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ABSTRACT

The prediction of stock market returns and priced ather variables have always been a topic oftgrea
interest to researchers and financial analystsedioeg as a large amount of capital is being traaled
over the world and therefore predicting importamtet series like financial foreign exchange ratevpso

to be of immense help in systematizing and planfimencial gain. Also, some theorists and reseasche
believe that the markets are efficient in themsgltleey absorb every another new information comimg
and thus there is no scope of prediction. This pasea challenge and thus provides another mativdi

try and devise mechanisms for market predictioprowe that the markets are not completely randodn an

carry an element of predictability.

We also believe that the markets don’t follow coetglrandom walks and can be modeled carefully and
efficiently to get quite encouraging results. Wedhased Neural Networks for modeling, which are one
of the very interesting machine learning technigireg can approximate nonlinear continuous funstion
without any priori information about the nature thfe generating process i.e. the underlying data
generating process. They are said to be the méalldsing data driven approach because they perform
nonlinear modeling without any knowledge of thatieinship between the input and the output vargable
A neural network is a system consisting of many pdémunits called neurons which are highly
interconnected and are organized as layers. Eaahomeperforms the simple task of information
processing by converting received inputs into pseed outputs. These Neural Networks can perform

wide variety of tasks and achieve remarkable result

We have modeled the spot exchange rate time s#ribe daily data of about 10 years from 2000 tb@0
using neural networks which are trained using verialgorithms. Training of the neural networks and
finding the optimal set of weights and therefohe tptimal network to generate the best of ressilitmt

an easy task. We have used the Conjugate Gradietihod (CGM) to train the network and the

algorithms like Genetic Algorithm and Simulated Aating Algorithm to optimize the neural network



11

configuration in terms of weights. We have alseduparametric complex statistical models like Auto-
Regressive Moving Average (ARMA) coupled with Gelized Auto-Regressive Conditional

Heteroskedasticity (GARCH) for forecasting the sdime series data. The results obtained from variou
models are thereby compared. It has been obsehadthe neural networks trained with CGM and

optimized with GA perform the best among all models
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CHAPTER 1

INTRODUCTION

In financial research, predicting stock market indmd stock prices is the topic of great interest t
people. First, the discoveries about the naturthefstock prices and returns are made and these the
developments lead to the design of prediction nofielthe stock prices. After the coming of theaflag
exchange regime, liberalization of trade and rapidansion of global trade, these issues have corae t
forefront. To construct models that are able endigpredict and explain reasonably enough the éutur
value of the exchange rates is in the interestrafegjic investors as well as the common man. Rgen
the markets have become a more accessible investowrior everyone. Thus, it is not only related t
the macroeconomic parameters, but it also afféetseveryday life in a more direct manner. Theneois
straightforward equation which decides the behawiothe stock market or the stock price. Thus, the
characteristic of unpredictability is always asateil with the stock markets and the exchange rates.
People tend to extend this concept of unprediétatid declare that the markets are completely oamd
and prediction about them is impossible. But it hasn shown and proved that the markets do carry an
element of predictability. The main motive of makisuch prediction models are thus obvious, fitst, t

financial gain and then, to prove that the markegsnot totally random but predictable to an extent

1.1 Objective

The objectives of the thesis are as follows:

1. Forecasting using Neural Networks using Conjugated{®&nt after pre-processing of the data to

find the number of the inputs to be given on theidaf the autocorrelations.
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2. Using some metaheuristic techniques for the opttion of the Neural Network Configuration

and thus compare the different models formed.

1.2 Financial Time Series

An ordered sequence of the values of a variabbgjatlly spaced time intervals is known to be a Time
Series. Now, a time series may have can have fididi stochastic or deterministic components. A
stochastic component is one in which each dateewaiithe series can be considered as a sampleafiean
a probability distribution of an underlying popudet at each point in time. Whereas a determintatie
series is one which is not driven by stochasticcgss but by some predefined laws of which the
corresponding time series is the data. Some exanoplstochastic time series are foreign exchange ra
rainfall data, stock prices, earthquake data ands&iDomestic Product (GDP). Some examples of
deterministic time series are AC single phase geltacross household mains, seasonal flooding ef Nil

river data.

Our study concerns with the stochastic type of teedes of Foreign Spot Exchange Rates. Foreign
Exchange Rate is the ratio of the currencies of mwantries. It is a very important factor in
understanding the dynamics of the trading of goimdshe import-export markets as well as in the
exchange markets, as it expresses the currencyn@fcountry in terms of another. These foreign
exchange rates are determined and influenced asge Variety of factors. For any given currenayeti

is one of the most important influencing factorsdietermining the foreign exchange rate. The other
factors i.e. various economic factors have diffgiimfluence on the foreign exchange rate diffeffirogn
country to country. Some of the factors determining foreign exchange rate movement are relative
growth of the economy of one country with respecthat of the other country, inflation differential
equity flow, and market volatility. The spot exclharrate of United States Dollar vs. Australian Boll
(US$/AUS) which we have also used as one of oue tieries data in our analysis is shown below in

Figure 1.1 as it varies with time over a period 0fyears from January 2000 to December 2010.
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Figure 1.1: US$/AUS$ Spot Exchange Rate from 03/00Q0 to 24/12/2010

1.3 Stationarity of time series

Time Series may be stationary or non-stationarytivde seriesr; is said to be stationary if the joint
distribution of ¢............ ry is identical to that ofr(,,............ re1) for all t, where k is an arbitrary
positive integer. This means that for a seriesethictly stationary, the joint distribution musit vary

with time or it is invariant under time shift. Thiseans that the first and the second momentsthiee.
means, variances and covariances are constantesgiect to time. Thus, the stationary time senies a
characterized by a kind of statistical equilibrimmound a constant mean level as well as a constant

dispersion around the mean level.

On the other hand, a non-stationary time seriesméwhich does not exhibit this type of equilibriamd
show random behavior. Also, the first and secondnemds are expected to change. The non-stationary

time series are thus characterized by propereséindom walk, drift, trend, changing variance, et
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Fortunately, for most of the financial time serigsta such as the stock prices and Gross Domestic
Product, logarithmic first-differencing usually msforms the non-stationary time series into statipn

time series.

1.4 Research Background

The stock market prediction task divides the redeas into two belief groups. On one side, theee ar
people who believe that the market is efficient agnever some new information comes up, it absorbs
it by correcting itself. That the market followsndom walk, there is ho room for prediction and lvlest
prediction you can have about tomorrow’s valuedat's value. The other belief is that the marlests

not completely random and we can devise mechanienpedict it. However, due to the non-linear
characteristics of the exchange rates, it has gesarally difficult to model the financial forecest. In

the past, various researchers have used differettianis for evaluating the dynamic behavior of the

financial series and have claimed some successimg lable to forecast the financial time series.dat

1. Technical Analysis— Chartists or the technical analysts attemptréalipt the market by tracing
patterns that come from the study of the chartchvidiescribe the historic data of the market.
Technical market analysis is based on market ge@tesatistics and is used for the market data
i.e., price movements (high, low, open, close, n@y for an individual exchange rate. This
analysis cannot be used because it often trivelizearket behavior by reducing it to two

dimensional charts that are susceptible to subgatierpretation and incomplete analysis.

2. Fundamental Analysis— Fundamental Analysts study the intrinsic valfieastock and they
invest on it if they estimate that its current vala lower than its intrinsic value. They study the
effects of supply and demand of each currency. Hewdundamental analysis is not capable

of capturing the behavior of the nonlinear markatsl the inherent complexity of inter-
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market relationships. The models are limited to timancial analyst's ability to identify

dominant factors which affect the supply and demand

Linear Time Series Forecasting- In traditional time series forecasting, we toycteate linear
prediction models to trace patterns in histori@ad&tepending on whether they use one or more
variables to approximate the stock market timeesethey can be divided as the univariate and
the multivariate regression models. The linear rod¢h have long been the dominant
technique for the analysis of economic and finalnitrae series as they provide the ease of
interpretation and simple computation. Auto-regiress(AR) models are useful in the
prediction of foreign exchange rate i.e., finandiale-series. However, traditional methods
cannot be used to track the complexity of markdtawér and the intricacies of economic
theory. Traditional methods fail in regard to pidig financial time series because the

dynamic exchange rates are found to be stronglyimear.

Non-Linear Modeling — Recently, the discovery of the nonlinearityhe financial markets have
been largely emphasized by various researchersfiaadcial analysts. There are many new
potentially promising nonlinear methods and techeigintroduced for prediction. Some of
the nonlinear time series models developed arebilieear model, the Threshold Auto-
Regressive (TAR) model and the Auto-Regressive @mmhl Heteroscedastic (ARCH)
model. ARCH model was later extended to Generalizado-Regressive Conditional
Heteroscedastic (GARCH). Even though a number ofliveear statistical techniques have
been used to produce better predictions of theksteturns or prices, most techniques
require that the nonlinear model be specified befdre estimation of parameters can be
determined. These techniques are better knownemtidel driven approaches. That is, an
explicit relationship between the inputs and outpaitiables for the data series at hand has

to be hypothesized with little knowledge of the argling law. In fact, the formulation of a
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nonlinear model to a particular dataset is a veffycdlt task since many possible nonlinear

patterns may not be captured by a pre-specifiedimssar model.

Neural Networks, as opposed to the above modeldbasalinear methods; do not require a pre-
specification during the modeling process becausg tan independently learn the relationships eter

in the variables. Neural Networks are thus saidemonlinear data driven approaches. They are ¢apab
of performing nonlinear modeling without a priorndwledge about the relationships between
input and output variables. Neural networks, theref are a more general and flexible modeling
tool for nonlinear problem forecasting. As it contés to operate on the data, a properly
constructed network can subsequent learn by it3¢lfs is the most essential advantage of neural

networks over other forecasting models.

Neural Networks have been used for forecastingesiloeig. They have been equally and more
extensively used for the forecasting of other typéstochastic data apart from the financial time
series data like rainfall data, earthquake data fitst application dates back to 1964. Hu (1964),
in his thesis, uses the Widrow's adaptive lineatwonek for weather forecasting. Due to the
insufficiency of a training algorithm for generaluiti-layer networks at the time, the research was
quite limited. It was not until 1986 when the badokpagation algorithm was introduced
(Rumelhartet. al. (1986)) that there had been much developmenhénuise of neural network for
forecasting. Werbos (1974, 1988) first formulatdxd tbackpropagation network and found that
neural networks trained with backpropagation outmren the traditional statistical methods such as
regression and Box-Jenkins approaches. Tatngl. (1991), Sharda and Patil (1992), and Tang and
Fishwick (1993) report results of several foreaagttomparisons between Box-Jenkins and neural
networks. Weigenat. al. (1990, 1992) and Cottredit. al. (1995) addresses the issue of network
structure for forecasting real-world time serieapkdes and Farber (1987) concluded that neural

networks can be used for modeling and forecastifrmonlinear time series.
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One of the many other abilities of a neural netwisrkhat it can generalize and "see through" noise
and distortion and abstract essential charactesisti the presence of irrelevant data. The neural
network model also provides a high degree of rabess and fault tolerance. In addition, the well-
built model can find the right transformations feariables and can also represent complex and
highly nonlinear relationships through independeatiable data patterns. They have the potential
to capture nonlinear properties of time series ey are non-parametric in nature. Hence, neural
networks seem appropriate for forecasting becaus¢heir self-adaptive, automatic modeling

properties.

1.5Models employed for Exchange Rates

As discussed about neural networks in the previgergion, their various characteristics of self-
learning, non-linearity, adaptability, arbitrarynfttion mapping ability, make them quite suitable
and useful forecasting tools. However, the perfaroeaof neural networks is affected by many
factors. Some of these factors are, the designhefreural network, the configuration of the
network, the algorithm used to train the networkl aike. There are different algorithms which
can be used to optimize the neural network. Iritjah our work, we use the Conjugate Gradient
Method (CGM) for the purpose of training the neuradtwork. This training algorithm back

propagates the changes needed to be incorporatednimize the difference between the actual
output and the desired output. Further, in our wtwee utilize some metaheuristic techniques for
the optimization of the neural network configuratim terms of weights and number of nodes. We
have used two metaheuristic techniques, Genetiortlygn (GA) and Simulated Annealing (SA).

The results obtained after the employment of theameuristic techniques, when compared with
those obtained from CGM show that GA outperforms &&l CGM. This comparison is done on

the basis of different performance measures.
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The different performance measures or metrics usedompare the performance of different
models are (1) Mean Square Error (MSE), (2) MeasdMite Error (MAE), (3) Direction Accuracy
(DA), (4) Pearson Correlation Coefficient and (H)ell’s Inequality Coefficient. The results we
have obtained are quite motivating and encouragdiug.all of our different simulations, we have

used MATLAB RO09B as the programming tool for ounoale analysis.

1.6 Thesis Organization

The thesis is organized as follows:

In Chapter 1, we have discussed and explained tbblgms in financial forecasting and the
different methods utilized by people in the pasttheir quest to develop efficient predicting
models for forecasting. Chapter 2 discusses abwmaitstructure of Neural Network, its parts and
processing techniques, the learning rules and tlaénibhg methods for a neural network
configuration. Chapter 3 discusses in detail the twetaheuristic techniques used by us in our
study namely Genetic Algorithm (GA) and Simulatedn&aling (SA) while Chapter 4 describes
the parametric model ARMA-GARCH used by us for bettomparison of results. In Chapter 5,
we have briefly described how the various modelkseblaon different techniques discussed work to
produce prediction results. Chapter 6 shows théuarsteps followed by us for data analysis and
then the results obtained by us from different nied€&inally Chapter 7 concludes with a brief

about our conclusions and the further future pasds of our work.
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CHAPTER 2

ARTIFICIAL NEURAL NETWORKS

2.1 An Overview

Artificial Neural Networks or simply neural netwarlare computing models for information processing
and pattern identification. These are models basedata driven approaches and considered as a data
processing technique that relates a set of inpusssiet of outputs. Artificial Neural Network tedimre is
motivated by the way biological neural system waaksl it grew out of the research interest in modeli
neural systems, especially human brains. It cazobeidered as a massively parallel distributedgssaor
made up of simple processing units, which can Hedtas artificial neurons, and which carry theunal
tendency to store experimental knowledge and makiagailable for later use. An artificial neuros i
again a computational model inspired by the natmeron. Neuron is known to be the simplest
processing unit, receives and processes the digmalother neurons through its input paths knowthas
dendrites. If the combined signal is enough, t.exteeds the threshold, it generates the outgoakto

its path called axon which splits up and conneztgther neurons’ input paths through a junctionvkma
synapse. The amount of the signals transferredndspen the synaptic strength of the junction whsch
chemical in nature. This synaptic strength is medifduring the learning process of the brain. Nthe,
mathematical representation of these biologicatgsees is known to be the Artificial Neural Network
(ANN). ANN resembles the brain in two respects: Thje network acquires knowledge from its
environment through a learning process and 2) dedhe acquired knowledge, interneuron connection

strengths, known as synaptic weights are used.

2.2 Processing ElementsThe neural network consists of many simple comnmgutiinits known as
neurons or cells, which are highly interconnected arganized in layers. Each neuron performs the

simple task of information processing by convertthg received inputs into processed outputs. The
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output from the neuron is mapped to its inputs ubgto a transfer function. Each path making the
connection between the neurons has its weight wigiphesents the strength of that path. These weight
are modified in the process of network learnindital out the optimal set of weights giving the best
output. A typical processing element or a neuraeiréng two inputs is shown in Figure 2.1. It ha®t
paths with weights Wand W. If the net input is higher than the thresholdnttan output is obtained

from the output path.

Input, W, Threshold 6’

_» Output

Activation
Function

Input /

W,

Figure 2.1: A Processing Element

2.3 Transfer Function: The output of any neuron is related with the isguwy a transfer function which
gives the values of the outputs for the given iaptlib calculate the output from a neuron, the fitep is

to calculate the net input for that neuron, whistobtained by summing up the multiplication of each
input to the weight of the corresponding path @ tieuron that connects it to the input. The weights
the strength of connections between the neuronss filgher the weights of paths are, stronger véll b
the net effect of the inputs. Weights can also dgative, which signifies that the signal can behiéd

by the negative weight. The net input is conveitéad the output with the activation function whiishthe
transfer function for each neuron. There are mgpgg of transfer function defined in the literatuee

Logsigmoid Transfer Function, Tansigmoid Transfen&ion, Cumulative Gaussian Function, etc.
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Logsigmoid Transfer Function: For our study, we have used the logistic or thgsilgmoid transfer
function as the transfer function. This is the mmmimonly used transfer function. The transfornmatio

defining the logsigmoid transfer function can béten in the form of following equation:-

1
1-e*

y:

To illustrate the operation of a typical logsigmaidtivation function on a series ranging -5 to wg,

represent in the form of the following figure:
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Figure 2.2 Logsigmoid Transfer Function

The above function becomes steep increasingly watihe inflection point. Thereafter, the function
becomes increasingly flat and its slope moves espiially to zero. In the neural network paradighis t
threshold feature is described as the fundamehtakcteristic of the nonlinear response. It is desd
that the certain types of neurons remain inactiwéoucertain levels of input activity, become aetafter

it passes this threshold level, and while beyoig] thcrease in input activity have again littléeet.
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2.4 Layers: Neural Networks consists of neurons distributas layers. The three types of layers in a
neural network configuration are (1) The input lay&) the hidden layers, and (3) the output lay&ere

is exactly one input layer and one output layezaoh network. The way these neurons are linkeddb e
other and the way they are distributed in the netwamnfiguration define the structure of the neural
network starting from the input layer to the outfayer with a number of hidden layers i; i=1,....im
between these two layers. The neurons in an ANNJaneted as nodes, (i,j) where each node performs
the simple task of information processing by cotimgrthe received input signals/information intoreo
processed output signals/information. These nodescannected to the next layer neurons through
directed arcs or links each characterized by a hwe{w;). This typical structure of ANN can be

represented in the form of Figure 2.3 as follows:

lS'[

Hidden Layel

Input Layer 1 TR I Output Layel

Figure 2.3: A typical structure of an Artificial Neural Network (ANN)
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2.5 Supervised Learning:Supervised Learning involves a mechanism of piogidhe network with the
desired output by providing the desired outputdlite inputs or by manually “grading” the network’s
performance. Supervised training is thus also knawrearning with a teacher. The neural network is
provided with an input vector and the correspondingput vector. These vector pairs are used to
determine the mappings that exist on the datarbetweights of the paths decide the computatiortkeof
neurons and varying these weights of the pathstlgllefore give different outputs from the netwarke
actual output when compared with the desired outmmrhputes the error which is thereby used to éurth
modify the weights of the paths. The resulting esrare then used to update the weights of the mietwo
which also represents the memory of the networkamdrol the network. As the weights are changed,
this process is repeated over and over again. €hefsdata which enables the training is called the
training set. During the training of a network, #@me set of data is processed many times to iraphay
connection weights each time. For a particular datathere may be a specific network configuratie
maps the inputs and the corresponding outputs effistently. There are many ways of varying the
output from the network. It can be varied by vagyihe configuration of the network, i.e. varying th
number of hidden layers, varying the number of sdadesach hidden layer or by changing the number of
inputs to the network. For our study, we have ubedconjugate gradient method which is also a tfpe
supervised learning and is described in the sulesgection. Supervised learning can also be rifitest

with the help of the following Figure 2.4.
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Figure 2.4: Supervised Learning — A Block Diagram

2.6 Rules of Learning: Apart from the configuration of the network ande tkearning method used,
another important part is the rules of training.nyldaws or algorithms are used to implement the
adaptive feedback required to adjust the weightsguraining. Some examples of such rules are Hebb
Rule, Hopfield Law, The Delta Rule, The GradiensBent Rule, Kohonen'’s learning Law, etc. The most
commonly used technique is the Gradient Descene Riging backward error propagation, more
commonly known as the back-propagation. This methtilizes the derivative of the transfer function

and a learning rate acting as the proportionaltemm$n modifying the connection weights.

There is a possibility of the limitation that therae function falls into local optima in the mett®d
discussed above thus giving inferior results. Thhes algorithms that give the global optimal paiah be
used to compare the results obtained from the @uevalgorithms. Some such algorithms are Genetic

Algorithm, Simulated Annealing, Tabu Search, etc.
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An artificial neuron can be depicted in the formaofnathematical model. To describe a general neuron

mathematically, we can use the following equations:

U, =ZW|,J'*)§,J' Oi=1...,m
=1
Yii = f(Vi,j): f(ui,j+h,j) Oi=1...,m

Where, y is the output from the,(j) neuron which has;xs as the inputs and;é as the corresponding
weights. Furthermore s denote the bias, f(.) is the transfer function g is the output. This

mathematical form of a neuron can be representétkiform of a figure as follows:

Figure 2.5: Mathematical model of a neuron

2.7 Backpropagation Method: For the feed-forward neural networks, backpropagats used as a
supervised learning procedure for the purposeaifitrg. The training set, i.e. the series of the tases
are presented before the network, one at a times Bbtained errors between the actual output aad th
desired output of the network are propagated bacdsvin the internal layers, i.e. first to the hidde

layers and then to the input layer. The weightstheeeby adjusted in accordance and in proportion t
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their contribution to the error. This error usedour case is the Mean Square Error (MSE). A typical
feed-forward back-propagation network in which &reors are back propagated and the weight metrics

are modified accordingly is shown in Figure 2.6.

input values

input layer
whelght matrix 1

E
’

hidden layer

+ welght matrix 2

1
T

output layer

output values

Figure 2.6: A feed-forward back-propagation network

2.8 Conjugate Gradient Method

This method, Conjugate Gradient Method belongsht dlass of Second order optimization methods
which are collectively known as conjugate-directroethods and they are generally simple and easy to
implement. The basic idea of this method is thatlie convergence to the solution to be accelerétes
more beneficial to minimize our objective functi(@) over the hyper plane that contains all the ey
search directions, than to minimize Q over justlithe that points down gradient. The Conjugate @@naid

Method is considered superior to the Steepest Déeddethod but the Newton’s method when compared
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to the CGM is better. However, in case of large bemof variables, again the Conjugate Gradient
method is better because it only uses vectorsak@stO (n) operations per step, where n is the sunth

parameters.

First, we consider the minimization of the quadraquation f (X) ZEXT Ax —-b'x+cwhere x is a

(WX1) parameter vector, A is a (W X W) symmetriosgiive definite matrix, b is a (W X 1) vector, and
c is a scalar. Now, we say that the quadratic égu# minimized by assigning the unique value t&nxl
i.e. x*=A"b. Thus minimizingf(x) and solving the linear system of equatighs'=b are equivalent

problems.

Given the matrix A, we say that a set of nonzerotars s(0), s(1)..., s(W-1) is A-Conjugate if the

following condition satisfies[sT(n) * A* s(j)J =0 O n and j such that#j.

For a given set of A-conjugate vectors s(0), s(13(W-1), the corresponding conjugate direction éth

for unconstrained minimization of the quadratimerfunction is defined byx(n+1) = x(n) +7( N s(n)

O n = 0,..., W-1 where x(0) is an arbitrary startingctor andn(n) is a scalar defined by
Fx(m) +7(ns(n) =min (x(n) +7<(n)).

If the residual be

r(n)=b-Ax(n) (2.2)

We use a linear combination of r(n) and s(n-1gtasvn by

«n) = r(n) + B(s(n-1), 0 n=1, 2... W-1 2.2)



29

Where,3(n) is a scaling factor to be determined. MultiptyiEq. (2.2) by A, taking the inner product of
the resulting expression with s (n-1), invoking feonjugate property of the direction vectors, dmeh

solving the resulting expression f&fn), we get:

s" (n—1)Ar(n)

A = T n-DAsn-1)

(2.3)

Using equations 2.1 and 2.3, we find that the vsc&f0), s(1),..., s(W-1) and these are indeed A-

Conjugate.

To use the conjugate gradient method, we do twagth(i) approximate the cost functiod_((w)) by a

guadratic function and (ii) formulate the compuatiof coefficientsp(n) andn(n). To compute the

coefficient of B(n), we can use the Polak Rebiere formula (Haykd004)) which is given by

ﬂ(n):rT(n)(r(n)—r(n—l)) or Fetcher Reeves formula (Haykin  (2004)) given

r'(n-)r(n-1)

r' (nr(n)
r'(n-Dr(n-1)

by B(n) =

. For the computation ofi(n) which determines the learning rate of the

conjugate-gradient algorithm, the preferred metivodld be a line search routine, the purpose of whic

is to minimize the functior€,, (W + 77S) with respect tay.

There is a possibility of the limitation that thera function falls into local optima in the mettsd
discussed above thus giving inferior results. Thuss algorithms that give the global optimal paah be
used to compare the results obtained from the puevalgorithms. Some such algorithms are Genetic
Algorithm (GA), Simulated Annealing (SA), Tabu Sea(TS), Artificial Immune System (AIS), Particle
Swarm Optimization (PSO), Ant Colony OptimizatigkGQO), to name a few. Out of these, for our study,

we use GA and SA.
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CHAPTER 3

METAHEURISTIC TECHNIQUES

An important factor in concern regarding optimieatproblems of practical and theoretical importaisce
that the best configuration of the set of varialideshosen to achieve certain goals. They aredhiged

into two broad categories, (1) Those whose solatiare encoded with real-valued variables, (2) those
where solutions are encoded with discrete variallie®ong the later class, we find a sub-categorsuir-

class of problems which are known as Combinat@faimization (CO) problems.

Various famous CO problems encountered are Trage$ialesman Problem (TSP), quadratic assignment
problem and neural network weight selection. Noimces these problems have a lot of practical
importance, various algorithms have been develdpdiandle them. These can be classified as either
complete or approximate algorithms. A kind of apjimaate algorithms which basically try to combine
basic heuristic methods in higher level framewaiksed at efficiently and effectively exploring aasgh

space are Metaheuristic Techniques.

A metaheuristic is formally defined as an iteratigeneration process which guides a subordinate
heuristic by combining intelligently different caeqts for exploring and exploiting the search space,
learning strategies are used to structure infoonaith order to find efficiently near-optimal solois.
Some of these types of algorithms are Genetic Algor (GA), Simulated Annealing Algorithm (SA),
Particle Swarm Optimization (PSO), Ant Colony Op#ation (ACO) and Tabu Search (TS). We have

used GA and SA for our study and they are descidisgdllows:
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3.1 Genetic Algorithm

The Genetic Algorithm is the most commonly and ssséully used method for solving the optimization
problems which is based on the well known concépatural selection, the process that drives bicklg
evolution. Accordingly, there is constant and repdamodification of the population of individual
solutions in the Genetic Algorithm. At each stdye genetic algorithm selects individuals at randicom
the current population to be parents and then tsas to produce the children for the next genenatio
Thereby, over successive generations, the popolatiplves toward an optimal solution. Genetic
Algorithm is also used to solve a wider varietyoptimization problems that are not well suited thog
standard optimization algorithms, including the khdems in which the objective function is

discontinuous, non-differentiable, stochastic, ighty nonlinear.

3.1.1 Population Criterion: This method starts with a populatibin(an even number) of random vectors
and not with one random coefficient vector w. If vake n to be the size of each column vector,
representing the total number of coefficients tebstémated in the neural network, we create a @ioul

N of (n X 1) random vectors.

(W, W, Wa e W),
(W, W, Wa e W),
(W, W, Wa e W),
(W, W, Wa e W)

Each individual member of the population is knovencAhromosome. Chromosomes could be bit strings
(1010.......... 011011), real numbers (89.2 66.4 88.3....... 6Ypermutations of elements (M23 M2 M7

M16 M12), lists of rules (R6 R8 R14 R17 R25), pargrelements (genetic programming), etc.
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3.1.2 Selection:During each successive epoch, some part or piopodf the existing population is
selected to breed a new generation. This seledsiosione through a fithess based process to select
individual solutions, when, as measured by a férfesction, the fittest solutions are more liketyget
selected. Each solution is rated for its fitnesptdefined certain selection methods and prefiatbnt

the best solutions are selected. Other methodendyea random sample of the population, as thiegss
may be very time consuming. The most commonly usesl|-studied as well as popular selection
methods are the roulette wheel method and tourniasedection method.

In the roulette wheel selection method, a rouletteel is designed, where each member is represiented
the wheel in proportion to their fitness value. SThibviously means that the better chromosomes
proportionally get more space on the wheel and thtss more likely to survive than the poorer
chromosomes. Thus for obtaining the next generatiaromosomes, these winning vectors are retained
for the breeding purposes. But this is only a propo of the current population as the poorer
chromosomes are dropped during the selection ppo¢ésis to get the original size of the populatibe,
population is needed to be refilled after everyegation. The refilling is achieved by “mating” the

selected members using crossover and mutation.

3.1.3 CrossoverThe first step of refilling or the next step iretprocess is crossover. In this step, the two
parent chromosomes “breed” to give two childreroofmsomes. On each given pair of coefficient vector
i andj, the algorithm allows crossover to be performethwai fixed probabilityp > 0. There are three
different types of crossover operations defined] #ire algorithm chooses one of the three methods fo
the crossover operation to be performed based oeqaal probability of (1/3) of each method to be
chosen. The three techniques of crossover operateoas follows:
1. Shuffle Crossover: For each given pair of vectork,random draws are made from a binomial
distribution. Based on if th&" draw is equal to 1, the coefficients, and w;, are swapped;

otherwise, no change is made.
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2. Arithmetic Crossover: For each given pair of vectors, a random numbeis chosen, such

thatd[1(0,1). This number is used to create two new paramesmtows which are linear
combinations of the two parent factoy, , + 1-O)w; ;.

3. Single-point Crossover:For each given pair of vectors, an integeris randomly chosen from the

set I, k =11, wherec [I[l,k —1]. The two vectors are then cut at integand the coefficients to the

right of this cut pointw;. ., W, , are swapped.

3.1.4 Mutation: After obtaining the children chromosomes from thessover, the next (fourth) step in
the process is to mutate these children. Each eleme coefficient of the two children vectors is
subjected to mutation with a small probabilitywhich decreases over time. The probability ofatiah

of each element depends on the generajiddow, to apply the mutation formula to obtain thetated
coefficients, we need some random numbers. If &b numbers; andr, are randomly drawn from the

interval [0, 1] and one random numisgfrom a standard normal distribution, then the rioteformula to

generate the mutated coefficients can be given by:

W, =W + 51— @] if r,<05 61
W, =W, —s[L-r* oo’ if r,>05

Where,g is the generation number a@ds the maximum number of generations. The pararhateone
which governs the degree to which the mutation atpmn is non-uniform. Generally, we set the valfie o
the parameter to be 2. Now, gsapproachess, i.e. the maximum number of generations, thera is
decrease in the probability of generating a newffiobent which is quite far away from the current
coefficient value, by mutation. Thus there is apletion in the probability of mutation itself ovéme.
The mutation operation is non-uniform, becauseh wine, the probability of getting a far away value
from the current coefficient value decreases amdathorithm thus returns values in the neighborhufod

the existing coefficient values intensively. Thi®na localized search thus thereby leads to songe fin
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tuning of the coefficient vector in the later stagéd the research, when the vectors approach timgl

optima.

3.1.5 lterations: Now, in the next step, the selected members frloenpirevious generation and the
members generated after applying crossover andtiouiare compared for their fithess value. Then, on
the basis of the fithess values, the best N chromes are selected to populate the second generation
However, the search for the best member is cordifioea fixed number of generations. That is, some

iterative search is carried on, or until we me@sa@onvergence criterion.

3.1.6 Convergence:This process of the algorithm is continued up he maximum number of
generations, i.e. G. But the value of G to be chaés@ot very well defined, even in the existirtgrature.
Thus, for better results, since we have narrowegindon the convergence criterion based on the fitnes
value, we say that the value of G should be largeugh so that for several generations, there are no
changes in the fitness value of the best member.

The general pseudo code for GA can be given aswsll

Pseudo Code for Genetic Algorithm:

1 Generate initial population of solutions N

2 while stopping criteria not medo

3 select mating pool N7N, initialize N'= /7 (set of children)
4 for i=1 to ndo

5 select individuals@and x at random from N

6 apply crossover to produce.x

7 randomly mutate produced chilgh

8 N"= N L7 Xehiid
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9 endfor
10 N=survive(N, N")
11 endwhile

3.2 Simulated Annealing

Simulated Annealing algorithm finds its origins statistical mechanics (Metropolis Algorithm) and it
was initially presented as a search algorithm fomBinatorial Optimization (CO). It is one of thelebt
methods introduced in 1983 by Kirkpatrick and ussdong the metaheuristics and is one of the
algorithms that had an explicit strategy to avaical minima. It is a generic probabilistic metaesithm

for the global optimization problem, used to locatgood approximation of any multi-optimal functimn
the global optimal point. The Simulated Annealirigosithm gets its name as its is based on the
simulation of the annealing of solids. Annealingiprocess of heat treatment technique which imslv
heating and controlled cooling of a material tousalthe internal defects. In the process, the $®liitlst
heated by increasing the temperature to a maximaloewsuch that it is transformed into its liquichpé,
and then after that, it is cooled slowly. When @iems of the solid reach the high temperature, libeye
their initial position and begin to wander throusfiates of high energy randomly. Subsequently, when
they are cooled down slowly, they thereby acquiposition of lower internal energy than their iaiti
energy level. It is said that if the cooling is foemed from a very high temperature and is cardet
sufficiently slow, then all the atoms of the liquadange themselves in the low energy ground stage
corresponding lattice. The solid keeps on achievimgrmal equilibrium at every temperature. The
thermal equilibrium achieved by the solid at eahperature T can be given by a probability of béing

a state with energy E by the Boltzmann distribuisrgiven below:

R S S =
Pr(E—e)—Z(T) .ex;{ kB.T} 3.2)
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Where, Z (T) is a normalization factor which depends on the &naure T andkg is the Boltzmann

constant. As it can be easily deduced from the alegwation, the Boltzmann distribution concentrates

the states with lowest energy. Finally, when timegerature reaches zero, with a non-zero probahtlity

minimum energy states are achieved.

Long back in 1953, in order to simulate the evolutof thermal equilibrium of a solid, Metropolis

proposed a Monte Carlo method to generate the megseof states of the solid. The principle is that,

under the given state of the solid, a perturbaigoapplied by small displacement of a randomly ehos

particle and if its perturbation leads to decreiasthe energy of the solid, i.AE, between the current

state and the new state is negative, and thenrtlvesgs is continued from the new state. On theraont

if the difference is positive, i.AE is > 0, and then the probability of acceptingribev state will be given

byexr{—%}. This is known as the acceptance rule for the s&te better known as the Metropolis
B

criterion. This criterion finally evolves into thkeermal equilibrium of the solid.

For the better understanding of the detailed wayldh the Simulated Annealing algorithm, it can be

illustrated in the form of the following pseudo eod

Pseudo Code for Simulated Annealing:

1. Generate initial solutiong initialize starting temperatures T, maximum numifdterations Rax

2. for r=1to Rya doO

3. while stopping criteria not medo

4, compute x (Neighbor to current solution)

5. computed=f(x,)-f(Xo) and generate u (uniform random variable)
6. if (4<0) or (€%™>u) then ¥=x,

7. endwhile
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8. reduce T

9. endfor

Mathematical Model of Simulated Annealing: For realizing a mathematical model of the simulate
annealing algorithm, a control parameter and ifizeth as the temperature and a cost function as the
energy respectively for determining the differeanfigurations of the variables to be optimized.ths
control parameter is decreased, the new sequereebtained. Let the cost function be denoted lap&

the control parameter be denoted by c. When dihiagterations, if the configuration changes friotoj,
which is in the neighborhood of the previous sfatei), then the change in the cost function is given by
AC; = C(j)-C(i). Now, the probability of accepting this new stateill be decided according to the
Metropolis criterion. Thus, the configuration wile 1 ifAC; < 0 and exp AC; / c) if AC; > 0. Thus, the
probability of accepting the higher state is nomzeThis process is thereby continued until the
equilibrium is established. We lower down the cohprarameter in steps and the previous sequence of
operations is again followed to reach equilibridirhe control parameter is lowered up to a certaloeva
below which there is no significant improvementerved in the outputs. Thus, we can see that wheen th
value of the control parameter is high, the prolitgbof accepting a new solution is higher, andtlzes
value of control parameter decreases, there isdugt decrease in this probability due to less ghan

the equilibrium state value solution.

The Simulated Annealing technique is famous fodifig the global optima by accepting both the
increasing as well as decreasing values of thaitian function. The former is accomplished withtag
probability which depends on stochastic acceptagriterion. For the minimization problems, the
probability of accepting the higher state descesidaly towards zero by some decreasing schedule.
Because of this decreasing acceptance of a new, $ket algorithm is able to escape from the local

minima.
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CHAPTER 4

PARAMETRIC FORECASTING METHODS (GARCH)

Nonlinearity has always posed problems towards ehwwging to model financial time series for
forecasting. The nonlinear models which have bemreldped try to realize the underlying nonlinear
processes through parametric assumptions with fapecinlinear functional forms. Some examples of
the many nonlinear functional forms used are Auggriessive Conditional Heteroskadisticity (ARCH)
(Engle, 1982), Generalized Auto-Regressive ConufiioHeteroskadisticity (GARCH), Self-Exciting
Threshold Auto-Regressive (SETAR) (Chappel, 198630tic dynamics (Hsieh, 1991), which have been

proposed and applied to forecasting financial tsmees.

GARCH models have been extensively used in finarak macroeconomics because of their attractive
approximation-theoretic properties. This model ptes useful approximations to uncomplicated
volatility dynamics. The basic concept of the modethat it considers that the variance of the enfrr
error term is the function of the variances of gnevious time period’'s error terms. Thus, it iseatn
capture the important property of volatility clustey, i.e. large/small changes of either sign araltto be
followed by large/small changes of the small sighe Auto-Regressive Moving Average (ARMA)
model, when is assumed for the error variance, themconverted to GARCH model. Thus, the time
varying variance is therefore called the conditloveriance or volatility for this reason. Howeveo,
extract the inherent auto regressions in the tieves, it is modeled with the help of Auto-Regressi
Moving Averages (AR-MA). Thus, the model becomesomprehensive ARMA-GARCH model and is

described in the following equations as follows:

Yi :Zlﬂi Yii T & +Z¢j Z_j +K (5.1)
= =t
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P q

ol =Y .Gal +> A&l +c (5.2)
i=1 =1

& ~N(,0?% (5.3)

The first equation, i.e. (5.1) is the ARMA partafr model where r is the number of past lagginmser
Y.'s is the coefficients of the lag values afjds are the coefficients of the moving averages. mh
part of the model, the variance is modeled in theadon (5.2), which as we know is known as the

conditional variance as it depends on the pasanee.G 's are the coefficients of lag values of variance

terms andA s, are coefficients of squared errors. Equatio8)(Shows that the errorg are normally

distributed.

Since the distribution of the shock is normal, v aise the maximum likelihood function for the

estimation of the parametefS,, Aand c. The likelihood function L is the joint probabilitiunction

for y, = y,. The likelihood function for the GARCH model cam tepresented in the following form:

T _ 2

L, = 1A2 ex 0, }’;) (5.4)
=1\ 2710, 270,

A~ P A a. - A~ A

Jtz :zGiUtz—i +ZA£t2—j +C (5.5)
i=1 i=1

9t =Z¢}i At—i +Z¢j At—j +Q (5.6)
i=1 j=1

>
>
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important point to be remembered here is that tmelitional variance is a nonlinear transformatibthe
past values, in the same way that the varianceume#&sa nonlinear transformation of the past mtézh
errors. Thus, the GARCH model is quite benefigiahis way that it pins down the source of nonliitga

in the process.

The GARCH model has its specific limitations dudtsostructure and parameters. As we have a defined
set of parameters which we want to estimate inG®W&RCH model, and which carry a well-defined
meaning, interpretation, and rationale, the paramepproach of GARCH to the specification of the
nonlinear process, thus become restrictive. The GlARhodel, being capturing the property of volatilit
clustering is able to show an important observeenpmenon in the financial time series, that is, the
periods of high and low volatilities do not dampmnt fast. This restrictiveness of the GARCH apphoac
proves to be its drawback as we are limited to di-defined set of parameters, a well-defined
distribution, a specific nonlinear functional foremd a specific parameter estimation method thas do
not always converge to the parameter estimatess, Tdautain alternative nonlinear processes arelenab
of being realized with specific nonlinear modelsthsy lack in flexibility due to restrictiveness in

specification.
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CHAPTER 5

MODELS DESCRIPTION

5.1 Introduction

In the previous chapters, we had discussed vaftwasasting techniques, under the heading of nueati
forecasting techniques, namely (i) Non-Parametoin-linear forecasting methods i.e. Neural Networks
and (ii) Parametric non-linear forecasting meth(@4RCH). We had also discussed the metaheuristic
techniques like Genetic Algorithm and Simulated @aling Algorithm which are used to optimize the
Neural Network configuration models in terms ofvitsights and nodes. In the following Section 5.2, w
explain the various models based on the non-pararagiproach, in section 5.3, the parametric models

and then in the next section, we explain the peréorce metrics used for the comparison of the models

5.2 Non-Parametric Approach based Models

We use Neural Network which is a kind of univerfsaiction approximator that can map any non-linear

function without any assumption about the dataitmparameters.

5.2.1 Neural Network trained with Conjugate Gradient Method (NN_CGM): The basic algorithm
that we use to train the neural network is Conjgatadient Method (CGM). Firstly, we apply the
autocorrelation function to determine the significkags and then the lag matrix made up of thege iR
input to the first layer as the input. The firsyda thus, has one node and the number of noddwin
hidden layer can vary from 2 to 15. The outpuirfrihe hidden layer is fed into the third layer, ldnger

known as the output layer. We have used the logwaid transfer function as the transfer functiorour
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analysis which has been described in Chapter 2.€Flar is calculated according to the performance
index, which we have used as the Mean Square EVt8E) as described in Chapter 6. The error thus
calculated is then backpropagated and the weighatthas adjusted according to the CGM as explaimed
Chapter 2. The iterative CGM algorithm attemptgeaduce the training error on each epoch, which is
used to decide the stopping criterion. The stoppiitgria as to decide when to stop the networikiing
depends on three basic following criterion (1)tfie number of epochs (2) check when the trainingyer
falls below an acceptable predefined level andllfing@) when the error fails to improve by a given
amount over a given number of epochs. These thitgians may be used as the three stopping rales s
as to decide when to stop the training of the Hewgtwork. The number of epochs is checked at each
stage and the network is trained until the stopititgrion is met and we keep the maximum number of
epochs fixed at the number 500. We assume thatuimber of 500 for the number of epochs is sufficien
enough for the network to learn. To represent tbeehin the form of a flowchart, it can be donetie

form of the following figure:-
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A 4
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Calculate the output from each nc
according to the transfer function

Output from " layer is the
input to the ' layer
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according to CGM

NO

Is Stoppinc
Criteria met?

Figure 5.1 Flowchart Representing Neural Network tained with Conjugate Gradient Method.

5.2.2 Neural Network path weights Optimization:About the backpropogation algorithm, as we have

discussed earlier in the Chapter 3, has the disdaga that the solution may fall into the localimet and
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thereby result in the poorer forecast of the timges. There is where the metaheuristic technigoese
into play. Although we have used Conjugate Gradiethod to obtain better results from the previous
algorithm, but still it is not certain that whethte output we obtain is the global optima. Hemee use
the metaheuristic techniques o check whether ttedmiques outperform the backpropagation learning

technique used for the neural network training.

5.2.2.1 Optimization with Genetic Algorithm (NN_GA). The Genetic Algorithm is the highly used and
successful algorithm useful in optimizing the néuratwork configuration in terms of weights. Thes i
because the Genetic Algorithm is able to find arrmgatimal solution. The objective is to find the
optimum set of weights so that it minimizes thefatiénce between the desired outputs and the actual
outputs. Hence, the chromosomes are constructig asal numbers which thereby represent the weight
of the neural network. Thus, each chromosome iseghw vector which can be utilized in the GA
optimization technique. After once the chromosomsedesigned, we create or initialize an initial
population at the length 60, while each of the ofosomes is composed of 15 real humbers, each of
which represents the path weights. Crossover fmads varied from 0.6 to 0.9, while the mutation
probability is set to 0.001. Roulette wheel setattinethod is then used for selecting those two
chromosomes which are used for reproducing. Aftex trossover process is over, the children
chromosomes are produced and evaluated usingtttesdi function. The flow process of the detailed
working of the Genetic Algorithm can be representedthe form of the schematic flowchart to

understand the working of the GA, as follows:-
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Figure5.2: Flowchart Representing Neural Network p&h weight Optimization using GA

5.2.2.2 Optimization using Simulated Annealing (NNSA): - The Simulated Annealing (SA) algorithm
is also one of the most frequently used techniduiesbtaining the global optima in terms of weigfis

the neural network configuration. The results otsdi from SA optimization can be compared to those
from GA optimization. In our SA optimization studmpijtially, the set of weightspare taken randomly in
the range of [-6, 6] which is known as the starfioint. The starting step vectog i the vector which
decides about the changes in each of the weightegiein the weight vector meaning the movement in
each direction. The controlling parameter actingehe the starting temperature whose value is varied
from 16 to 30 with increments of 4. The stoppinigecion here depends on the variable e, which denot
the error difference between the observed andatiget values of the predicted time series. Theevafie
needs to be specified such that the SA optimizattops or terminates as soon as the actual valee of
falls below a predefined value. We have takenihlge to be 0.0030. The acceptance and rejectien of
new state formed at each step depends on and idedeaccording to the Metropolis Criterion, as
explained in the Chapter 3. Thus, for each padictémperature, an optimal network configuration is
found out and this process of obtaining the cowmedmg optimal neural network is continued for the
temperature cooling schedule till it reaches theildgium state. The detailed working of the SA

optimization algorithm can be represented in thinfof a flowchart as follows:-
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Figure5.3: Flowchart Representing Neural Network pgh weight Optimization using SA

5.3 Parametric Approach based Models

5.3.1 ARMA-GARCH: Apart from the non-parametric models described alfov nonlinear modeling,
we have also used the parametric model ARMA-GARGHItlie better comparison of results from the
non-parametric models and to realize the nonlipeaperties of the exchange rate time series. & thi

model, the fours parameters, i.e. r, m, p and ared from 1 to 2. Thus, this gives rise to altaff 16

A~

possible combinations of configurations. For eatkhese configurations, the values éf, I,&,f( are

calculated, which are the estimates of the undeglyiarameters of the time series. These estimates a
then further used to forecast the future values pérformance of each of the configuration is again
measured by using the performance metrics defietm where MSE serving as the main performance
measurement index. The configuration giving thestear the optimum value is chosen and thereby

compared with the non-parametric forecasting models
5.4 Performance Metrics

The different models described above can be cordpaseng the different performance metrics or the
evaluation criteria and for our study, we have @ered the following five performance metrics to

compare these models which can be explained aswvill

If we say thaty;, Y, Y3 Y, . Yyare the actual values a\ﬁld \?2, \?3 \?4, ......... \?N be the forecasted values.

Also Y andY be the mean of the actual and the forecasted vabsgectively and N be the sample

size.
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Mean Squared Error: The most common criterion used to evaluate thdopmance is the Mean
Squared Error (MSE). It is the expected value o€ tbquare of the errors and is given

1 .
byMSE=—3"(Y -Y)2 .
y NZ(. )

i=1

Mean Absolute Error: This gives the Absolute error between the aatugbut and the forecasted output

and is given bMAE = %ZN‘J(Yi -Y).
i=1

Direction accuracy. This index basically measures how good the ptedidiirection is i.e., it is the

N

measurement of correctness of predicted directiinsan be given bl])A:iZai , where &1 if
i=1

Yy —Yi)(\?i+1 —\?i) >0 and a= 0 otherwise.

Pearson correlation coefficient Pearson's correlation reflects the degree o&limelationship between
two variables. It ranges from +1 to -1.The corielatbetween the two variables reflects the degoee t

which the variables are related. +1 indicates perfesitive relationship while -1 indicates the atbe

relationship. The Person correlation is givendy
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Theil's coefficient of inequality (U). This performance index gives the prediction peniance relative

RMSE
1 N-1
Y -Y_)?
\/N _1;( i |—1)

to the random walk prediction and the equatiobl is

, where RMSE is the Root

Mean Squared Error and is given RMSE=/ MSE.

All the above models will be compared on the ba$ithese different performance indices. In the next
chapter 6, the comparison has been shown among thedels. Besides these performance indices, there
are also other indices such as Akaike informatigtergon (AIC), Bayesian information criterion (SIC
which can be used to check the model complexityilerM@orrect Up trend, Correct Down trend can be

used to measure the correctness of predicted ug@md trend.
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CHAPTER 6

DATA ANALYSIS AND SIMULATION

6.1 Data Analysis

In our analysis, we have taken the 12 different sgohange rates to be our data. We have usedilye d
data series for all the exchange rates for ourarebefrom 03/01/2000 (January 3, 2000) to 24/128201
(December 24, 2010). We have taken the data froem Rbderal Reserve Bank of New York

(http://www.federalreserve.gov/releases/h10/Histd it is the 12 noon buying rates at New Yorke T

different exchange rates used are United StateluDa8. Australian Dollar (US$/AUS), US Dollar vs.
Canadian Dollar (US$/CAN$), US Dollar vs. Euro (US$RO), US Dollar vs. Hong Kong Dollar
(US$/HKS$), US Dollar vs. Japanese Yen (US$/JPY), DiSlar vs. Mexican Peso (US$/MXP), US
Dollar vs. New Zealand Dollar (US$/NZ$), US Dolles. Singapore Dollar (US$/SING$), US Dollar vs.
South Korean Won (US$/SKW), US Dollar vs. Swedemrtr (US$/SWKR), US Dollar vs. Taiwan
Dollar (US$/TW$) and US Dollar vs. United Kingdoround (US$/UKP). The reason for taking so many
exchange rates as the data is to check the rolsgstifieour models. Below shown in Figure 6.1 is the
graph of Spot Exchange Rate US$/AUS$ as it vari¢is tiine of 10 years from January 2000 to December

2010.
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USS 5. AUS Spot Exchange Rate

Figure 6.1: US$/AU$ Spot Exchange Rate from 03/00Q0 to 24/12/2010

6.1.1 Data Preprocessing

As the neural networks basically map the inputs @ughuts, the data that should be fed into thealteur
network should be appropriate in the manner thatatready preprocessed. This means that datiresqu

to be modified before feeding it to the neural rkvbecause only the necessary and the relevant
patterns of the data must be learnt by the netwilda the data should be transformed such thahdlise

is minimized, thereby highlighting the importantachcteristics of the data, like we do the first
differencing here in our study. The following stdmsve been followed in our study for the data to be

accordingly transformed:

Missing Data Points: There are missing data points in the time serigstd the presence of the non-
occasional trading days. These missing data poarsbe handled in various ways, like omitting these
missing data points, or by interpolation, or byingkthe averages of the corresponding nearby valoes
our study, we calculated the missing observatigntaking the corresponding average of the immediate

preceding and the succeeding values.
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Removal of Outliers: In the datasets we encounter and work with ancalile are ought to see some
data points which does not match with the geneshhbior or the data model. These data points, which
are not consistent with the remaining set of data, are different are thus called outliers. Nowyé¢hs a
specific method to check for the outliers in théad&Ve first calculate the first (Q1) quartile ahe third
(Q3) quartile of the data. For a distribution, fist quartile is defined as the 2ercentile and the third
quartile is described as the"7percentile respectively. The 2Bercentile means that the value which the
dataset into two subsets such that the first partains the 25% of the data and the second pataiosn
the remaining 75% of the data respectively. Thigdavould obviously define the 8(Qercentile as the
value to be the median of the data. After calcotathe first quartile (Q1) and the third quarti@3) for
each dataset, we then find the corresponding afl@3-Q1, which is known as the interquartile range
(IQ). We then define an Upper Limit [Q3+3*I1Q] and_awer Limit [Q1-3*IQ]. Now, we call an extreme
outlier to be any value in our dataset which isaggethan the Upper Limit or lower than the Lowénit

of the corresponding of the dataset. We can thosrelte the outliers from the data using this cacd

Upper Limit and Lower Limit.

Differencing: Generally, the time series have some linear tremdsthese trends need to be removed.
These trends can be generally removed by takindirstedifference of the successive data pointthef

time series data. The method of first differencisghe most common step of the data transformation
done before the processing. Sometimes, logarithraitsformation is also performed for the data sets
which have both very small as well as very largereame data points. After observing the time series
datasets we have used for our study, we foundttiegte time series datasets have trend which can be
removed by taking the first difference. The firdfifatencing results the time series in a statiordata
series which makes it easier and comfortable irdlvag the data set for further processing. Thet firs

difference series of the data series US$/AUS$ exghaate is shown below in Figure 6.2.
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Figure 6.2: US$ vs. AUS$ First Difference Series

Data Normalization: The data is to be further get normalized to makehactual output range. This
depends on the activation function or the tranffaction we have used. The neural networks whi@h us
the non-linear activation function in the outpudg there is a need of normalization to be don¢hen
target data in order to match the range of theahctutputs. We have used the logistic activatiarcfion
which has the typical range of [0, 1]. Therefole hormalization of the data becomes necessaryeThe

are three ways described in the literature to nbeam#he data into a specific range, which are:

1. Linear Transformation to [0, 1], where the maximand the minimum value of the data is used

(% = %) }
(Xmax_xmin)

for the data transformation process and it is glwgr, = {

2. Statistical Normalization, where we use the meahtha standard deviation of the dataset for the

data transformation process given by the follonengation, X :(XO — X].
g
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3. Simple Normalization, in which we simply divide dadata point with the maximum value of the

corresponding data series to transform the datatpoetween [-1, 1] using the equation

In the above data transformation equatios,, xmax,;( andc denote the minimum, the maximum, the
mean and the standard deviation of the correspgndita set respectively. Whilg, represents the

normalized data point ang, represents the original data point.

6.1.2 Data Post-Processing

The data post-processing is the comparison of ifiereht model performances by the data outputs
obtained. For performances comparison, we haverdift performances parameters as discussed in
Chapter 5. These are Mean Square Error (MSE), Mdsaolute Error (MAE), Direction Accuracy (DA),

Pearson Coefficient of Correlatiop)(and Theil's Inequality Coefficient (U), etc..

6.1.3 Data Division

The neural network is a technique which is prefgraBed to generalize the relation between thetgpu
and output. Neural is a self-learning tool anddsdly used as a tool to memorize the data pattather
the main motive of using these networks remaingtheeralization of the pattern. One of the probléms
neural networks is of overfitting which occurs whbere are few number of observations with resfmect
the number of path weights and therefore the ndtwoemorizes the individual points rather than
learning the general pattern. Thus, to keep thebeurof data points sufficient for training of thetwork,

we utilize 2873 (2872) data points for all the dsg¢sies and after removing the outliers, we takefitist
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the first 70% of the data points to train the netwdhe next 10% of the data points is used for the

validation and the remaining 20% of the data ikzeiil for the testing of the trained/optimized nethv

6.2 Simulation

The different models discussed are compared onb#ss of the evaluation criteria which are as
mentioned in Chapter 5. The results obtained fréva &nalysis are found in accordance to the
expectations. We expect that the forecast erromildhreduce as we incorporate more complex
algorithms to train our neural network. The errotgtained from the benchmark model i.e. Neural
Network optimized with Conjugate Gradient Method(NCGM), should reduce when we implement the
Neural Network path weight optimization using Génétigorithm (NN_GA) and then when we do the

Neural Network path weight optimization using Siated Annealing (NN_SA).

In Section 6.2.1, we present the results of thecutelation of US$/AUS$ time series as an examplk a
the significant lags obtained through it. In th&@seguent section 6.2.2, we compare the resultsneldta

from the various models which employ differentriiag algorithms.

6.2.1 Autocorrelation and Significant Lags

After the treatment of the missing values and apoadingly replacing them in the preprocessing gssc
and taking the first difference, we now have talfthe autocorrelation of the time series data tathye
significant lags. We also tried to find the numieérsignificant lags from the second difference data
series, i.e. we obtained the second difference $ienies data from the first difference time sebgsgain
doing first differencing of the successive datanfmiand then calculated the autocorrelation frbis t

series. But for our study, it was found that thgniicant lags obtained from the first differenéme
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series were more appropriate than those obtaineth fthe second difference time series. The
corresponding autocorrelation values for the US®Adpot exchange rate is shown in the following

Figure 6.3.

Autocorrclation Plot for US$ vs. AU$ cxchangerate
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Figure 6.3: The Autocorrelation values for US$/AU$Spot Exchange rate

From the graph above, we can clearly see thatigméfisant lags for the US$/AU$ Spot exchange rate
time series data are 4, 12, 17, 28 and 40. Simjlewt calculate the corresponding autocorrelat@ines
from the first difference time series of the otlsgot exchange rate data sets and then find out the

corresponding significant lags.

After obtaining the number of significant lags, alifor example, for the data series US$/AUS is &, w
form a lag matrix of the size (5 X 2872), where 28¥the number of the data points in the dataldes
matrix is then fed into the various models and tbsults thus obtained are then compared amongst

themselves.
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6.2.2 Results from Non-Parametric Models

For our models, the performance is mainly measimmgéerms of the Mean Square Error (MSE). We have
presented the performance of our various modelM8¥ and other different comparison performance
metrices which are Mean Absolute Error (MAE), Diiec Accuracy (DA), Pearson Correlation
Coefficient (Rho) and Theil’s Inequality Coeffictef)). We hereby give the Error metrics tables Hred
comparison by MSE and other error indices for fibbur 12 time series data. The final results offthe

performance metrics for all the models, consideli®$/AUS, are summarized in Table 6.1.

Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0374 0.0119 0.0539
Mean Absolute Error (MAE) 0.1560 0.0840 0.01914

Direction Accuracy (DA) 0.5028 0.4932 0.4972
Pearson Correlation @) 0.9256 0.9932 1.0334

Theil's Inequality coefficient (U) 0.3609 0.2130 0.4335

Table 6.1: Comparison of Performance using variouperformance metrics for US$/AU$

From the table above, we can easily observe tleabMian Square Error (MSE) value is the least fer th
NN_GA model, while the highest value is obtainecewlwe use NN_SA model. The model NN_CGM
gives the value in between the two. In the caddedn Absolute Error (MAE), we see that the minimum
value is obtained when we use NN_SA, and the mNBEICGM performs the worst of the three. While

comparing Direction Accuracy (DA), the results agaiiggest that the NN_GA model again outperforms
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the other two models giving the least value. Fangaring Pearson Coefficient of Correlation (Rho),
surprisingly, NN_CGM gives the least value. Wherdage see the Theil's Inequality Coefficient (U),

the values again prove that NN_GA is the bestrimseof results.

The results obtained and explained above can berhetderstood and visualized when reperesntdukin t
form of the following bar graphs where we first quane the Mean Square Error (MSE) individually and

then, we give the comparison using all the fiveemetrics.

Mean Square Error (MSE) for USS/AUS
006

0.05 A
0.04 A
0.03 A
0.02 4

0.01 A

NN_CGM NN_GA NN_SA

Figure 6.4: Comparison of Performance by MSE for dta series US$/AU$
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Figure 6.5: Comparison of Performance using variou&rror Metrics for data series US$/AUS.
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Similarly, for the other time series data, we chltrithe significant lags from the autocorrelat@ues
and form the corresponding lag matrix which s few idifferent models to give corresponding results.
For the next time series data, i.e. US$/CANS$, theificant lags obtained are 3, which are 6, 9 aad

The results thus obtained in terms of the perfoaaanetrics obtained are given in Table 6.2.

Models
Metrics of comparison

NN_CGM NN_GA NN_SA
Mean Square Error (MSE) 0.0251 0.0139 0.0584
Mean Absolute Error (MAE) 0.1237 0.0931 0.200c¢
Direction Accuracy (DA) 0.4430 0.4982 0.5478
Pearson Correlation @) 1.065¢ 0.€76¢€ 0.876¢
Theil's Inequality coefficient (U) 0.307¢ 0.234: 0.4692

Table 6.2: Comparison of Performance using variouperformance metrics for US$/CAN$

Here also, we can see the same trend being repafditd GA model proving to be the best of the three
in case of the main comparison parameter i.e. Maguare Error (MSE). However, here it gives the
minimum value also in the case of Mean Absolut@E(MAE) and Theil's Inequality Coefficient (U).
Unlike US$/AUS$, the NN_CGM proves to be the besmparing Direction Accuracy (DA) while
NN_SA outperforms the other in case of Pearson digion (Rho). Again, following are the

representation of the results in terms of bar ggpts for better visualization.
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Figure 6.6: Comparison of Performance by MSE for dta series US$/CAN$
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Figure 6.7: Comparison of Performance using variou&rror Metrics for data series US$/CANS.

For the third time series data US$/EURO, the sigguift lags obtained are again 3, which are 4, 73&nd

The results obtained as performance metrics di@lag/s in Table 6.3.
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Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0301 0.0147 0.0419
Mean Absolute Error (MAE) 0.1387 0.0957 0.1671

Direction Accuracy (DA) 0.4881 0.5110 0.5170
Pearson Correlation @) 0.9438 0.9599 1.0134

Theil's Inequality coefficient (U) 0.3180 0.2289 0.3754

Table 6.3: Comparison of Performance using variouperformance metrics for US$/EURO

The bar graph plots comparing the Mean Square EMSE) individually and all the error metrics

combined are as follows:
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NIN_CGM

Mean Square Error (MSE) for USS/EURO
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Figure 6.8: Comparison of Performance by MSE for d&a series US$/EURO
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Error Metrics for USSEURO
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Figure 6.9: Comparison of Performance using variou&rror Metrics for data series US$/EURO.

Here also the NN_GA model performs the best in edissomapring Mean Square Error (MSE), MAE
and U. However, surprisingly, the NN_CGM modelsfpens better than the other two in case of the

other two performance indices DA and Rho.

For the fourth data series, i.e. US$/HKS, the digamt lags obtained are 5 again, which are 25828,

38. The results obatined are as follows:
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Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0300 0.0085 0.0426
Mean Absolute Error (MAE) 0.1385 0.0621 0.1716

Direction Accuracy (DA) 0.5735 0.4298 0.5499
Pearson Correlation @) 0.9612 1.0439 0.9693

Theil's Inequality coefficient (U) 0.3182 0.1761 0.3851

Table 6.4: Comparison of Performance using variouperformance metrics for US$/HK$
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Figure 6.10: Comparison of Performance by MSE for dta series US$/HKS$
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Figure 6.11: Comparison of Performance using varios Error Metrics for data series US$/HKS.

For the fifth data time series US$/JPY, the sigaiffit lags obtained are 15, 21, 31, 40, 48.

Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0213 0.0240 0.0925
Mean Absolute Error (MAE) 0.1132 0.1233 0.02713

Direction Accuracy (DA) 0.4396 0.5311 0.4707
Pearson Correlation @) 1.0239 0.9164 1.0247

Theil's Inequality coefficient (U) 0.2606 0.2751 0.5431

Table 6.5: Comparison of Performance using variouperformance metrics for US$/JPY
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Mean Square Error (MSE) for USS/JPY
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Figure 6.12: Comparison of Performance by MSE for dta series US$/JPY
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Figure 6.13: Comparison of Performance using variosi Error Metrics for data series US$/JPY

However, here we see an exception from the previcrsl. The best performing model for this time
series data comes out to be NN_CGM when compariB§ Mt is also the same for the other indices

MAE, DA and U except for Rho, where NN_GA turns tube the best.
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For the sixth time series data i.e. US$/MXP, tlymificant lags obtained are again 5,which are 5,173

26, 32. The results obtained in the form of perfamge indices and bar graph plots are shown asv®llo

Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0286 0.0170 0.0463

Mean Absolute Error (MAE) 0.132¢ 0.098¢ 0.177¢

Direction Accuracy (DA) 0.5224 0.5124 0.4832
Pearson Correlation @) 1.0320 1.0241 1.0317

Theil's Inequality coefficient (U) 0.3102 0.2440 0.3951

Table 6.6: Comparison of Performance using variouperformance metrics for US$/MXP

0.05
0.045 -
0.04 -
0.035 A
003 A
0.025 A
0.02 A
0.015 A
0.01 A
0.005

NN_CGM

Mean Square Error (MSE) for USS/MXP

NN_GA NN_SA

Figure 6.14: Comparison of Performance by MSE for dta series US$/MXP
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Figure 6.15: Comparison of Performance using variosi Error Metrics for data series US$/MXP

Here, NN_GA again turns out to be the best perfogmodel in all the cases of performance indices

except for the one which is DA. In case of DA, NM |goves to be the best.

For the seventh time series i.e. US$/NZ$, the Bagmit lags are 3, which are 3, 29 and 40. Theltesu

thus obtained in terms of the performance indicesthe corresponding bar graph plots are shown as:

Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0342 0.0112 0.1401
Mean Absolute Error (MAE) 0.1488 0.0810 0.3292

Direction Accuracy (DA) 0.4833 0.4630 0.4907
Pearson Correlation @) 1.0141 1.0322 1.0016

Theil's Inequality coefficient (U) 0.3691 0.2217 0.7474




Table 6.7: Comparison of Performance using variouperformance metrics for US$/NZ$
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Figure 6.16: Comparison of Performance by MSE for dta series US$/NZ$
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Figure 6.17: Comparison of Performance using variosi Error Metrics for data series US$/NZ$

For the eighth time series data, US$/SING$, theifiigint lags obtained are 3 again, 4, 7 and 25.
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Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0235 0.0209 0.0650
Mean Absolute Error (MAE) 0.1194 0.1122 0.2177

Direction Accuracy (DA) 0.4945 0.4909 0.5255
Pearson Correlation @) 0.8583 1.0575 0.9563

Theil's Inequality coefficient (U) 0.2797 0.2654 0.4650

Table 6.8: Comparison of Performance using variouperformance metrics for US$/SING$

Mean Square Error (MSE) for USS/SINGS
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Figure 6.18: Comparison of Performance by MSE for dta series US$/SING$
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Figure 6.19: Comparison of Performance using variosl Error Metrics for data series US$/SING$
Here also, NN_GA proves to be the best model msesf results except in case of index Rho.

For the ninth time series data US$/SKW, the sigaift lags obtained are 3, 7, 10, 14 and 31. Thdtses

thus obtained in the form of performance metrics e bar graph plots are as below:

Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0153 0.0227 0.0231

Mean Absolute Error (MAE) 0.0941 0.110¢ 0.122¢

Direction Accuracy (DA) 0.4556 0.5265 0.4813
Pearson Correlation @) 0.8313 0.9504 1.0215

Theil's Inequality coefficient (U) 0.2459 0.2956 0.3021




Table 6.9: Comparison of Performance using variouperformance metrics for US$/SKW
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Figure 6.20: Comparison of Performance by MSE for dta series US$/SKW
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Figure 6.21: Comparison of Performance using variosi Error Metrics for data series US$/SKW
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This time series data also proves to be an exceptiothe observed trend. Instead of NN_GA, the
conventional NN_CGM model turns out to be the pestorming with respect to all the five performance

indices.

For the tenth time series data, i.e. US$/SWKR sigaificant lags observed are 2,5, 7, 18 and 32 T

results thus obtained in terms of the performande&és and bar graph plots are following:

Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0335 0.0261 0.0339
Mean Absolute Error (MAE) 0.1468 0.1282 0.1474

Direction Accuracy (DA) 0.5101 0.4816 0.5562
Pearson Correlation @) 0.9553 1.0070 0.8793

Theil's Inequality coefficient (U) 0.3587 0.3214 0.3609

Table 6.10: Comparison of Performance using variouperformance metrics for US$/SWKR
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Mean Square Error (MSE) for USS/SWKR
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Figure 6.22: Comparison of Performance by MSE for dta series US$/SWKR
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Figure 6.23: Comparison of Performance using variosi Error Metrics for data series US$/SWKR

Here, the NN_GA model gives the least value in seohall the error indices except in the case ef th

Pearson Correlation Coefficient (Rho).

For the eleventh time series data US$/TW$, thefgignt lags are 2, 5, 11, 18 and 23. The resués a
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Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0304 0.0147 0.0974
Mean Absolute Error (MAE) 0.1365 0.0884 0.2716

Direction Accuracy (DA) 0.5106 0.4648 0.4933
Pearson Correlation @) 0.9404 1.0644 0.9186

Theil's Inequality coefficient (U) 0.3233 0.2316 0.5793

Table 6.11: Comparison of Performance using variouperformance metrics for US$/TW$
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Figure 6.24: Comparison of Performance by MSE for dta series US$/TW$
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Error Metrics for USS/TWS
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Figure 6.25: Comparison of Performance using variosi Error Metrics for data series US$/TWS$.

Here also, the results obtained are similar toptfeeious time series data i.e. US$/SWKR, i.e. NN_GA

turns out to be the best performing model.

For the last, i.e. twelth time series data, thaifitant lags obtained are 7, 11, 14, 22 and 22 i@sults

obtained in terms of performance metrics and thiegkaph plots are displayed below:

Models
Metrics of comparison

NN_CGM NN_GA NN_SA

Mean Square Error (MSE) 0.0310 0.0144 0.0346
Mean Absolute Error (MAE) 0.1392 0.0921 0.1499

Direction Accuracy (DA) 0.5145 0.4982 0.4800
Pearson Correlation @) 0.9262 1.0092 0.9981

Theil's Inequality coefficient (U) 0.3437 0.2424 0.3631




78

Table 6.12: Comparison of Performance using variouperformance metrics for US$/UKP

Mean Square Error (MSE) for USS/UKP
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Figure 6.26: Comparison of Performance by MSE for dta series US$/UKP
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Figure 6.27: Comparison of Performance using variosi Error Metrics for data series US$/UKP.

Thus, here also, NN_GA model is performing as test lgiving the least value of Mean Square Error

(MSE), MAE and U. Thus, it can be concluded thafdryfrom the above time series data and among the
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models implemented, NN_GA proves to be the bestahiodterms of most of the performance indices
used. Thus, the neural network trained with weigitmized with the elp of Genetic Algorithm serves
as the most successful model for the predictioapoft exchange rate in case of our study. However, i
was also expected that NN_SA, that is, the oneddhiwith Simulated Annealing algorithm will also

perform greatly which is not observed as so. Ifgrers badly than even our conventional NN_CGM

model, with respect to Mean Square Error (MSE) @&ed other indices.

6.2.3 Results from Parametric Models

For the parametric model GARCH of our analysis,fthe parameters r, m, p and q are varied each able
to take values from 1 to 2. This gives rise to b6gible combinations. The time series data is &wted
using all the 16 configurations and the best onghissen among them. In our study, for the timeeseri
data US$/AUS, the best or the optimum results vedtained for the configuration r=2, m=1, p=2 and q
=1. This configuration can also be written as AR{®) (1) GARCH (2, 1). The results in the form of

error metrics can be displayed as below:

Metrics of comparison Model: ARMA-GARCH (2,1,2,1)
Mean Square Error (MSE) 1.0001
Mean Absolute Error (MAE) 1.0000
Direction Accuracy (DA) 0.6714
Pearson Correlation @) 0.6161
Theil's Inequality coefficient (U) 0.9999

Table 6.13 Performance Measurement using various Esr Metrics for ARMA-GARCH model.
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It can be clearly seen from the table above andpemimg the results from the non-parametric models
above that there is a great difference in the perdoce of the parametric and non-parametric mo&els.

the main performance index, i.e. Mean Square EMS8E), where the value for all the non-parametric
models varies in the low ranges of 0.01-0.05, theesponding MSE value for the statistical GARCH
model is quite high, i.e. close to 1. The samehé& dbservation with the next error metric i.e. Mean
Absolute Error (MAE). However the values are quitemparable in the case of the other three
performance error metrices. Thus, it can be comdluthat the non-parametric models outperform the

parametric models.
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CHAPTER 7

CONCLUSION AND FUTURE POSSIBILITIES

It has been of great concern for the financial ystalto develop efficient models for the predictimin
foreign exchange rate. In the financial market,ttading of foreign currency itself is one of thigdest
market out of which most of the trading occurshia spot market. Thus, the spot exchange rate picadic
has been one of the most important issues in finhanalysis. We, through our study, have triedéal
with the same issue and we have used artificialaheetworks to predict the foreign exchange raes t

series.

The Artificial Neural networks have wide variety applications in the prediction of many time series
similar to those of foreign exchange rate. We deith the following issues regarding the forecasting
methodology based on the neural networks. We eragladjfferent training algorithms for the traininfy o
the neural networks to generate different modetstlfie financial time series forecasting. We have
compared the conjugate gradient method, which @ésntlest conventional algorithm used to train the
neural network, with the Genetic Algorithm and Sienulated Annealing Algorithm. The second issue
addressed in our work or study was to optimizevilegghts connecting the different layers, with the
genetic algorithm and the simulated annealing &lgor, of the neural network which is trained using
Conjugate Gradient Method. Thus, the three modelpgsed are thereby compared and the comparison
is done on the basis of different performance eslisuggested. We have also used the statistical
nonlinear parametric model ARMA-GARCH which capsithe nonlinear properties of the financial time
series to compare the results with the above noanpetric models. Our results show that the modtd wi
weights of the neural network optimized using Gienatgorithm and trained with Conjugate Gradient
Method gives the best of the results among thepasametric models for most of the data sets and tha

all the non-parametric models outperform the patémmodels.



82

These different issues addressed in our studyrognove the performance of forecasting of the neural
networks. But, there is a further scope of improgatof the results by considering many other issues
related to the neural networks. For the training aptimizing of the architecture, the parameters fo
genetic algorithms such as the number of genesatipapulation size, crossover probability, etc. are
obtained by hit and trial and offer poor justificet. We can make the genetic algorithm itself toles
these parameters simultaneously with training dinipation of networks. Such genetic algorithms are
also known as the Evolutionary Genetic Algorithikso, for the initial connection weights, creatioh
population and mutation, genetic algorithm usesloam number generators. This stochastic natureeof th
genetic algorithm and the neural networks maker#seilts precisely, not reproducible. This can be
improved by making improving the random naturetwf generators or the number of runs is increased
and the predicted value is the mean of all the naken. We can also use some other different
optimization algorithms like Particle Swarm Optitiion (PSO), Tabu Search (TS) Algorithm, Artificial
Immune System (AIS), and Ant Colony Optimizationd@) for the training of the neural networks. The
data set forecasting (i.e. inherent input and duypalues) is based on the concept of technicalyaisal
while it has been seen that a combination of teethrfactors, fundamental factors and the inter-mtark
data can give a better prediction of the time seiéso, we believe that better results can beibtbaby
applying other training algorithms, like Quasi NewtAlgorithm and Levenberg-Marquadt in Atrtificial

Neural Networks.
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