts of it have very low values especially in the quiescent
phase. Yet there is considerable disturbance produced by the phase response of the active
part which can be seen in this �gure. The jagged region in the lower parts of each cycle
represents the active phase comprising of spikes in the PRC.

The �nite element method to solve the FPE for HR PRC could not be worked out due

the fact that the PRC function had sharp spikes (Fig.(1.3)). Hence owing to the small

mesh size required to incorporate the PRC function accurately, the memory limitations

were surpassed. Although from the Fig.(3.5) it can be asserted that the noise exercises

considerable e�ect on the oscillations of the HR neurons.

3.4 Input Correlation and Output Correlation

The core of this study was to see what happens when two uncoupled bursting oscillators

are subjected to spatially correlated noise. This spatial correlation is the crucial parameter

here. Hence we call the coe�cient of correlation r as de�ned in Chapter 1 as the Input

Correlation.

When studying any two uncoupled oscillators and their synchronization we need a

quantifying parameter. We choose it to be the cross correlation coe�cient, of the phases of

those two oscillators, ϕ1 and ϕ2. Analytically, it can be computed as described by Galan

et al. [1]
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R =

´ ´
Ω ϕ1ϕ2P (ϕ1, ϕ2)dϕ1dϕ2 −

´ ´
Ω ϕ1P (ϕ1, ϕ2)dϕ1dϕ2

´ ´
Ω ϕ2P (ϕ1, ϕ2)dϕ1dϕ2´ ´

Ω ϕ
2
1P (ϕ1, ϕ2)dϕ1dϕ2 −

[´ ´
Ω ϕ1P (ϕ1, ϕ2)dϕ1dϕ2

]2
(3.3)

Where, R is the Output Correlation (cross correlation coe�cient) P (ϕ1, ϕ2) is the

probability of �nding oscillator 1 in phase ϕ1 and oscillator 2 in phase ϕ2 when the system

is in the steady state ie. stationary probability condition in which

∂P (ϕ1, ϕ2)

∂t
= 0

In my numerical method of solving the SDE, this steady state can be approximated by

solving the SDEs of the phases of the two oscillators for long enough time period. Now

the time period of simulation for allowing a two oscillator system to achieve a steady state

was again a question of trial and error. After obtaining the solutions and omitting the

transient phase before the steady state, which are in form of a time series ie. ϕ1i and ϕ2i,

the output correlation R in this case is the cross correlation of the two time series :

R =
〈ϕ1iϕ2i〉 − 〈ϕ1i〉 〈ϕ2i〉〈

ϕ2
1i

〉
− 〈ϕ1i〉2

(3.4)

3.5 Stochastic Synchronization in simple PRCs : Type 1 and

Type 2

To plot the output correlation R between two uncoupled oscillators as a function of the

input correlation r for the Type 1 and type 2 PRCs , I �rst computed the output correlation

using the numerical method described above and veri�ed the result with the analytical

results obtained by FPE solutions described in Galan et al. [1] After computing the SDE

solutions for two independent oscillators, starting with di�erent initial phases, subjected to

correlated noise signals for long enough duration , I omitted the transient and picked the

later part of the series where the steady state of probability could be approximated and

then output correlation was computed using Eq.(3.4). The duration for stimulation T was

�xed upon to 1e4 s and the time step δt was 1e-3. The output correlation thus obtained

for a given input correlation varied upto some extent with every simulation. This could

be attributed to the limitation in the amount of data that could be generated to tend the

results toward the theoretically accurate values. To overcome this component of error I

ran 500 iterations of computation for every value of input correlation and took the �nal

result to be mean of all the iterations. The output correlation vs input correlation plot

was consistent with the results obtained by Galan et al. [1]
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Figure 3.7: The output vs input correlation plot for Type 1 and Type 2 oscillators is show-
ing increasing trend which demonstrates the phenomenon of stochastic synchronization.
The results are mean of 500 iterative computations. Time duration of simulation T = 2e4,
Time step δt = 1e-3.

Now the normalized PRCs Type 1 and Type 2 are some arbitrary PRCs which represent

two basic qualitative types of PRCs. In biological oscillators there is no restriction on

the PRCs to be normalized. These two PRC types themselves can have amplitudes of a

di�erent order. What happens when a system is so robust to have PRCs with very small

amplitudes, say 1/10 of that of Type 1 and Type 2 PRCs, was a naturally arising question.

This was also important because major part of the HR PRC and most of the other burster

PRCs for that matter, have very low amplitude except for the spikes in between. Thus I

computed the output correlation plot for the Type 1 and Type 2 PRCs multiplied by a

factor of 0.1. The phenomenon of stochastic synchronisation was observed here as well.

Though the steady state in this case is attained after much longer duration (T = 2e5).
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Figure 3.8: The Output correlation plot for small Type1 and Type 2 PRCs (multiplied
by 0.1) shows a very similar trend to that of original PRCs. This shows that stochastic
synchronization is prevalent even for small PRCs. Time duration of simulation T = 2e5,
Time step δt = 1e-3

The considerably high values of output correlations for very small PRCs such as that in

the above result show that even very robust oscillators can be synchronized by correlated

noises. Having obtained these results it was now appropriate to study this process in the

HR bursting oscillators.

3.6 Output Correlation for the Hindmarsh Rose PRC

The main focus of this study was to investigate the phenomenon of stochastic synchro-

nization in bursting oscillators taking HR burster as a model. The numerical tools for

this were �rmly set up and tested uptill this point. Therefore after verifying the stochastic

synchronization for the simple PRCs above I applied the same numerical method to get the

output correlation for the Hindmarsh Rose oscillators using the PRC which was already

computed and con�rmed. Time step δt was set as 1e-3 and time duration for simulation

T was kept 2e5 (10 times more than Type 1 and 2). Here again 500 results were obtained

and averaged. The output correlation plot obtained is given below.
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Figure 3.9: The output correlation values for HR are very low even for higher values of
input correlation. They show an increasing trend with the input correlation though.

The results obtained for Hindmarsh Rose oscillators were rather dissapointing. The

output correlations could not be considered to indicate any synchronization even for input

correlation as high as 0.94. It is possible that there exists a steady state of synchronization

where a meaningful output correlation is exhibited. If that is the case then few of the

possible numerical factors could be as follows:

1. Steady state was not achieved : Suppose the HR oscillator is so robust so as

to reach to its steady state, where probability P (ψ1, ψ2) becomes constant, after

very long duration. In this condition there is a possibility that the duration upto

which these simulations were run was not su�cient to achieve the steady state of

the oscillator system which could possibly contain synchrony. Now this could be

due to the fact that a major portion of HR PRC (Fig. (2.4)), in which the system

remains for most of the time is of low amplitude. The spikes which are of the

order of 1 are very thin and system falls in those region for very less time relatively.

Interestingly, the order of amplitude in the low amplitude regions is same as that in

the small Type 1 and Type 2 PRCs used in the last section. But those PRCs showed

remarkable synchronization inspite of being so robust. Moreover, the robustness of

the HR system was very low towards noise as demonstrated clearly by the CV values

calculated above (Fig.(3.5)).

2. The time resolution is low : The results obtained were based on the solutions

of the SDE using the Euler Maruyama method. The order of convergence of this

method is quite high and hence requires the time step δt to be as small as possible to
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minimize the error. The time step used here was 1e-3 which possibly is not su�cient

to generate solutions accurate enough to capture the synchronization even if it is

there.

Supposing these two factors do not play such an important role here, and there is no process

of stochastic synchronization in the HR bursting oscillators. Then the question that arose

here was that what were the factors that accounted for such low output correlation values in

the HR oscillator. Qualitatively, the only characteristic which di�erentiated it with other

simple PRCs was the presence of spikes or sharp pulses. This led to a hypothesis that

the spikes in the PRC inhibits the stochastic synchronization. It is quite possible

that the spikes in HR PRC, which are responsible of the high degree of disturbance in the

oscillatory cycle as apparent in Fig.(3.6) and also indicated by the CV values, are also the

reason for disturbing the synchrony of the oscilltors. The spikes are thus the destructive

elements for the stochastic synchronization process even though they are very thin.

Now, this hypothesis needed to be further investigated and analyzed. This led me to

follow a new direction of study altogether which aimed at understanding the e�ect of a spike

or a pulse incorporated in an otherwise smooth PRC, on the stochastic synchronization.

3.7 Output Correlations for some constructed PRCs with

pulses

HR PRC can be qualitatively described as comprising of sharp pulses added on an otherwise

smooth curve. The aim is to study the e�ect of such sharp pulses in a PRC with respect

to the synchronization or precisely the output correlation. I took the sine curve of Type

2 oscillator as a base and constructed di�erent PRCs by incorporating pulses of di�erent

widths and heights. The sine curve was normalized like the one in Type 2 PRC and the

total area under the pulse was same for all the di�erent pulses. The ratio of areas under

the pulse to the area under the sine curve was 1:10. The output correlation plots of each

of the composite PRCs are given below.
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Sin PRC, no pulse

Pulse height = 5
Pulse width=0.02

Pulse height = 10
Pulse width=0.01
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Pulse height = 50
Pulse width=0.002

Pulse height = 50
Pulse width=0.002

Pulse height = 50
Pulse width=0.002

Figure 3.10: Di�erent PRCs along with their output correlation plots are displayed. Com-
posite PRCs of sine curve (normalized) with the sharp pulses were constructed to study the
a�ect of pulses on the stochastic synchronization. Area under the pulses for all these PRCs
are same. The ratios of areas under pulse to the area under sine curve is 1:10 for every
PRC. We can see in the output correlation plots that the output correlation is reduced
with increase in the pulse height even though the thickness of the pulse is decreasing.
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Figure 3.11: All the results of Fig.(3.10) are put together. The trend of output correlation
with the increase in height of the pulse can be more clearly seen here. Area under the
pulse for all the PRCs were same. The output correlation reduces with increase in pulse
amplitude.

In the above results we see that though the total area under the pulse is same, the e�ect

of pulse in the PRCs on the output correlation is governed by the height or amplitude of

the pulse. For higher values of pulse amplitude, the output correlation is almost destroyed

inspite of their very thin width (0.0005 for pulse of height 200). In case of very thin pulses,

the probability of the system to be found within its range of phase is very low and the time

spent by the system in that region is almost negligible. Still we can see such a strong e�ect

of these pulses resulting in the destruction of synchronization. Pulse amplitude being a

crucial parameter here, the output correlation is not that much sensitively dependent on the

width of the pulse. This can be seen the results given below, in which, output correlations

are compared for di�erent width pulses of same height added to the sine curve.
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Figure 3.12: Output correlations are compared here for sin-pulse PRCs with di�erent pulse
widths and equal pulse amplitudes. Except the PRC of pulse width 0.6, all the other are
not much varying. This shows that the synchronization is not that much sensitive to pulse
width as it is to pulse height.
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Figure 3.13: The e�ect of multiple pulses rather than a single pulse in the PRC is displayed
in these results. The pulse height of all the pulses is 5 and the widths of each pulses are
set so as to make total absolute area under the pulses in all PRCs 0.1. Here we see that
the synchronization is further destroyed as the number of pulses increase. Another very
important fact arising was that there was not much di�erence between the PRCs with pulse
in the same direction and those with pulses in alternate directions. This means positive
phase response is equivalent to negative phase response in destroying the synchronization
as far as their magnitudes are large.

The above results support the hypothesis about the role of pulses in PRCs as an

opposing force to the stochastic synchronization.
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3.8 Conclusive Remarks

We have seen so far that stochastic synchronization occurs in many oscillators having

smooth PRCs like Type 1 and Type 2 which I veri�ed using the above described numerical

tools and methods. Then I tried to investigate this phenomena for Hindmarsh Rose burst-

ing oscillators. I found that the synchronization is not displayed in the HR oscillators.

This led me to investigate about the characteristics of the HR PRC responsible for the de-

struction of synchronization since major portion of the PRC was smooth, resembling Type

1 and 2 PRCs. I hypothesized that the sharp pulses of very low thickness present in the

HR PRC could be one of the factors could be responsible for this lac of synchronization.

I tried to examine the e�ect of sharp pulses added to sine curves which resemble the HR

PRC qualitatively. I came up with interesting results asserting that pulses dramatically

reduced the output correlation even if the thickness was as low as 0.0005. Pulse amplitude

seemed to be more important factor than the thickness. At last I saw that the number of

pulses was another important factor reducing the synchronization further. Even if the total

area under the pulses is equal, more number of pulses would reduce the output correlation

remarkably.



Chapter 4

Discussion and Conclusion

This project was intended to be a numerical investigation of stochastic synchronization in

a bursting oscillator. I chose Hindmarsh Rose model as an appropriate model for a simple

burster. I explored some numerical methods to compute its PRC and veri�ed their validity.

For using those methods, I found out the proper magnitudes of the perturbations required

to get accurate results. This was a very fruitful outcome of that exercise since it provided

the correct sizes of the perturbations used in the computation of PRCs of HR. If these

methods are to be used to compute other PRCs, the direct perturbation method gave a

way to �nd out the correct order of perturbations ie. by plotting the phase response with

the perturbations and check for the linearity. Further on, I tried to �nd the PRC for islet

oscillators but did not get reliable results using any of the methods.

Henceforth after getting assured about the HR PRC, I moved on to set up SDE solving

codes for simulating the oscillations subjected to noise. To verify their accuracy, I computed

the Coe�cients of Variation for Type 1 and Type 2 PRCs using the SDE solutions and

compared them with the analytically obtained values given by Fokker-Planck equations.

The values were in agreement. I reproduced the output correlation results for simple Type

1 and Type 2 PRCs as reported in Galan et. al [1]. The output correlation being the index

of stochastic synchronization, was computed for HR oscillators. The resulting values were

too low to be meaningful and hence there was not any direct numerical way to prove the

existence or non existence of stochastic synchronization in HR model. I hypothesized the

reason for this loss of synchronization in HR oscillators to be the thin pulses in the PRC.

For investigating it further, I constructed some PRCs with a sine curve and the pulses and

computed their output correlations.

The results were quite interesting and meaningful. First thing they suggested was

that a pulse was a major opposing factor for stochastic synchronization. Their opposing

force was determined by the amplitude of the pulse. The thickness of the pulse is almost

insigni�cant within some range. Pulses with very low thickness mean that the time spent
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by the system in the pulse region is negligibly low. However if the amplitude of the pulse

is large, the e�ect would be far from negligible and the output correlation drastically falls

down. That means that if an oscillator is unstable even for a very tiny amount of time

during its cycle, it would hamper the stochastic synchronization. The other important

factor was the number of pulses in the PRC. A single pulse is not as e�ective in reducing

the output correlation as two pulses of the same amplitude even if the total area under the

pulses are equal to that one pulse. This negative e�ect increases with the number of pulses.

Thus by far we know that the unstable holes in the cycle of any oscillator (represented by

the pulses in the PRC) are responsible for opposing the stochastic synchronization. More

the number of holes and higher the degree of instability, greater is the loss of stochastic

synchronization amongst the oscillators.

Future Work

The results in this study can be strengthened further by the following ways :

� The numerical results can be �ne tuned further by using smaller time steps in inte-

gration of SDEs and taking larger data by running the simulations longer. Both of

them require high memory capacities. Moreover, the EM algorithm used here has

high order of convergence and low accuracy. Using other SDE solving algorithms like

the Milstein algorithm will improve the results.

� The numerical results can be further veri�ed by comparing with the solutions from

Fokker-Planck equations (FPE). The FPEs give the coe�cient of variation and the

phase probability distribution for a two oscillator system. Though, the �nite element

method (FEM) used to solve FPEs also requires large memory space for PRCs with

sharp pulses.

Further on, since the pulses and their amplitudes have emerged as critical factors for

stochastic synchronization, this study must be extended to the role of another factor : the

fraction of the area under the pulses out of the total area of under the PRC. What is the

e�ect when the smooth parts of the PRC increase in area inspite of the high amplitude

pulses ?
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Appendix A : Codes

In this appendix I present some of the codes which I used for calculating PRCs, CV and

the output correlations. I used many variants of these codes for di�erent PRCs.

Computing HR PRC using Direct Perturbation method in

Matlab

Matlab �le for di�erential equations of HR (hr_ode.m)

function dp = hr_ode(t,p)

a=3;

b=5;

I=2;

s=4;

x=-8/5;

r=0.001;

%repar=430.672;

repar=1;

dp= zeros(3,1); % a column vector

dp(1) = repar*(p(2)+ a*p(1)^2 - p(1)^3-p(3)+I);

dp(2) = repar*(1 - b*p(1)^2 - p(2));

dp(3) = repar*(r*(s*(p(1)-x)-p(3)));

Matlab �le for applying direct perturbation method

clc

clear all

format long e

deltav=0.05; % setting the delta v

options = odeset('RelTol',1e-9,'AbsTol',1e-9);

p_in = [1.769221998732861e+00 -4.036343739735699e+00 1.818313363575842e+00];
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[T1,p1] = ode23s(@hr_ode,[0,1.1],[p_in],options);

v1=p1(:,1);

n1=p1(:,2);

h1=p1(:,3);

maxima=�nd(v1==max(v1(1000:length(v1))));

period=T1(maxima); %time period calculated

tau=[0.01:0.01:period-0.01];

len=length(tau);

PRC=zeros(1,len);

iprc=zeros(1,len);

for i=1:len

[T1,p1] = ode23s(@hr_ode,[0,tau(i)],p_in,options);

v1=p1(:,1);

n1=p1(:,2);

h1=p1(:,3);

last=length(p1);

%integrator stopped and V changed

[T2,p2] = ode23s(@hr_ode,[tau(i),1.1], [v1(last)+deltav n1(last) h1(last)],options);

v2=p2(:,1);

n2=p2(:,2);

h2=p2(:,3);

maxima=�nd(v2==max(v2));

tprime=T2(maxima);

PRC(i)=1-tprime/period;

iprc(i)=PRC(i)/deltav

end

plot(tau,iprc,'.')

Calculation of CV

/* This is a C code which I used to compute coe�cient of variation for Type 1 and Type

2 neurons. The white noise is generated, incorporated in the SDE which is solved using

EM algorithm and then the solution is used to calculate CV. Any other PRC can be

incorporated in the same code*/

#include<stdio.h>

#include<stdlib.h>

#include<math.h>
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double phi1[50000001],phi2[50000001],wrap_phi[50000001];

double T=50000; double dt=0.001;

unsigned int N = 10000000;

//Generating normal random numbers using Box-Muller algorithm

double normal()

{

double fac,rsq,v1,v2,y;

do

{

v1=2*(double)rand()/RAND_MAX -1;

v2=2*(double)rand()/RAND_MAX -1;

rsq=v1*v1+v2*v2;

}while(rsq>=1 || rsq==0);

fac=sqrt(-2*log(rsq)/rsq);

y=v1*fac;

return(y);

}

//wraps generated time series, �nds peaks, calculates CV

double CV()

{

double phi ;

unsigned int i,j,k;

unsigned int pk_cnt=0;

double mean,meansq,tp[10000],peak[10000],cv;

for(i=0;i<N;i=i+1)

{

phi=phi1[i];

while(phi>=2*M_PI) phi=phi-2*M_PI;

wrap_phi[i]=phi; //wrapping

if(i>0)

{

if(wrap_phi[i-1]-wrap_phi[i]>6)

{

peak[pk_cnt]=i*dt;

pk_cnt=pk_cnt+1; //peak �nding and counting

}

}



BIBLIOGRAPHY 57

}

for(j=0;j<=pk_cnt-2;j=j+1){tp[j]=peak[j+1]-peak[j];} //di�erences btw peaks

for(k=0;k<=pk_cnt-2;k=k+1)

{

mean=mean+ tp[k]/((double)pk_cnt-1);

meansq=meansq + tp[k]*tp[k]/((double)pk_cnt-1); //mean and mean sqare

}

printf("%u peaks \n",pk_cnt);

cv=sqrt(meansq-mean*mean)/mean; //calculating CV

return(cv);

}

// main programme

int main()

{

double dw,dw1,dw2,q,sigma,sigma1,sigma2,omega1,omega2;

double eta1,eta2,n,m;

unsigned int i;

q=0.8; // input correlation

//printf("sigma = ");

//scanf("%f",&sigma);

//printf("%f\n",sigma);

sigma=0;

sigma1=sigma;

sigma2=sigma; // amplitude of noise

omega1=1;

omega2=1; // average angular frequency

phi1[0]=0; //initial conditions

phi2[0]=3;

n=1/(2*M_PI); //normalisation factors

m=0.25;

srand(3413); //seed for random number generation

// EM algorithm

for(i=0;i<N;i=i+1)

{

dw=sqrt(dt)*normal();

dw1=sqrt(dt)*normal(); // generates noise

dw2=sqrt(dt)*normal();
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eta1=(q*dw+sqrt(1-q*q)*dw1)*sigma1;

eta2=(q*dw+sqrt(1-q*q)*dw2)*sigma2; //generates correlated noise

phi1[i+1]=phi1[i]+omega1*dt + n*(1-cos(phi1[i]))*eta1 ;

phi2[i+1]=phi2[i]+omega2*dt + n*(1-cos(phi2[i]))*eta2 ;

//type 1 PRC

//phi1[i+1]=phi1[i]+omega1*dt - m*sin(phi1[i])*eta1 ;

//phi2[i+1]=phi2[i]+omega1*dt - m*sin(phi2[i])*eta1 ;

//type 2 PRC

}

printf("CV = %.5f",CV());

return(0);

}

Computaion of Output Correlation

/* This code I used to compute the output correlations for the HR PRC for di�erent input

correlations. It imports values for HR PRC from the �le "hr_prc.txt", which has 1e5 data

points. It computes output correlations for input correlation values 0 to 9.8.

*/

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<iostream>

#include<fstream>

using namespace std;

double phi1[20000001],phi2[20000001];

double T=20000; double dt=0.001;

unsigned int N = 20000001;

double ph2[10000][10],ph[100000],v[100000];

//Generate normal random numbers

double normal()

{

double fac,rsq,v1,v2,y;

do

{

v1=2*(double)rand()/RAND_MAX -1;

v2=2*(double)rand()/RAND_MAX -1;
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rsq=v1*v1+v2*v2;

}while(rsq>=1 || rsq==0);

fac=sqrt(-2*log(rsq)/rsq);

y=v1*fac;

return(y);

}

//Phase response function

double prc(double phase)

{

int p;

double prc_v;

p=�oor(phase*10000);

int j;

for(j=0;j<10;j++)

{

if ((phase>=ph2[p][j]-0.000005)&&(phase<ph2[p][j]+0.000005))

{

prc_v=v[p*10+j];

break;

}

}

return(prc_v);

}

// main programme

int main()

{

double dw,dw1,dw2,q,sigma,sigma1,sigma2,omega1,omega2;

double eta1,eta2,n,m;

double mean1,mean2,mean_sq_1,cross_mean,iterat[500],r_in[15],R[15],mn_sq[15],std[15];

unsigned int i,j,k,loop,loop1,recur;

//loading the prc �le

ifstream my�le;

my�le.open("hr_prc.txt");

unsigned size = 400000;

double a[size];

for (int k = 0;k < size;k++)

{
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my�le >�> a[k];

}

double phase;

for(int i=0;i<100000;i++)

{

ph[i]=a[i*4];

v[i]=a[i*4+1];

}

for(int l1=0;l1<10000;l1++)

{

for(int l2=0;l2<10;l2++)

{

ph2[l1][l2]=ph[l1*10+l2];

}

}

//loading complete

sigma=1;

sigma1=sigma;

sigma2=sigma; // amplitude of noise

omega1=1;

omega2=1; // average angular frequency

srand(413); //seed for random number generation

for(loop1=0;loop1<15;loop1++)

{

if(loop1<=9)

{

r_in[loop1]=(double)loop1/10;

}

else

{

r_in[loop1]=0.9 + ((double)loop1-9)/50;

}

R[loop1]=0;

mn_sq[loop1]=0;

q=sqrt(r_in[loop1]);

for(loop=0;loop<500;loop++)

{
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phi1[0]=0; //initial conditions

phi2[0]=0.5;

for (recur=0;recur<20;recur++)

{

if(recur>0)

{

phi1[0]=phi1[N-1];

phi2[0]=phi2[N-1];

}

for(i=0;i<N;i=i+1)

{

dw1=sqrt(dt)*normal(); // generates noise

dw2=sqrt(dt)*normal();

eta1=dw1*sigma1;

eta2=(q*q*dw1+sqrt(1-q*q*q*q)*dw2)*sigma2; //generates correlated noise

phi1[i+1]=phi1[i] + omega1*dt + prc(phi1[i])*eta1 ;

phi2[i+1]=phi2[i] + omega2*dt + prc(phi2[i])*eta2 ;

if(phi1[i+1]>=1)

phi1[i+1]=phi1[i+1]-1;

if(phi2[i+1]>=1)

phi2[i+1]=phi2[i+1]-1;

}

}

mean1=0;

mean2=0;

cross_mean=0;

mean_sq_1=0;

for(j=N-1-8000000;j<N;j++)

{

cross_mean=cross_mean+phi1[j]*phi2[j]/8000000;

mean1=mean1+phi1[j]/8000000;

mean2=mean2+phi2[j]/8000000;

mean_sq_1=mean_sq_1 + phi1[j]*phi1[j]/8000000;

}

iterat[loop]=(cross_mean-mean1*mean2)/(mean_sq_1-mean1*mean1); //ouput cor-

relation

R[loop1]=R[loop1]+iterat[loop]/500;
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mn_sq[loop1]=mn_sq[loop1]+iterat[loop]*iterat[loop]/500;

printf("%5f ",iterat[loop]);

}

std[loop1] = sqrt(mn_sq[loop1]-R[loop1]*R[loop1]);

printf("\n%5f %5f %5f\n ",r_in[loop1],R[loop1],std[loop1]);

}

for(k=0;k<15;k++)

{

printf("\n %5f %5f %5f \n",r_in[k],R[k],std[k]);

}

return(0);

}


