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ABSTRACT 

The prediction of stock market returns and prices and other variables have always been a topic of great 

interest to researchers and financial analysts since long as a large amount of capital is being traded all 

over the world and therefore predicting important time series like financial foreign exchange rate proves 

to be of immense help in systematizing and planning financial gain. Also, some theorists and researchers 

believe that the markets are efficient in themselves, they absorb every another new information coming up 

and thus there is no scope of prediction. This poses as a challenge and thus provides another motivation to 

try and devise mechanisms for market prediction to prove that the markets are not completely random and 

carry an element of predictability. 

We also believe that the markets don’t follow complete random walks and can be modeled carefully and 

efficiently to get quite encouraging results. We have used Neural Networks for modeling, which are one 

of the very interesting machine learning techniques that can approximate nonlinear continuous functions 

without any priori information about the nature of the generating process i.e. the underlying data 

generating process. They are said to be the models following data driven approach because they perform 

nonlinear modeling without any knowledge of the relationship between the input and the output variables. 

A neural network is a system consisting of many simple units called neurons which are highly 

interconnected and are organized as layers. Each neuron performs the simple task of information 

processing by converting received inputs into processed outputs. These Neural Networks can perform 

wide variety of tasks and achieve remarkable results. 

We have modeled the spot exchange rate time series of the daily data of about 10 years from 2000 to 2010 

using neural networks which are trained using various algorithms. Training of the neural networks and 

finding the optimal set of weights and therefore, the optimal network to generate the best of results is not 

an easy task. We have used the Conjugate Gradient Method (CGM) to train the network and the 

algorithms like Genetic Algorithm and Simulated Annealing Algorithm to optimize the neural network 
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configuration in terms of weights.  We have also used parametric complex statistical models like Auto-

Regressive Moving Average (ARMA) coupled with Generalized Auto-Regressive Conditional 

Heteroskedasticity (GARCH) for forecasting the same time series data. The results obtained from various 

models are thereby compared. It has been observed that the neural networks trained with CGM and 

optimized with GA perform the best among all models. 
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CHAPTER 1 

INTRODUCTION  

 

In financial research, predicting stock market index and stock prices is the topic of great interest to 

people. First, the discoveries about the nature of the stock prices and returns are made and then, these 

developments lead to the design of prediction models for the stock prices. After the coming of the floating 

exchange regime, liberalization of trade and rapid expansion of global trade, these issues have come to a 

forefront. To construct models that are able enough to predict and explain reasonably enough the future 

value of the exchange rates is in the interest of strategic investors as well as the common man. Recently, 

the markets have become a more accessible investment tool for everyone. Thus, it is not only related to 

the macroeconomic parameters, but it also affects the everyday life in a more direct manner. There is no 

straightforward equation which decides the behavior of the stock market or the stock price. Thus, the 

characteristic of unpredictability is always associated with the stock markets and the exchange rates. 

People tend to extend this concept of unpredictability to declare that the markets are completely random 

and prediction about them is impossible. But it has been shown and proved that the markets do carry an 

element of predictability. The main motive of making such prediction models are thus obvious, first, the 

financial gain and then, to prove that the markets are not totally random but predictable to an extent. 

1.1 Objective 

The objectives of the thesis are as follows: 

1. Forecasting using Neural Networks using Conjugate Gradient after pre-processing of the data to 

find the number of the inputs to be given on the basis of the autocorrelations. 
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2. Using some metaheuristic techniques for the optimization of the Neural Network Configuration 

and thus compare the different models formed. 

1.2 Financial Time Series 

An ordered sequence of the values of a variable at equally spaced time intervals is known to be a Time 

Series. Now, a time series may have can have identifiable stochastic or deterministic components. A 

stochastic component is one in which each data value of the series can be considered as a sample mean of 

a probability distribution of an underlying population at each point in time. Whereas a deterministic time 

series is one which is not driven by stochastic process but by some predefined laws of which the 

corresponding time series is the data. Some examples of stochastic time series are foreign exchange rate, 

rainfall data, stock prices, earthquake data and Gross Domestic Product (GDP). Some examples of 

deterministic time series are AC single phase voltage across household mains, seasonal flooding of Nile 

river data.  

Our study concerns with the stochastic type of time series of Foreign Spot Exchange Rates. Foreign 

Exchange Rate is the ratio of the currencies of two countries. It is a very important factor in 

understanding the dynamics of the trading of goods in the import-export markets as well as in the 

exchange markets, as it expresses the currency of one country in terms of another. These foreign 

exchange rates are determined and influenced by a large variety of factors. For any given currency, time 

is one of the most important influencing factors in determining the foreign exchange rate. The other 

factors i.e. various economic factors have differing influence on the foreign exchange rate differing from 

country to country. Some of the factors determining the foreign exchange rate movement are relative 

growth of the economy of one country with respect to that of the other country, inflation differential, 

equity flow, and market volatility. The spot exchange rate of United States Dollar vs. Australian Dollar 

(US$/AU$) which we have also used as one of our time series data in our analysis is shown below in 

Figure 1.1 as it varies with time over a period of 10 years from January 2000 to December 2010. 
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Figure 1.1: US$/AU$ Spot Exchange Rate from 03/01/2000 to 24/12/2010 

1.3 Stationarity of time series 

Time Series may be stationary or non-stationary. A time series r t is said to be stationary if the joint 

distribution of (r t,………… rk) is identical to that of (r t-1,………… rk+1) for all t, where k is an arbitrary 

positive integer. This means that for a series to be strictly stationary, the joint distribution must not vary 

with time or it is invariant under time shift. This means that the first and the second moments, i.e. the 

means, variances and covariances are constant with respect to time. Thus, the stationary time series are 

characterized by a kind of statistical equilibrium around a constant mean level as well as a constant 

dispersion around the mean level.  

On the other hand, a non-stationary time series is one which does not exhibit this type of equilibrium and 

show random behavior. Also, the first and second moments are expected to change. The non-stationary 

time series are thus characterized by properties like random walk, drift, trend, changing variance, etc. 
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Fortunately, for most of the financial time series data such as the stock prices and Gross Domestic 

Product, logarithmic first-differencing usually transforms the non-stationary time series into stationary 

time series. 

1.4 Research Background 

The stock market prediction task divides the researchers into two belief groups. On one side, there are 

people who believe that the market is efficient and whenever some new information comes up, it absorbs 

it by correcting itself. That the market follows random walk, there is no room for prediction and the best 

prediction you can have about tomorrow’s value is today’s value. The other belief is that the markets are 

not completely random and we can devise mechanisms to predict it. However, due to the non-linear 

characteristics of the exchange rates, it has been generally difficult to model the financial forecasting. In 

the past, various researchers have used different methods for evaluating the dynamic behavior of the 

financial series and have claimed some success in being able to forecast the financial time series data. 

1. Technical Analysis – Chartists or the technical analysts attempt to predict the market by tracing 

patterns that come from the study of the charts which describe the historic data of the market. 

Technical market analysis is based on market generated statistics and is used for the market data 

i.e., price movements (high, low, open, close, volume) for an individual exchange rate. This 

analysis cannot be used because it often trivializes market behavior by reducing it to two 

dimensional charts that are susceptible to subjective interpretation and incomplete analysis. 

2. Fundamental Analysis – Fundamental Analysts study the intrinsic value of a stock and they 

invest on it if they estimate that its current value is lower than its intrinsic value. They study the 

effects of supply and demand of each currency. However, fundamental analysis is not capable 

of capturing the behavior of the nonlinear markets and the inherent complexity of inter-
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market relationships. The models are limited to the financial analyst's ability to identify 

dominant factors which affect the supply and demand. 

3. Linear Time Series Forecasting – In traditional time series forecasting, we try to create linear 

prediction models to trace patterns in historic data. Depending on whether they use one or more 

variables to approximate the stock market time series, they can be divided as the univariate and 

the multivariate regression models. The linear methods have long been the dominant 

technique for the analysis of economic and financial time series as they provide the ease of 

interpretation and simple computation. Auto-regressive (AR) models are useful in the 

prediction of foreign exchange rate i.e., financial time-series. However, traditional methods 

cannot be used to track the complexity of market behavior and the intricacies of economic 

theory. Traditional methods fail in regard to predicting financial time series because the 

dynamic exchange rates are found to be strongly nonlinear. 

4. Non-Linear Modeling – Recently, the discovery of the nonlinearity in the financial markets have 

been largely emphasized by various researchers and financial analysts. There are many new 

potentially promising nonlinear methods and techniques introduced for prediction. Some of 

the nonlinear time series models developed are the bilinear model, the Threshold Auto-

Regressive (TAR) model and the Auto-Regressive Conditional Heteroscedastic (ARCH) 

model. ARCH model was later extended to Generalized Auto-Regressive Conditional 

Heteroscedastic (GARCH). Even though a number of non-linear statistical techniques have 

been used to produce better predictions of the stock returns or prices, most techniques 

require that the nonlinear model be specified before the estimation of parameters can be 

determined. These techniques are better known as the model driven approaches. That is, an 

explicit relationship between the inputs and output variables for the data series at hand has 

to be hypothesized with little knowledge of the underlying law. In fact, the formulation of a 
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nonlinear model to a particular dataset is a very difficult task since many possible nonlinear 

patterns may not be captured by a pre-specified nonlinear model. 

Neural Networks, as opposed to the above model based nonlinear methods; do not require a pre-

specification during the modeling process because they can independently learn the relationships inherent 

in the variables. Neural Networks are thus said to be nonlinear data driven approaches. They are capable 

of performing nonlinear modeling without a priori knowledge about the relationships between 

input and output variables. Neural networks, therefore, are a more general and flexible modeling 

tool for nonlinear problem forecasting. As it continues to operate on the data, a properly 

constructed network can subsequent learn by itself. This is the most essential advantage of neural 

networks over other forecasting models. 

Neural Networks have been used for forecasting since long. They have been equally and more 

extensively used for the forecasting of other types of stochastic data apart from the financial time 

series data like rainfall data, earthquake data. The first application dates back to 1964. Hu (1964), 

in his thesis, uses the Widrow's adaptive linear network for weather forecasting. Due to the 

insufficiency of a training algorithm for general multi-layer networks at the time, the research was 

quite limited. It was not until 1986 when the backpropagation algorithm was introduced 

(Rumelhart et. al. (1986)) that there had been much development in the use of neural network for 

forecasting. Werbos (1974, 1988) first formulated the backpropagation network and found that 

neural networks trained with backpropagation outperform the traditional statistical methods such as 

regression and Box-Jenkins approaches. Tang et. al. (1991), Sharda and Patil (1992), and Tang and 

Fishwick (1993) report results of several forecasting comparisons between Box-Jenkins and neural 

networks. Weigend et. al. (1990, 1992) and Cottrell et. al. (1995) addresses the issue of network 

structure for forecasting real-world time series. Lapedes and Farber (1987) concluded that neural 

networks can be used for modeling and forecasting of a nonlinear time series.  
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One of the many other abilities of a neural network is that it can generalize and "see through" noise 

and distortion and abstract essential characteristics in the presence of irrelevant data. The neural 

network model also provides a high degree of robustness and fault tolerance. In addition, the well-

built model can find the right transformations for variables and can also represent complex and 

highly nonlinear relationships through independent variable data patterns. They have the potential 

to capture nonlinear properties of time series and they are non-parametric in nature. Hence, neural 

networks seem appropriate for forecasting because of their self-adaptive, automatic modeling 

properties.  

1.5 Models employed for Exchange Rates 

As discussed about neural networks in the previous section, their various characteristics of self-

learning, non-linearity, adaptability, arbitrary function mapping ability, make them quite suitable 

and useful forecasting tools. However, the performance of neural networks is affected by many 

factors. Some of these factors are, the design of the neural network, the configuration of the 

network, the algorithm used to train the network and alike. There are different algorithms which 

can be used to optimize the neural network. Initially, in our work, we use the Conjugate Gradient 

Method (CGM) for the purpose of training the neural network. This training algorithm back 

propagates the changes needed to be incorporated to minimize the difference between the actual 

output and the desired output. Further, in our study, we utilize some metaheuristic techniques for 

the optimization of the neural network configuration in terms of weights and number of nodes. We 

have used two metaheuristic techniques, Genetic Algorithm (GA) and Simulated Annealing (SA). 

The results obtained after the employment of the metaheuristic techniques, when compared with 

those obtained from CGM show that GA outperforms SA and CGM. This comparison is done on 

the basis of different performance measures. 
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The different performance measures or metrics used to compare the performance of different 

models are (1) Mean Square Error (MSE), (2) Mean Absolute Error (MAE), (3) Direction Accuracy 

(DA), (4) Pearson Correlation Coefficient and (5) Theil’s Inequality Coefficient. The results we 

have obtained are quite motivating and encouraging. For all of our different simulations, we have 

used MATLAB R009B as the programming tool for our whole analysis. 

 

1.6 Thesis Organization 

The thesis is organized as follows: 

In Chapter 1, we have discussed and explained the problems in financial forecasting and the 

different methods utilized by people in the past in their quest to develop efficient predicting 

models for forecasting. Chapter 2 discusses about the structure of Neural Network, its parts and 

processing techniques, the learning rules and the training methods for a neural network 

configuration. Chapter 3 discusses in detail the two metaheuristic techniques used by us in our 

study namely Genetic Algorithm (GA) and Simulated Annealing (SA) while Chapter 4 describes 

the parametric model ARMA-GARCH used by us for better comparison of results. In Chapter 5, 

we have briefly described how the various models based on different techniques discussed work to 

produce prediction results. Chapter 6 shows the various steps followed by us for data analysis and 

then the results obtained by us from different models. Finally Chapter 7 concludes with a brief 

about our conclusions and the further future possibilities of our work. 
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CHAPTER 2 

ARTIFICIAL NEURAL NETWORKS  

2.1 An Overview 

Artificial Neural Networks or simply neural networks are computing models for information processing 

and pattern identification. These are models based on data driven approaches and considered as a data 

processing technique that relates a set of inputs to a set of outputs. Artificial Neural Network technique is 

motivated by the way biological neural system works and it grew out of the research interest in modeling 

neural systems, especially human brains. It can be considered as a massively parallel distributed processor 

made up of simple processing units, which can be called as artificial neurons, and which carry the natural 

tendency to store experimental knowledge and making it available for later use. An artificial neuron is 

again a computational model inspired by the natural neuron. Neuron is known to be the simplest 

processing unit, receives and processes the signal from other neurons through its input paths known as the 

dendrites. If the combined signal is enough, i.e. it exceeds the threshold, it generates the output signal to 

its path called axon which splits up and connects to other neurons’ input paths through a junction known a 

synapse. The amount of the signals transferred depends on the synaptic strength of the junction which is 

chemical in nature. This synaptic strength is modified during the learning process of the brain. Now, the 

mathematical representation of these biological processes is known to be the Artificial Neural Network 

(ANN). ANN resembles the brain in two respects: 1) The network acquires knowledge from its 

environment through a learning process and 2) To store the acquired knowledge, interneuron connection 

strengths, known as synaptic weights are used. 

2.2 Processing Elements: The neural network consists of many simple computing units known as 

neurons or cells, which are highly interconnected and organized in layers. Each neuron performs the 

simple task of information processing by converting the received inputs into processed outputs. The 
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output from the neuron is mapped to its inputs through a transfer function. Each path making the 

connection between the neurons has its weight which represents the strength of that path. These weights 

are modified in the process of network learning to find out the optimal set of weights giving the best 

output. A typical processing element or a neuron receiving two inputs is shown in Figure 2.1. It has two 

paths with weights W1 and W2. If the net input is higher than the threshold, then an output is obtained 

from the output path. 

 

Figure 2.1: A Processing Element 

2.3 Transfer Function: The output of any neuron is related with the inputs by a transfer function which 

gives the values of the outputs for the given inputs. To calculate the output from a neuron, the first step is 

to calculate the net input for that neuron, which is obtained by summing up the multiplication of each 

input to the weight of the corresponding path of the neuron that connects it to the input. The weights are 

the strength of connections between the neurons. Thus higher the weights of paths are, stronger will be 

the net effect of the inputs. Weights can also be negative, which signifies that the signal can be inhibited 

by the negative weight. The net input is converted into the output with the activation function which is the 

transfer function for each neuron. There are many types of transfer function defined in the literature i.e. 

Logsigmoid Transfer Function, Tansigmoid Transfer Function, Cumulative Gaussian Function, etc. 
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Input1  

Input2  Threshold ‘θ’  
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Logsigmoid Transfer Function: For our study, we have used the logistic or the logsigmoid transfer 

function as the transfer function. This is the most commonly used transfer function. The transformation 

defining the logsigmoid transfer function can be written in the form of following equation:- 

1

1 x
y

e−=
−

 

To illustrate the operation of a typical logsigmoid activation function on a series ranging -5 to +5, we 

represent in the form of the following figure: 
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Figure 2.2 Logsigmoid Transfer Function 

The above function becomes steep increasingly until some inflection point. Thereafter, the function 

becomes increasingly flat and its slope moves exponentially to zero. In the neural network paradigm, this 

threshold feature is described as the fundamental characteristic of the nonlinear response. It is described 

that the certain types of neurons remain inactive up to certain levels of input activity, become active after 

it passes this threshold level, and while beyond this, increase in input activity have again little effect. 
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2.4 Layers: Neural Networks consists of neurons distributed across layers. The three types of layers in a 

neural network configuration are (1) The input layer, (2) the hidden layers, and (3) the output layer. There 

is exactly one input layer and one output layer in each network. The way these neurons are linked to each 

other and the way they are distributed in the network configuration define the structure of the neural 

network starting from the input layer to the output layer with a number of hidden layers i: i=1,…..,m in 

between these two layers. The neurons in an ANN are denoted as nodes, (i,j) where each node performs 

the simple task of information processing by converting the received input signals/information into some 

processed output signals/information. These nodes are connected to the next layer neurons through 

directed arcs or links each characterized by a weight (wi,j).This typical structure of ANN can be 

represented in the form of Figure 2.3 as follows: 

 

Figure 2.3: A typical structure of an Artificial Neural Network (ANN) 
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2.5 Supervised Learning: Supervised Learning involves a mechanism of providing the network with the 

desired output by providing the desired outputs with the inputs or by manually “grading” the network’s 

performance. Supervised training is thus also known as learning with a teacher. The neural network is 

provided with an input vector and the corresponding output vector. These vector pairs are used to 

determine the mappings that exist on the data set. The weights of the paths decide the computations of the 

neurons and varying these weights of the paths will therefore give different outputs from the network. The 

actual output when compared with the desired output, computes the error which is thereby used to further 

modify the weights of the paths. The resulting errors are then used to update the weights of the network 

which also represents the memory of the network and control the network. As the weights are changed, 

this process is repeated over and over again. The set of data which enables the training is called the 

training set. During the training of a network, the same set of data is processed many times to improve the 

connection weights each time. For a particular data set, there may be a specific network configuration that 

maps the inputs and the corresponding outputs most efficiently. There are many ways of varying the 

output from the network. It can be varied by varying the configuration of the network, i.e. varying the 

number of hidden layers, varying the number of nodes in each hidden layer or by changing the number of 

inputs to the network. For our study, we have used the conjugate gradient method which is also a type of 

supervised learning and is described in the subsequent section. Supervised learning can also be illustrated 

with the help of the following Figure 2.4. 
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Figure 2.4: Supervised Learning – A Block Diagram 

2.6 Rules of Learning: Apart from the configuration of the network and the learning method used, 

another important part is the rules of training. Many laws or algorithms are used to implement the 

adaptive feedback required to adjust the weights during training. Some examples of such rules are Hebb’s 

Rule, Hopfield Law, The Delta Rule, The Gradient Descent Rule, Kohonen’s learning Law, etc. The most 

commonly used technique is the Gradient Descent Rule using backward error propagation, more 

commonly known as the back-propagation. This method utilizes the derivative of the transfer function 

and a learning rate acting as the proportional constant in modifying the connection weights. 

There is a possibility of the limitation that the error function falls into local optima in the methods 

discussed above thus giving inferior results. Thus, the algorithms that give the global optimal point can be 

used to compare the results obtained from the previous algorithms. Some such algorithms are Genetic 

Algorithm, Simulated Annealing, Tabu Search, etc. 
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An artificial neuron can be depicted in the form of a mathematical model. To describe a general neuron 

mathematically, we can use the following equations: 

∑
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1
,,, *    ∀ i = 1…, m 

)()( ,,,, jijijiji bufvfy +==   ∀ i = 1…, m 

Where, ui,j is the output from the (i, j) neuron which has xi,j′s as the inputs and wi,j′s as the corresponding 

weights. Furthermore bi,j′s denote the bias, f(.) is the transfer function and yi,j is the output. This 

mathematical form of a neuron can be represented in the form of a figure as follows: 

 

Figure 2.5: Mathematical model of a neuron 

2.7 Backpropagation Method: For the feed-forward neural networks, backpropagation is used as a 

supervised learning procedure for the purpose of training. The training set, i.e. the series of the test cases 

are presented before the network, one at a time. Thus obtained errors between the actual output and the 

desired output of the network are propagated backwards to the internal layers, i.e. first to the hidden 

layers and then to the input layer. The weights are thereby adjusted in accordance and in proportion to 
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their contribution to the error. This error used in our case is the Mean Square Error (MSE). A typical 

feed-forward back-propagation network in which the errors are back propagated and the weight metrics 

are modified accordingly is shown in Figure 2.6. 

 

Figure 2.6: A feed-forward back-propagation network 

 

2.8 Conjugate Gradient Method 

This method, Conjugate Gradient Method belongs to the class of Second order optimization methods 

which are collectively known as conjugate-direction methods and they are generally simple and easy to 

implement. The basic idea of this method is that for the convergence to the solution to be accelerated, it is 

more beneficial to minimize our objective function (Q) over the hyper plane that contains all the previous 

search directions, than to minimize Q over just the line that points down gradient. The Conjugate Gradient 

Method is considered superior to the Steepest Descent Method but the Newton’s method when compared 
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to the CGM is better. However, in case of large number of variables, again the Conjugate Gradient 

method is better because it only uses vectors and takes O (n) operations per step, where n is the number of 

parameters. 

First, we consider the minimization of the quadratic equation cxbAxxxf TT +−=
2

1
)( where x is a 

(WX1) parameter vector, A is a (W X W) symmetric, positive definite matrix, b is a (W X 1) vector, and 

c is a scalar. Now, we say that the quadratic equation is minimized by assigning the unique value to x and 

i.e. x*=A -1b. Thus minimizing f(x) and solving the linear system of equations Ax*=b are equivalent 

problems.  

Given the matrix A, we say that a set of nonzero vectors s(0), s(1)…, s(W-1) is A-Conjugate if the 

following condition satisfies: [ ] 0)(**)( =jsAnsT  ∀ n and j such that n≠j. 

For a given set of A-conjugate vectors s(0), s(1)…, s(W-1), the corresponding conjugate direction method 

for unconstrained minimization of the quadratic error function is defined by )()()()1( nsnnxnx η+=+  

∀ n = 0,…, W-1 where x(0) is an arbitrary starting vector and η(n) is a scalar defined by 

))()((min)()())(( nsnxfnsnnxf ηη
η

+=+ . 

If the residual be  

r(n)=b-Ax(n)          (2.1) 

We use a linear combination of r(n) and s(n-1), as shown by 

)1()()()( −+= nsnnrns β , ∀ n=1, 2… W-1      (2.2) 
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Where, β(n) is a scaling factor to be determined. Multiplying Eq. (2.2) by A, taking the inner product of 

the resulting expression with s (n-1), invoking the A-conjugate property of the direction vectors, and then 

solving the resulting expression for β(n), we get: 

)1()1(

)()1(
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n

T

T

β         (2.3) 

Using equations 2.1 and 2.3, we find that the vectors s(0), s(1),…, s(W-1) and these are indeed A-

Conjugate. 

To use the conjugate gradient method, we do two things (i) approximate the cost function ( )(wavξ ) by a 

quadratic function and (ii) formulate the computation of coefficients β(n) and η(n). To compute the 

coefficient of β(n), we can use the Polak Rebiere formula (Haykin (2004)) which is given by 
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β  or Fetcher Reeves formula (Haykin (2004)) given 
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T

T

β . For the computation of η(n) which determines the learning rate of the 

conjugate-gradient algorithm, the preferred method would be a line search routine, the purpose of which 

is to minimize the function )( swav ηξ + with respect to η. 

There is a possibility of the limitation that the error function falls into local optima in the methods 

discussed above thus giving inferior results. Thus, the algorithms that give the global optimal point can be 

used to compare the results obtained from the previous algorithms. Some such algorithms are Genetic 

Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS), Artificial Immune System (AIS), Particle 

Swarm Optimization (PSO), Ant Colony Optimization (ACO), to name a few. Out of these, for our study, 

we use GA and SA. 
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CHAPTER 3 

METAHEURISTIC TECHNIQUES  

An important factor in concern regarding optimization problems of practical and theoretical importance is 

that the best configuration of the set of variables is chosen to achieve certain goals. They are thus divided 

into two broad categories, (1) Those whose solutions are encoded with real-valued variables, (2) those 

where solutions are encoded with discrete variables. Among the later class, we find a sub-category or sub-

class of problems which are known as Combinatorial Optimization (CO) problems. 

Various famous CO problems encountered are Travelling Salesman Problem (TSP), quadratic assignment 

problem and neural network weight selection. Now, since these problems have a lot of practical 

importance, various algorithms have been developed to handle them. These can be classified as either 

complete or approximate algorithms. A kind of approximate algorithms which basically try to combine 

basic heuristic methods in higher level frameworks aimed at efficiently and effectively exploring a search 

space are Metaheuristic Techniques. 

A metaheuristic is formally defined as an iterative generation process which guides a subordinate 

heuristic by combining intelligently different concepts for exploring and exploiting the search space, 

learning strategies are used to structure information in order to find efficiently near-optimal solutions. 

Some of these types of algorithms are Genetic Algorithm (GA), Simulated Annealing Algorithm (SA), 

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Tabu Search (TS). We have 

used GA and SA for our study and they are described as follows: 
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3.1 Genetic Algorithm 

The Genetic Algorithm is the most commonly and successfully used method for solving the optimization 

problems which is based on the well known concept of natural selection, the process that drives biological 

evolution. Accordingly, there is constant and repeated modification of the population of individual 

solutions in the Genetic Algorithm. At each step, the genetic algorithm selects individuals at random from 

the current population to be parents and then uses them to produce the children for the next generation. 

Thereby, over successive generations, the population evolves toward an optimal solution. Genetic 

Algorithm is also used to solve a wider variety of optimization problems that are not well suited for the 

standard optimization algorithms, including the problems in which the objective function is 

discontinuous, non-differentiable, stochastic, or highly nonlinear.  

 

3.1.1 Population Criterion: This method starts with a population N (an even number) of random vectors 

and not with one random coefficient vector w. If we take n to be the size of each column vector, 

representing the total number of coefficients to be estimated in the neural network, we create a population 

N of (n X 1) random vectors. 
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Each individual member of the population is known as chromosome. Chromosomes could be bit strings 

(1010……….011011), real numbers (89.2 66.4 88.3………45.6), permutations of elements (M23 M2 M7 

M16 M12), lists of rules (R6 R8 R14 R17 R25), program elements (genetic programming), etc. 
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3.1.2 Selection: During each successive epoch, some part or proportion of the existing population is 

selected to breed a new generation. This selection is done through a fitness based process to select 

individual solutions, when, as measured by a fitness function, the fittest solutions are more likely to get 

selected. Each solution is rated for its fitness by predefined certain selection methods and preferentially, 

the best solutions are selected. Other methods rate only a random sample of the population, as this process 

may be very time consuming. The most commonly used, well-studied as well as popular selection 

methods are the roulette wheel method and tournament selection method. 

In the roulette wheel selection method, a roulette wheel is designed, where each member is represented in 

the wheel in proportion to their fitness value. This obviously means that the better chromosomes 

proportionally get more space on the wheel and are thus more likely to survive than the poorer 

chromosomes. Thus for obtaining the next generation of chromosomes, these winning vectors are retained 

for the breeding purposes. But this is only a proportion of the current population as the poorer 

chromosomes are dropped during the selection process. Thus to get the original size of the population, the 

population is needed to be refilled after every generation. The refilling is achieved by “mating” the 

selected members using crossover and mutation. 

 

3.1.3 Crossover: The first step of refilling or the next step in the process is crossover. In this step, the two 

parent chromosomes “breed” to give two children chromosomes. On each given pair of coefficient vector 

i and j, the algorithm allows crossover to be performed with a fixed probability p > 0. There are three 

different types of crossover operations defined, and the algorithm chooses one of the three methods for 

the crossover operation to be performed based on an equal probability of (1/3) of each method to be 

chosen. The three techniques of crossover operation are as follows: 

1. Shuffle Crossover: For each given pair of vectors, k random draws are made from a binomial 

distribution. Based on if the kth draw is equal to 1, the coefficients wi,p and wj,p are swapped; 

otherwise, no change is made. 
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2. Arithmetic Crossover: For each given pair of vectors, a random number θ is chosen, such 

that (0,1)θ ∈ . This number is used to create two new parameter vectors which are linear 

combinations of the two parent factors, pjpi ww ,, )1( θθ −+ . 

3. Single-point Crossover: For each given pair of vectors, an integer ω  is randomly chosen from the 

set [l, k −l], where ],[ lkl −∈ω . The two vectors are then cut at integer I and the coefficients to the 

right of this cut point, wi,l+ ω , wj,l+ ω  are swapped. 

 

3.1.4 Mutation: After obtaining the children chromosomes from the crossover, the next (fourth) step in 

the process is to mutate these children. Each element or coefficient of the two children vectors is 

subjected to mutation with a small probability p, which decreases over time. The probability of mutation 

of each element depends on the generation g. Now, to apply the mutation formula to obtain the mutated 

coefficients, we need some random numbers. If two real numbers 1r  and 2r  are randomly drawn from the 

interval [0, 1] and one random number s from a standard normal distribution, then the mutation formula to 

generate the mutated coefficients can be given by: 
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Where, g is the generation number and G is the maximum number of generations. The parameter b is one 

which governs the degree to which the mutation operation is non-uniform. Generally, we set the value of 

the parameter to be 2. Now, as g approaches G, i.e. the maximum number of generations, there is a 

decrease in the probability of generating a new coefficient which is quite far away from the current 

coefficient value, by mutation. Thus there is an evolution in the probability of mutation itself over time. 

The mutation operation is non-uniform, because, with time, the probability of getting a far away value 

from the current coefficient value decreases and the algorithm thus returns values in the neighborhood of 

the existing coefficient values intensively. This more localized search thus thereby leads to some fine 
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tuning of the coefficient vector in the later stages of the research, when the vectors approach the global 

optima. 

 

3.1.5 Iterations: Now, in the next step, the selected members from the previous generation and the 

members generated after applying crossover and mutation are compared for their fitness value. Then, on 

the basis of the fitness values, the best N chromosomes are selected to populate the second generation. 

However, the search for the best member is continued for a fixed number of generations. That is, some 

iterative search is carried on, or until we meet some convergence criterion. 

 

3.1.6 Convergence: This process of the algorithm is continued up to the maximum number of 

generations, i.e. G. But the value of G to be chosen is not very well defined, even in the existing literature. 

Thus, for better results, since we have narrowed down on the convergence criterion based on the fitness 

value, we say that the value of G should be large enough so that for several generations, there are no 

changes in the fitness value of the best member. 

The general pseudo code for GA can be given as follows: 

Pseudo Code for Genetic Algorithm: 

1   Generate initial population of solutions N 

2   while stopping criteria not met do 

3    select mating pool N′ ⊂ N, initialize N′′=∅ (set of children) 

4    for i=1 to n do 

5    select individuals xa and xb at random from N′ 

6    apply crossover to produce xchild 

7    randomly mutate produced child xchild 

8    N′′= N′′∪ xchild 
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9   end for 

10   N=survive(N′, N′′) 

11   end while 

 

3.2 Simulated Annealing 

Simulated Annealing algorithm finds its origins in statistical mechanics (Metropolis Algorithm) and it 

was initially presented as a search algorithm for Combinatorial Optimization (CO). It is one of the oldest 

methods introduced in 1983 by Kirkpatrick and used among the metaheuristics and is one of the 

algorithms that had an explicit strategy to avoid local minima. It is a generic probabilistic meta-algorithm 

for the global optimization problem, used to locate a good approximation of any multi-optimal function to 

the global optimal point. The Simulated Annealing algorithm gets its name as its is based on the 

simulation of the annealing of solids. Annealing is a process of heat treatment technique which involves 

heating and controlled cooling of a material to reduce the internal defects. In the process, the solid is first 

heated by increasing the temperature to a maximum value such that it is transformed into its liquid phase, 

and then after that, it is cooled slowly. When the atoms of the solid reach the high temperature, they leave 

their initial position and begin to wander through states of high energy randomly. Subsequently, when 

they are cooled down slowly, they thereby acquire a position of lower internal energy than their initial 

energy level. It is said that if the cooling is performed from a very high temperature and is carried out 

sufficiently slow, then all the atoms of the liquid arrange themselves in the low energy ground state of a 

corresponding lattice. The solid keeps on achieving thermal equilibrium at every temperature. The 

thermal equilibrium achieved by the solid at each temperature T can be given by a probability of being in 

a state with energy E by the Boltzmann distribution as given below: 
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Where, Z (T) is a normalization factor which depends on the temperature T and kB is the Boltzmann 

constant. As it can be easily deduced from the above equation, the Boltzmann distribution concentrates on 

the states with lowest energy. Finally, when the temperature reaches zero, with a non-zero probability, the 

minimum energy states are achieved.  

Long back in 1953, in order to simulate the evolution of thermal equilibrium of a solid, Metropolis 

proposed a Monte Carlo method to generate the sequences of states of the solid. The principle is that, 

under the given state of the solid, a perturbation is applied by small displacement of a randomly chosen 

particle and if its perturbation leads to decrease in the energy of the solid, i.e. ∆E, between the current 

state and the new state is negative, and then the process is continued from the new state. On the contrary, 

if the difference is positive, i.e. ∆E is > 0, and then the probability of accepting the new state will be given 

by 






 ∆−
Tk

E

B

exp . This is known as the acceptance rule for the new state better known as the Metropolis 

criterion. This criterion finally evolves into the thermal equilibrium of the solid.  

For the better understanding of the detailed working of the Simulated Annealing algorithm, it can be 

illustrated in the form of the following pseudo code: 

 

Pseudo Code for Simulated Annealing: 

1. Generate initial solution x0, initialize starting temperatures T, maximum number of iterations Rmax 

2. for r=1 to Rmax  do  

3.   while stopping criteria not met do 

4.   compute xn  (Neighbor to current solution) 

5.   compute ∆=f(xn)-f(x0) and generate u (uniform random variable) 

6.   if (∆<0) or (e-∆/T>u) then x0=xn 

7.   end while 
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8. reduce T 

9. end for 

 

Mathematical Model of Simulated Annealing: For realizing a mathematical model of the simulated 

annealing algorithm, a control parameter and is realized as the temperature and a cost function as the 

energy respectively for determining the different configurations of the variables to be optimized. As the 

control parameter is decreased, the new sequences are obtained. Let the cost function be denoted by C and 

the control parameter be denoted by c. When during the iterations, if the configuration changes from i to j, 

which is in the neighborhood of the previous state (i.e. i), then the change in the cost function is given by 

∆Cij = C(j)-C(i). Now, the probability of accepting this new state j will be decided according to the 

Metropolis criterion. Thus, the configuration will be 1 if ∆Cij < 0 and exp (-∆Cij / c) if ∆Cij > 0. Thus, the 

probability of accepting the higher state is non-zero. This process is thereby continued until the 

equilibrium is established. We lower down the control parameter in steps and the previous sequence of 

operations is again followed to reach equilibrium. The control parameter is lowered up to a certain value 

below which there is no significant improvement observed in the outputs. Thus, we can see that when the 

value of the control parameter is high, the probability of accepting a new solution is higher, and as the 

value of control parameter decreases, there is a gradual decrease in this probability due to less change in 

the equilibrium state value solution. 

The Simulated Annealing technique is famous for finding the global optima by accepting both the 

increasing as well as decreasing values of the transition function. The former is accomplished with certain 

probability which depends on stochastic acceptance criterion. For the minimization problems, the 

probability of accepting the higher state descends slowly towards zero by some decreasing schedule. 

Because of this decreasing acceptance of a new state, the algorithm is able to escape from the local 

minima. 
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CHAPTER 4 

PARAMETRIC FORECASTING METHODS (GARCH)  

Nonlinearity has always posed problems towards those trying to model financial time series for 

forecasting. The nonlinear models which have been developed try to realize the underlying nonlinear 

processes through parametric assumptions with specific nonlinear functional forms. Some examples of 

the many nonlinear functional forms used are Auto-Regressive Conditional Heteroskadisticity (ARCH) 

(Engle, 1982), Generalized Auto-Regressive Conditional Heteroskadisticity (GARCH), Self-Exciting 

Threshold Auto-Regressive (SETAR) (Chappel, 1996), chaotic dynamics (Hsieh, 1991), which have been 

proposed and applied to forecasting financial time series.  

GARCH models have been extensively used in finance and macroeconomics because of their attractive 

approximation-theoretic properties. This model provides useful approximations to uncomplicated 

volatility dynamics. The basic concept of the model is that it considers that the variance of the current 

error term is the function of the variances of the previous time period’s error terms. Thus, it is able to 

capture the important property of volatility clustering, i.e. large/small changes of either sign are tend to be 

followed by large/small changes of the small sign. The Auto-Regressive Moving Average (ARMA) 

model, when is assumed for the error variance, then it is converted to GARCH model. Thus, the time 

varying variance is therefore called the conditional variance or volatility for this reason. However, to 

extract the inherent auto regressions in the time series, it is modeled with the help of Auto-Regressive 

Moving Averages (AR-MA). Thus, the model becomes a comprehensive ARMA-GARCH model and is 

described in the following equations as follows: 
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The first equation, i.e. (5.1) is the ARMA part of our model where r is the number of past lagging terms; 

iψ ′s is the coefficients of the lag values and iϕ ′s are the coefficients of the moving averages. The main 

part of the model, the variance is modeled in the equation (5.2), which as we know is known as the 

conditional variance as it depends on the past variance. iG ′s are the coefficients of lag values of variance 

terms and iA s, are coefficients of squared errors. Equation (5.3) shows that the errors tε  are normally 

distributed.  

Since the distribution of the shock is normal, we can use the maximum likelihood function for the 

estimation of the parameters ,i iG A and c. The likelihood function L is the joint probability function 

for ˆt ty y= . The likelihood function for the GARCH model can be represented in the following form: 
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Where, ˆˆ ˆ ˆ, , ,i iG A c k are the estimates of the underlying parameters and ∏ is the multiplication operator. 

The usual method for obtaining the parameter estimates is that we maximize the sum of the logarithm of 

the likelihood function, or log-likelihood function, over the entire sample T, (t = 1,……, T). The 
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important point to be remembered here is that the conditional variance is a nonlinear transformation of the 

past values, in the same way that the variance measure is a nonlinear transformation of the past prediction 

errors. Thus, the GARCH model is quite beneficial in this way that it pins down the source of nonlinearity 

in the process.  

The GARCH model has its specific limitations due to its structure and parameters. As we have a defined 

set of parameters which we want to estimate in the GARCH model, and which carry a well-defined 

meaning, interpretation, and rationale, the parametric approach of GARCH to the specification of the 

nonlinear process, thus become restrictive. The GARCH model, being capturing the property of volatility 

clustering is able to show an important observed phenomenon in the financial time series, that is, the 

periods of high and low volatilities do not dampen out fast. This restrictiveness of the GARCH approach 

proves to be its drawback as we are limited to a well-defined set of parameters, a well-defined 

distribution, a specific nonlinear functional form, and a specific parameter estimation method that does 

not always converge to the parameter estimates. Thus, certain alternative nonlinear processes are unable 

of being realized with specific nonlinear models as they lack in flexibility due to restrictiveness in 

specification. 
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CHAPTER 5 

MODELS DESCRIPTION  

5.1 Introduction 

In the previous chapters, we had discussed various forecasting techniques, under the heading of non-linear 

forecasting techniques, namely (i) Non-Parametric non-linear forecasting methods i.e. Neural Networks 

and (ii) Parametric non-linear forecasting methods (GARCH). We had also discussed the metaheuristic 

techniques like Genetic Algorithm and Simulated Annealing Algorithm which are used to optimize the 

Neural Network configuration models in terms of its weights and nodes. In the following Section 5.2, we 

explain the various models based on the non-parametric approach, in section 5.3, the parametric models 

and then in the next section, we explain the performance metrics used for the comparison of the models. 

 

5.2 Non-Parametric Approach based Models 

We use Neural Network which is a kind of universal function approximator that can map any non-linear 

function without any assumption about the data and its parameters. 

 

5.2.1 Neural Network trained with Conjugate Gradient Method (NN_CGM):  The basic algorithm 

that we use to train the neural network is Conjugate Gradient Method (CGM). Firstly, we apply the 

autocorrelation function to determine the significant lags and then the lag matrix made up of these lags is 

input to the first layer as the input. The first layer, thus, has one node and the number of nodes in the 

hidden layer can vary from 2 to 15.  The output from the hidden layer is fed into the third layer, the layer 

known as the output layer. We have used the log-sigmoid transfer function as the transfer function in our 
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analysis which has been described in Chapter 2. The error is calculated according to the performance 

index, which we have used as the Mean Square Error (MSE) as described in Chapter 6. The error thus 

calculated is then backpropagated and the weights are thus adjusted according to the CGM as explained in 

Chapter 2. The iterative CGM algorithm attempts to reduce the training error on each epoch, which is 

used to decide the stopping criterion. The stopping criteria as to decide when to stop the network training 

depends on three basic following criterion (1) fix the number of epochs (2) check when the training error 

falls below an acceptable predefined level and finally (3) when the error fails to improve by a given 

amount over a given number of epochs. These three criterions may be used as the three stopping rules so 

as to decide when to stop the training of the neural network. The number of epochs is checked at each 

stage and the network is trained until the stopping criterion is met and we keep the maximum number of 

epochs fixed at the number 500. We assume that the number of 500 for the number of epochs is sufficient 

enough for the network to learn. To represent the model in the form of a flowchart, it can be done in the 

form of the following figure:- 
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Figure 5.1 Flowchart Representing Neural Network trained with Conjugate Gradient Method. 

5.2.2 Neural Network path weights Optimization: About the backpropogation algorithm, as we have 

discussed earlier in the Chapter 3, has the disadvantage that the solution may fall into the local optima and 
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thereby result in the poorer forecast of the time series. There is where the metaheuristic techniques come 

into play. Although we have used Conjugate Gradient Method to obtain better results from the previous 

algorithm, but still it is not certain that whether the output we obtain is the global optima. Hence, we use 

the metaheuristic techniques o check whether these techniques outperform the backpropagation learning 

technique used for the neural network training.  

5.2.2.1 Optimization with Genetic Algorithm (NN_GA): The Genetic Algorithm is the highly used and 

successful algorithm useful in optimizing the neural network configuration in terms of weights. This is 

because the Genetic Algorithm is able to find a near optimal solution. The objective is to find the 

optimum set of weights so that it minimizes the difference between the desired outputs and the actual 

outputs. Hence, the chromosomes are constructed as the real numbers which thereby represent the weights 

of the neural network. Thus, each chromosome is a weight vector which can be utilized in the GA 

optimization technique. After once the chromosome is designed, we create or initialize an initial 

population at the length 60, while each of the chromosomes is composed of 15 real numbers, each of 

which represents the path weights. Crossover fraction is varied from 0.6 to 0.9, while the mutation 

probability is set to 0.001. Roulette wheel selection method is then used for selecting those two 

chromosomes which are used for reproducing. After the crossover process is over, the children 

chromosomes are produced and evaluated using the fitness function. The flow process of the detailed 

working of the Genetic Algorithm can be represented in the form of the schematic flowchart to 

understand the working of the GA, as follows:- 
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Figure5.2: Flowchart Representing Neural Network path weight Optimization using GA 

5.2.2.2 Optimization using Simulated Annealing (NN_SA): - The Simulated Annealing (SA) algorithm 

is also one of the most frequently used techniques for obtaining the global optima in terms of weights for 

the neural network configuration. The results obtained from SA optimization can be compared to those 

from GA optimization. In our SA optimization study, initially, the set of weights x0 are taken randomly in 

the range of [-6, 6] which is known as the starting point. The starting step vector vo is the vector which 

decides about the changes in each of the weight element in the weight vector meaning the movement in 

each direction. The controlling parameter acting here is the starting temperature To whose value is varied 

from 16 to 30 with increments of 4. The stopping criterion here depends on the variable e, which denotes 

the error difference between the observed and the target values of the predicted time series. The value of e 

needs to be specified such that the SA optimization stops or terminates as soon as the actual value of e 

falls below a predefined value. We have taken this value to be 0.0030. The acceptance and rejection of a 

new state formed at each step depends on and is decided according to the Metropolis Criterion, as 

explained in the Chapter 3. Thus, for each particular temperature, an optimal network configuration is 

found out and this process of obtaining the corresponding optimal neural network is continued for the 

temperature cooling schedule till it reaches the equilibrium state. The detailed working of the SA 

optimization algorithm can be represented in the form of a flowchart as follows:- 
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Figure5.3: Flowchart Representing Neural Network path weight Optimization using SA 

 

5.3 Parametric Approach based Models 

5.3.1 ARMA-GARCH: Apart from the non-parametric models described above for nonlinear modeling, 

we have also used the parametric model ARMA-GARCH for the better comparison of results from the 

non-parametric models and to realize the nonlinear properties of the exchange rate time series. In this 

model, the fours parameters, i.e. r, m, p and q are varied from 1 to 2. Thus, this gives rise to a total of 16 

possible combinations of configurations. For each of these configurations, the values of ˆˆ ˆ ˆ, , ,i iG A c k are 

calculated, which are the estimates of the underlying parameters of the time series. These estimates are 

then further used to forecast the future values. The performance of each of the configuration is again 

measured by using the performance metrics defined below, where MSE serving as the main performance 

measurement index. The configuration giving the least or the optimum value is chosen and thereby 

compared with the non-parametric forecasting models. 

5.4 Performance Metrics 

The different models described above can be compared using the different performance metrics or the 

evaluation criteria and for our study, we have considered the following five performance metrics to 

compare these models which can be explained as follows: 

If we say that Y1, Y2, Y3, Y4 … YN are the actual values and1̂Y , 2̂Y , 3̂Y  4̂Y ,......... NŶ be the forecasted values. 

Also Y  and Ŷ be the mean of the actual and the forecasted values respectively and N be the sample 

size.  
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Mean Squared Error: The most common criterion used to evaluate the performance is the Mean 

Squared Error (MSE). It is the expected value of the square of the errors and is given 

by ∑
=
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Mean Absolute Error: This gives the Absolute error between the actual output and the forecasted output 

and is given by ∑
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Direction accuracy: This index basically measures how good the predicted direction is i.e., it is the 

measurement of correctness of predicted directions. It can be given by ∑
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Pearson correlation coefficient: Pearson's correlation reflects the degree of linear relationship between 

two variables. It ranges from +1 to -1.The correlation between the two variables reflects the degree to 

which the variables are related. +1 indicates perfect positive relationship while -1 indicates the negative 

relationship. The Person correlation is given by 
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Theil’s coefficient of inequality (U): This performance index gives the prediction performance relative 

to the random walk prediction and the equation is 

∑
−

=
−−

−

=
1

1

2
1)(

1

1 N

i
ii YY

N

RMSE
U , where RMSE is the Root 

Mean Squared Error and is given by RMSE= MSE. 

 

All the above models will be compared on the basis of these different performance indices. In the next 

chapter 6, the comparison has been shown among these models. Besides these performance indices, there 

are also other indices such as Akaike information criterion (AIC), Bayesian information criterion (SIC) 

which can be used to check the model complexity, while Correct Up trend, Correct Down trend can be 

used to measure the correctness of predicted up and down trend. 
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CHAPTER 6 

DATA ANALYSIS AND SIMULATION  

6.1 Data Analysis     

In our analysis, we have taken the 12 different spot exchange rates to be our data. We have used the daily   

data series for all the exchange rates for our research from 03/01/2000 (January 3, 2000) to 24/12/2010 

(December 24, 2010). We have taken the data from the Federal Reserve Bank of New York 

(http://www.federalreserve.gov/releases/h10/Hist) and it is the 12 noon buying rates at New York. The 

different exchange rates used are United States Dollar vs. Australian Dollar (US$/AU$), US Dollar vs. 

Canadian Dollar (US$/CAN$), US Dollar vs. Euro (US$/EURO), US Dollar vs. Hong Kong Dollar 

(US$/HK$), US Dollar vs. Japanese Yen (US$/JPY), US Dollar vs. Mexican Peso (US$/MXP), US 

Dollar vs. New Zealand Dollar (US$/NZ$), US Dollar vs. Singapore Dollar (US$/SING$), US Dollar vs. 

South Korean Won (US$/SKW), US Dollar vs. Sweden Kronor (US$/SWKR), US Dollar vs. Taiwan 

Dollar (US$/TW$) and US Dollar vs. United Kingdom Pound (US$/UKP). The reason for taking so many 

exchange rates as the data is to check the robustness of our models. Below shown in Figure 6.1 is the 

graph of Spot Exchange Rate US$/AU$ as it varies with time of 10 years from January 2000 to December 

2010.  
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Figure 6.1: US$/AU$ Spot Exchange Rate from 03/01/2000 to 24/12/2010 

6.1.1 Data Preprocessing 

As the neural networks basically map the inputs and outputs, the data that should be fed into the neural 

network should be appropriate in the manner that it is already preprocessed. This means that data requires 

to be modified before feeding it to the neural network because only the necessary and the relevant 

patterns of the data must be learnt by the network. Also the data should be transformed such that the noise 

is minimized, thereby highlighting the important characteristics of the data, like we do the first 

differencing here in our study. The following steps have been followed in our study for the data to be 

accordingly transformed: 

Missing Data Points: There are missing data points in the time series due to the presence of the non-

occasional trading days. These missing data points can be handled in various ways, like omitting these 

missing data points, or by interpolation, or by taking the averages of the corresponding nearby values. In 

our study, we calculated the missing observations by taking the corresponding average of the immediate 

preceding and the succeeding values. 
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Removal of Outliers: In the datasets we encounter and work with and alike, we are ought to see some 

data points which does not match with the general behavior or the data model. These data points, which 

are not consistent with the remaining set of data, and are different are thus called outliers. Now, there is a 

specific method to check for the outliers in the data. We first calculate the first (Q1) quartile and the third 

(Q3) quartile of the data. For a distribution, the first quartile is defined as the 25th percentile and the third 

quartile is described as the 75th percentile respectively. The 25th percentile means that the value which the 

dataset into two subsets such that the first part contains the 25% of the data and the second part contains 

the remaining 75% of the data respectively. This logic would obviously define the 50th percentile as the 

value to be the median of the data. After calculating the first quartile (Q1) and the third quartile (Q3) for 

each dataset, we then find the corresponding value of Q3-Q1, which is known as the interquartile range 

(IQ). We then define an Upper Limit [Q3+3*IQ] and a Lower Limit [Q1-3*IQ]. Now, we call an extreme 

outlier to be any value in our dataset which is greater than the Upper Limit or lower than the Lower Limit 

of the corresponding of the dataset. We can thus eliminate the outliers from the data using this concept of 

Upper Limit and Lower Limit. 

Differencing: Generally, the time series have some linear trends and these trends need to be removed. 

These trends can be generally removed by taking the first difference of the successive data points of the 

time series data. The method of first differencing is the most common step of the data transformation 

done before the processing. Sometimes, logarithmic transformation is also performed for the data sets 

which have both very small as well as very large extreme data points. After observing the time series 

datasets we have used for our study, we found that these time series datasets have trend which can be 

removed by taking the first difference. The first differencing results the time series in a stationary data 

series which makes it easier and comfortable in handling the data set for further processing. The first 

difference series of the data series US$/AU$ exchange rate is shown below in Figure 6.2. 
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Figure 6.2: US$ vs. AU$ First Difference Series 

 

Data Normalization: The data is to be further get normalized to match the actual output range. This 

depends on the activation function or the transfer function we have used. The neural networks which use 

the non-linear activation function in the output layer, there is a need of normalization to be done on the 

target data in order to match the range of the actual outputs. We have used the logistic activation function 

which has the typical range of [0, 1]. Therefore, the normalization of the data becomes necessary. There 

are three ways described in the literature to normalize the data into a specific range, which are: 

1. Linear Transformation to [0, 1], where the maximum and the minimum value of the data is used 

for the data transformation process and it is given by 








−
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2. Statistical Normalization, where we use the mean and the standard deviation of the dataset for the 

data transformation process given by the following equation, 

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3. Simple Normalization, in which we simply divide each data point with the maximum value of the 

corresponding data series to transform the data point between [-1, 1] using the equation 











=

max

0

x

x
xn . 

In the above data transformation equations,minx , maxx , x  and σ denote the minimum, the maximum, the 

mean and the standard deviation of the corresponding data set respectively. While nx  represents the 

normalized data point and 0x  represents the original data point. 

 

6.1.2 Data Post-Processing 

The data post-processing is the comparison of the different model performances by the data outputs 

obtained. For performances comparison, we have different performances parameters as discussed in 

Chapter 5. These are Mean Square Error (MSE), Mean Absolute Error (MAE), Direction Accuracy (DA), 

Pearson Coefficient of Correlation (ρ) and Theil’s Inequality Coefficient (U), etc..  

6.1.3 Data Division 

The neural network is a technique which is preferably used to generalize the relation between the inputs 

and output. Neural is a self-learning tool and is hardly used as a tool to memorize the data pattern; rather 

the main motive of using these networks remains the generalization of the pattern. One of the problems in 

neural networks is of overfitting which occurs when there are few number of observations with respect to 

the number of path weights and therefore the network memorizes the individual points rather than 

learning the general pattern. Thus, to keep the number of data points sufficient for training of the network, 

we utilize 2873 (2872) data points for all the data series and after removing the outliers, we take the first 
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the first 70% of the data points to train the network. The next 10% of the data points is used for the 

validation and the remaining 20% of the data is utilized for the testing of the trained/optimized network. 

 

6.2 Simulation 

The different models discussed are compared on the basis of the evaluation criteria which are as 

mentioned in Chapter 5. The results obtained from the analysis are found in accordance to the 

expectations. We expect that the forecast errors should reduce as we incorporate more complex 

algorithms to train our neural network. The errors obtained from the benchmark model i.e. Neural 

Network optimized with Conjugate Gradient Method (NN_CGM), should reduce when we implement the 

Neural Network path weight optimization using Genetic Algorithm (NN_GA) and then when we do the 

Neural Network path weight optimization using Simulated Annealing (NN_SA). 

In Section 6.2.1, we present the results of the autocorrelation of US$/AU$ time series as an example and 

the significant lags obtained through it. In the subsequent section 6.2.2, we compare the results obtained 

from the various models which employ different training algorithms. 

 

6.2.1 Autocorrelation and Significant Lags 

After the treatment of the missing values and correspondingly replacing them in the preprocessing process 

and taking the first difference, we now have to find the autocorrelation of the time series data to get the 

significant lags. We also tried to find the number of significant lags from the second difference data 

series, i.e. we obtained the second difference time series data from the first difference time series by again 

doing first differencing of the successive data points, and then calculated the autocorrelation from this 

series. But for our study, it was found that the significant lags obtained from the first difference time 
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series were more appropriate than those obtained from the second difference time series. The 

corresponding autocorrelation values for the US$/AU$ spot exchange rate is shown in the following 

Figure 6.3. 

 

Figure 6.3: The Autocorrelation values for US$/AU$ Spot Exchange rate 

From the graph above, we can clearly see that the significant lags for the US$/AU$ Spot exchange rate 

time series data are 4, 12, 17, 28 and 40. Similarly, we calculate the corresponding autocorrelation values 

from the first difference time series of the other spot exchange rate data sets and then find out the 

corresponding significant lags.  

After obtaining the number of significant lags, which for example, for the data series US$/AU$ is 5, we 

form a lag matrix of the size (5 X 2872), where 2872 is the number of the data points in the data set. This 

matrix is then fed into the various models and the results thus obtained are then compared amongst 

themselves. 
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6.2.2 Results from Non-Parametric Models 

For our models, the performance is mainly measured in terms of the Mean Square Error (MSE). We have 

presented the performance of our various models by MSE and other different comparison performance 

metrices which are Mean Absolute Error (MAE), Direction Accuracy (DA), Pearson Correlation 

Coefficient (Rho) and Theil’s Inequality Coefficient (U). We hereby give the Error metrics tables and the 

comparison by MSE and other error indices for all of our 12 time series data. The final results of the five 

performance metrics for all the models, considering US$/AU$, are summarized in Table 6.1. 

Table 6.1: Comparison of Performance using various performance metrics for US$/AU$ 

From the table above, we can easily observe that the Mean Square Error (MSE) value is the least for the 

NN_GA model, while the highest value is obtained when we use NN_SA model. The model NN_CGM 

gives the value in between the two. In the case of Mean Absolute Error (MAE), we see that the minimum 

value is obtained when we use NN_SA, and the model NN_CGM performs the worst of the three. While 

comparing Direction Accuracy (DA), the results again suggest that the NN_GA model again outperforms 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0374 0.0119 0.0539 

Mean Absolute Error (MAE) 0.1560 0.0840 0.01914 

Direction Accuracy (DA) 0.5028 0.4932 0.4972 

Pearson Correlation (ρ) 0.9256 0.9932 1.0334 

Theil’s Inequality coefficient (U) 0.3609 0.2130 0.4335 



59 

 

the other two models giving the least value. For comparing Pearson Coefficient of Correlation (Rho), 

surprisingly, NN_CGM gives the least value. Whereas if we see the Theil’s Inequality Coefficient (U), 

the values again prove that NN_GA is the best in terms of results. 

The results obtained and explained above can be better understood and visualized when reperesnted in the 

form of the following bar graphs where we first compare the Mean Square Error (MSE) individually and 

then, we give the comparison using all the five error metrics. 

 

Figure 6.4: Comparison of Performance by MSE for data series US$/AU$ 
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Figure 6.5: Comparison of Performance using various Error Metrics for data series US$/AU$. 
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Similarly, for the other time series data, we calculate the significant lags from the autocorrelation values 

and form the corresponding lag matrix which s fed into different models to give corresponding results. 

For the next time series data, i.e. US$/CAN$, the significant lags obtained are 3, which are 6, 9 and 29. 

The results thus obtained in terms of the performance metrics obtained are given in Table 6.2. 

Table 6.2: Comparison of Performance using various performance metrics for US$/CAN$ 

Here also, we can see the same trend being repeated of NN_GA model proving to be the best of the three 

in case of the main comparison parameter i.e. Mean Square Error (MSE). However, here it gives the 

minimum value also in the case of Mean Absolute Error (MAE) and Theil’s Inequality Coefficient (U). 

Unlike US$/AU$, the NN_CGM proves to be the best comparing Direction Accuracy (DA) while 

NN_SA outperforms the other in case of Pearson Correlation (Rho). Again, following are the 

representation of the results in terms of bar graph plots for better visualization. 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0251 0.0139 0.0584 

Mean Absolute Error (MAE) 0.1237 0.0931 0.2000 

Direction Accuracy (DA) 0.4430 0.4982 0.5478 

Pearson Correlation (ρ) 1.0655 0.9766 0.8769 

Theil’s Inequality coefficient (U) 0.3076 0.2344 0.4692 
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Figure 6.6: Comparison of Performance by MSE for data series US$/CAN$ 

 

Figure 6.7: Comparison of Performance using various Error Metrics for data series US$/CAN$. 

For the third time series data US$/EURO, the significant lags obtained are again 3, which are 4, 7 and 32. 

The results obtained as performance metrics are as follows in Table 6.3. 
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Table 6.3: Comparison of Performance using various performance metrics for US$/EURO 

The bar graph plots comparing the Mean Square Error (MSE) individually and all the error metrics 

combined are as follows: 

 

Figure 6.8: Comparison of Performance by MSE for data series US$/EURO 

 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0301 0.0147 0.0419 

Mean Absolute Error (MAE) 0.1387 0.0957 0.1671 

Direction Accuracy (DA) 0.4881 0.5110 0.5170 

Pearson Correlation (ρ) 0.9438 0.9599 1.0134 

Theil’s Inequality coefficient (U) 0.3180 0.2289 0.3754 
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Figure 6.9: Comparison of Performance using various Error Metrics for data series US$/EURO. 

Here also the NN_GA model performs the best in case of comapring Mean Square Error (MSE), MAE 

and U. However, surprisingly, the NN_CGM models performs better than the other two in case of the 

other two performance indices DA and Rho. 

For the fourth data series, i.e. US$/HK$, the significant lags obtained are 5 again, which are 2, 8, 15, 23, 

38. The results obatined are as follows: 
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Table 6.4: Comparison of Performance using various performance metrics for US$/HK$ 

 

Figure 6.10: Comparison of Performance by MSE for data series US$/HK$ 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0300 0.0085 0.0426 

Mean Absolute Error (MAE) 0.1385 0.0621 0.1716 

Direction Accuracy (DA) 0.5735 0.4298 0.5499 

Pearson Correlation (ρ) 0.9612 1.0439 0.9693 

Theil’s Inequality coefficient (U) 0.3182 0.1761 0.3851 
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Figure 6.11: Comparison of Performance using various Error Metrics for data series US$/HK$. 

For the fifth data time series US$/JPY, the significant lags obtained are 15, 21, 31, 40, 48. 

Table 6.5: Comparison of Performance using various performance metrics for US$/JPY 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0213 0.0240 0.0925 

Mean Absolute Error (MAE) 0.1132 0.1233 0.02713 

Direction Accuracy (DA) 0.4396 0.5311 0.4707 

Pearson Correlation (ρ) 1.0239 0.9164 1.0247 

Theil’s Inequality coefficient (U) 0.2606 0.2751 0.5431 
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Figure 6.12: Comparison of Performance by MSE for data series US$/JPY 

 

Figure 6.13: Comparison of Performance using various Error Metrics for data series US$/JPY 

However, here we see an exception from the previous trend. The best performing model for this time 

series data comes out to be NN_CGM when comparing MSE. It is also the same for the other indices 

MAE, DA and U except for Rho, where NN_GA turns out to be the best. 
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For the sixth time series data i.e. US$/MXP, the significant lags obtained are again 5,which are 5, 13, 17, 

26, 32. The results obtained in the form of performance indices and bar graph plots are shown as follows:  

Table 6.6: Comparison of Performance using various performance metrics for US$/MXP 

 

Figure 6.14: Comparison of Performance by MSE for data series US$/MXP 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0286 0.0170 0.0463 

Mean Absolute Error (MAE) 0.1326 0.0988 0.1775 

Direction Accuracy (DA) 0.5224 0.5124 0.4832 

Pearson Correlation (ρ) 1.0320 1.0241 1.0317 

Theil’s Inequality coefficient (U) 0.3102 0.2440 0.3951 
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Figure 6.15: Comparison of Performance using various Error Metrics for data series US$/MXP 

Here, NN_GA again turns out to be the best performing model in all the cases of performance indices 

except for the one which is DA. In case of DA, NN_SA proves to be the best. 

For the seventh time series i.e. US$/NZ$, the significant lags are 3, which are 3, 29 and 40. The results 

thus obtained in terms of the performance indices and the corresponding bar graph plots are shown as: 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0342 0.0112 0.1401 

Mean Absolute Error (MAE) 0.1488 0.0810 0.3292 

Direction Accuracy (DA) 0.4833 0.4630 0.4907 

Pearson Correlation (ρ) 1.0141 1.0322 1.0016 

Theil’s Inequality coefficient (U) 0.3691 0.2217 0.7474 
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Table 6.7: Comparison of Performance using various performance metrics for US$/NZ$ 

 

Figure 6.16: Comparison of Performance by MSE for data series US$/NZ$ 

 

Figure 6.17: Comparison of Performance using various Error Metrics for data series US$/NZ$  

For the eighth time series data, US$/SING$, the significant lags obtained are 3 again, 4, 7 and 25. 
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Table 6.8: Comparison of Performance using various performance metrics for US$/SING$ 

 

 

Figure 6.18: Comparison of Performance by MSE for data series US$/SING$ 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0235 0.0209 0.0650 

Mean Absolute Error (MAE) 0.1194 0.1122 0.2177 

Direction Accuracy (DA) 0.4945 0.4909 0.5255 

Pearson Correlation (ρ) 0.8583 1.0575 0.9563 

Theil’s Inequality coefficient (U) 0.2797 0.2654 0.4650 
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Figure 6.19: Comparison of Performance using various Error Metrics for data series US$/SING$  

Here also, NN_GA proves to be the best model in terms of results except in case of index Rho. 

For the ninth time series data US$/SKW, the significant lags obtained are 3, 7, 10, 14 and 31. The results 

thus obtained in the form of performance metrics and the bar graph plots are as below: 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0153 0.0227 0.0231 

Mean Absolute Error (MAE) 0.0941 0.1104 0.1225 

Direction Accuracy (DA) 0.4556 0.5265 0.4813 

Pearson Correlation (ρ) 0.8313 0.9504 1.0215 

Theil’s Inequality coefficient (U) 0.2459 0.2956 0.3021 
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Table 6.9: Comparison of Performance using various performance metrics for US$/SKW 

 

Figure 6.20: Comparison of Performance by MSE for data series US$/SKW 

 

Figure 6.21: Comparison of Performance using various Error Metrics for data series US$/SKW 
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This time series data also proves to be an exception to the observed trend. Instead of NN_GA, the 

conventional NN_CGM model turns out to be the best performing with respect to all the five performance 

indices. 

For the tenth time series data, i.e. US$/SWKR, the significant lags observed are 2, 5, 7, 18 and 32. The 

results thus obtained in terms of the performance indices and bar graph plots are following: 

Table 6.10: Comparison of Performance using various performance metrics for US$/SWKR 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0335 0.0261 0.0339 

Mean Absolute Error (MAE) 0.1468 0.1282 0.1474 

Direction Accuracy (DA) 0.5101 0.4816 0.5562 

Pearson Correlation (ρ) 0.9553 1.0070 0.8793 

Theil’s Inequality coefficient (U) 0.3587 0.3214 0.3609 
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Figure 6.22: Comparison of Performance by MSE for data series US$/SWKR 

 

Figure 6.23: Comparison of Performance using various Error Metrics for data series US$/SWKR 

Here, the NN_GA model gives the least value in terms of all the error indices except in the case of the 

Pearson Correlation Coefficient (Rho). 

For the eleventh time series data US$/TW$, the significant lags are 2, 5, 11, 18 and 23. The results are:  
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Table 6.11: Comparison of Performance using various performance metrics for US$/TW$ 

 

Figure 6.24: Comparison of Performance by MSE for data series US$/TW$ 

 

 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0304 0.0147 0.0974 

Mean Absolute Error (MAE) 0.1365 0.0884 0.2716 

Direction Accuracy (DA) 0.5106 0.4648 0.4933 

Pearson Correlation (ρ) 0.9404 1.0644 0.9186 

Theil’s Inequality coefficient (U) 0.3233 0.2316 0.5793 
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Figure 6.25: Comparison of Performance using various Error Metrics for data series US$/TW$. 

Here also, the results obtained are similar to the previous time series data i.e. US$/SWKR, i.e. NN_GA 

turns out to be the best performing model. 

For the last, i.e. twelth time series data, the significant lags obtained are 7, 11, 14, 22 and 27. The results 

obtained in terms of performance metrics and the bar graph plots are displayed below: 

Metrics of comparison 

Models 

NN_CGM NN_GA NN_SA 

Mean Square Error (MSE) 0.0310 0.0144 0.0346 

Mean Absolute Error (MAE) 0.1392 0.0921 0.1499 

Direction Accuracy (DA) 0.5145 0.4982 0.4800 

Pearson Correlation (ρ) 0.9262 1.0092 0.9981 

Theil’s Inequality coefficient (U) 0.3437 0.2424 0.3631 
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Table 6.12: Comparison of Performance using various performance metrics for US$/UKP 

 

Figure 6.26: Comparison of Performance by MSE for data series US$/UKP 

 

Figure 6.27: Comparison of Performance using various Error Metrics for data series US$/UKP. 

Thus, here also, NN_GA model is performing as the best giving the least value of Mean Square Error 

(MSE), MAE and U. Thus, it can be concluded that by far from the above time series data and among the 
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models implemented, NN_GA proves to be the best model in terms of most of the performance indices 

used. Thus, the neural network trained with weights optimized with the elp of Genetic Algorithm serves 

as the most successful model for the prediction of spot exchange rate in case of our study. However, it 

was also expected that NN_SA, that is, the one trained with Simulated Annealing algorithm will also 

perform greatly which is not observed as so. It performs badly than even our conventional NN_CGM 

model, with respect to Mean Square Error (MSE) and also other indices. 

 

6.2.3 Results from Parametric Models 

For the parametric model GARCH of our analysis, the four parameters r, m, p and q are varied each able 

to take values from 1 to 2. This gives rise to 16 possible combinations. The time series data is forecasted 

using all the 16 configurations and the best one is chosen among them. In our study, for the time series 

data US$/AU$, the best or the optimum results were obtained for the configuration r=2, m=1, p=2 and q 

=1. This configuration can also be written as AR(2) MA (1) GARCH (2, 1). The results in the form of 

error metrics can be displayed as below: 

Metrics of comparison Model: ARMA-GARCH (2,1,2,1) 

Mean Square Error (MSE) 1.0001 

Mean Absolute Error (MAE) 1.0000 

Direction Accuracy (DA) 0.6714 

Pearson Correlation (ρ) 0.6161 

Theil’s Inequality coefficient (U) 0.9999 

Table 6.13 Performance Measurement using various Error Metrics for ARMA-GARCH model. 
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It can be clearly seen from the table above and comparing the results from the non-parametric models 

above that there is a great difference in the performance of the parametric and non-parametric models. For 

the main performance index, i.e. Mean Square Error (MSE), where the value for all the non-parametric 

models varies in the low ranges of 0.01-0.05, the corresponding MSE value for the statistical GARCH 

model is quite high, i.e. close to 1. The same is the observation with the next error metric i.e. Mean 

Absolute Error (MAE). However the values are quite comparable in the case of the other three 

performance error metrices. Thus, it can be concluded that the non-parametric models outperform the 

parametric models. 
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CHAPTER 7 

CONCLUSION AND FUTURE POSSIBILITIES  

It has been of great concern for the financial analysts to develop efficient models for the prediction of 

foreign exchange rate. In the financial market, the trading of foreign currency itself is one of the biggest 

market out of which most of the trading occurs in the spot market. Thus, the spot exchange rate prediction 

has been one of the most important issues in financial analysis. We, through our study, have tried to deal 

with the same issue and we have used artificial neural networks to predict the foreign exchange rate time 

series. 

The Artificial Neural networks have wide variety of applications in the prediction of many time series 

similar to those of foreign exchange rate. We deal with the following issues regarding the forecasting 

methodology based on the neural networks. We employed different training algorithms for the training of 

the neural networks to generate different models for the financial time series forecasting. We have 

compared the conjugate gradient method, which is the most conventional algorithm used to train the 

neural network, with the Genetic Algorithm and the Simulated Annealing Algorithm. The second issue 

addressed in our work or study was to optimize the weights connecting the different layers, with the 

genetic algorithm and the simulated annealing algorithm, of the neural network which is trained using 

Conjugate Gradient Method. Thus, the three models proposed are thereby compared and the comparison 

is done on the basis of different performance indices suggested. We have also used the statistical 

nonlinear parametric model ARMA-GARCH which captures the nonlinear properties of the financial time 

series to compare the results with the above non-parametric models. Our results show that the model with 

weights of the neural network optimized using Genetic Algorithm and trained with Conjugate Gradient 

Method gives the best of the results among the non-parametric models for most of the data sets and that 

all the non-parametric models outperform the parametric models. 
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These different issues addressed in our study can improve the performance of forecasting of the neural 

networks. But, there is a further scope of improvement of the results by considering many other issues 

related to the neural networks. For the training and optimizing of the architecture, the parameters for 

genetic algorithms such as the number of generations, population size, crossover probability, etc. are 

obtained by hit and trial and offer poor justification. We can make the genetic algorithm itself to evolve 

these parameters simultaneously with training or optimization of networks. Such genetic algorithms are 

also known as the Evolutionary Genetic Algorithms. Also, for the initial connection weights, creation of 

population and mutation, genetic algorithm uses random number generators. This stochastic nature of the 

genetic algorithm and the neural networks make the results precisely, not reproducible. This can be 

improved by making improving the random nature of the generators or the number of runs is increased 

and the predicted value is the mean of all the runs taken. We can also use some other different 

optimization algorithms like Particle Swarm Optimization (PSO), Tabu Search (TS) Algorithm, Artificial 

Immune System (AIS), and Ant Colony Optimization (ACO) for the training of the neural networks. The 

data set forecasting (i.e. inherent input and output values) is based on the concept of technical analysis 

while it has been seen that a combination of technical factors, fundamental factors and the inter-market 

data can give a better prediction of the time series. Also, we believe that better results can be obtained by 

applying other training algorithms, like Quasi Newton Algorithm and Levenberg-Marquadt in Artificial 

Neural Networks. 
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