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ABSTRACT

In this thesis we analyze the properties of asymptotically flat three dimensional space-

times with extended supersymmetry. We then give the construction of the asymptotic

algebra for the extended supersymmetric cases by two different methods: first by Inönü-

Wigner contraction of two copies of superconformal algebra, and then by an asymptotic

symmetry analysis. We thereafter go on to explore important physical properties like

energy bounds and generic gravity solutions. Finally, we construct the free field real-

izations of the (super) BMS3 systems, which may be an interesting step towards under-

standing flat holography.
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CHAPTER 1

Introduction

1.1 Introduction to Three-Dimensional Gravity:

(Super)gravity in three dimensions has many interestesting aspects. These arise from

the unique fact that there are no propagating degrees of freedom for gravity in 2 + 1-d.

This can be understood from the following consideration:

The curvature tensor, better known as the Riemann tensor, is one of the most impor-

tant objects in general relativity. In case of a pseudo-Riemannian manifold, it measures

the extent to which the metric tensor deviates from the Minkowski metric of flat space-

time. Using the standard Weyl decomposition, it can be shown that the Riemann tensor

can be split into parts consisting of the Ricci scalar, the traceless part of the Ricci tensor

and the Weyl tensor, which is tracefree, that is, contraction of any pair of indices gives

zero. By virtue of the Einstein equations, the Ricci tensor (including its trace) is de-

termined fully by the stress energy tensor, ie controlled by the matter distribution. The

gravitational degrees of freedom reside entirely in the Weyl tensor.

Now in three dimensions, it so happens that the Weyl tensor vanishes identically.

Hence the Riemann tensor is fully determined by the Ricci tensor. Therefore in 3-d,

a space where the Ricci tensor Rµν is zero makes the Riemann tensor zero as well.

As a result, solutions with zero cosmological constant are always locally Minkowski

spacetime: the asymptotic flat solutions of Einstein equations do not possess any local

degrees of freedom. This implies that there is no gravitational radiation (in classical

theory) and no propagating gravitons (in quantum theory).

However, although the solutions are locally Minkowski, globally these may differ

from one another. In fact, a large class of gravitational solutions exist, depending on

the holonomy of the manifold. If the holonomy is trivial, then a single coordinate

patch, which parameterizes the neighbourhood of a point with the Minkowski metric

ηµν , can be globally extended throughout the spacetime. However, if the holonomy is



non-trivial, that is, non-contractible cycles are present in the manifold, then a single

coordinate patch is not sufficient to cover the entire spacetime. Thus in this case, the

global solution differs from ηµν . This is why solutions of three dimensional gravity can

be classified by their holonomy structure. [1]

1.2 Asymptotic Symmetry:

Asymptotically flat spacetimes were analyzed by Bondi, van der Burg, Metzner and

Sachs in the early 60’s [2, 3]. They studied it for four spacetime dimensions in the

context of gravitational radiation. It was found that the symmetry group for such space-

times at null infinity was not merely the Poincare group (which is the symmetry group

of flat spacetime, consisting of translations and Lorentz transformations), but an infi-

nite dimensional extension of it, which later came to be known as the BMS4 group.

It consists of the usual Lorentz transformations, however, the familiar translations of

the Poincare group now get extended to arbitrary angle-dependent translations, called

supertranslations. Later it was shown by Barnich and Troessaert that one can consider

further extension of the BMS group if one considers the Killing vectors at asymptotic

infinity to be meromorphic functions [4–6]. Under this generalization of allowing local

singularities in the asymptotic Killing vectors, the Lorentz part of the algebra gets en-

hanced to two copies of the Virasoro algebra, and these enhanced generators are now

called superrotations. A natural question that arises is whether this algebra encodes

information about the bulk gravity with flat space asymptotics. Relevant references in

this context include [4, 7–12].

In this thesis, we are interested in a simpler case, which is the asymptotically flat

space in three spacetime dimensions. The corresponding algebra is known as the BMS3

algebra. To derive this, one starts with a set of Bondi coordinates u, r, φ where r and

φ are the usual radial and angular coordinates respectively, while u = t − r, where

t is the familiar time coordinate. In this specific choice of coordinate system, the flat

Minkowski metric is given by

ds2 = −du2 − 2du dr + r2dφ2
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It is then obvious that here u acts as the timelike coordinate and r as the null coor-

dinate.

We are however interested in asymptotically flat spacetimes (and not particularly

in Minkowski spaetime), hence we start with a more generic choice of metric with

arbitrary coeffiients, having specific fall-off conditions in r. A systematic analysis of the

transformations that leave the form of the metric invariant finally leads to the symmetry

algebra of the system with most generic central extension as [4]:

[Jn, Jm] = (n−m)Jn+m +
c1

12
n(n2 − 1)δn+m,0

[Jn,Mm] = (n−m)Mn+m +
c2

12
n(n2 − 1)δn+m,0

[Mn,Mm] = 0

Thus we see that the algebra is infinite dimensional, made out of generatorsMn and Jn,

which we can identify as the supertranslation and superrotation generators respectively.

In the next chapter, we will show that alternatively, the BMS3 algebra can also be

derived as a Inönü-Wigner contraction of two copies of conformal algebras.

1.3 Thesis at a glance

Here we present a brief outline of the thesis. In the present chapter, we start with a

brief introduction of three dimensional gravity, especially the features which make it

interesting. Then we give a brief discussion of asymptotic symmetries, particularly

emphasizing the same for three dimensional flat space.

In chapter two, we will first review how BMS3 algebra has been derived in the

literature from contraction of conformal algebras. Then we will systematically extend

the procedure to derive super-BMS3 and extended super BMS3 algebras by contracting

two copies of corresponding super-conformal algebras. The important results in this

chapter are the correct methods of contraction of different generators to reproduce the

expected flat algebra, based on various physical requirements.

In chapter three, we will derive theN = 4 super BMS3 algebra by direct asymptotic
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symmetry analysis. For this, we will utilise the important fact that three-dimensional

gravity has a Chern-Simons formulation. A crucial fact that we will show here is that

the algebra obtained by this method will match exactly with that obtained by contrac-

tion in the previous chapter. We shall then also perform a similar asymptotic symmetry

analysis for the corresponding super-AdS3 case, and obtain the correct superconformal

algebra. Then we will show that the flat case, including the gauge field, can be repro-

duced as suitable combination from the AdS case. Finally, we shall also perform some

related analysis, for example, that of energy bound and Killing spinor solutions.

One subtlety that we will encounter in chapter three is the appearance of various

non-linear terms at intermediate stages of deriving the final algebra by asymptotic sym-

metry analysis. However, we have shown that upon suitable modification, the justifi-

cation for which we have explained in details, all the non-linear terms are cancelled

or absorbed, and the final algebra is linear. However, it turns out that this nice van-

ishing of non-linear terms is due to the choice of a very specific transformation of the

fermions under R-symmetry. In chapter four, we will allow more generic transforma-

tions, and as a consequence, it will turn out that there are explicit non-linear terms in

the final algebra! This will have non-trivial physical effects, like the shift of the energy

bound, which we will compute in details. Finally, we shall also discuss a class of purely

bosonic topological solutions, and analyze their thermodynamics.

In chapter five, we shall discuss the free field realisations of BMS3 as well as (ex-

tended) super-BMS3 algebras. We shall then also give the free field realisations of a

few other related cases.
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CHAPTER 2

Extended Supersymmetric BMS3 Algebras:

In this chapter we shall derive N = 2, 4, 8 super-BMS3 algebras by contracting two

copies of extended super conformal algebras.

2.1 Introduction:

One simple way to derive the BMS algebra is by direct contraction of Virasoro algebra,

which is the asymptotic symmetry algebra of asymptotically AdS spacetimes [13]. The

Virasoro algebra is given by:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
n(n2 − 1)δn+m,0

where in general, the central charges c and c̄ are independent. However, for Einstein

gravity, c = c̄ = 3l
2G

, where l is the AdS3 radius. Now one can obtain flat space by taking

the AdS3 radius l to infinity, however, the generators of the Virasoro algebra have to be

scaled correctly while taking this limit. We take the linear combinations:

Jn = Ln − L̄−n, Mn = ε
(
Ln + L̄−n

)
in the limit ε → 0, where ε = 1

l
. In addition, we also scale the central charges as

c1 = c− c̄ and c2 = ε(c+ c̄).



This results in the following algebra, which is called the BMS3 algebra:

[Jn, Jm] = (n−m)Jn+m +
c1

12
n(n2 − 1)δn+m,0

[Jn,Mm] = (n−m)Mn+m +
c2

12
n(n2 − 1)δn+m,0

[Mn,Mm] = 0

2.1.1 N = 1 Super-BMS3 Algebra:

Three-dimensionalN = 1 super-BMS algebra is also known in literature [14, 15]. Here

we start with 2 copies of Virasoro algebra, one of which is augemented by supersym-

metry. The algebras is:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
n(n2 − 1)δn+m,0

[Ln, Qr] =
(n

2
− r
)
Qn+r, {Qr, Qs} = Lr+s +

c

6
r2δr+s,0

Here Qr are the fermionic generators corresponding to the ’unbarred’ sector of the

Virasoro algebra. Note that there are no Q̄r generators, hence this corresponds to the

case of (1, 0) supersymmetry.

Now suitable contraction of this will give us the minimal supersymmetrization of the

BMS3 algebra, which we can identify as the asymptotic symmetry algebra of N = 1

supergravity of asymptotically flat spacetime. As far as the bosonic generators and

central charges are concerned, the contraction is exactly the same as in the pure BMS

case. The new input here is the contraction of fermionic generators, which was shown

to be Ψr =
√
εQr, where Ψr is defined as the fermionic generator of the super-BMS

algebra.
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Taking the limit ε→ 0, one obtains the following algebra:

[Jn, Jm] = (n−m)Jn+m +
c1

12
n(n2 − 1)δn+m,0

[Jn,Mm] = (n−m)Mn+m +
c2

12
n(n2 − 1)δn+m,0

{Ψr,Ψs} =Mr+s +
c2

2
r2δr+s,0 [Mn,Mm] = 0

[Jn,Ψr] =
(n

2
− r
)

Ψn+r [Mn,Ψr] = 0

We have considered the generic case c 6= c̄. This algebra is the N = 1 BMS3

algebra.

2.2 Extended Super-BMS3 Algebras:

We shall now write down the extended super-BMS3 algebras that we have derived in

our paper [16].

2.2.1 N = 2 Super-BMS3:

Here the starting point will be the (1, 1) superconformal algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
n(n2 − 1)δn+m,0 (2.2.1)

[Ln, Qr] =
(n

2
− r
)
Qn+r, [L̄n, Q̄r] =

(n
2
− r
)
Q̄n+r

{Qr, Qs} = Lr+s +
c

6

(
r2 − 1

4

)
δr+s,0 {Q̄r, Q̄s} = L̄r+s +

c̄

6

(
r2 − 1

4

)
δr+s,0

We will scale the Virasoro generators as before, that is asymmetrically and with

mixing of modes. However, now the scaling of the supercharges has more than one

choice: Either one can combine both of these symmetrically, or one can construct linear

combinations out of these and scale them asymmetrically, as we have done for the

bosonic generators. Let us consider both these cases separately:

8



For the first option, let us define the scaled generators as:

Ψ1
r =
√
εQr, Ψ2

r =
√
εQ̄−r

This scaling is called symmetric scaling because both the holomorphic and the anti-

holomorphic generators of the original suoerconformal algebra are scaled with the same

power of ε. However this contraction is not completely symmetric as the mode number

is preserved on the holomorphic side but is flipped on the anti-holomorphic side.

Now taking the limit ε→ 0, the algebra we get is:

[Jn, Jm] = (n−m)Jn+m +
c1

12
n(n2 − 1)δn+m,0

[Jn,Mm] = (n−m)Mn+m +
c2

12
n(n2 − 1)δn+m,0 (2.2.2)

{Ψr,Ψs} =
1

2

[
Mr+s +

c2

6

(
r2 − 1

4

)
δr+s,0

]
[Mn,Mm] = 0

[Jn,Ψ
a
r ] =

(n
2
− r
)

Ψa
n+r [Mn,Ψ

a
r ] = 0

where the bosonic modes n,m are integral whereas the fermionic modes r, s are half-

integral, while a = ±. We can recognize this as the most generically extended three

dimensional N = 2 BMS3 algebra. As expected in supergravity, the translation sub-

group appears on the right hand side of the fermion anticommutators. In fact, we can

identify the whole super-Poincare algebra with the following set of generators:

J±, J0,M±,M0,Ψ
±
1
2

The other choice is the asymmetric scaling that we have mentioned before. In that

case we do not get a consistent algebra, because the anticommutator of the supercharges

turns out to be divergent. This is shown in the appendix.

Here let us recall that for the pure bosonic case, the BMS algebra was found to be

isomorphic to the Galilean Conformal Algebra (GCA), although the two are obtained

by different contractions of the conformal generators. For the GCA one has to perform

asymmetric scaling of the combinations Ln± L̄n (hence no mixing of modes), whereas

for the BMS, one needs to contract the linear combinations with mixing of modes. The

two ways of contraction give rise to the same final algebra, which has been called the

9



BMS-GCA correspondence. It is now natural to ask the question whether this corre-

spondence holds in the supersymmetric case as well. The supersymmetric GCA has

been constructed in [17]. However as we have shown above, the asymmetric scaling of

the combinations Qr + Q̄r does not lead to a consistent algebra in the BMS case. Hence

it follows that the BMS GCA correspondence of [8] does not hold at the supersymmet-

ric level. The correspondence seems to be accidental and only limited to the bosonic

case.

2.2.2 N = 4 Super-BMS3:

Here we start from a theory of gauged supergravity admitting (2, 2) supersymmetry.

This means that there are two supercharges in both the holomorphic and the anti-

holomorphic sector. As there is more than one charge in each sector, this is the first

time that the R-symmetry generator appears in our analysis. Let us denote the super-

charges in the holomorphic sector as Q+ and Q−. Then under the R-symmetry, these

two have charges ±1 respectively. The anti-holomorphic part is exactly analogous to

this.

The holomorphic part reads:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, [Rn, Rm] =

c

3
nδn+m,0

[Ln, Q
±
r ] =

(n
2
− r
)
Q±n+r, [Ln, Rm] = −mRn+m, [Rn, Q

±
r ] = ±Q±r+n

{Q+
r , Q

−
s } = Lr+s +

1

2
(r − s)Rr+s +

c

6

(
r2 − 1

4

)
δr+s,0, {Q±r , Q±s } = 0

(2.2.3)

The anti-holomorphic sector is exactly same, albeit with barred generators and cen-

tral charge. Note that (Q+
r )† = Q−−r, and similarly for Q̄.

By now we already know the scalings for the Virasoro and the fermionic generators.

So we only need to find out the correct contraction for the R-symmetry part. Let us

analyse both the symmetric and the antisymmetric cases.
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N = 4 Super-BMS3 with Asymmetric Scaling for the R-currents:

We use the contractions for Virasoro and fermionic generators as before, and scale the

R-currents asymmetrically:

Jn = lim
ε→0

(
Lm − L̄−m

)
, Mn = lim

ε→0
ε
(
Lm − L̄−m

)
Ψ1,±
r = lim

ε→0

√
εQ±r , Ψ2,±

r = lim
ε→0

√
εQ̄±−r

c1 = lim
ε→0

(c− c̄), c2 = lim
ε→0

ε(c+ c̄) (2.2.4)

Rm = lim
ε→0

(Rm − R̄−m), Sm = lim
ε→0

ε(Rm + R̄−m)

The scaled supercharges satisfy: (Ψa,±
r )

†
= Ψa,∓

−r with a = 1, 2.

This gives the algebra:

[Jn, Jm] = (n−m)Jn+m +
c1

12
n(n2 − 1) δn+m,0

[Jn,Mm] = (n−m)Mn+m +
c2

12
n(n2 − 1) δn+m,0

[Mn,Mm] = 0, [Mn,Sm] = 0, [Mn,Rm] = −mSn+m

[Jn,Rm] = −mRn+m, [Jn,Sm] = −mSn+m

[Rn,Rm] =
c1

3
nδn+m,0, [Sn,Sm] = 0, [Rn,Sm] =

c2

3
nδn+m,0

[Mn,Ψ
a,±
r ] = 0 [Jn,Ψ

a,±
r ] =

(n
2
− r
)

Ψa,±
r+n (2.2.5)

[Rn,Ψ
1,±
r ] = ±Ψ1,±

n+r, [Rn,Ψ
2,±
r ] = ∓Ψ2,±

n+r, [Sn,Ψa,±
r ] = 0

{Ψ1,±
r ,Ψ1,∓

s } =
1

2

[
Mr+s +

1

2
(r − s)Sr+s +

c2

6

(
r2 − 1

4

)
δr+s,0

]
{Ψ2,±

r ,Ψ2,∓
s } =

1

2

[
Mr+s −

1

2
(r − s)Sr+s +

c2

6

(
r2 − 1

4

)
δr+s,0

]
{Ψ1,±

r ,Ψ2,∓
s } = 0

where the index a, b = 1, 2. The anticommutator of each supercharge with its Hermi-

tian conjugate closes into a linear combination of P and S plus a central term, with

the coefficient of S taking opposite signs for a = 1, 2. The anticommutator of each

supercharge with itself vanishes – as expected, given that the result has R-charge 2. The

11



super-Poincaré algebra sits inside this algebra and the corresponding generators are :

J±1, J0,M±1,M0,R0,Ψ
a,±
±, 1

2

N = 4 Super-BMS3 with Symmetric Scaling for the R-currents:

Let us now consider the alternative scenario, that is, if the R-charges are scaled sym-

metrically, and see if that leads to an algebra that we can identify as a valid super BMS3

algebra. After contraction, the algebra that we get is as follows:

[Jn, Jm] = (n−m)Jn+m +
c1

12
n(n2 − 1) δn+m,0

[Jn,Mm] = (n−m)Mn+m +
c2

12
n(n2 − 1) δn+m,0

[Mn,Mm] = 0, [Mn,Sm] = 0, [Mn,Rm] = 0

[Jn,Rm] = −mRn+m, [Jn,Sm] = −mSn+m

[Rn,Rm] =
c2

6
nδn+m,0, [Sn,Sm] = −c2

6
nδn+m,0, [Rn,Sm] = 0 (2.2.6)

[Mn,Ψ
a,±
r ] = 0 [Jn,Ψ

a,±
r ] =

(n
2
− r
)

Ψa,±
r+n

[Rn,Ψ
a,±
r ] = 0, [Sn,Ψa,±

r ] = 0, {Ψa,±
r ,Ψb,±

s } = 0, a 6= b

{Ψ1,±
r ,Ψ1,∓

s } =
1

2

[
Mr+s +

c2

6

(
r2 − 1

4

)
δr+s,0

]
{Ψ2,±

r ,Ψ2,∓
s } =

1

2

[
Mr+s +

c2

6

(
r2 − 1

4

)
δr+s,0

]

We see that that this algebra contains no R-symmetry. Indeed, all bosonic operators

commute with the Ψa,± except Jm, which just measures its spin. In particular, theR and

S operators commute with the fermions, so that the latter are not charged under R and

S. This algebra is therefore trivial and not the correct one to describe the asymptotic

symmetry of flat-space extended supergravity. Thus we conclude that the correct scaling

is the asymmetric one discussed in the last section and the corresponding algebra is the

correct algebra. For the case ofN = 8 super-BMS3 that we consider in the next section,

we shall only study the asymmetric scaling for R-currents.

12



2.2.3 Generic N = 4 super-BMS3 algebra

The algebra in eq.(2.2.5) that we have derived via contraction of theN = 4 superconfor-

mal algebra has specific relations among the central charges appearing in the different

commutators. It turns out that more generic central extension of this algebra is possible

consistent with all the Jacobi identities among the generators.

It is natural to ponder why there is more freedom in choosing the central charges

in this algebra than what we got by naive contraction! This is because the original

superconformal algebra had to satisfy the Jacobi identities as well, which related some

of its central charges. However, after contraction, several terms drop out when we take

the limit ε → 0, and the terms via which the central charges were related by Jacobi

identities sometimes vanish. So there is greater freedom in the central charges in this

algebra.

In particular, in the superconformal algebra, the central charge appearing in the

[Ln, Lm] is related to the central charge appearing in the [Rn, Rm] commutator. How-

ever, after contraction, we find that the central term appearing the [Rm,Rn] commutator

need not be related to that in the [Jm, Jn] commutator. This is because these two were

originally related to each other through the central charge of the supersymmetry algebra.

But after contraction, the supersymmetry algebra produces the S generator on the right-

hand-side instead of the R-symmetry generator R. Thus the Virasoro and R-symmetry

central charges are no longer related, and the general N = 4 super-BMS algebra has

independent central terms in the [Rm,Rn] and [Jn, Jm] commutators.

From now on we will consider this maximally centrally extended version of the

N = 4 super-BMS algebra. In a later section we shall see that the free field realization

naturally produces different central charges for these two commutators. One may vary

the central extension in the [Rm,Rn] commutator can by adding more free fields to the

base system.

2.3 N = 8 Super-BMS3:

Now we look at systems containing 8 supercharges. We shall obtain this by contracting

two copies of the small N = 4 superconformal algebra which is generated by the

13



bosonic currents T,Ri with (i = 1, 2, 3) and fermionic currents Qa,α with (a, α = 1, 2).

The central charge is related to the level of the SU(2) currents. In terms of modes, the

holomorphic part of the algebra is: [18]

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 [Ln, R

i
m] = −mRi

n+m

[Ln, Q
a,α
r ] =

(n
2
− r
)
Qa,α
n+r

[
Ri
n, R

j
m] = iεijkRk

n+m +
c

12
nδijδn+m,0[

Ri
n, Q

a,1
r

]
= −1

2
(σi)abQ

b,1
n+r

[
Ri
n, Q

a,2
r

]
= −1

2
(σ̄i)abQ

b,2
n+r

{Qa,+
r , Qb,−

s } =

[
δabLr+s − (r − s)(σi)abRi

r+s +
c

6

(
r2 − 1

4

)
δabδr+s,0

]
(2.3.1)

The anti-holomorphic part is similar, with an independent central charge c̄. Here σ̄iab =

σiba and σi are the three Pauli matrices.

As discussed before, we now contract this algebra using the asymmetric scaling for

the R-currents.

Jn = lim
ε→0

(
Lm − L̄−m

)
, Mn = lim

ε→0
ε
(
Lm + L̄−m

)
,

Ψ1,a,α
r = lim

ε→0

√
εQa,α

r , Ψ2,a,α
r = lim

ε→0

√
εQ̄a,α
−r ,

c1 = lim
ε→0

(c− c̄), c2 = lim
ε→0

ε(c+ c̄) (2.3.2)

Ri
m = lim

ε→0
(Ri

m + R̄i
−m), Sm = lim

ε→0
ε(Ri

m − R̄i
−m)

where a = 1, 2 and α = ±. This gives the algebra:

14



[Jn, Jm] = (n−m)Jn+m +
c1

12
n(n2 − 1) δn+m,0, [S in,Sjm] = 0

[Jn,Mm] = (n−m)Mn+m +
c2

12
n(n2 − 1) δn+m,0 [Mn,Mm] = 0

[Mn,Ri
m] = −nS in+m, [Mn,S im] = 0, [Jn,Ri

m] = −Ri
n+m, [Jn,S im] = −S in+m

[Ri
n,Rj

m] = iεijkRk
n+m +

c1

12
nδijδn+m,0, [Ri

n,Sjm] = iεijkSkn+m +
c2

12
nδijδn+m,0

[Mn,Ψ
A,a,α
r ] = 0, [Jn,Ψ

A,a,α
r ] =

(n
2
− r
)

ΨA,a,α
r+n , [S in,ΨA,a,α

r ] = 0

[Ri
n,Ψ

A,a,1
r ] = −1

2
(σi)abΨ

A,b,1
n+r , [Ri

n,Ψ
A,a,2
r ] =

1

2
(σ̄i)abΨ

A,b,2
n+r ,

{Ψ1,±
r ,Ψ1,∓

s } =
1

4
[1 + (−1)A+B]

[
δabMr+s − (r − s)(σi)abS ir+s +

c2

6

(
r2 − 1

4

)
δabδr+s,0

]
(2.3.3)

where A,B = 1, 2. This is the N = 8 super-BMS3 algebra. As in the N = 4 case, here

also the central charge is too restrictive. Using the Jacobi identity, we can find a more

generic version with an independent central term c3 in the R−R commutator. In this

case, we identify the super-Poincare algebra as consisiting of the following generators:

J±1, J0,M±1,M0,Ri
0,Ψ

A,a,±
± 1

2
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CHAPTER 3

N = 4 Supersymmetric BMS3 Algebra from Asymptotic

Symmetry Analysis:

3.1 Introduction:

In the last chapter, we have shown how to obtain super BMS3 algebras by a method

of contraction from the corresponding super-conformal algebras. In this chapter, we

shall emphasize on a particular case, namely the N = 4 super-BMS3 algebra, and

derive it by a different method. We find the N = 4 super BMS3 algebra, which is the

algebra of three dimensional N = 4 supergravity theory at null infinity, by a direct

asymptotic analysis following [14] ie by finding appropriate boundary conditions to

impose on the fields. If the algebra that we get by this method agrees with our previously

obtained algebra via method of contraction, then this will also validate our prescription

of scaling the various generators. In fact, as we will see, the algebra obtained naively

by asymptotic analysis contains pathological terms, and does not match with what we

derived in the previous chapter! However, upon careful analysis, it is realised that

the presence of internal R-symmetry calls for certain modifications of some generators

in the form of Sugawara shifts, and this finally leads to exactly the algebra found by

contraction.

3.1.1 Chern-Simons Formulation for 3 dimensional gravity

The Chern-Simons (CS) action on a three dimensional manifold M , invariant under the

action of a compact Lie group G, is given by:

I[A] =
k

4π

∫
M

〈A, dA+
2

3
A2〉 . (3.1.1)

Here the gauge fieldA is regarded as a Lie-algebra-valued one form, and 〈, 〉 represents

a non-degenerate invariant bilinear form taking values on the Lie algebra space and



acting as a metric and k is level for the theory. Thus in a particular basis {Ta} of the

Lie-algebra, we can express A = Aaµ Ta dxµ. The equation of motion is simply

F ≡ dA+ A ∧ A = 0.

The general solution of the equation of motion is topological, i.e. pure gauge. Consider

for instance the Poincaré groupG = ISO(2, 1) and a manifoldM with a boundary. The

non-zero commutation relations of the Lie-algebra are:

[Ja,Jb] = εabcJ c , [Ja, Pb] = εabcP
c, (3.1.2)

where a = 1, 2, 3 and εabc is the antisymmetric 3-form. The explicit form of the gauge

field is given in this basis by Aµ = eaµPa + ωaµJa, where eaµ acts as the vierbein and ωaµ

is the corresponding spin connection. The above action (3.1.1) then corresponds to the

3D Einstein-Hilbert action

S =
1

16πG

∫
2eaRa , Ra = dωa + 1

2
εabc ω

b ωc ,

up to identifying the level k = 1
4G

. Thus 3-dimensional gravity invariant under the

local ISO(2, 1) Poincaré group, with zero (or non-zero) cosmological constant can be

cast as a 3-dimensional CS gauge theory with the same gauge group. Indeed one can

show that a generic ISO(2, 1) gauge transformation parametrized by the element U =

EaPa + ωaJa, acts on the gauge field as

δAµ = −DµU = −(∂µU + [Aµ, U ]). (3.1.3)

In terms of the gravity fields (eaµ, ω
a
µ) the gauge transformation reads:

δeaµ = −∂µEa − εabceµbωc − εabcωµbEc (3.1.4)

δωaµ = −∂µωa − εabcωµbωc (3.1.5)

which are the expected local Lorentz transformations generated by ωa and local dif-

feomorphism transformations generated by Ea. Recall that under a generic diffeomor-
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phism transformation xµ → xµ + V µ, the fields (eaµ, ω
a
µ) transforms as

δ̃eaµ = V ν(∂νe
a
µ − ∂µeaν) + ∂µ(V νeaν), δ̃aµ = V ν(∂νω

a
µ − ∂µωaν) + ∂µ(V ν

ν
a). (3.1.6)

Thus for Ea = eaµV
µ and ignoring the local Lorentz transformation, we can show that

the difference between (3.1.4) and (3.1.6) is:

δ̃eaµ − δeaµ = V ν(Dνe
a
µ −Dµe

a
ν)− εabcV νωνbeµc . (3.1.7)

The 1st term of the RHS of the above equation, the torsion, vanishes on-shell, while

the 2nd term can be identified with a local Lorentz transformation with parameter ωa =

ωaµV
µ [19]. Thus we see that, on-shell, a gauge transformation of Chern Simons theory

is identical to a local Lorentz and diffeomorphism transformation of 3D Gravity.

We end this subsection by recalling how to find a nontrivial classical solution in this

theory. Since (3.1.1) is a gauge theory, we first need to fix a gauge. In (u, r, φ) coor-

dinates, for an arbitrary single valued group element U , the general solution takes the

form Aµ = U−1∂µU . Imposing the gauge-fixing condition ∂φAr = 0, the connection

will have following form [20], [21]:

Ar(r) = b(r)−1∂rb(r), Aφ(r, φ, u) = b(r)−1A(φ, u)b(r), (3.1.8)

where b(r) and A(φ, u) are arbitrary functions. To find Au, we recall that the gauge

fixing condition ∂φAr = 0 must remain invariant under a new gauge transformation,

for instance a time (u) evolution, i.e. ∂u∂φAu = 0. Using the equation of motion, this

implies ∂r∂φAu = 0 which is solved generically by:

Au(r, φ, u) = b(r)−1B(φ, u)b(r), (3.1.9)

with B(φ, u) is an arbitrary function of φ and time representing the residual gauge free-

dom of the system. Similarly A(φ, u) represents the residual part of the gauge field that

can not be fixed. Instead, as we shall see in the next subsection, they will give the global

conserved charges and centrally extended symmetry algebra at the boundary.

Thus we see that, in a partial gauge fixed CS theory the solution will have the form

18



A = b(r)−1(a + d)b(r), with a = audu + aφdφ is a function of φ and time. In the

following, we choose b(r) = eαr, α a Lie-algebra valued constant, as a proper boundary

condition on the field. In section 3.3, we have shown the choice of α which reproduces

the correct asymptotic gauge field.

3.1.2 Construction of Asymptotic symmetry algebra

Once a solution of CS theory is obtained, one can follow the canonical Hamiltonian ap-

proach of [22] to construct the conserved charges that correspond to the residual global

part of the gauge symmetry. Here, we shall only outline the procedure detailed in the

original paper and [20]. Note that in the reference provided, the analysis is done for

AdS space, where asymptotic symmetry is considered at spacelike infinity. For this rea-

son they have constructed spatial slices at t = constant, where t is the usual Minkowski

time. In this thesis, however, we are interested in flat space asymptotics, where the

asymptotic symmetry algebra is constructed at null infinity. Thus we work in ’Bondi

coordinates’, as discussed in Section 1.2, and in this case the timelike coordinate is u.

Consider a Chern-Simons theory on a manifold Σ × R, where Σ is a compact two

manifold and time is along R. In this gauge theory, one defines global charges by

demanding the differentials of the generators of gauge transformations to be regular for

a certain choice of boundary conditions. Thus for some arbitrary gauge transformation

parameters λa ( matrix valued function) the charge needs to satisfy:

δQ(λ) = − k

2π

∫
∂Σ

λaδA
a
µdx

µ. (3.1.10)

Further assuming the parameter function λ to be independent of the gauge field that is

varied at the boundary, we readily get the charge Q(λ) as,

Q(λ) = − k

2π

∫
∂Σ

λaA
a
µdx

µ , (3.1.11)

where the integration constant is set to zero. It is clear from the above expression that

Q(λ) is defined via the boundary value of the gauge field. Considering the example of

ordinary 3 dimensional gravity that we studied in the last section in (u, r, φ) coordinates,
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the boundary consists of the φ direction. Thus for this case, we get

Q(λ) = − k

2π

∫
∂Σ

λa(φ)Aa(φ)dφ . (3.1.12)

As we have seen in the last section, Aa(φ) is the residual part of the gauge field that

remains unfixed after gauge fixing. Similarly λa(φ) corresponds to the residual part of

the gauge transformation parameters. Thus, we have constructed global charges that

corresponds to the residual gauge symmetry . Expanding the boundary fields and the

parameters in modes, one can find find the centrally extended algebra realized by this

symmetry.

3.2 Construction of the Action:

In this chapter we want to construct the asymptotic symmetry algebra of 3d N = 4

supergravity theory. The global symmetry algebra consists of the bosonic generators

Ja, Pa, (a = 0, 1, 2),R,S and Majorana fermionic generators Q1±
α ,Q2,±

α ,
(
α = ±1

2

)
.

They satisfy the super-Poincare algebra:

[Ja,Jb] = εabcJ c, [Ja, Pb] = εabcP
c, [Ja,Q1,2,±

α ] =
1

2
(Γa)

β
αQ

1,2±
β

{Q1±
α ,Q1∓

β } = −1

2
(CΓa)αβPa ∓

1

2
CαβS, [Ra,Q1±

α ] = ±1

2
Q1±
α (3.2.1)

{Q2±
α ,Q2∓

β } = −1

2
(CΓa)αβPa ±

1

2
CαβS, [Ra,Q2±

α ] = ∓1

2
Q2±
α

Here S acts as a possible central extension of the algebra while R is the proper R-

symmetry, as the fermions transform under it. Using the invariant bilinear form for this

algebra (shown in Appendix), we get the supertrace elements as

< Ja, Pb >= ηab, < Q1,2±
α ,Q1,2∓

β >= Cαβ, < R,S >= −1 (3.2.2)

Now we expand the action of the theory in terms of the basis generators:

A = eaPa + ωa Ja +
∑
α=±

ψ1α
± Q1±

α +
∑
α=±

ψ2α
± Q2±

α + νR+ σS, (3.2.3)
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Here ea is the vielbein field, ωa the corresponding dual spin connection, ψ1α
± , ψ

2α
±

are the Majorana gravitini and ν, σ are the internal gauge fields. Now we can write

down the action for N = 4 asymptotically flat Supergravity theory:

S =
k

4π

∫ [
2eaRa − σdν − νdσ +

∑
a=±

ψ̄1
aDψ

1
−a +

∑
a=±

ψ̄2
aDψ

2
−a

]
(3.2.4)

where the covariant derivatives are given by:

Dψ1
± = dψ1

± + 1
2
ωa Γaψ

1
± ± 1

2
νψ1
± ,

Dψ2
± = dψ2

± + 1
2
ωa Γaψ

2
± ∓ 1

2
νψ2
± , (3.2.5)

Ra = dωa + 1
2
εabc ω

b ωc

Now we can check the invariance of the action S under the supersymmetry by using the

transformations,

δA = dλsusy + [A, λsusy], λsusy = θ1α
± Q1±

α + θ2α
± Q2±

α .

which explicitly read:

δea = 1
2
(θ̄1

+Γaψ1
− + θ̄1

−Γaψ1
+ + θ̄2

+Γaψ2
− + θ̄2

−Γaψ2
+), δωa = 0

δψ1α
± = dθ1α

± + 1
2
ωa Γa θ

1α
± ± 1

2
νθ1α
± = Dθ1α

±

δψ2α
± = dθ2α

± + 1
2
ωa Γa θ

2α
± ∓ 1

2
νθ2α
± = Dθ2α

±

δσ = ∓1
2
(ψ̄1
±θ

1
∓ − ψ̄2

±θ
2
∓), δν = 0.

The supersymmetry algebra closes on-shell into a general coordinate transforma-

tion, a Lorentz transformation (with dual parameter λa = εabcΛbc) and a supersymmetry

transformation with parameters ε± = −ξν ψ1
ν± and ϑ± = −ξν ψ2

ν±:

[δ(ε1
+, ε

1
−, ϑ

1
+, ϑ

1
−), δ(ε2

+, ε
2
−, ϑ

2
+, ϑ

2
−)] = δLor(λ

a = −ξνωνa) + δsusy(ε+, ε−, ϑ+, ϑ−)

+ δg.c.(ξ
ν = −1

2
(ε̄2
−Γνε1

+ + ε̄2
+Γνε1

− + ϑ̄2
−Γνϑ1

+ + ϑ̄2
+Γνϑ1

−)). (3.2.6)
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The dynamical equations are:

T a = −1
2

(ψ̄1
+ Γaψ1

− + ψ̄2
+ Γaψ2

−), Dψ1,2
± = Dψ̄1,2

± = 0 ,

dν = Fν = 0, 2Fσ + (ψ̄1
− ψ

1
+ − ψ̄2

+ ψ
2
−) = 0

where T a is the torsion tensor T a = dea + εabcω
bωc.

Now we make a change of frame to the set of generators {Mn,Ln, q1,2±
α ,R,S}

which are related to the old ones by the following relations as was done in [23] 1.

Mn = PaU
a
n , Ln = JaUa

n , q1±
α =

√
2Q1±

α , q2±
α =

√
2Q2±

α ,

with (R,S) remaining unchanged. In terms of these generators, the super Poincare

algebra is:

[Ln,Lm] = (n−m)Ln+m, [Ln,Mm] = (n−m)Mn+m, [Mn,Mm] = 0,

[Ln, q1,2±
α ] =

(n
2
− α

)
q1,2±
n+α , [Mn, q

1±
α ] = 0, [Mn, q

2±
α ] = 0,

[R, q1±
α ] = ±1

2
q1±
α , [R, q2±

α ] = ∓1
2
q2±
α , [S, q1±

α ] = 0, [S, q2±
α ] = 0,

{q1±
α , q1∓

β } = Mα+β ± (α− β)S, {q2±
α , q2∓

β } = Mα+β ± (α− β)S. (3.2.7)

3.3 N = 4 BMS3 asymptotic algebra

To derive the asymptotic symmetry algebra for the above theory, we first need to pro-

vide a suitable set of fall-off conditions for the gauge fields at null infinity. The condi-

tions are: (i) it must extend the one of the purely gravitational sector so as to include

the bosonic solutions of interest and (ii) is relaxed enough so as to enlarge the set of

asymptotic symmetries from BMS3 to its N = 4 supersymmetric extension. In order to

satisfy these requirements, the behaviour of the gauge fields at the boundary is taken to

be of the form,

A = b−1(a+ d)b, b = exp
(r

2
M−1

)
(3.3.1)

1Our conventions are summarized in appendix A.3
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where, the radial dependence is encoded in b. For our purpose, we start with a gauge

field

A =
(
M1 − 1

4
MM−1 −

iρ

2
S
)

du+
dr

2
M−1

+
(
L1 + rM0 − 1

4
ML−1 − 1

4
N M−1 −

iφ

2
S − iρ

2
R

− 1

4

(
Ψ1

+ q
1+
− −Ψ1

− q
1−
−
)

+
1

4

(
Ψ2

+ q
2+
− −Ψ2

− q
2−
−
))

dϕ

(3.3.2)

Various fields appearing in the above expression asymptotically will only have u and

ϕ dependence. The above gauge field is so chosen that it correctly reproduces the

asymptotically flat metric:

ds2 = ηabe
aeb =Mdu2 − 2dudr +Ndudϕ+ r2dϕ2

The asymptotic symmetries are the set of gauge transformations that preserves this be-

haviour. The equation of motion and the gauge transformation due to a Lie-algebra-

valued parameter Λ must be of the form :

dA+
1

2
[A,A] = 0, δA = dΛ + [A,Λ], (3.3.3)

where, the parameter Λ depends on various fields that are functions of u and ϕ and is

given as,

Λ = Υn Ln+ξnMn+ζ1α
+ q1 +

α +ζ1α
− q1−

α +ζ2α
+ q2 +

α +ζ2α
− q2−

α +λRR+λS S. (3.3.4)

Before proceeding to compute the variations at infinity, we note down some identities

satisfied by various component fields in 3.3.2 due to equations of motion:

∂ϕM = ∂uN , ∂uM = 0 (3.3.5)

Analogously, we can show :

∂uΨ
1
± = 0 , ∂uΨ

2
± = 0 , ∂u ρ = 0 , ∂ϕρ = ∂uφ. (3.3.6)
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Similar identities exist for the parameters as well:

∂uξ
n = ∂ϕΥn , ∂uΥ

n = 0, ∂uζ
1α
± = 0, ∂uζ

2α
± = 0,

∂uλS = ∂ϕλR , ∂u λR = 0. (3.3.7)

Thus the fields and parameters are not independent of each other. We shall come back

to this point later.

Next we analyse the gauge variation condition. The conditions that we get on various

fields and their variations are given below. First we present the dependent bosonic fields

followed by fermionic fields. For bosonic fields we get,

ξ0 = −∂ϕξ+ + rΥ+, Υ0 = −∂ϕΥ+, −∂2
ϕΥ+ + 2Υ− + 1

2
MΥ+ = 0

− ∂2
ϕξ

+ + 2 ξ− + r ∂φΥ+ + 1
2

(
M ξ+ +NΥ+

)
+ 1

4

(
Ψ1

+ζ
1+
− −Ψ1

−ζ
1+
+

)
− 1

4

(
Ψ2

+ζ
2+
− −Ψ2

−ζ
2+
+

)
= 0

where we made multiple use of the above identities (3.3.7). The constraints on the

dependent fermionic parameters go as follow:

∂ϕζ
1+
± + ζ1−

± ±
1

4
Ψ1
±Υ+ ∓ i

4
ρζ1+
± = 0

∂ϕζ
2+
± + ζ2−

± ∓
1

4
Ψ2
±Υ+ ∓ i

4
ρζ2+
± = 0

Finally we write down the variation of the fields. For bosonic fields, we get,

δM = −2∂3
ϕΥ+ + 2M∂ϕΥ+∂ϕMΥ+

δN = −2∂3
ϕξ

+ + 2M∂ϕξ
+ + 2N∂ϕΥ+ + ∂ϕMξ+ + ∂ϕNΥ+

+ 1
2

(
∂ϕΨ1

+ζ
1+
− + 3 Ψ1

+∂ϕζ
1+
− − ∂ϕΨ1

−ζ
1+
+ − 3 Ψ1

−∂ϕζ
1+
+ +

i

2
Ψ1

+ζ
1+
− ρ+

i

2
Ψ1
−ζ

1+
+ ρ
)

− 1
2

(
∂ϕΨ2

+ζ
2+
− + 3 Ψ2

+∂ϕζ
2+
− − ∂ϕΨ2

−ζ
2+
+ − 3 Ψ2

−∂ϕζ
2+
+ +

i

2
Ψ2

+ζ
2+
− ρ+

i

2
Ψ2
−ζ

2+
+ ρ
)
,

δρ = 2i∂ϕλR, δφ = 2i∂ϕλS −
1

2
(Ψ1

+ ζ
1+
− + Ψ1

− ζ
1+
+ ) +

1

2
(Ψ2

+ ζ
2+
− + Ψ2

− ζ
2+
+ )

(3.3.8)
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For the fermionic fields we get:

δΨ1
± = ±4∂2

ϕζ
1+
± +

(
∂ϕΨ1

±Υ+ + 3
2
Ψ1
±∂ϕΥ+

)
∓ i
(
∂ϕρζ

1+
± + 2ρ∂ϕζ

1+
±

)
∓Mζ1+

±

∓ i

4
Ψ1
±ρΥ+ ∓ 1

2
RΨ1
± ∓

1

4
ρ2ζ1+
± ,

δΨ2
± = ∓4∂2

ϕζ
2+
± +

(
∂ϕΨ2

±Υ+ + 3
2
Ψ2
±∂ϕΥ+

)
∓ i
(
∂ϕρζ

2+
± + 2ρ∂ϕζ

2+
±

)
±Mζ2+

±

± i

4
Ψ2
±ρΥ+ ± 1

2
λRΨ2

± ±
1

4
ρ2ζ2+
± (3.3.9)

We then obtain the variation of the canonical generators corresponding to the asymp-

totic symmetries of this theory.

δC = − k

2π

∫
〈Λ, δAϕ〉dϕ (3.3.10)

For the asymptotic behaviour described here, it is straightforward to verify that this

expression becomes linear in the deviation of the fields with respect to the reference

background and is given as,

δC = − k

4π

∫ [
Υ+δN + ξ+δM+ (δΨ1

+ζ
1+
− − δΨ1

−ζ
1+
+ ) (3.3.11)

− (δΨ2
+ζ

2+
− − δΨ2

−ζ
2+
+ ) + i(λRδφ+ λSδρ)

]
dϕ

where we have used the supertraces suitable for the current basis:

< Ln,Mm >= γnm, < q1,2±
α , q1,2∓

β >= 2Cαβ, < R,S >= −1 (3.3.12)

We have already noticed that the fields N andM are not independent. Similarly, the

gauge transformation parameters ξ+ and Υ+ are also not independent. The independent

components can be written as,

N = J(ϕ) + u∂ϕM, ξ+ = T (ϕ) + u∂ϕΥ+. (3.3.13)

so the above equation 3.3.11 turns into:

δC = − k

4π

∫ [
Υ+δJ+TM. +(δΨ1

+ζ
1+
− −δΨ1

−ζ
1+
+ )−(δΨ2

+ζ
2+
− −δΨ2

−ζ
2+
+ )+iλRδφ+iλSδρ

]
dϕ.

(3.3.14)
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We can readily read off the charge from the above variation formula as,

C = − k

4π

∫ [
Υ+J+TM+(Ψ1

+ζ
1+
− −Ψ1

−ζ
1+
+ )−(Ψ2

+ζ
2+
− −Ψ2

−ζ
2+
+ )+iλRφ+iλSρ

]
dϕ.

(3.3.15)

Then we obtain the Poisson brackets among various modes of the fields as:

{C[1], C[2]}PB = δ1C[2], (3.3.16)

and the non-zero Poisson brackets are,

i{Jn, Jm} = (n−m)Jn+m, i{Jn,Mm} = (n−m)Mn+m +
cM
12

n3δn+m,0

i{Jn,Ψ1,2±
r } =

(n
2
− r
)
Ψ1,2±
r+n ∓ 1

4
[Ψ1,2±S]n+r

i{Rn,Ψ
1±
r } = ±1

2
Ψ1±
r+n, i{Rn,Ψ

2±
r } = ∓1

2
Ψ2±
r+n, i{Rn,Sm} =

cM
12

nδn+m,0

{Ψ1+,Ψ1−} =Mr+s + (r − s)Sr+n + 1
4
[SS]n +

cM
6
r2δr+s,0

{Ψ2+,Ψ2−} =Mr+s − (r − s)Sr+n + 1
4
[SS]n +

cM
6
r2δr+s,0, (3.3.17)

where cM = 12k.

Here the modes are defined as follows:

Jn =
k

4π

∫
dϕeinϕJ, Mn =

k

4π

∫
dϕeinϕM,

Rn =
k

4π

∫
dϕeinϕφ, Sn =

k

4π

∫
dϕeinϕρ,

ψ1,2±
r =

k

4π

∫
dϕeirϕψ1,2±, [ψ1,2±S]r =

k

4π

∫
dϕeirϕψ1,2±φ,

[SS]α =
k

4π

∫
dϕeiαϕφφ, δn,0 =

1

2π

∫
dϕeinϕ. (3.3.18)

To get the Poisson brackets, we need the inverse relations among the fields and the

modes as well. For example, for fields J(ϕ) andM(ϕ), the inverse relations are given

by:

J(ϕ) =
2

k

∑
n

e−inϕJn, M(ϕ) =
2

k

∑
n

e−inϕMn. (3.3.19)

Here we see that in the Poisson bracket {Jn, ψ1,2,±
r }, the last term should not have

been present, for ψ1,2,±
r to transform as a primary field under Jn. Also, the Poisson
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bracket i{Jn,Rm} is zero. Furthermore, there is a non linear term of the S generator

in the Poisson bracket {Ψ1,2+,Ψ1,2−}. Hence, at this point the algebra is not quite

as expected [16]. The resolution of this problem is based on a simple argument: as

we are dealing with a theory with one internal U(1) symmetry, the physical energy-

momentum tensor should have a contribution from the corresponding U(1) current.

Thus it is necessary to add a Sugawara-like term to Jn as follows:

Ĵn = Jn + 1
2
(RS)n ; (3.3.20)

With this modification, all the spurious terms get cancelled or absorbed and the new

Poisson brackets read

i{Ĵn, ψ1,2±
r } =

(n
2
− r
)
ψ1,2±
r+n , i{Ĵn,Rm} = −mRm+n

i{Ĵn,Sm} = −mSm+n (3.3.21)

Finally, we also perform a shift onMn as, M̂n =Mn + 1
4
[SS]n. The justification

for this shift will be clearlater. It is easy to check that, under this shift, the non-linear

term of the {Ψ1,2+,Ψ1,2−} Poisson bracket disappears and we also get ,

i{M̂n,Rm} = −mSn+m.

In the next subsection, we shall present the final BMS algebra and as it turns out, we

get exact agreement with the one presented in [16].

Finally, we quantize the algebra as follows:

i{, }PB → [, ] and {, }PB → {, }.
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The final quantum algebra is:

[Ĵn, Ĵm] = (n−m)Ĵn+m +
cJ
12
n3δn+m,0, [Rn,Rm] =

cJ
12
n δn+m,0

[Ĵn,M̂m] = (n−m)M̂n+m +
cM
12

n3δn+m,0, [Rn,Sm] =
cM
12

n δn+m,0

[Ĵn,Rm] = −mRn+m , [Ĵn,Sm] = −mSn+m , [M̂n,Rm] = −mSn+m

[Ĵn,Ψ
1,2±
r ] =

(n
2
− r
)
Ψ1,2±
r+n , [Rn,Ψ

1±
r ] = ±1

2
Ψ1±
r+n, [Rn,Ψ

2±
r ] = ∓1

2
Ψ2±
r+n,

{Ψ1+,Ψ1−} = M̂r+s + (r − s)Sr+n +
cM
6
r2δr+s,0

{Ψ2+,Ψ2−} = M̂r+s − (r − s)Sr+n +
cM
6
r2δr+s,0 (3.3.22)

This is the most generic quantum extension of the algebra by allowing possible cen-

tral extension to the [Ĵn, Ĵm] and [Rn,Rm] commutator, fixed by Bianchi identity. We

also notice that after the Sugawara shifts, we get exactly the same algebra as presented

in [16].

3.4 Energy bound and Killing spinors

We now look for the energy bounds for 3-d N = 4 asymptotically flat supergravity

theories.

3.4.1 Susy Energy bound

It is well-known that supersymmetry imposes constraints on the energy of the supersym-

metric states. It can be found from the super algebra. In particular, for our case, consid-

ering anti-periodic boundary conditions on the fermions2, we find that the global part

of the algebra consists of (Jm,M̂m,Ψ
1,2±
r ,R), where m = −1, 0, 1 and r = ±1

2
. Fol-

lowing [24–26], we consider all possible positive-definite combinations of the fermions

Ψ1,2±
±1/2:

M̂0 = 1
4

∑
i=1,2
α=±1/2

Ψi+
α Ψi−

−α + Ψi−
−α Ψi+

α −
k

2
≥ −k

2
= − 1

8G
(3.4.1)

2we have not studied the periodic boundary conditions on the fermions
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Here it is crucial to note that the above bound is satisfied by the shifted generator M̂0

and not byM0. This implies that for extended supersymmetric cases, the right physical

charge at null infinity corresponds to M̂ 3. For the Minkowski vacuum, M̂0 =M0 =

− 1
8G

as all the other fields, including the R-and S-symmetry gauge fields are vanishing,

and the bound is saturated. Hence, Minkowski space is obviously a ground state for this

theory.

3.4.2 Asymptotic Killing Spinors

We now want to study the asymptotic supersymmetries that preserve the asymptotically

flat backgrounds. For this, we impose that both the gravitinos and their generic varia-

tions are zero at infinity. This gives the "asymptotic Killing spinor equation". We thus

need to solve a simplified version of the equations (3.3.9), i.e.:

∂2
ϕζ

i
± ∓

i

2
ρ∂ϕζ

i
± − 1

4
(M+ 1

4
ρ2)ζ i = 0 (3.4.2)

where i = 1, 2 and we assumed ∂ϕρ = 0 andM constant. The general solutions are:

ζ i+ = e−i
ρ
4
ϕ
(
ci1 e

√
M
2

ϕ + ci2 e
−
√
M
2

ϕ
)

ζ i− = ei
ρ
4
ϕ
(
di1 e

√
M
2

ϕ + di2 e
−
√
M
2

ϕ
)

(3.4.3)

The solutions are well-defined, given the periodicity of ϕ only when M = −n2 and

n > 0, a strictly positive integer without loss of generality.

For n = 1, ρ = 0 we find the Killing spinors for the Minkowski vacuum,M = −1. For

n > 1, the energy bound is violated and we get angular defect solutions [27].

3.4.3 Global Killing vectors

Global killing vectors are the globally defined supersymmetry transformations that

leave the pure bosonic solution in the asymptotic region invariant. Depending on the

range of the mass parameter, the pure bosonic zero mode solutions include cosmological

solutions [28, 29], stationary conical defects solutions [27], the Minkowski spacetime

3 J andM belongs to the same super multiplet, hence, if one is shifted, so must be the other.

29



and angular excess solutions of [30, 31]. The global Killing spinor equation is given as,

Dζ1
± = (d +±1

2
ν)ζ1
± = 0 (3.4.4)

From the gauge field (3.3.2), we can obtain the values of the spin connection and the

R-gauge field:

= 1
2

n
Γ̃n = Λ−1dΛ , Λ = exp

(
1

2

(
Γ̃+1 −

M
4

Γ̃−1

)
ϕ

)
,

The general solution of this equation is obtained from the solution of the homogeneous

equation (ν = 0):

ζ1
hom = Λ−1ζ1

0 =

 cosh
(√
M
2
ϕ
)

−
√
M
2

sinh
(√
M
2
ϕ
)

− 2√
M sinh

(√
M
2
ϕ
)

cosh
(√
M
2
ϕ
)

 ζ1
0 (3.4.5)

with ζ1
0 constant spinor ( here the indices ± are suppressed). Then we can solve the

inhomogeneous equation with non-zero ν :

ζ1,2
±gen = Λ−1(ζ1,2

0± + ζ1,2
± (x)) (3.4.6)

By explicitly plugging in the above (3.4.4) we get:

dζ1,2
± (x) = ∓ i

2
φdϕ (ζ1,2

0 + ζ1,2
± (x)) (3.4.7)

where ν = −iφ
2

which immediately solves to:

∂rζ
1,2
± = ∂uζ

1,2
± = 0

ζ1,2
± (ϕ) = c e∓i

1
2
φϕ − ζ1,2

0± (3.4.8)

Thus the final solution for the global Killing spinors takes the form :

ζ1,2
±gen = Λ−1 c1,2 e∓i

1
2
φϕ (3.4.9)

with c1,2 being constant spinor. Like the asymptotic case, the Killing spinors are glob-

ally well-defined whenM = −n2, with n being positive integer. More detailed discus-

sions can be found in [14, 23].
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3.5 Super BMS3 as a flat Limit of asymptotically super-

AdS3 Supergravity

It has been already noticed in the literature that one can obtain the flat asymptotic alge-

bra by an appropriate contraction of two copies of the asymptotic AdS algebras. In [16],

we used this method to include all possible supersymmetric extensions of the BMS3 al-

gebras by considering the limit of the two possible combinations for the R− charge

generators. One was excluded because the R-generators did not act on the supercharges

as they should, so that left us with one well-defined combination of the R-symmetry

generators of the two super-Virasoro sectors, which led to a proper N = 4 super-BMS3

algebra.Here we have re-derived this algebra as given in 3.3.22 by a direct asymptotic

symmetry analysis. This result is in complete agreement with the results of [16] after

considering the suitable Sugawara shifts in two generators, as shown in the last section.

3.5.1 Asymptotic symmetry algebra for (2,0) and (0,2) AdS super-

gravity

There are two inequivalent minimal locally supersymmetric extensions of gravity with

negative cosmological constant in three dimensions, which are known as the (2,0) and

(0,2) theories. The symmetry algebra for both the theories is shown in in appendix A.5.

Here, we shall formulate them as a Chern-Simons theory with appropriate gauge group.

The action can be written as a functional of two independent connections A+ and A−:

I = I[A+] + I[A−], (3.5.1)

where, I[A] is defined earlier in 3.1.1. Here x± = u
l
± ϕ, where, l is the identical AdS

radius in both sectors. Thus the (2,0) sector asymptotically only depends on x+ and the

(0,2) sector depends on x−. We take athe asymptotic gauge fields as:

A+ =
(
L1 +

r

l
L0 +

r2

4 l2
L−1 − 1

2
L+ L−1 − 1

2
ψ+Q+

− + 1
2
ψ−Q−− − iφARR

)
dx+ +

dr

2 l
L−1

Ā− =
(
L̄−1 −

r

l
L̄0 +

r2

4 l2
L̄1 − 1

2
L− L̄1 − 1

2
ψ̄+ Q̄+

+ + 1
2
ψ̄− Q̄−+ − iφ̄AR R̄

)
dx− +

dr

2 l
L̄1.

(3.5.2)
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As in the flat case, from the EOM we get the trivial constraints:

∂−L+ = ∂−ψ± = ∂−φ
A
R = 0, ∂+L− = ∂+ψ̄± = ∂+φ̄

A
R = 0. (3.5.3)

The asymptotic symmetries for these systems are generated by the gauge transfor-

mations A± = dΛ± + [A±,Λ±] for both gauge fields, with the transformation parame-

ters:

Λ+ = χn Ln + εα+Q+
α + εα−Q−α + A

RR

Λ− = χ̄n Ln + ε̄α+ Q̄+
α + ε̄α− Q̄−α +¯AR R̄ (3.5.4)

The variation at infinity constraints dependent fields in terms of the independent ones, as

well as the variation of various fields appearing in the asymptotic gauge fields. Below,

we first present the results in the (2,0) section, where the fields and parameters are only

function of x+:

χ0 = −Y ′ + r

l
Y

χ− = 1
2
Y ′′ − r

2 l
Y ′ +

( r2

4 l2
− 1

2
L+

)
Y − 1

4
(ψ+ ε− − ψ− ε+)

ε−+ = −ε′+ +
r

2 l
ε+ − 1

2
ψ+ Y + 1

2
iφAR ε+

ε−− = −ε′− +
r

2 l
ε− + 1

2
ψ− Y − 1

2
iφAR ε−

where we have called χ+ = Y , ε++ = ε+ and ε+− = ε−. The variations are:

δL+ = −Y ′′′ + 2L+ Y ′ + L′+ Y + 1
2

(
ψ′+ ε− + 3ψ+ ε

′
−

)
− 1

2

(
ψ′− ε+ + 3ψ− ε

′
+

)
+ 1

2
i
(
ψ+ ε− φ

A
R + ψ− ε+ φ

A
R

)
δψ+ = 2 ε′′+ + ψ′+ Y + 3

2
ψ+ Y ′ − i

(
φA′R ε+ + 2φAR ε

′
+

)
− L+ ε+ − 1

2
iψ+ φ

A
R Y − 1

2
λAR ψ+

− 1
2
φAR φ

A
R ε+

δψ− = −2 ε′′− + ψ′− Y + 3
2
ψ− Y ′ − i

(
φA′R ε− + 2φAR ε

′
−

)
+ L+ ε− + 1

2
iψ− φR Y + 1

2
λAR ψ−

+ 1
2
φAR φ

A
R ε−

δφAR = iλA′R − 1
2

iψ+ ε− − 1
2

iψ− ε+

Now we follow the same procedure as before, The non-zero suoertrace elements
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are:

< Ln, Lm >=
1

2
γnm, < Q±α ,Q∓β >= Cαβ, < R,R >= −1

2
(3.5.5)

With this we can find out the generic charge and then find out the algebra as before.

The non-zero Poisson brackets are:

i{L+
n ,L

+
m}PB = (n−m)L+

n+m +
c

12
n3δn+m,0

i{Rn, Rm}PB =
kl
2
nδn+m,0 =

c

12
nδn+m,0

i{L+
n , ψ

±
α }PB =

(n
2
− α

)
ψ±α+n ∓

1

2
[ψ±R]n+α

i{Rn, ψ
±
α }PB = ±1

2
ψ±α+n (3.5.6)

{ψ+
α , ψ

−
β }PB = L+

α+β + (α− β)Rα+β +
1

2
[RR]α+β +

c

6
α2δα+β,0

where the modes are defined as follows.:

Ln =
kl
4π

∫
dϕeinϕL+, Rn =

kl
4π

∫
dϕeinϕφAR,

ψ±α =
kl
4π

∫
dϕψ±eiαϕ, [ψ±R]α =

kl
4π

∫
dϕeiαϕψ±φAR,

[RR]α =
kl
4π

∫
dϕeiαϕφARφ

A
R (3.5.7)

Thus here we also see the same problems as in the flat case: some of the Poisson

brackets are pathological. Hence we now need to perform a Sugawara shift:

Ln → L̂n = Ln +
1

2
(RR)n (3.5.8)

This gives the right algebra, which, after quantization, looks as:

[L̂n, L̂m] =
c

12
n3δn+m,0 + (n−m)L̂n+m, [Rn,Ψ

±
α ] = ±1

2
Ψ±n+α

{Ψ+
α ,Ψ

−
β } = L̂α+β + (α− β)Rα+β +

c

6
α2δα+β,0 (3.5.9)

[L̂n,Rm] = −mRn+m, [L̂n,Ψ
±
α ] =

(n
2
− α

)
Ψ±r+α, [Rn,Rm] =

c

12
nδn+m,0

As in the previous case, here the Sugawara shift not only gives the correct algebra
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for the primary fields with the angular momentum generator, but also absorbs the non-

linear term in the fermion anti-commutator.

Similar computation for the (0, 2) sector give the results:

χ̄0 = Ȳ ′ − r

l
Y

χ̄+ = 1
2
Ȳ ′′ − r

2 l
Ȳ ′ +

( r2

4 l2
− 1

2
L−
)
Ȳ + 1

4
(ψ̄+ ε̄− − ψ̄− ε̄+)

ε̄++ = ε̄′+ −
r

2 l
ε̄+ − 1

2
ψ̄+ Ȳ − 1

2
iφ̄AR ε̄+

ε̄+− = ε̄′− −
r

2 l
ε̄− + 1

2
ψ̄− Ȳ + 1

2
i φ̄AR ε̄−

where we called χ̄− = Y , ε̄−i = ε̄i. The variations read:

δL− = −Ȳ ′′′ + 2L− Ȳ ′ + L′− Ȳ − 1
2

(
ψ̄′+ ε̄− + 3 ψ̄+ ε̄

′
−

)
+ 1

2

(
ψ̄′− ε̄+ + 3 ψ̄− ε̄

′
+

)
− 1

2
i
(
ψ̄+ ε̄− φ̄

A
R + ψ̄− ε̄+ φ̄

A
R

)
δψ̄+ = −2 ε̄′′+ + ψ̄′+ Ȳ + 3

2
ψ̄+ Ȳ ′ + i

(
φ̄A′R ε̄+ + 2 φ̄AR ε̄

′
+

)
+ L− ε̄+ − 1

2
iψ̄+ φ̄

A
R Ȳ − 1

2
λ̄AR ψ̄+

+ 1
2
φ̄AR φ̄

A
R ε̄+

δψ̄− = 2 ε̄′′− + ψ̄′− Ȳ + 3
2
ψ̄− Ȳ ′ + i

(
φ̄A′R ε̄− + 2 φ̄AR ε̄

′
−

)
− L− ε̄− + 1

2
iψ̄− φ̄

A
R Ȳ + 1

2
λ̄AR ψ̄−

− 1
2
φ̄AR φ̄

A
R ε̄−

δφ̄AR = iλ̄A′R + 1
2

iψ̄−ε̄− + 1
2

iψ̄− ε̄+

The supertrace elements are equal and opposite to the corresponding ones in the

unbarred sector. By following a similar procedure, we arrive at the Poisson brackets:

i{L−n ,L−m}PB = (n−m)L−n+m +
c̄

12
n3δn+m,0

i{R̄n, R̄m}PB =
kl
2
nδn+m,0 =

c̄

12
nδn+m,0

i{L−n , ψ̄±α }PB =
(n

2
− α

)
ψ̄±α+n ∓

1

2
[ψ̄±R̄]n+α

i{R̄n, ψ̄
±
α }PB = ±1

2
ψ̄±α+n (3.5.10)

{ψ̄+
α , ψ̄

−
β }PB = L̄+

α+β + (α− β)R̄α+β +
1

2
[R̄R̄]α+β +

c̄

6
α2δα+β,0
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where the modes are defined as follows.:

L̄n =
kl
4π

∫
dϕe−inϕL+, R̄n =

kl
4π

∫
dϕe−inϕφ̄AR,

ψ̄±α =
kl
4π

∫
dϕψ̄±e−iαϕ, [ψ̄±R̄]α =

kl
4π

∫
dϕe−iαϕψ̄±φ̄AR,

[R̄R̄]α =
kl
4π

∫
dϕe−iαϕφ̄ARφ̄

A
R (3.5.11)

It is noteworthy that the definition of Fourier Transform in barred and unbarred sectors

come with opposite signs. This is due to the fact that the two sectors depend on x+ =

u
l

+ ϕ and x− = u
l
− ϕ respectively.

Here also, we need to perform a Sugawara shift as L̄n → ˆ̄Ln = L̄n + 1
2
(R̄R̄)n to get

rid of similar problems as before.

Finally, the asymptotic symmetry algebras for the generators of the barred sector,

i.e. of (0, 2) three dimensional AdS theory takes an identical form as the one for (2, 0)

three dimensional AdS theories presented in 3.5.9 .

3.5.2 N = 4 super-BMS3 from N = (2, 2) super-AdS3

Now we shall explicitly show how the correct contraction of the two copies of the AdS

gauge field, parameter and algebra reproduce the corresponding quantities of BMS. Be-

fore that, let us recall that a Inönü-Wigner contraction of two copies of Super-conformal

algebra gives us the Super-Poincare algebra. The contraction is defined in the large AdS

radius limit l → ∞. The level of the corresponding Chern-Simons actions are related

as kl = kl. The generators of the flat algebra are obtained from the AdS ones as,

Ln = Ln − L̄−n, Mn =
Ln + L̄−n

l
, R = R− R̄, S =

R + R̄

l

q1±
α =

√
2

l
Q±α , q2±

α =

√
2

l
Q̄±−α

It is easy to check that the asymptotic gauge field and the gauge transformation param-

eter of the flat theory is obtained from the AdS ones in l→∞,

A = A+ +A−, Λ = Λ+ + Λ−. (3.5.12)
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upon the following maps of various fields as,

M = L+ + L− , N = l (L+ − L−), φ = l(φAR − φ̄AR),

ρ = φAR + φ̄AR, ψAα± =
1√
2l

Ψ1α
± , ψ̄A−α± =

1√
2l

Ψ2α
± . (3.5.13)

and for the parameters as,

εα± =

√
2

l
ζ1α
± , ε̄−α± =

√
2

l
ζ2α
± , Υn =

χn − χ̄−n

2
,

ξn = l
χn + χ̄−n

2
, λR =

λAR − λ̄AR
2

, λS = l
λAR + λ̄AR

2

The constraint relations and the variation of various fields in both theories also follow

directly by noticing that,

δAϕ = δ(A+ −A−)

∂ϕΛ + [Aϕ,Λ] = ∂+Λ+ + [A+,Λ+]−
(
∂−Λ− + [A−,Λ−]

)
(3.5.14)

where we have used the change of variables as

∂ϕ = ∂+ − ∂− , ∂u =
∂+ + ∂−

l
. (3.5.15)

Therefore we see that given the knowledge of the asymptotic gauge fields and gauge

transformation parameters of the two sectors of the AdS theory, one can construct the

corresponding ones for the asymptotic flat theory. In a related work [? ], we have used

this relation to find the N = 8 Super BMS3 algebra.

Finally, as proposed in [16], the three dimensional N = 4 BMS algebra 3.3.22 can

be obtained by two identical copies of asymptotic (2, 0) and (0, 2) AdS3 algebras 3.5.9
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with following identification of modes:

Jm = lim
ε→0

(Lm − L̄−m) , Pm = lim
ε→0

ε(Lm + L̄−m) ,

Q1,±
r = lim

ε→0

√
εQ±r , Q2,±

r = lim
ε→0

√
ε Q̄±−r ,

c1 = lim
ε→0

(c− c̄) , c2 = lim
ε→0

ε (c+ c̄) ,

Rm = lim
ε→0

(Rm − R̄−m) , Sm = lim
ε→0

ε (Rm + R̄−m) , (3.5.16)

where, ε = 1
l
. The above identification follows directly from relation 3.5.13 and defini-

tions of various modes as given in 3.3.18, 3.5.7 and 3.5.11.

We would like to end this section with a comment on the shifts, that we had to

perform on the two flat algebra generators J andM to obtain the algebra 3.3.22. While

the first one is motivated by the Sugawara shift of the Stress-energy tensor, in presence

of a R− symmetry current, the later was proposed to get proper energy bound. But,

if we think of the BMS3 algebra as a limit of two copies of AdS3 algebras, then it is

obvious. Recall that both sector of AdS3 requires Sugawara shifts and writing these

shifts in terms of fields, we have,

L̂+ = L+ + 1
2
φ2
A , L̂− = L− + 1

2
φ̄2
A (3.5.17)

It is easy to check that the BMS3 fields J andM, which are the combinations of the L±

fields, will also take up certain shifts.

M = (L+ + L−) = (L̂+ + L̂−)− 1
2
(φ2

A + φ̄2
A) = M̂ − 1

4
(ρ2 + (

φ

l
)2)

where we used the definitions of the R- and S-symmetry gauge fields. Taking the limit

l→∞, we finally get the shifts (in terms of the modes) as :

Ĵn = Jn + 1
2
[RS]n , M̂n =Mn + 1

4
[SS]n (3.5.18)

This are indeed the correct Sugawara shift for the BMS3 generators that simplify the

algebra notably. The most important simplification happens at the level of the anticom-

mutator of the supercharges, as the non-linear term [SS] gets immediately absorbed

insideM.
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CHAPTER 4

Maximally N -extended super-BMS3 algebras

and Generalized 3D Gravity Solutions

4.1 Introduction

In the last chapter, we had derived the N = 4 super-BMS3 algebra by asymptotic

symmetry analysis. One subtlety of the derivation was the appearance of non-linear

terms at intermediate steps, which finally vanished after the necessary Sugawara shifts,

thus finally producing a nice linear algebra. However, one important characteristic of

the global algebra that we started with was the property that the fermions transformed

as U(1) fields under the R-symmetry. In other words, under the R-symmetry, there was

no mixing among the different fermions; rather, each transformed into itself, albeit with

some scaling factor. In this chapter, we are going to relax this criterion to analyse the

more general case, where there can be non-trivial mixing among the different fermions

under R-symmetry. In fact, to consider the most general possibility, we will take the

fermions to transform under an arbitrary representation, without specifying the structure

constants of the algebra. In fact, such a generalization was considered in case of AdS3

by [32] and it had led to a generic superconformal ’algebra’ containing non-linear terms.

Here we are going to follow the same method for the flat case.

As we will see, this produces the result that the non-linear terms do not generically

vanish (except for some very specific case), thus giving rise to an ’algebra’ containing

non-linear terms in the fermion anti-commutators. This will then obviously affect the

different physical results that are derived from the final asymptotic algebra, for example

the energy bound. We shall now show these results in details in the present chapter.



4.2 Maximal N−Extended Super-BMS3 algebra with

nonlinear extension

Here we present the maximal N− extended super-BMS3 algebra. The maximally su-

persymmetric gravity theory that we are considering contains one graviton eµa, eight

(independent) gravitinos among ψ1,2
α (see below for the range of α), a set of R-symmetry

gauge fields ρa and a set of internal gauge field φ̃a. The theory is invariant under the

super-Poincaré algebra:

[Jn, Jm] =(n−m)Jn+m , [Jn,Mm] = (n−m)Mn+m ,

[Ra,Rb] =i fabcRc , [Ra,Sb] = i fabcSc

[Jn, r
(1,2),α
p ] =

(n
2
− p
)
r

(1,2),α
n+p , [Sa,Sb] = [Sa, r(1,2),α

p ] = 0

{r1,α
p , r1,β

q } =Mp+qη
αβ − i

6α̂
(p− q)(λa)αβSap+q, [Ra, r1,α

p ] = i(λa)αβr
1,β
p ,

{r2,α
p , r2,β

p } =Mp+qη
αβ +

i

6α̂
(p− q)(λa)αβSap+q, [Ra, r2,α

p ] = −i(λa)αβr2,β
p ,

(4.2.1)

In these equations, Jn,Mn denote the Poincaré generators,m,n run over (0, 1,−1). The

fermionic generators r1,α
p , r2,α

p , p, q = ±1
2

transform under a spinor representation R

of the internal algebra G, generated byRa (which are also R-symmetry generators) and

Sa. Generically, we can write the former generators in a representation R as (λa)αβ ,

satisfying the same commutation rules, i.e. [λa, λb] = fabcλc, where (λa)αβ = −(λa)βα,

fabc are the fully antisymmetric structure constants of the G and the indices a, b, .. =

1, . . . , D while α, β, .. = 1, . . . , d with D = dim(G) and d = dim(RG).

The metric ηαβ of R can be used to raise and lower spinor indices while the trace of the

basis elements can be expressed in terms of the eigenvalue of the second Casimir Cρ in

the representation R. Here α̂ = Cρ
3(d−1)

is a constant. This is the maximal N−extended

super-Poincaré algebra in 3 dimensions.

In the next section we start from a generic asymptotic gauge field and find the fall-off

conditions which are consistent with the maximal N−extended asymptotic symmetry

algebra. The required non-zero supertrace elements will have the following form ,

〈Jm,Mn〉 = γmn , 〈rα−, r
β
+〉 = −〈rα+, r

β
−〉 = 2ηαβ , 〈Ra,Sb〉 =

4Cρ
d− 1

δab.

(4.2.2)
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4.2.1 Super-BMS Algebra:

We shall work in the BMS gauge using Eddington-Finkelstein coordinates (u, r, ϕ).

Then the Chern-Simons gauge field can be written in the basis of the global algebra

generators as follows:

A =

(
M1 −

1

4
MM−1 +

1

24α̂
ρaSa

)
du+

dr

2
M−1

+

(
J1 + rM0 −

1

4
MJ−1 −

1

4
NM−1 + Aψ1

αr
−,α
1 − Āψ2

αr
2,−
α +

1

24α̂
ρaRa +

1

24α̂
φ̃aSa

)
dϕ .

(4.2.3)

The various fieldsM,N , ρa, ψ1
α, ψ

2
α, φ̃

a depend only on u and ϕ at null infinity and:

α̂ =
Cρ

3(d− 1)
, Ā2 = A2 = −1/4 .

It can be shown easily that the above gauge field encodes the asymptotic flat metric :

ds2 = γnme
nem =Mdu2 − 2dudr +Ndudϕ+ r2dϕ2, (4.2.4)

where γnm is the induced metric 1 on this space : γ00 = 1, γ1,−1 = −2. It is obvious

that the above solution is globally different from Minkowski solution 2.

Finally choosing the gauge: A = b−1(a+ d)b where b = e
r
2
M−1 , the components of

the gauge field a read:

au = M1 −
1

4
MM−1 +

1

24α̂
ρaSa ,

aϕ = J1 −
1

4
MJ−1 −

1

4
NM−1 + Aψ1

αr
−,α
1 − Āψ2

αr
−,α
2 +

1

24α̂
ρaRa +

1

24α̂
φ̃aSa .

(4.2.5)

Next, we need to compute the gauge variation of this asymptotic field, generated by the

1We can calculate the vierbeins as the coefficients of the translation generators :

e−1 = −1

4
Mdu− 1

4
Ndϕ+

1

2
dr , e0 = rdϕ , e1 = du .

2The Minkowski metric in null coordinates is: ds2 = −du2 − 2dudr + r2dϕ2 .
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most generic gauge parameter:

Λ = ζnMn + ΥnJn + λ̃aSSa + λ̃aRRa + ζ1,α
± r1,α

± + ζ2,α
± r2,α

± , (4.2.6)

where ζn,Υn, λ̃aS, λ̃
a
R are scalar fixed functions of (u, ϕ) at null infinity 3

Now to find the algebra, we first need to compute the conserved charges defined in

(3.1.12). These can be obtained from the gauge variation equation:

δaϕ = dϕΛ + [aϕ,Λ] . (4.2.7)

Using the supertraces (4.2.2), we can compute the asymptotic charges Q(λ) of a 3D

maximally supersymmetric asymptotically flat solution as,

Q(λ) =− k

4π

∫
[ζ1M+ Υ1N + 2Aηαβζ1

+,αψ
1
β + 2Āηαβζ2

+,αψ
2
β + λ̃aRρa + λ̃aSφ̃a] .

Finally we derive the asymptotic algebra by using the relation

{Q[λ1],Q[λ2]}PB = δλ1Q[λ2] ,

where the variation of the charge follows from (3.1.10). The non-zero Poisson Brackets

between the Fourier modes of the charges are:

{Jn, Jm} = i(n−m)Jn+m, {Jn,Mm} = i(n−m)Mn+m + i
cM
12
n3δn+m,0

{Ra
n, R

b
m} = −fabcRc

n+m, {Ra
n, S

b
m} = inα̂cMδ

abδn+m,0 − fabcScn+m

{Jn, ψ(1,2),α
m } = i

(n
2
−m

)
ψ

(1,2),α
n+m +

kl
2kB

(λa)βα(ψ(1,2),βSa)n+m

{Ra
n, r

1,α
p } = −(λa)αβr

1,β
n+p , {Ra

n, r
2,α
p } = (λa)αβr

2,β
n+p

{ψ1,α
n , ψ1,β

m } =
cM
6
n2δn+m,0η

αβ + Mn+mη
αβ − i

6α̂
(n−m)(λa)αβSan+m

− 1

144α̂2
{λa, λb}αβ 1

4
(SaSb)n+m

{ψ2,α
n , ψ2,β

m } =
cM
6
n2δn+m,0η

αβ + Mn+mη
αβ +

i

6α̂
(n−m)(λa)αβSan+m

− 1

144α̂2
{λa, λb}αβ 1

4
(SaSb)n+m . (4.2.8)

3Alternatively, one could derive the correct fall-off conditions for the gauge field and transformation
parameter by combining the computation on the two chiral copies of AdS3 , similarly to what was done
in [33]. See appendix A.8.
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Here cM = 12k = 4/GN , kl = k l where l is the AdS radius that needs to be sent to

infinity l→∞. Finally kB = 2klCρ
d−1

and the modes are given by:

Jn =
k

4π

∫
dϕeinϕJ , Mn =

k

4π

∫
dϕeinϕM , ψ1,α

n =
k

4π

∫
dϕeinϕψ1,α ,

ψ2,α
n =

k

4π

∫
dϕeinϕψ2,α , San =

k

4π

∫
dϕeinϕρa , Ra

n =
k

4π

∫
dϕeinϕφ̃a .

Here Jn are the modes of the boundary stress tensor and act as spin two generators.

Therefore the modes of all the fields should transform with proper weight under Jn.

However, we see the {Jn, ψam} Poisson bracket contains an extra non-linear term while

the {Jn, Sam}, {Jn, Ra
m} Poisson brackets are zero. Thus we infer that Jn is not the

proper mode of the boundary stress tensor. The resolution to this issue is well known.

The proper stress tensor modes are obtained by adding quadratic Sugawara-like terms

to the modes Jn. Accordingly, the modes Mn also need to be shifted (see [34]). The

Sugawara-like shifts read:

Jn → Ĵn = Jn +
1

24α̂
(RaSa)n , Mn → M̂n = Mn +

1

48α̂
(SaSa)n . (4.2.9)

The new modes satisfy the following algebra 4,

[Ĵn, Ĵm] = (n−m)Ĵn+m +
cJ
12
n3δn+m,0 , [Ĵn, M̂m] = (n−m)M̂n+m +

cM
12
n3δn+m,0

[Ĵn, ψ
(1,2),α
m ] =

(n
2
−m

)
ψ

(1,2),α
n+m , [Ĵn, R

a
m] = −mRa

n+m , [Ĵn, S
a
m] = −mSan+m

[Ra
n, R

b
m] = n α̂ cRδ

abδn+m,0 + ifabcRc
n+m , [Ra

n, S
b
m] = n α̂ cMδ

abδn+m,0 + ifabcScn+m

[Ra
n, r

1,α
p ] = i(λa)αβr

1,β
n+p , [Ra

n, r
2,α
p ] = −i(λa)αβr

2,β
n+p

{ψ1,α
n , ψ1,β

m } =
cM
6
n2δn+m,0η

αβ + M̂n+mη
αβ − i

6α̂
(n−m)(λa)αβSan+m

− 1

48α̂
(SaSa)n+mη

αβ − 1

144α̂2
{λa, λb}αβ 1

4
(SaSb)n+m

{ψ2,α
n , ψ2,β

m } =
cM
6
n2δn+m,0η

αβ + M̂n+mη
αβ +

i

6α̂
(n−m)(λa)αβSan+m

− 1

48α̂
(SaSa)n+mη

αβ − 1

144α̂2
{λa, λb}αβ 1

4
(SaSb)n+m (4.2.10)

with other commutators being zero. This is the most generic quantum maximal N -

4 We obtain the quantum algebra from the classic Poisson Brackets by using the standard conventions:

{An, Bm}PB = i[An, Bm] , {An, Bm}PB = {An, Bm} .
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extended BMS3. Here we have introduced two new central terms cJ , cR in the algebra,

that are allowed by Jacobi identity [35]. We also notice that with respect to the modified

Ĵn, all the generators transform appropriately, and the spurious non-linear term in the

[Jn, ψ
a
m] commutator also vanishes. However extra non-linear terms quadratic in the Sa

generators still remain in the anti-commutators (see [32] for the corresponding super-

conformal algebras). Note that the non-linear terms are a manifestation of the generic

choice of representation for the internal symmetries. This is in contrast to the particular

case explained below, where for a specific choice of the internal gauge algebra, all the

non-linear terms vanish after the Sugawara shifts, and the final asymptotic algebra is

linear.

Earlier non-linear extension of the BMS3 algebra were observed in [36], but in that

case they originated by allowing fluctuation in the conformal factor of the boundary

metric. In our construction, the boundary metric is always fixed to Minkowski.

Let us end this section with a comment on a special case of N = 8 super-BMS3

algebra that was studied in [35]. In this case the internal gauge algebra was taken to

be G = SU(2) and we chose the fundamental representation FG, then (λa) ∼ σa with

σa Pauli matrices satisfying {σa, σb} = 2iδabI 5. It can be seen that for this case,

the non-linear terms in the anticommutators cancel (see A.7). This result is consistent

with the corresponding superconformal algebra [18], that closes without any non-linear

corrections.

4.2.2 BMS Energy Bound

It is well-know that supersymmetry imposes constraints on the energy of supersymmet-

ric states. The bounds are directly obtained from the super algebra. Let us focus only

on the NS sector of anti-periodic boundary conditions for the fermions. The global part

of the algebra consists of the following generators :

(Ĵm, M̂m, ψ
1,α

± 1
2

ψ2,β

± 1
2

, Ra, Sa), m = 1, 0, 1 , α, β = 1, . . . d , a = 1, . . . D .

(4.2.11)

Following [? ], we consider all possible positive-definite combinations of the super-

5σ’s are different from λ’s, as they are not antisymmetric.

43



charges

{ψ1,α
1
2

, ψ1,β

− 1
2

}+ {ψ1,α

− 1
2

, ψ1,β
1
2

}+ {ψ2,α
1
2

, ψ2,β

− 1
2

}+ {ψ2,α

− 1
2

, ψ2,β
1
2

} ≥ 0 ,

which explicitly gives:

M̂0 ≥ −
cM
6

+
1

48α̂
(SaSb)0δab +

1

156α2
{λa, λb}αβηαβ(SaSb)0 ≥ −

1

8G
. (4.2.12)

As explained in [33], the correct bound is obtained by considering the Sugawara-shifted

generators. Note that, due to the non-linear quadratic corrections the energy bound is

raised, hence supersymmetric ground states must have a higher energy. The Minkowski

vacuum M̂0 = M0 = − 1
8G

, with all other fields vanishing, still saturates the bound.

We will use the above bound to constrain the general solutions of 3D supergravity.

4.2.3 Asymptotic Killing Spinors

In order to find fully supersymmetric backgrounds we impose the vanishing of all the

fermions and their supersymmetry variations. Among those, the first constraint simply

sets the variations of all bosonic fields to zero at null infinity whereas the vanishing of

the gravitino variation constitutes the Killing spinor equations, the solutions of which

parametrize the fermionic isometries of the background. Since we are interested in

(4.2.10) symmetry at null infinity, the only point to appreciate is that, as we have seen

in the previous section, we need to perform Sugawara shifts to certain generators to

get the correct algebra. With this in hindsight, we begin with a modified gauge field

component aϕ, incorporating the Sugawara shifts in the gauge field itself, such that it

produce the correct BMS3 algebra (4.2.10). It takes the following form,

aϕ = J1 −
1

4

(
M− 1

48α
ρaρa

)
J−1 −

1

4

(
N − 1

24α
φ̃aρa

)
M−1

+ Aψ1
αr
−,α
1 − Āψ2

αr
−,α
2 +

1

24α̂
ρaRa +

1

24α̂
φ̃aSa . (4.2.13)
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Thus we now analyze the fermion variations to calculate the asymptotic Killing spinors.

For ψ1
α the variation takes the form:

Aδψ1
α =− (ζ1

+,α)′′ + AΥ+(ψα)′ +
3

2
A(Υ+)′ψα +

1

12α̂
(λa)βαρ

a(ζ+,β
1 )′

+
1

24α̂
(λa)βα(ρa)′ζ+,β

1 +
1

4

(
M− 1

48α̂
ρaρa

)
ζα1,+ −

A

24α
(λa)βαρ

aΥ+ψβ

+ Aψβ(λa)βαλ
a
R −

1

8

1

144α̂2
ρaρb{λa, λb}δαζ1

+,δ . (4.2.14)

Similar expression holds for δψ2
α. Setting all fermions to zero, the final variation equa-

tions for both gravitinos read:

Aδψ1
α = (ζ1

+,α)′′ − 1

12α̂
(λa)βαρ

a(ζ1
+,β)′ − 1

4

(
M− 1

48α̂
ρaρa

)
ζ1

+,α

+
1

8

1

144α̂2
ρaρb{λa, λb}δαζ1

+,δ = 0 ,

Āδψ2
α = (ζ2

+,α)′′ − 1

12α̂
(λa)βαρ

a(ζ2
+,β)′ − 1

4

(
M− 1

48α̂
ρaρa

)
ζ2

+,α (4.2.15)

+
1

8

1

144α̂2
ρaρb{λa, λb}δαζ2

+,δ = 0

The solutions of the above differential equations are :

ζ1
+,α =

(
e

1
24α̂

λaρaφ
)β
α

[
c1β e

√
(M− 1

48α̂
ρaρa)

2
φ + c2β e

−

√
(M− 1

48α̂
ρaρa)

2
φ

]
,

ζ2
+,α =

(
e

1
24α̂

λaρaφ
)β
α

[
c̃1β e

√
(M− 1

48α̂
ρaρa)

2
φ + c̃2β e

−

√
(M− 1

48α̂
ρaρa)

2
φ

]
. (4.2.16)

Here ciβ, c̃iβ, (i = 1, 2) are constant spinors. The solutions are consistent with the

periodicity of φ only whenM− 1
48α̂
ρaρa = −n2 and n a strictly positive integer and

λaρa is imaginary or zero. These conditions are satisfied for the Minkowski vacuum

(ρa = 0,M = −1) which is a fully supersymmetric solution. For n = 0, the solutions

become degenerate and only half the supersymmetries are allowed.
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4.3 Generic Bosonic Solutions

Now we shall explore a class of purely bosonic topological 3D gravity solutions, with

non-trivial holonomy [31]. As we shall see, these solutions will be cosmological in

nature [37, 38]. We shall look for the corresponding bosonic solutions in this the-

ory endowed with maximal N -extended supersymmetry at the null infinity . We shall

henceforth restrict our analysis to zero mode solutions, for which all dynamical fields

are constants.

Since the asymptotic symmetries are governed by aϕ (4.2.13), we do not modify this

field. Also, as we are looking for a pure bosonic solution, we set all fermionic compo-

nents of the gauge field (4.2.13) to zero. Thus:

aϕ = J1 −
1

4

(
M− 1

48α̂
ρaρa

)
J−1 −

1

4

(
N − 1

24α̂
φ̃aρa

)
M−1 +

1

24α̂
ρaRa +

1

24α
φ̃aSa .

(4.3.1)

We also need to find the gauge transformation parameter Λ that reproduces the right

conserved charge corresponding to (4.2.10) via the gauge variation equation (4.2.7).

Starting with the most generic gauge parameter (4.2.6) and with a bit of algebra (see

appendix A.9 for algebraic details), it can be shown that the required gauge parameter

has the following form

Λ =ξ1M1 + Υ1J1 +

(
λaS +

1

24α̂
Υ1Ra

)
φa +

(
λaR +

1

24α̂
Υ1Ra − 1

24α̂
ξ1Sa

)
τa

− 1

4
Υ1

(
M− 1

48α̂
SaSa

)
J−1 −

1

4

[
Υ1

(
N − 1

24α̂
RaSa

)
+ ξ1

(
M− 1

48α̂
SaSa

)]
M−1

(4.3.2)

while, as stated below (3.1.10), boundary (with respect to the coordinate ϕ) variations

of the various fields in the parameter have already been set to zero.

Now to present a complete stationary circular symmetric bosonic solution of this

system endowed with a maximal N -extended asymptotic supersymmetry, we look at

the time component au of the CS gauge field. First we recall a few relevant points:

• to obtain the generic solution compatible with the asymptotic symmetry, we need
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to incorporate the chemical potentials into the system [39, 40], which give vac-
uum expectation value to the time component of the gauge field au. These poten-
tials can also be thought of as Lagrange multipliers associated to the dynamical
fields of the system defined as the coefficients of the lowest weight components
of the symmetry algebra.

• as we have shown in section 3.1.1, the diffeomorphism transformation of gravity
is equivalent to the gauge transformation of the CS gauge theory. Thus, the time
evolution of the various dynamical components of aϕ is generated by a gauge
transformation whose components are now given by the chemical potentials (or
Lagrange multipliers). This readily implies 6 that the au will have a similar form
as (4.3.2),

au =µMM1 + µJJ1 +

(
µaS +

1

24α̂
µJρ

a

)
Sa +

(
µaR +

1

24α̂
µJ φ̃

a +
1

24α̂
µMρ

a

)
Ra

−1

4
µJ

(
M− 1

48α̂
ρaρa

)
J−1 −

1

4

[
µJ

(
N − 1

24α̂
φ̃aρa

)
+ µM

(
M− 1

48α̂
ρaρa

)]
M−1 ,

(4.3.3)

where µJ , µM , µaS, µ
a
R are the chemical potentials and their boundary variations are

taken to zero. We have only turned on the chemical potentials corresponding to bosonic

lowest weight generators as we are interested in a pure bosonic solution. This can

certainly be generalised to a more generic scenario.

• finally the above solutions have to satisfy appropriate regularity constraints re-
lated to the holonomy. In particular, the regularity of the solution requires trivial
holomony in presence of a contractible cycle C, i.e.

HC = Pe
∫
C aµdx

µ

= ±I . (4.3.4)

For the theory under consideration defined on a 3D manifold Σ × R we only re-
quire the holonomy along time direction to be trivial, i.e. the above condition
(4.3.4) must be satisfied for the time component of the gauge field au.

Once the holonomy condition (4.3.4) and the energy bound as given in section 4.2.2

are respected, we get a regular solution with required asymptotic falloff properties for
6The gauge transformation of aφ by gauge parameter Λ(µ) is :

δµaϕ = dϕΛ(µ) + [aφ,Λ(µ)],

whereas its time evolution from the equation of motion takes the form:

duaφ = dφau + [aϕ, au].

These two are identical if au ∼ Λ(µ).
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our system. One last important caveat to notice is that to solve the above holonomy con-

straint one needs an explicit matrix representation of the symmetry generators, which

in general is not known. However, as pointed out in [40, 41], one can exploit the pure-

gauge (topological) nature of the solutions to gauge away the components proportional

to the supertranslation generators M and internal generators Ra and Sa, which do not

have an explicit matrix representation. 7. The new component of the gauge field will

now depend only on the superrotation generators J (see appendix for their explicit ma-

trix representation) and can be used to impose explicitly the above holonomy condition.

To do so, we choose the general gauge group element g = eλ0M0 , which transforms the

gauge field component as:

agu = g−1aug = e−λ0M0aue
λ0M0

= au + λ0µJM1 +
1

4
λ0

[
µJ

(
M− 1

48α̂
ρaρa

)]
M−1 , (4.3.5)

where au is given as in (4.3.3). Fixing λ0 and the chemical potential to the values:

λ0 = −µM
µJ

, µM = −µJ
2

(
N − 1

24α̂
φ̃aρa

)
(
M− 1

48α̂
ρaρa

) , (4.3.6)

µaR = − 1

24α̂
µJ φ̃

a − 1

24α̂
µMρ

a , µaS = − 1

24α̂
µJρ

a , (4.3.7)

the time component of the gauge field, now depends only on superrotation generators

and hence is representable as a matrix: 8

agu =µJJ1 −
1

4
µJ

(
M− 1

48α̂
ρaρa.

)
J−1 , (4.3.8)

Finally we can impose the regularity of the solution. Specifically, the gauge field aτ =

iagu can be diagonalised with eigenvalues

ω =± iµJ

√
1

4

(
M− 1

48α̂
ρaρa

)
. (4.3.9)

Now, in order for this to have a trivial holonomy ω = ±iπm where m ∈ Z.

7Note that here we are gauging away the generators from the u-component of the gauge field only.
The φ-cycle is contractible, hence the holonomy condition is trivially satisfied in that direction. Hence
the metric will have information about the supertranslations from the aϕ component

8 Since our initial BMS solution of (4.2.3) does not contain J generators, the holonomy condition is
trivially satisfied after above gauge fixing.
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This condition fixes the chemical potential µJ in terms of the fields and an arbitrary

integer m to be:

|µJ | =
2πm

(M− 1
48α̂
ρaρa)

1
2

, (4.3.10)

and by the above set of relations (4.3.6) and (4.3.10), all chemical potentials are now

fixed in terms of the zero modes of the fields. Thus we obtain the generic 3D bosonic

zero mode solution given by (4.3.1) and (4.3.3) in a gravity theory with maximal bulk

supersymmetry (4.2.1) and maximalN -extended non-linear asymptotic supersymmetry

(4.2.10). Since in our construction we have implicitly assumed (M− 1
48α̂
ρaρa) > 0, the

solution satisfies the energy bound (4.2.12) but there exist no well defined asymptotic

Killing spinors (4.2.16). Hence this class of partially gauge fixed solutions are non-

supersymmetric and nontrivial only at the boundary. The space time geometry in Bondi

coordinates reads:

ds2 =(M + r2µ2
J)du2 − 2µMdudr + (J + 2r2µJ)dudϕ+ r2dϕ2 , (4.3.11)

where,

M = µM

[
µJ

(
N − 1

24α̂
φ̃aρa

)
+ µM

(
M− 1

48α̂
ρaρa

)]
, J = µM

(
N − 1

24α̂
φ̃aρa

)
.

(4.3.12)

The chemical potentials appearing in (4.3.11) are fixed as in (4.3.6) and (4.3.10) with

m = 1 to avoid singularities in space-time. In particular, for m = 1,−µM is the inverse

Hawking temperature of the space time and µJ is related to the chemical potential of the

angular momentum J of the system. As is clear from (4.3.12), for static configurations

with N = 0, the system can have non-zero angular moment due to the presence of the

internal gauge fields, a feature that was also observed in [42].

4.3.1 Thermodynamics of the Solution

So far we have presented the space time metric (4.3.11) in the usual Bondi coordinates.

In these coordinates, the space time does not have any singularity. To understand the

geometry better, following [43], let us rewrite the metric in Schwarzchild-like (ADM)
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coordinates as,

ds2 = −N2dt2 + µ2
MN

−2dr2 + r2(dϑ+Nϑdt)2 (4.3.13)

where we define new coordinates as t = u− f(r) and ϑ = φ− g(r) and

N2 =
Ã2

4r2
− B̃ , Nϑ =

Ã

2r2
.

Here, with (4.3.12) we use compact notations Ã as the coefficient of dudϕ and B̃ as the

coefficient of du2 in the above metric (4.3.11):

Ã = J + 2r2µJ , B̃ = M + r2µ2
J . (4.3.14)

Let us consider
(
M− 1

48α̂
ρaρa

)
≥ 0, hence a solution satisfying the energy bound

(4.2.12). Under this condition (4.3.13) represents a cosmological spacetime . In (t, r, ϑ)

coordinate, the function N2 vanishes at the hypersurface r = rc, (N2)r=rc = 0. This

hypersurface is in fact a cosmological horizon and requiring rc > 0 gives:

rc =
1

2

|N − 1
24α̂
φ̃aρa|(

M− 1
48α̂
ρaρa

) 1
2

. (4.3.15)

To understand the nature of the horizon rc, we write the above metric in a different

coordinate system. For the region of the space time where r > rc, let us define new

coordinates (T,X, ϑ) as,

T 2 =
r2 − r2

c

M− 1
48α̂
ρaρa

, X = ϑ+ µJt . (4.3.16)

Similarly for the other region r < rc, we define (T̂ , X, ϑ):

T̂ 2 =
r2
c − r2

M− 1
48α̂
ρaρa

, X = ϑ+ µJt . (4.3.17)

In these coordinates, the space time metric is given by:

ds2 = −dT 2 +
(
M− 1

48α̂
ρaρa

)
T 2dX2 + r2

cdϑ
2 , r > rc

= dT̂ 2 −
(
M− 1

48α̂
ρaρa

)
T̂ 2dX2 + r2

cdϑ
2 , r < rc. (4.3.18)
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Thus in the outer region r > rc, we have a cosmological space time of topology R ×

S1 × S1, a solid torus. Both S1 factors have periodicity 2π, the radius of the ϑ circle is

fixed to rc, while the radius of the X circle is T dependent. It is also clear that, in the

outer region we have closed space-like geodesics whereas in the inner region we can

have closed time-like geodesics, as X is a time-like coordinate in the interior. Thus, we

readily conclude that r = rc is a Cauchy horizon [31]. To avoid closed time-like curves,

we cut the space-time at r = rc. It can also be checked that r = rc is also a Killing

horizon. Finally, we can compute the Bekenstein-Hawking entropy associated with this

class of Cauchy horizons:

S =
2πrc
4G

=
2π

4G

1

2

|N − 1
24α̂
φ̃aρa|(

M− 1
48α̂
ρaρa

) 1
2

=
π

4G

|N − 1
24α̂
φ̃aρa|(

M− 1
48α̂
ρaρa

) 1
2

. (4.3.19)

As expected, the entropy of the system is completely determined by the zero mode

solution. Alternatively, the entropy can be found using the Chern-Simons gauge field:

S =
k

2π

∫
dϕ〈au, aϕ〉

= k

[
µJN + µMM+

1

2
φ̃aµaS +

1

2
ρaµaR

]
(4.3.20)

and plugging in the expressions (4.3.6), (4.3.10) for the chemical potentials, the entropy

reduces to:

S = kπm
|N − 1

24α̂
φ̃aρa|(

M− 1
48α̂
ρaρa

) 1
2

, (4.3.21)

which matches with (4.3.19) for m = 1. The choice of m = 1 sector is obvious, as only

this sector is connected to the standard cosmological space time (4.3.11).

4.4 Discussion and Outlook

With this chapter we completed the detailed analysis of fall-off conditions necessary

to obtain all the supersymmetric extensions of the BMS algebras, presented in [35].

In the maximal N -extended super-BMS3 case analyzed here we find non-linearity in

the asymptotic algebra and modifications to the energy bounds for asymptotic states.

Unlike N = 4, 8 super-BMS3 studied respectively in [33] and appendix A.7 of this pa-
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per, the non-linearity does not disappear after Sugawara-shifting the energy-momentum

generators9 . Furthermore, we have shown that circular symmetric solutions that are flat

cosmologies, satisfying
(
M− 1

48α̂
ρaρa

)
> 0, are not supersymmetric. Similar results

hold for abelian R-symmetry algebra as discussed in [42]. There are three other distinct

kinds of solutions [31] that would appear for different conditions on the fields as pre-

sented below :

a)
(
M− 1

48α̂
ρaρa

)
= 0 : this class corresponds to null orbifold solutions [44]. Here

the asymptotic Killing spinors (4.2.16) are degenerate and only half of them are inde-

pendent. Hence this class of solution is only asymptotically half supersymmetric.

b)− 1
8G

<
(
M− 1

48α̂
ρaρa

)
< 0 : conical defect solutions [30, 45], satisfying the energy

bound and asymptotically full supersymmetric.

c)
(
M− 1

48α̂
ρaρa

)
< − 1

8G
: conical surplus solutions that do not satisfy the energy

bound.

These solutions may not be interesting from a cosmology perspective but are never-

theless non-trivial configurations of 3D gravity. Detailed discussions on the thermody-

namics of their R-symmetry-abelian counterparts can be found in [42] and references

therein. For the non-abelian R-symmetry cases studied in this chapter, most of the

physics will be similar and hence we do not present the details here.

Let us end this chapter with some comments on the outlook. It is known that 3D grav-

ity solutions with non-trivial topology correspond to the stress-energy tensors of a two

dimensional theory. It comes from the relation between a Chern-Simons theory with a

boundary and an associated chiral Wess-Zumino-Witten model [46–48]. As we have al-

ready seen, the non-trivial boundary for the Chern-Simons theory (in our case the torus)

comes from generic asymptotic fall off conditions on the gauge fields. It has been shown

in [49] for ordinary BMS3 and in [15] for N = 1 super-BMS3 that one needs to add a

suitable boundary term to the action for the variation principle to go through. The fall

off conditions also provide extra constraints to the Wess-Zumino-Witten model. Find-

ing a similar two dimensional description for the N -extended super-BMS3 obtained in

this chapter would provide a complete set of such 2−dimensional theories that will be

dual to 3D asymptotically flat supergravity theories.

The second point is more generic and is related to the issue of understanding the

9For anti-periodic boundary conditions of fermionic generators, the non-linearity in energy bound as
reported in [42] also disappears after proper modification of generators, as shown in [33].

52



implications of these infinite dimensional 3-dimensional asymptotic symmetries on the

dynamics of the corresponding two dimensional theory. As in 4-dimensional grav-

ity, we know [50–52] that the Ward identities of BMS4 symmetries are related to bulk

gravitational soft theorems. Interestingly, it has been very recently noticed by Bar-

nich [53] that in 4-dimensions there are also boundary degrees of freedom and they are

highly constrained by BMS4. In fact it has been proposed that the classical contribu-

tion to the Bekenstein-Hawking entropy comes from these degrees of freedom. In the

3-dimensional case, there is no bulk graviton and hence we do not have a notion of soft

theorem but the boundary theory and boundary degrees of freedom do exist. It would be

interesting to study the of BMS3 symmetry on their counting. Although the above issue

is not directly related to study of this chapter, but having (maximal)supersymmetry in

the theory is technically helpful in counting the corresponding degrees of freedom.
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CHAPTER 5

Free-field Realizations of the BMS3 Algebras and its

Extensions:

5.1 Introduction:

Gauge-gravity duality or holography is a well-known concept in physics. Its first con-

crete realisation is the AdS-CFT correspondence, which taught us to build a dictionary

relating a theory of gravity with its dual non-gravitational theory. In particular, it was

realised that the asymptotic symmetry algebra in a gravity theory on a manifold with

boundary gives the symmetry of the dual non-gravitational theory on that boundary. It

is then natural to ask if this correspondence also holds beyond the AdS case, that is, for

the dS or flat case.

It has been known in the literature that the asymptotic symmetry algebra on I+ for

gravity theories with flat spacetime asymptotics is given by the Bondi-van der Burg-

Metzner Sachs (BMS) algebra. It seems sensible to ask if this algebra encodes informa-

tion about bulk gravity with flat space asymptotics. There are many interesting works

on this [4, 7–9, 11, 12, 54]. One interesting outcome of this in 2 + 1-dimensions is that

the relevant algebra, known as BMS3 algebra, is known to be an extension of a single

Virasoro algebra by an additional chiral spin-2 generator, along with two independent

central charges.

Another related question is whether there are concrete realisations of the BMS al-

gebra in terms of quantum fields. Besides the motivation of flat holography, this could

also be interesting from the point of view of conformal field theory. This is particularly

exciting in the case of 2+1-dimensions, since the BMS3 algebra has a Virasoro algebra

as its subalgebra, thus one may expect to utilise the language of CFT to find classes of

realisations. Moreover, three dimensional gravity is relatively simple in the bulk and

two dimensional field theories (conformal or otherwise) have been studied extensively.

So it seems a nice starting point to try to understand flat holography.



In this chapter, we give an explicit realization of the BMS3 algebra with non vanishing

central charges using holomorphic free fields. By adding chiral matter, we can extend

this to a realisation having arbitrary values for the two independent central charges. By

introducing additional free fields, we then extend our construction to the supersymmet-

ric BMS3 algebras as well as the non-linear higher-spin BMS3-W3 algebra. We also

describe an extended system that realises both the SU(2) current algebra and the BMS3

via the Wakimoto representation. However, in this case, in order to introduce a central

extension, new non-central operators get introduced.

5.2 Free-Field Realization of Pure BMS3:

Let us start with the pure BMS3 algebra. We want to find an infinite dimensional Fock

space representation of the aboce algebra. We introduce a holomorphic coordinate z

(not to be literally taken as the coordinate of an underlying space or spacetime). Let us

construct the canonical fields:

T (z) =
∑
n∈Z

Jnz
−n−2

M(z) =
∑
n∈Z

Mnz
−n−2 (5.2.1)

We are now going to use holomorphic free fields to construct the two fields T (z),M(z).

This is only a techinical device. In principle, we could keep working with the modes

Jn,Mn and construct them in terms of the infinitely many pairs of modes satisfying

the canonical commutation relations. However, it is easier to use the holomorphic ap-

proach and find the realisation in terms of the fields constructed out of these infinite set

of modes [55]. The algebra in terms of modes can be written as an operator product

expansion in terms of the fields:

T (z)T (w) ∼ 1

2

c1

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

T (z)M(w) ∼ 1

2

c2

(z − w)4
+

2M(w)

(z − w)2
+
∂M(w)

z − w

M(z)M(w) ∼ 0 (5.2.2)
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where, as per convention, we write only the singular terms on the right hand side.

The field T gives rise to a Virasoro sub-algebra. The OPE ofM with T tells us thatM

is a field of dimension 2 under the Virasoro algebra. However, it is not a primary field

as the OPE contains a central term.

In order to give a free field representation of this algebra, we start with a bosonic

β − γ system satisfying the operator product expansion:

γ(z)β(w) ∼ 1

z − w
(5.2.3)

Such a system has played important roles in many areas of string theory and conformal

field theory [56]. The conformal dimensions of β, γ are taken as (p, 1 − p) for any

integer p. For this, one starts with a basic pair of dimensions (1, 0) and then twists the

energy-momentum tensor suitably by adding derivatives of the ghost-number current

: βγ :. For our purposes, we will work with (β, γ) having dimensions (2,−1). The

energy-momentum tensor twisted to achieve this turns out to be

Tβ,γ = −2 : β∂γ : − : γ∂β : (5.2.4)

As expected, the OPE of this twisted energy-momentum tensor with the β and γ

fields are given by:

Tβ,γ(z)β(w) ∼ 2β(w)

(z − w)2
+
∂β(w)

z − w

Tβ,γ(z)γ(w) ∼ −γ(w)

(z − w)2
+
∂γ(w)

z − w
(5.2.5)

From the OPE of Tβ,γ with itself, its central charge is calculated to be 26.

Now we note that the pair of spin-2 fields (Tβ,γ(z), β(z)) generate an algebra close

to the BMS3 algebra if we identify these with the BMS3 generators (T (z),M(z)).

This is because the OPE of Tβ,γ with itself and with β forms a BMS3 algebra with

c1 = 26, c2 = 0. However a generic BMS3 requires non-vanishing c2. This does not

arise here because β is primary with respect to our chosen Tβ,γ .
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To get rid of this problem and introduce a non-vanishing central charge c2, we now twist

the energy-momentum tensor:

T (z) = Tβ,γ − a∂3γ (5.2.6)

where a is an arbitrary constant. As we discussed in the introduction, this twist is not of

the form T (z) → T (z) + 1
2
∂J(z) for a primary current J(z). In this case, J(z) would

be proportional to ∂2γ, which, being the descendant of a primary field γ, is definitely

not primary. As a consequence, it is apriori not evident that the above twist preserves

the Virasoro algebra. What is obvious, though, is that it will induce a fourth-order pole,

which is the central term, in the T (z)β(w) OPE.

It is important to note here that the OPE of T (z) with itself gives rise to poles upto

the fifth order at intermediate stages via the cross-terms between Tβ,γ and ∂3γ.However,

if the twisted energy-momentum tensor T (z) still has to satisfy the Virasoro algebra, the

third and fifth order poles must vanish completely, while the second and first order poles

should depend only on T (z) as a whole, and not separately on ∂3γ. However, none of

these requirements can be manipulated by a choice of the coefficient a, as all the cross-

terms are proportional to a. All these imply that the system is quite overdetermined.

Surprisingly, when one performs the actual calculation, it is found that all the unwanted

terms indeed cancel and the structure of the OPE is preserved!

T (z)T (w) ∼ 1

2

26

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(5.2.7)

The twist ∂3γ that we have added has changed neither the OPE structure, nor the

value of the central charge! It has just modified the right hand side so that the final

expression is now expressed in terms of T .

Now choosingM(z) = β(z), we find that the OPE of β with T is modified due to the

introduction of the twist, giving the result:

T (z)M(w) ∼ 1

2

12a

(z − w)4
+

2M(w)

(z − w)2
+
∂M(w)

z − w
(5.2.8)
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Also, due to the first-order nature of the ghost system, we have:

M(z)M(w) ∼ 0 (5.2.9)

Combining the above results, one can realise that together T (z) and M(z) define

a BMS3 algebra with central charges c1 = 26 and c2 = 12a. Note the freedom in the

choice of c2 to any non-zero value by tuning the value of the coefficient a. This freedom

is a manifestation of the fact that within the BMS3 algebra, the central charge c2 can be

changed by scalingM.

This construction gives us a fixed value of the central charge c1 namely 26. How-

ever, we may couple to this sysytem any chiral conformal field theory, having energy-

momentum tensor Tmatter with central charge c0. Then the total energy-momentum ten-

sor will be

T (z) = Tmattter + Tβ,γ − a∂3γ (5.2.10)

which will result in the total central charge c1 = c0 + 26 and no change in the structure

of any OPE. So to summarise, starting with a (β, γ) system of spin (2, 1), and adding

necessary twists, we have constructed an explicit realisation of the BMS3 algebra having

completely arbitrary central charges.

5.3 Free-Field Realization of super- BMS3:

Here we consider the minimal supersymmetric generalisation of the BMS3 algebra.

We have given the algebra before. In addition to the T (z) andM(z) fields, this now

contains the additional chiral field Ψ(z) =
∑

r Ψrz
−r− 3

2 . The algebra can be written in

terms of operator product expansion as:

58



T (z)T (w) ∼ 1

2

c1

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

T (z)M(w) ∼ 1

2

c2

(z − w)4
+

2M(w)

(z − w)2
+
∂M(w)

z − w

T (z)Ψ(w) ∼
3
2
Ψ(w)

(z − w)2
+
∂Ψ(w)

z − w
(5.3.1)

Ψ(z)Ψ(w) ∼ 1

3

c2

(z − w)3
+
M(w)

z − w

where the remaining OPE s are non-singular.

We now want to write a free-field realization of this algebra. To do this, we supplement

the β-γ system of the previous section by a Grassmann-odd b− c ghost system of spins(
3
2
,−1

2

)
. These have the OPEs:

b(z)c(w) ∼ 1

z − w
, b(z)b(w) ∼ 0, c(z)c(w) ∼ 0

This system can be shown to have central charge −15. Now we choose T (z) to be

the canonical energy-momentum tensor for the fields (β, γ) and (b, c) of dimensions

(2,−1) and
(

3
2
,−1

2

)
respectively. As before, we twist the energy-momentum tensor by

−a∂3γ and chooseM(z) = β(z). We thus obtain the bosonic part of the super-BMS3

algebra with the central charges c1 = 26− 15 = 11 and c2 = 12a.

Now our aim is to represent the supersymmetry generator Ψ(z). As this has

dimension 3
2
, a natural guess is to realise it as b. However, it would then produce the

OPE Ψ(z)Ψ(w) ∼ 0, which is not what we want here. So we try to add terms of the

same dimension namely 3
2

to b so as to produce bothM(z) and a central term on the

RHS of Ψ(z)Ψ(w). Now since we have chosenM(z) = β(z), the first requirement is

achieved by adding a term of the form βc in Ψ. For the central term, we have to add

a term proportional to ∂2c. These give rise to the required terms in the OPE, however,

we again have the problem of getting many additional terms from the square of the

individual terms in Ψ as well as from the cross terms. What is non-trivial here is that

again all these extra terms vanish! There is no contribution to the OPE from the square

of the individual terms, as each term contains only one of a pair of canonically conjugate

variables, hence OPE of each such term with itself is zero. Similarly the additional cross
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term vanishes as well. Now we can easily adjust the coefficients of the terms in Ψ to

give the correct Ψ(z)Ψ(w) OPE:

Ψ(z) = b(z) +
1

2
: βc : (z) + a∂2c(z) (5.3.2)

This, along with the generators T (z) andM(z) of the three-dimensional BMS algebra

constitute the generators of the super-BMS3 algebra:

T (z) = −3

2
: b∂c : (z) +

1

2
: c∂b : (z)− 2 : β∂γ : (z)− : γ∂β : (z)− a∂3γ(z)

M(z) = β(z) (5.3.3)

Ψ(z) = b(z) +
1

2
: βc : (z) + a∂2c(z)

However, now we have a potential problem: the OPE’s of Ψ(z) with T (z) andM(z)

have not yet been checked, and there is no longer any freedom to adjust any of the

generators.

The OPE of T (z) with Ψ(w) must produce the correct poles so that Ψ is a primary

field. The new terms added can potentially disrupt the structure of the OPE, however,

it so happens that the non-primary contributions exactly cancel, resulting in the desired

OPEs:

T (z)T (w) ∼
15
2

(z − w)4
+

2T (z)

(z − w)2
+
∂T (w)

z − w

T (z)M(w) ∼ 6a

(z − w)4
+

2M(z)

(z − w)2
+
∂M(w)

z − w

T (z)Ψ(w) ∼
3
2
Ψ(w)

(z − w)2
+
∂Ψ(w)

z − w
(5.3.4)

Ψ(z)Ψ(w) ∼ 4a

(z − w)3
+
M(w)

z − w

Finally the OPE of M(z) with Ψ(w) is zero as Ψ is independent of γ. Thus we

have given a free-field realisation of the super-BMS3 algebra with the central charges

c1 = 15 and c2 = 12a.

We can couple this system to a bosonic CFT of chiral matter with central charge c0 to

change T (z), whileM(z) and Ψ(z) remain fixed. Then the first central charge of the

super-BMS3 algebra has an arbitrary value c1 = c0 + 15, while the second one c2 is

proportional to a free parameter a and is therefore arbitrary.
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5.4 Free-Field Realization of N = 2 super- BMS3:

Here again we start with a bosonic β − γ system of dimensions (2,−1) and introduce

two independent pairs of Grassmann-odd b − c ghost systems of dimensions
(

3
2
,−1

2

)
.

The fermionic ghost fields satisfy the OPE:

ba(z)cb(w) ∼ δab

z − w
(5.4.1)

The fields T (z) andM(z) are defined as before. The fermion fields are:

Ψa(z) =
∑
r

Ψa
rz
−r− 3

2 (5.4.2)

Ψ satisfies the OPEs:

T (z)Ψa(w) ∼
3
2
Ψa(w)

(z − w)2
+
∂Ψa(w)

z − w

Ψa(z)Ψb(w) ∼ 1

3

c2

(z − w)3
δab +

M(w)

z − w
δab (5.4.3)

Now we choose the N = 2 super-BMS3 generators in terms of the ghost fields as:

T (z) =− 3

2
: b1∂c1 : (z) +

1

2
: c1∂b1 : (z)− 3

2
: b2∂c2 : (z) +

1

2
: c2∂b2 : (z)

− 2 : β∂γ : (z)− : γ∂β : (z)− λ∂3γ(z)

M(z) =β(z) (5.4.4)

Ψ1(z) =b1(z) +
1

2
: βc1 : (z) + a∂2c1(z)

Ψ2(z) =b2(z) +
1

2
: βc2 : (z) + a∂2c2(z)

This choice gives us the desired OPEs with the central charges c1 = −4 and c2 =

12λ. As before, c1 can be made arbitrary by adding independent canonical free fields to

the system.
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5.5 Free-Field Realization of N = 4 super- BMS3:

Now we present the free-field realisation of the most generic centrally-extended version

of the N = 4 super-BMS3 algebra that we have presented earlier. Let us first express

the algebra in terms of the OPEs of the various fields:

T (z)T (w) ∼
c1
2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
, R(z)R(w) ∼ c3

3

1

(z − w)2

T (z)M(w) ∼
c2
2

(z − w)4
+

2M(w)

(z − w)2
+
∂M(w)

z − w
, S(z)R(w) ∼ c2

3

1

(z − w)2

T (z)S(w) ∼ S(w)

(z − w)2
+
∂S(w)

z − w
, T (z)R(w) ∼ R(w)

(z − w)2
+
∂R(w)

z − w

M(z)R(w) ∼ S(w)

(z − w)2
+
∂S(w)

z − w
, R(z)Ψ1,±(w) ∼ ± Ψ1,±

z − w
(5.5.1)

T (z)Ψa±(w) ∼ 3

2

Ψa±(w)

(z − w)2
+
∂Ψa±(w)

z − w
, R(z)Ψ2,±(w) ∼ ∓ Ψ2,±

z − w

Ψ1,±(z)Ψ1,∓(w) ∼ 1

2

[
M(z)

z − w
+

1

2

{
2S(w)

(z − w)2
+

∂S
z − w

}
+
c2

3

1

(z − w)3

]
Ψ2,±(z)Ψ2,∓(w) ∼ 1

2

[
M(z)

z − w
− 1

2

{
2S(w)

(z − w)2
+

∂S
z − w

}
+
c2

3

1

(z − w)3

]

We now want to give a free-field representation of this algebra. For this we use the

fields (β2, γ−1), (β1, γ0) and four pairs of fermionic fields (ba,α, ca,α) where a = 1, 2

and α = ±. With these fields, we define

T(2,−1) = −2β2∂γ−1 − γ−1∂β2, T(1,0) = −β1∂γ0

T a,α
( 3
2
,− 1

2)
= −3

2
ba,α∂ca,α +

1

2
ca,α∂ba,α (5.5.2)

Then we construct the various N = 4 fields as follows:

T = T(2,−1) + T(1,0) +
2∑
i=1

2∑
α=1

T a,α
( 3
2
,− 1

2)
− λ∂3γ1

−1, M = β2

R = ∂γ0 + κ∂β1γ−1 + κβ1∂γ−1 +
2∑

a=1

ba,α(σ3)αβc
αβ, S = −κβ1 (5.5.3)

Ψa,α =
1

2

[
ba,α + β2(σ1)αβc

a,β + ρ∂β1(iσ2)αβc
a,β + 2ρβ1(iσ2)αβ∂c

a,β + η(σ1)αβ∂
2ca,β

]

Now with the identifications λ = c2
12
, κ = c2

3
, ρ = c2

6
, η = c2

6
, one can show that the

above fields correctly reproduce the N = 4 super-BMS3 algebra. The central charges
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c1 and c3 get fixed to the values −32 and 12 respectively. However, we can make these

two arbitrary by adding independent free fields to our system.

5.6 Free-Field Realization of N = 8 super- BMS3:

Let us now start with the N = 8 algebra and express it in terms of OPEs.

T (z)T (w) ∼
c1
2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
, Ri(z)Rj(w) ∼ iεijkRk

z − w
+
c3

3

δij

(z − w)2

T (z)M(w) ∼
c2
2

(z − w)4
+

2M(w)

(z − w)2
+
∂M(w)

z − w
, Ri(z)Sj(w) ∼ iεijkSk

z − w
+
c2

3

δij

(z − w)2

T (z)S i(w) ∼ S i(w)

(z − w)2
+
∂S i(w)

z − w
, T (z)Ri(w) ∼ Ri(w)

(z − w)2
+
∂Ri(w)

z − w

M(z)Ri(w) ∼ S i(w)

(z − w)2
+
∂S i(w)

z − w
, Ri(z)ΨA,a,+(w) ∼ −1

2

(σi)abΨ
A,b,+

z − w

T (z)ΨA,a,±(w) ∼ 3

2

ΨA,a±(w)

(z − w)2
+
∂ΨA,a,±(w)

z − w
, Ri(z)ΨA,a,−(w) ∼ 1

2

(σ̄i)abΨ
A,b,−

z − w

ΨA,a,±(z)ΨB,b,∓(w) ∼ 1

2
δAB

[
δabM(z)

z − w
− (σi)ab

{
2S i(w)

(z − w)2
+

∂S i

z − w

}
+
c2

3

δab
(z − w)3

]
(5.6.1)

Now for a free-field realizaion of this, we introduce one pair of conjugate bosonic

ghost-fields (β2, γ−1), three pairs of comjugate bosonic ghost fields (βi1, γ
i
0) for i =

1, 2, 3 and eight pairs of fermionic ghost fields
(
bA,a,α, cA,a,α

)
where both A and a run

over 1 and 2 while α = ±. Then the N = 8 fields can be constructed as follows:

T = T(2,−1) +
3∑
i=1

T i(1,0) +
2∑

A=1

2∑
a=1

∑
α=±

TA,a,α
( 3
2
,− 1

2)
− λ∂3γ−1, M = β2

Ri = ∂γi0 + κ
(
βi1∂γ−1 + ∂βi1γ−1

)
+ iεijkγj0β

k
1

+
1

2
cA,a,α(σi)ab(σ3)αβb

A,b,β, S i = −κβi1 (5.6.2)

ΨA,a,+ =
1

2

[
bA,a,+ + β2(σ1)+

−c
A,a,− + ρ(σj)ae

{
∂βi1(iσ2)+

−c
A,e,−

+2βi1(iσ2)+
−∂c

A,e,− }+η(σ1)+
−∂

2cA,a,−
]

ΨA,a,− =
1

2

[
bA,a,− + β2(σ1)−+c

A,a,+ + ρ(σ̄j)ae
{
∂βi1(iσ2)−+c

A,e,+

+2βi1(iσ2)−+∂c
A,e,+

}
+η(σ1)−+∂

2cA,a,+
]
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where the parameters are fixed in terms of c2 as λ = c2
12
, η = c2

6
, ρ = − c2

12
, κ = c2

12
. This

gives c1 = −88 and c3 = 24.

5.7 Free-Field Realization of Spin 3 BMS3 Algebra:

Let us now find a free-field realisation of the W3 BMS3 algebra. This is the ordinary

BMS3 algebra, supplemented by Wn and Vn. The algebra is [57, 58]:

[Jn, Jm] = (n−m)Jn+m +
c1

12
(n3 − n)δn+m,0

[Jn,Mm] = (n−m)Mn+m +
c2

12
(n3 − n)δn+m,0

[Jn,Wm] = (2n−m)Wn+m, [Jn, Vm] = (2n−m)Vn+m

[Mn,Wn] = (2n−m)Vn+m (5.7.1)

[Wn,Wm] =
1

30

[
(n−m)(2n2 + 2m2 − nm− 8)Jn+m

+
192

c2

(n−m)Λn+m −
96
(
c1 + 44

5

)
c2

2

(n−m)Θn+m

+
c1

12
n(n2 − 1)(n2 − 4)δn+m,0

]
[Wn, Vm] =

1

30

[
(n−m)(2n2 + 2m2 − nm− 8)Mn+m

+
96

c2

(n−m)Θn+m +
c2

12
n(n2 − 1)(n2 − 4)δn+m,0

]

where Θn =
∑

mMmMn−m and Λn =
∑

m : JmMn−m : − 3
10

(n + 2)(n + 3)Mn.

As Λ contains a bilinear of two non-commuting operators L andM, it is necessary to

specify normal ordering in the definition. It is also important to note that Λ contains a

term linear inM.

Converting the modes into fields, the generators of this algebra are our familiar spin-2

fields T (z) andM(z), complemented by a pair of spin-3 fields W (z) and V (z).

The free-field realisation involves the pairs of conjugate bosonic fields: (β2, γ−1) of

dimensions (2,−1) and (β3, γ−2) of dimensions (3,−2). Taking into account the var-

ious pole structures, we can show that the following representation of the operators
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reproduces the correct algebra:

T (z) = −2 : β2∂γ−1 : − : ∂β2γ−1 : −3 : β3∂γ−2 : −2 : ∂β3γ−2 : −a∂3γ−1

W (z) =
1√
15

[
3 : β3∂γ−1 : + : ∂β3γ−1 : +5 : β2∂

3γ−2 : + : ∂3β2γ−2 : +
9

2
: ∂2β2∂γ−2 :

15

2
: ∂β2∂

2γ−2 : +
8

a
(: β2 (: β2∂γ−2 :) : + : β2 (: ∂β2γ−2 :) :) (5.7.2)

+
a

2
∂5γ−2 +

68

15a
β3

]
M(z) = β2, V (z) = − 1√

15
β3

It is noteworthy that there are nested normal-ordered products in W (z) which will

generate non-trivial contributions to the linear terms inM that are crucial to obtain the

correct algebra. Also the composite fields are defined as:

Λ(w) =: TM : (w)− 3

10
∂2M(w)

Θ(w) =:MM : (w)
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These fields give rise to the OPEs:

T (z)T (w) ∼ 50

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

T (z)M(w) ∼ 6a

(z − w)4
+

2M(w)

(z − w)2
+
∂M(w)

(z − w)

T (z)W (w) ∼ 3W (w)

(z − w)2
+
∂W (w)

(z − w)
(5.7.3)

T (z)V (w) ∼ 3V (w)

(z − w)2
+
∂V (w)

(z − w)

M(z)W (w) ∼ 3V (w)

(z − w)2
+
∂V (w)

(z − w)

W (z)W (w) ∼ 100

3(z − w)6
+

2T (w)

(z − w)4
+

∂T (w)

(z − w)3

+
1

(z − w)2

[
2

60

(
16

a
Λ− 1088

15a2
Θ

)
+

3

10
∂2T

]
(w)

+
1

(z − w)

[
1

60

(
16

a
∂Λ− 1088

15a2
∂Θ

)
+

1

15
∂3T

]
(w)

W (z)V (w) ∼ 4a

(z − w)6
+

2M(w)

(z − w)4
+
∂M(w)

(z − w)3

+
1

(z − w)2

[
2

60

(
16

a
Θ

)
+

3

10
∂2T

]
(w)

+
1

(z − w)

[
16

60a
∂Θ +

1

15
∂3T

]
(w)

When converted to modes, this reproduces the W3-BMS3 algebra that we have writ-

ten earlier.

We have obtained the central charges c1 = 100 and c2 = 12a. Unlike the previous cases,

it would be quite non-trivial to extend the above construction to allow for an arbitrary

value of c1.

5.8 An SU(2) Generalisation of BMS3 and its Wakimoto

Representation:

Here we shall use the affine current algebra symmetry to obtain a generalization of the

BMS3 algebra, which can be called ”SU(2)-BMS3” algebra. It contains as subalgebras

both the BMS3 algebra and the SU(2) affine Lie algebra. Then we will use the Waki-

moto free-field representation [59] as well as our previous method to give a free-field
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representation of the full SU(2)-BMS3 algebra.

In a CFT affine symmetry arises from the mode expansion of conserved currents.

Ja(z) =
∞∑

n=−∞

Janz
−n−1, J̄a(z̄) =

∞∑
n=−∞

J̄an z̄
−n−1

where the index a = 1, ..., D, and D is the dimension of the Lie algebra. The energy-

momentum tensor is constructed out of these currents using the Sugawara method [60]:

TJ(z) =
1

2(k + g)
: Ja(z)Ja(z) : (5.8.1)

Here k is the level of the affine algebra and g is the dual Coxeter number. The cur-

rents transform as dimension 1 primary fields under the Virasoro symmetry. Hence the

operator product expansions are:

TJ(z)TJ(w) ∼
c
2

(z − w)4
+

2TJ(w)

(z − w)2
+
∂TJ(w)

z − w

Ja(z)J b(w) ∼ kδab

(z − w)2
+
ifabcJ c(w)

z − w
(5.8.2)

TJ(z)Ja(w) ∼ Ja(w)

(z − w)2
+
∂Ja(w)

z − w

where c = kD
(k+g)

is the Virasoro central charge and fabc are the structure constants of

the Lie algebra.

Let us consider the case of SU(2). This algebra has structure constants fabc =
√

2εabc.

In this basis J± = 1√
2
(J1 ± iJ2), J0 =

√
2J3. The current algebra is:

J+(z)J−(w) ∼ k

(z − w)2
+
J0(w)

z − w

J0(z)J±(w) ∼ ±2J±

z − w
(5.8.3)

J0(z)J0(w) ∼ 2k

(z − w)2

All other OPEs are regular, particularly J+(z)J+(w) has no singularity. This fact

will be useful later on.

The Sugawara construction in this basis is:

TJ(z) =
1

2(k + 2)

[
1

2
: J0J0 : (z)+ : J+J− : (z)+ : J−J+ : (z)

]
(5.8.4)
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Now to combine this with BMS, we need a slight variation of this construction. It is

known that there exists a twisted version of the SU(2) algebra [61] in two-dimensional

gravity, in which (J+, J0, J−) have conformal dimensions (2, 1, 0) respectively. This is

achieved by modifying the above Sugawara energy-momentum tensor as:

T (z) = TJ(z)− 1

2
∂J0(z) (5.8.5)

It can be shown easily that after this twist, the conformal dimensions of the currents

are modified as above. So now we have a potential method of defining a combined

SU(2)-BMS3 algebra. This is because T (z) and J+(z) together form a pair of spin-2

holomorphic fields of which T (z) satisfies a Virasoro algebra, J+(z) has a non-singular

operator product expansion with itself, and also J+ is a spin-2 primary under T . Thus

we have all the ingredients to define a BMS3 algebra with c2 = 0. This makes it possible

to define the SU(2)-BMS3 algebra with non-zero central extensions by introducing a c2

term in the T − J+ OPE:

T (z)T (w) ∼
c1
2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

T (z)Ψ+(w) ∼
c2
2

(z − w)4
+

2J+(w)

(z − w)2
+
∂J+(w)

(z − w)

J0(z)J±(w) ∼ ±2J±

z − w
, J+(z)J+(w) ∼ 0

J+(z)J−(w) ∼ k

(z − w)2
+
J0(w)

z − w
(5.8.6)

J0(z)J0(w) ∼ 2k

(z − w)2
, T (z)J−(w) ∼ ∂J−(w)

z − w

T (z)J0(w) ∼ 2k

(z − w)3
+

J0(w)

(z − w)2
+
∂J0(w)

z − w

Let us now introduce the Wakimoto representation of the SU(2) affine Lie algebra.

[59], [60] This allows us to construct the affine SU(2) Lie algebra at arbitrary level k.

Here the three holomorphic SU(2) currents J±(z), J0(z) are constructed using (β, γ)

fields of spins (1, 0) and a free scalar field ϕ with a background charge depending on
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the real number k:

J+(z) = β(z)

J0(z) =
i
√

2

α+

∂ϕ(z) + 2 : γβ : (z) (5.8.7)

J−(z) =
−i
√

2

α+

: ∂ϕγ : (z)− k∂γ(z)− : βγγ : (z)

As we mentioned before, k is the level of the affine algebra and α+ = 1√
k+2

is pro-

portional to the background charge of the scalar field ϕ. Using the canonical OPEs, it

is easy to show that the above spin-1 currents satisfy the affine SU(2) Lie algebra at

arbitrary level k.

The energy-momentum tensor is given by:

TJ(z) =
1

2(k + 2)

[
1

2
: J0J0 : (z)+ : J+J− : (z)+ : J−J+ : (z)

]
= − : β∂γ : (z)− 1

2
: ∂ϕ∂ϕ : (z)− iα+√

2
∂2ϕ(z) (5.8.8)

Thus in the Wakimoto form, the energy-momentum tensor splits into two pieces, cor-

responding to that of a β-γ system and of a scalar field ϕ with a background charge.

Comparison with the canonical form of the energy-momentum tensor for ϕ shows that

the background charge is −α+

2
. As β is one of the currents in the Wakimoto represen-

tation, its conformal dimension is 1. Hence the conformal dimension of its conjugate

field γ is zero.

Now in the Wakimoto representation, we will perform a twist to change the spins

of (J+, J0, J−) to (2, 1, 0). This can be implemented by changing the spins of (β, γ) to

(2,−1) [62]. So we must implement this twist in the Wakimoto representation, as well

as the ∂3γ twist as in the previous section.

Performing both the twists, the final energy-momentum tensor takes the form:

T = −2 : β∂γ : − : γ∂β : −a∂3γ − 1

2
: ∂ϕ∂ϕ : − i√

2

(
α+ +

1

α+

)
∂2ϕ (5.8.9)
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This gives the required OPEs:

T (z)T (w) ∼ 1

2

c1

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

T (z)J+(w) ∼ 1

2

12a

(z − w)4
+

2J+(w)

(z − w)2
+
∂J+(w)

z − w

J+(z)J+(w) ∼ 0 (5.8.10)

T (z)J0(w) ∼ 12aγ(w)

(z − w)4
+

2k

(z − w)3
+

J0(w)

(z − w)2
+
∂J0(w)

z − w

T (z)J−(w) ∼ −6a : γγ : (w)

(z − w)4
+
∂J−(w)

z − w

Thus in this chapter we have given the free-field representations of BMS3, super-

BMS3 and certain related algebras explicitly.
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CHAPTER 6

Conclusions:

• We have deduced the correct scalings of the superconformal generators to repro-
duce the super-BMS3 algebras by Innonu-Wigner contraction.

• We started with a set of global generators and used the Chern-Simons formula-
tion to perform the asymptotic symmetry analysis (assuming the transformation
of fermions as U(1) under R-symmetry) and derived the N = 4 super-BMS3 al-
gebra. We have shown that after necessary modifications, the final algebra exactly
matches with the one derived by contraction.

• We then generalised the transformation of the fermions under R-symmetry from
U(1) to any generic representation, and show that this results in significant change
in the final asymptotic algebra, in particular, the presence of non-linear terms
therein.

• We also derived various interesting physical results such as energy bounds, Killing
spinors, gravity solutions etc for the above cases.

• Finally, we presented the free field realisations of the (super) BMS3 algebras and
a few other related systems.



APPENDIX A

A.1 N = 2 GCA2 and BMS3 algebras

The GCA2 algebra has been studied in detail in the literature, see for instance [63].

We will briefly review the relevant results and comment on the isomorphism with the

BMS3 algebra, which at the supersymmetric level gets lifted. One starts from linear

combinations of holomorphic/anti-holomorphic Virasoro generators which maintain the

mode number[8], and scales asymmetrically as follows:

Mm = lim
ε→0

ε (Lm ∓ L̄m) , Jm = lim
ε→0

(Lm ± L̄m) . (A.1.1)

The commutators turn out to be:

[Mm,Mn] = 0

[Mm, Jn] = (m− n) lim
ε→0

ε (Lm+n − L̄m+n) + . . .

[Jm, Jn] = (m− n) lim
ε→0

(Lm+n + L̄m+n) + . . . (A.1.2)

Thus the algebra closes, and if we fix the signs in (A.1.1) to be minus in the definition

of Pm and plus sign in the definition of Jm then we recover the BMS3 algebra.

An N=2 generalisation of the GCA algebra was presented in Ref.[17]. It involves

an asymmetric scaling of the form:

Ψ1
r = lim

ε→0
ε (Qr ∓ Q̄r) , Ψ2

r = lim
ε→0

(Qr ± Q̄r) (A.1.3)

The choice of upper/lower signs is immaterial as it simply corresponds to a sign change



for . The resulting algebra is:

[Mm,Ψ
1
r] = 0 , [Mm,Ψ

2
r] =

(m
2
− r
)

Ψ1
m+rm

[Jm,Ψ
1
r] =

(m
2
− r
)

Ψ1
m+r , [Jm,Ψ

2
r] =

(m
2
− r
)

Ψ2
m+r

{Ψ1
r,Ψ

1
s} = 0 , {Ψ1

r,Ψ
2
s} = 2Mr+s + . . . , {Ψ2

r,Ψ
2
s} = 2Jr+s + . . . (A.1.4)

We can now examine whether this algebra is isomorphic to theN = 2 super-BMS alge-

bra in Eq.(??). Clearly it is not: the supercharge anti-commutators can be diagonalised

to find that one of them has a negative right-hand-side. This shows that the N = 2

super-GCA of Ref.[17] is not equivalent to the N = 2 super-BMS3 algebra. Thus the

BMS/GCA correspondence does not hold in the supersymmetric case.

In [23], this asymptotic superalgebra is studied in detail and proven to arise from a

’twisted’ novel supersymmetric theory in 3 dimensions.

One may try to scale the super-generators symmetrically:

Ψ+
r = lim

ε→0

√
εQr, Ψ−r = lim

ε→0

√
εQ̄r (A.1.5)

This is similar (except for the fact that mode number is preserved) to the symmetric

scaling used in super-BMS, but the bosonic generators are scaled according to GCA

and the resulting algebra therefore contains:

[Mm,Ψ
±
r ] = 0 , [Jm,Ψ

±
r ] =

(m
2
− r
)

Ψ±m+r

{Ψ±r ,Ψ±s } = ±(Mr+s + . . . ) , {Ψ+
r ,Ψ

−
s } = 0 (A.1.6)

We see that the RHS has a negative sign in front ofM for one of the generators. There-

fore this also cannot be identified with the super-BMS3 algebra.

One might be tempted to redress this by inserting a factor of i:

Ψ+
r = lim

ε→0

√
εQr , Ψ−r = lim

ε→0
i
√
ε Q̄r (A.1.7)

but unfortunately this implies that the hermiticity condition on Ψ− is violated. Thus we

really get nothing new.
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Finally, let us comment on a proposal in Ref.[64]. These authors propose to recover

an “inhomogeneous SGCA” by defining:

Ψ1
r = lim

ε→0
ε (Q+

n ± iQ−−n) , Ψ2
r = lim

ε→0
(Q+

n ∓ iQ−−n) . (A.1.8)

Unfortunately this suffers from an analogous defect to Eq.(A.1.7) above, namely the

supercharges do not satisfy Ψi
r
†

= Ψi
−r. Instead one finds that Ψ1

r
† ∼ 1

ε
Ψ2
−r so the

hermiticity properties are incompatible with the scaling.

A.2 Inequivalent N = 2 super-BMS3 from (1,1) and

(2,0) Virasoro algebras

There is another way of constructingN = 2 super BMS3 algebra than the one presented

in the main draft. To obtain this algebra we need to consider only one sector of super-

conformal algebra, which for definiteness can be taken to be the holomorphic sector,

for the supercharges and the R-symmetry generators. The R-generators can be scaled

in either way as Rm = limε→0 εRm or Sm = Rm, while the remaining generators are

scaled as usual.

Let’s consider the first scaling. The commutation relations (2.2.5) will still be valid

except that there is no generator corresponding to S, so we find the algebra obtained by

setting S = 0 there:

[Mm,Rn] = 0 , [Jm,Rn] = −nRm+n , [Rm,Rn] = 0

[Mm,Ψ
+ ,i
r ] = 0 , [Jm,Ψ

+ ,i
r ] =

(m
2
− r
)

Ψ+ ,i
m+r

[Rm,Ψ
+ ,i
r ] = 0 , {Ψ+ 1

r ,Ψ+ ,2
s } = 1

2
Mr+s + 1

4
(r − s)Rr+s +

c2

12
r2 δr+s,0

(A.2.1)

This is a consistent algebra, which differs from the N = 2 BMS3 algebra we found

before because of the presence of the R generator. However this is not an R-symmetry

since it does not rotate the supercharges but instead commutes with them.

Next consider the second scaling, i.e. the generator Sm = Rm. The algebra will
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now look like:

[Mm,Sn] = 0 , [Jm,Sn] = −nSm+n , [Sm,Sn] =
c1

3
mδm+n,0 ,

[Mm,Q+ ,i
r ] = 0 , [Jm,Ψ

+ ,i
r ] =

(m
2
− r
)

Ψ+ ,i
m+r

[Sm,Ψ+ ,1
r ] = Ψ+ 1

m+r , [Sm,Ψ+ ,2
r ] = −Ψ+ 2

m+r

{Ψ+ 1
r ,Ψ+ ,2

s } = 1
2
Mr+s +

c2

12
r2 δr+s,0 (A.2.2)

This time the generator S can be considered an R-symmetry generator since it rotates

the supercharges, but it does not appear on the RHS of the anticommutator of two Q’s.

Hence, although this seems to be a valid alternate super BMS3 algebra, it is not as rich

as the one presented in the main draft. Similar behavior will hold for higher extended

algebras.

A.3 Conventions

Here we list all the necessary notations. The antisymmetric Levi-Civita symbol has

component ε012 = +1 and the tangent space metric is the 3D Minkowski metric

ηab =


−1 0 0

0 1 0

0 0 1

 (A.3.1)

The Γ-matrices satisfying the three dimensional Clifford algebra {Γa,Γb} = 2ηab are:

Γ0 = iσ2 , Γ1 = σ1 , Γ2 = σ3 , (A.3.2)

with σi the Pauli matrices:

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ1 =

 1 0

0 −1

 . (A.3.3)
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Finally, the charge conjugation matrix C = iσ2, or explicitly

Cαβ = εαβ = Cαβ =

 0 1

−1 0

 . (A.3.4)

The fermion indices α, β run over −,+ (contrarily to [23] where they run over +,−).

The supercharges are also taken to be Grassmann quantities, as the fermion parameters

and the gravitini. All spinors taken here are Majorana and the Majorana conjugate of a

spinor ψα is ψ̄α = Cαβψ
β . Our conventions imply that we can use the identities

ΓaΓb = εabcΓ
c + ηab1 , ΓaαβΓa

γ
δ = 2δαδ δ

γ
β − δ

α
β δ

γ
δ , (A.3.5)

CT = −C , CΓa = −(Γa)
TC (A.3.6)

In verifying the closure of the supersymmetry algebra on the fields and the off-shell

invariance of the action, the three dimensional Fierz relation is useful.

ζη̄ = −1

2
η̄ ζ 1− 1

2
(η̄Γaζ)Γa , (A.3.7)

Other useful identities are:

ψ̄Γa η = η̄ Γa ψ

ψ̄Γa ε = −ε̄Γa ψ

where ψ, η are Grassmannian one-forms, while ε is a Grassmann paramter. It is some-

times convenient to change basis of the tangent space to one more suited for the isl(2)

algebra in the bosonic sector of flat space supergravity. We do this by choosing a map

to bring the generators of SO(2, 1) ([Ja, Jb] = εabcJ
c) to those of SL(2,R) satisfy-

ing [Ln, Lm] = (n − m)Ln+m. This defines a matrix Ua
n as a map from the tan-

gent space metric ηab with a, b = {0, 1, 2} to the metric γnm defined in (A.3.10) with

n,m = {−1, 0,+1}, satisfying

Ln = Ja U
a
n . (A.3.8)
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An explicit representation of Ua
n that does the job is for instance

Ua
n =


−1 0 −1

−1 0 1

0 1 0

 . (A.3.9)

In this basis the gamma matrices satisfy a Clifford algebra with

{Γ̃m, Γ̃n} = 2γnm ≡ 2


0 0 −2

0 1 0

−2 0 0

 with: n,m = −1, 0,+1 . (A.3.10)

A real representation for the gamma matrices with n,m indices can be obtained by

taking Γ̃n = Ua
nΓa, or explicitly:

Γ̃−1 = −(σ1 + iσ2) =

 0 −2

0 0

 , (A.3.11)

Γ̃0 = σ3 =

 1 0

0 −1

 , (A.3.12)

Γ̃+1 = σ1 − iσ2 =

 0 0

2 0

 . (A.3.13)

In addition to the Clifford algebra, the gamma matrices now satisfy the commutation

relations

[Γ̃n, Γ̃m] = 2(n−m)Γ̃n+m , (A.3.14)

which is just the sl(2,R) algebra.

A.4 Calculation of Poisson Brackets for BMS3 Algebra:

Here let us show the detailed calculation of one of the Poisson brackets, namely the

{Jn,Mm}. The rest will follow similarly. Using the convention of the Fourier trans-
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form between the modes and the fields as given earlier, the expression for the charge

C = − k

4π

∫ [
Υ+J+TM+(Ψ1

+ζ
1+
− −Ψ1

−ζ
1+
+ )−(Ψ2

+ζ
2+
− −Ψ2

−ζ
2+
+ )+iλRφ+iλSρ

]
dϕ.

(A.4.1)

can also be expressed in terms of modes as

C = −2

k

∑
n

[
Υ+
−nJn+T−nMn+(Ψ1

+nζ
1+
−n−Ψ1

−nζ
1+
+n)−(Ψ2

+nζ
2+
−n−Ψ2

−nζ
2+
+n)+iλR−nφn+iλS−nρ−n

]
.

(A.4.2)

We use the above two equivalent definitions of charge on the RHS and LHS of the

following equation respectively:

{C[1], C[2]}PB = δ1C[2], (A.4.3)

LHS =
4

k2

∑
n

∑
m

Υ+
−nT−m{Jn,Mm}

RHS = − k

4π

∫
dϕTδλM|Υ+

Now using the variation ofM that we found earlier, the RHS equals

− k

4π

∫
dϕT [−2(Υ+)′′′ + 2M(Υ+)′ +M′Υ+]

Now we convert the generators as well as the generic parameters from fields to modes

by Fourier transformations, and use integration by parts. This gives the RHS as

− 4

k2
in3kδn+m,0 −

4

k2
i(n−m)Mn+m

Equating this to the LHS gives the required result.
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A.5 The (0, 2) and (2, 0) AdS sectors

We present the N = (2, 0) and (0, 2) superconformal algebras. These are the global

bulk algebras for N = (2, 0) and (0, 2) asymptotically AdS super gravity theories.

[Ja, Jb] = εabcJ
c, [Ja, Q

±
α ] =

1

2
(Γa)

β
αQ
±
β , [R,Q±α ] = ±1

2
Q±α (A.5.1)

{Q+
α , Q

−
β } = −1

2
(Γa)αβJa −

1

2
CαβR, {Q±α , Q±β } = 0 (A.5.2)

The algebra in the other sector is exactly the same, albeit with barred gnerators.

Here, a, b = 0, 1, 2 and α, β = ±1
2
.

The action is invariant off-shell under the supersymmetry transformation laws δA =

dλ + [A, λ] with λ = εα±Q1,±
α + ϑα±Q2±

α . In terms of the fields these transformations

read:

δeµ
a = −1

2

∑
β=±

(
ε̄βΓaψµ−β + ϑ̄βΓaηµ−β

)
(A.5.3)

δψ1α
±µ = Dµε

α
± = dεα± + 1

2
ωa (Γa)

α
γ ε

γ
± ± φ̃ εα± , (A.5.4)

δψ2α
±µ = Dµϑ

α
± = dϑα± + 1

2
ωa (Γa)

α
γ ϑ

γ
± ± φ̃ ϑα± (A.5.5)

δρ̃ = −1
4
(ψ̄1

+ ε− − ψ̄1
− ε+ + ψ̄2

+ ϑ− − ψ̄2
− ϑ+) (A.5.6)

A.6 Construction of the supertrace elements

In this appendix, we shall describe the construction of the supertrace element for a given

algebra. Below, we present the computation for (2,0) AdS algebra, that is presented in

the last appendix. Super trace element is computed from non-degenerate bilinear form

of a given algebra. For this, we construct a quadratic scalar combination of all the

generators and impose that it commutes with all the generators, so that it is a Casimir

operator. The construction of this quadratic scalar invariant is quite easy. Let us focus

on the (2,0) algebra first, and find its non-zero supertrace elements. Now let us start
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with the most generic possible bilinear form W :

W = aηabJaJb + bCαβQ+
αQ
−
β + b̄CαβQ−αQ

+
β + cCαβQ+

αQ
+
β + c̄CαβQ−αQ

−
β + dRR

(A.6.1)

By demanding that W commutes with all the generators of the (2,0) super algebra,

we can fix the factors (a, b, b̄, c, c̄, d). In this process, we need to make sure that the

final Casimir is non-degenerate. Using various relations among the commutators/anti-

commutators, one can show that the parameters get fixed as

a = b = b̄ = −d, c = c̄ = 0 (A.6.2)

So overall, the invariant becomes:

W = a(ηabJaJb + CαβQ+
αQ
−
β + CαβQ−αQ

+
β −RR) (A.6.3)

FromW , we extract all the supertrace elements by taking the inverse of the matrices

ηαβ , Cαβ and I:

< Ja, Jb >=
1

a
ηab, < Q+

α , Q
−
β >=< Q−α , Q

+
β >=

1

a
Cαβ, < R,R >= −1

a

(A.6.4)

Similarly for the (0, 2) sector, the supertrace elements are given as:

< J̄a, J̄b >=
1

ā
ηab, < Q̄+

α , Q̄
−
β >=< Q̄−α , Q̄

+
β >=

1

ā
Cαβ, < R̄, R̄ >= −1

ā

(A.6.5)

The overall factors a, ā correspondond to the overall normalization in the action. For

the bosonic action to contain the Einstein-Hilbert term, these factors get fixed as a =

−ā = −2.

Note that as the super-Poincare generators can be expressed as linear combinations of

these superconformal generators, the supertrace of the super-Poincare generators also

get fixed by this analysis.
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A.7 N = 8 Super-BMS3

In this appendix, we demonstrate how the N = 8 super-BMS3 algebra does not get

non-linear extension in the supercharges anticommutators. To do so, we prove this is

the case for the asymptotic symmetry algebra for 3D AdS gravity with N = (4, 4) su-

persymmetry. The gravitinos transform under the defining representation of the SU(2)

R-symmetry. The global super conformal algebra reads:

[Ln, Lm] = (n−m)Ln+m , [Ri, Rj] = iεijk Rk ,

[Ln, Q
a±
α ] =

(n
2
− α

)
Qa,±
n+α , [Ln, R

i] = 0 ,

[Ri, Qa+
α ] = −1

2
(σi)abQ

b+
α , [Ri, Qa−

α ] = +1
2

(σ̄i)abQ
b−
α ,

{Qa,+
α , Qb,−

}
¯

= δabLα+β − (α− β)
(
σi
)ab

Ri , {Qa,±
α , Qb,±

}
¯

= 0 .

The asymptotic gauge field we start from has the form:

A =

(
L1 +

r

l
L0 +

r2

4l2
L−1 −

1

2
L+L−1 −

1

2
ψa,+Q

a,+
− +

1

2
ψa,−Q

a,−
− + iφiRi

)
dx+

Let us take the supertrace elements as

〈Ln, Lm〉 = γnm , 〈Qa,+
α , Qa,−

β 〉 = 〈Qa,−
α , Qa,+

β 〉 = Cαβ , 〈Ri, Rj〉 = −δij .

and the generic gauge parameter

λ = χnLn + εαa,+Q
a,+
α + εαa,−Q

a,−
α + λiRi .

From the gauge variations, we first compute the constraint equations:

χ0 = −Y ′ + r

l
Y ,

χ− =
1

2
Y ′′ − r

2l
Y ′ +

(
r2

4l2
− 1

2
L+

)
Y − 1

4

∑
a=1,2

(ψa,+εa,− − ψa,−εa,+) ,

ε−a,+ = −ε′a,+ +
r

2l
εa,+ −

1

2
ψa,+Y +

i

2
φiRεb,+

(
σi
)b
a
,

ε−a,− = −ε′a,− +
r

2l
εa,− +

1

2
ψa,−Y −

i

2
φiRεb,−

(
σ̄i
)b
a
.
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where ε+a,± = εa,± and χ+ = Y .

The other variation equations read:

δL+ =− Y ′′′ + 2L+Y
′ + L′+Y +

1

2

(
ψ′a,+εa,− + 3ψa,+ε

′
a,−
)
− 1

2

(
ψ′a,−εa,+ + 3ψa,−ε

′
a,+

)
+
i

2

[
ψa,+εb,−φ

i
(
σ̄i
)b
a

+ ψa,−εb,+φ
i
(
σi
)b
a

]
,

δψa,+ =2ε′′a +

(
ψ′a,+Y +

3

2
ψa,+Y

′
)
− i
[
φi
′
εb,+

(
σi
)b
a

+ 2φiε′b,+
(
σi
)b
a

]
− L+εa,+

− i

2
ψb,+φ

iY
(
σi
)b
a

+
1

2
λiψb,+

(
σi
)b
a
− 1

2
φiφjεc,+

(
σj
)c
b

(
σi
)b
a
,

δψa,− =− 2ε′′a,− +

(
ψ′a,−Y +

3

2
ψa,−Y

′
)
− i
[
φi
′
εb,−

(
σ̄i
)b
a

+ 2φiε′b,−
(
σ̄i
)b
a

]
+ L+εa,−

+
i

2
φi
(
σ̄i
)b
a
ψb,−Y +

1

2
φiφjεc,−

(
σ̄i
)b
a

(
σ̄j
)c
b
− 1

2
λiψb,−

(
σ̄i
)b
a
,

iδφi = λi
′ − εijkφjλk +

1

2
ψa,+εb,−

(
σi
)ab

Ri +
1

2
ψa,−εb,+

(
σi
)ba

Ri .

The charges are obtained from :

δC = − k

4π

∫
dφ〈λ, δAφ〉 .

Hence we get

C = − k

4π

∫
dφ

[
L+Y +

1

2
εa,+ψa,− −

1

2
εa,−ψa,+ − iλiφi

]
= −2

k

[∑
n

LnY−n +
∑
α

1

2
ε−αa,+ψ̂

α
a,+ −

∑
α

1

2
ε−αa,−ψ̂

α
a,− − i

∑
n

λ−ni Rn
i

]

We then derive the asymptotic algebra by using the relation

{C[λ1], C[λ2]}PB = δλ1C[λ2]
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The Poisson brackets are

i{Ln, Lm} =
n3k

2
δn+m,0 + (n−m)Ln+m,0

i{Ln, ψ̂a,+α } =
(n

2
− α

)
ψ̂a,+n+α −

1

2

(
ψ̂b,+φi

)
n+α

(σi)ba

i{Ri
n, ψ̂

α
a,−} =

1

2
ψ̂n+α
b,− (σi)ba i{Ri

n, ψ̂
α
a,+} = −1

2
ψ̂n+α
b,+ (σi)ba

i{Ri
n, R

j
m} =

nk

2
δn+m,0 + iεijkR

k
n+m

i{Ln, Rj
m} = 0

{ψ̂αa,+, ψ̂
β
b,−} = α2kδα+βδab + Lα+βδab +

1

2
(RiRi)α+βδab − (α− β)Ri

α+β(σ̄ab ) ,

Where the modes are defined as follows:

Ln =

∫
dθe−inθL+ , Ri

n =

∫
dθe−inθφi ,

ψ̂a,+α =

∫
dθe−iαθψa,− , ψ̂a,−α =

∫
dθe−iαθψa,+ .

By adding the Sugawara term

Ln → L′n = Ln +
1

2
(RiRi)n

the i{Ln, Rj
m} gets modified as

i{L̂n, Rj
m} = −mRj

n+m ,

and the supercharge anti-commutator takes the form:

{ψ̂αa,+, ψ̂
β
b,−} = α2kδα+βδab + L

′

α+βδab − (α− β)Ri
α+β(σ̄ab ) .

Note that the second and third term in the previous anti-commutator combined give the

modified Sugawara generator L′α+β so that the non-linear terms are absent in the final

Poisson bracket. Thus, we see that the asymptotic AdS algebra will not have any non-

linearity in the R-symmetry charges. As a consequence, the corresponding asymptotic

flat N = 8 Super-BMS3 algebra will also present no non-linearity.
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A.8 AdS analysis and flat-space identifications

[Ln, Lm] =(n−m)Ln+m , [Ln, R
α
p ] =

(n
2
− p
)
Rα
n+p

[Ln, T
a] =0 , {Rα

p , R
β
q } = Lp+qη

αβ − i

6α̂
(p− q)(λa)αβT aδp+q,0 ,

[T a, Rα
p ] =i(λa)αβR

β
p , [T a, T b] = ifabcT c ,

and similarly for the anti-chiral sector. The structure constants of the above algebra

are the same as defined in section 4.2. We begin with two such identical copies of

Superconformal algebras. To get the asymptotic quantum algebra, let us begin with the

gauge fields and generic variation parameters for the two copies of AdS:

A =

[
L1 +

r

l
L0 +

(
r2

4l2
− 1

2
L+

)
L−1 + AQαR

−α +
1

2

kl
kB
φaT a

]
dx+ +

dr

2l
L−1 ,

Ā =

[
L̄−1 −

r

l
L̄0 +

(
r2

4l2
− 1

2
L̄−

)
L̄1 + ĀQ̄αR̄

+α +
1

2

kl
kB
φ̄aT̄ a

]
dx− +

dr

2l
L̄1 ,

where kl = c
6
, where c is the central charge of the quantum superconformal algebra.

Asymptotic gauge transformations δA = δλ + [A, λ] generate the asymptotic symme-

tries of the theory. The generic variation parameters are:

λ = χnLn + ε+,αR
+,α + ε−,αR

−,α + ωaT a ,

λ̄ = χ̄nL̄n + ε̄+,αR̄
+,α + ε̄−,αR̄

−,α + ω̄aT̄ a .
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AdS unbarred Sector Variation:

Here we present the constraints on the parameters and the variations of the independent

fields:

χ0 =
r

l
χ1 − χ′1 ,

χ−1 =− r

2l
χ′1 +

1

2
χ′′1 +

(
r2

4l2
− 1

2
L+

)
χ1 +

A

2
Qαε

α
+ ,

ε−,α =− ε′+,α + AQαχ1 +
kl

2kB
φaε+,β(λa)βα +

r

2l
ε+,α ,

δL+ =− χ′′′1 + L′+χ1 + 2L+χ
′
1 − 3AQαε

′
+,α − AQ′αε+,α + A

kl
kB
Qαφ

aε+,β(λa)βα ,

AδQα =− ε′′+,α + AQ′αχ1 +
3

2
AQαχ

′
1 +

kl
2kB

(λa)βα
[
2φaε′+,β + (φa)′ε+,β+

]
+

1

2
L+ε+,α

− A
kl

2kB
(λa)

β
αφ

aQβχ1 −
k2
l

4k2
B

φaφb(λa)γβ(λb)βαε+,γ + AωaQβ(λa)βα ,

δφa =2
kB
kl

(ωa)′ + φbωcfabc + 2AQαε+,β(λa)αβ .

AdS Barred Sector Variation:

Similar computations for the barred sector will give:

χ̄0 =− r

l
χ−1 + χ̄′−1 ,

χ̄1 =− r

2l
χ̄′−1 +

1

2
χ̄′′−1 +

(
r2

4l2
− 1

2
L̄−1

)
χ̄−1 −

Ā

2
Q̄αε̄

α
− ,

ε̄+,α =ε̄′−α + Āχ̄−1Q̄α −
r

2l
ε̄−,α +

1

12α
(λa)βαφ̄

aε̄−,β ,

δL̄− =− χ̄′′′−1 + L̄′−χ̄−1 + 2L̄−1χ̄
′
−1 + 3ĀQ̄α(ε̄−,α)′ + ĀQ̄′αε̄

−,α + Ā
kl
kB

(λa)βαQ̄αφ̄
aε̄−,β ,

ĀδQ̄α =ε̄′′−,α + Āχ̄−1Q̄
′
α +

3Ā

2
(χ̄−1)′Q̄α +

kl
2kB

(λa)βα[2φ̄aε̄′−,β + (φ̄a)′ε̄−,β]− 1

2
L̄−ε̄−,α

+ Ā
kl

2kB
φ̄a(λa)βαχ̄−1Q̄β +

k2
l

4k2
B

φ̄aφ̄b(λa)βα(λb)γβε−,γ + Āω̄a(λa)βαQ̄β ,

δφ̄a =2
kB
kl

(ω̄a)′ + φ̄bω̄cfabc − 2ĀQ̄αε̄−,β(λa)αβ .
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Identification with flat fields and generators:

Using these above relations, one can find the corresponding constraints and variations

for the gauge field A (4.2.3) and gauge transformation parameter Λ (4.3.2) that gives

the asymptotic symmetry for the 3D flat space time. Specifically:

A = A+ Ā , Λ = λ+ λ̄ ,

Jn = Ln − L̄−n , Mn =
Ln + L̄−n

l
, r1

±,α =

√
2

l
R±,α ,

r2
±,α =

√
2

l
R̄±,−α , Ra = T a − T̄ a , Sa =

T a + T̄ a

l
.

Using this identification the map for the charges is the following:

M = L+ + L̄− , N = l(L+ − L̄−) , ψ1
±α =

√
l

2
Q±α ,

ψ2
±α =

√
l

2
Q̄∓α , ρa = φa + φ̄a , φ̃a = l(φa − φ̄a) ,

and the parameters are scaled as:

ξn =
l

2
(χn + χ̄−n) , Υn =

1

2
(χn − χ̄−n) , λaS =

l

2
(ωa + ω̄a) ,

λaR =
1

2
(ωa − ω̄a) , ζ1

±,α =

√
l

2
ε±,α ζ2

±,α =

√
l

2
ε̄±,−α .

The modes of the charges are defined as follows:

Jm = lim
l→∞

(L+
m − L̄−m) , Mn = lim

l→∞

1

l
(L+

n + L̄−−n)

San = lim
l→∞

1

l
(φan + φ̄a−n) , Ra

n = lim
l→∞

(φan − φ̄a−n) ,

ψ1,α
± = lim

l→∞

√
2

l
Qα
± , ψ2,α

± = lim
l→∞

√
2

l
Q̄α
∓ ,

cJ = lim
l→∞

(c− c̄) , cM = lim
l→∞

1

l
(c+ c̄) .

Using these identifications, the final Asymptotic symmetry algebra for flat 3D space

time has been obtained in (4.2.8).
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A.9 Asymptotic gauge Field and gauge parameter for

maximal extended super-BMS3

The above form of asymptotic gauge fields needs to be modified for the right asymptotic

algebra (4.2.10), as mentioned in section (4.4). The modified most generic gauge field

was introduced in (4.3.1). Here, we find the right gauge transformation parameter that

finally gives us (4.2.10). The most generic transformation parameter has the form ,

Λ = ζnMn + ΥnJn + λ̃aSSa + λ̃aRRa + ζ1,α
± r1,α

± + ζ2,α
± r2,α

± , (A.9.1)

The constraints and variations are given by:

Υ0 = −(Υ1)′ , ξ0 = −(ξ1)′ ,

Υ−1 =
1

2

[
(Υ1)′′ − 1

2
Υ1

(
M− 1

48α̂
ρaρa

)]
,

δM =

(
1

24α
ρaδρa

)
− 4(Υ−1)′ −

(
M− 1

48α̂
ρaρa

)
Υ0 ,

ξ−1 = −1

2

[
−(ξ1)′′ +

1

2
Υ1

(
N − 1

24α̂
ρaφ̃a

)
+

1

2
ξ1

(
M− 1

48α̂
ρaρa

)]
,

δN =
1

24α̂
δ(φ̃aρa)− 4(ξ−1)′ −

(
N − 1

24α̂
φ̃aρa

)
Υ0 −

(
M− 1

48α̂
ρaρa

)
ξ0 ,

δφ̃a = 24α̂ ˜(λaR)
′
+ iφ̃bλ̃cRf

abc ,

δρa = 24α̂ ˜(λaS)
′
+ i
(
φ̃bλ̃cSf

abc − λ̃bRρ
cfabc

)
,

Let us choose (A,B,C,D) generic constants :

λ̃aR = λaR + Aφ̃a +Bρa

λ̃aS = λaR + Cφ̃a +Dρa
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The variation of the charge reads

δC =− k

4π

∫
dφ〈Λ, δaφ〉

=− k

4π

∫
dφ

[
1

2
ξ1δM+

1

2
Υ1δN +

1

2
(δφ̃aλaS + δρaλaR)

]
+

k

4π

∫
dφ

1

48α

[
ρaδρaξ1 + φ̃aδρaΥ1 + ρaδφ̃aΥ1

]
− k

4π

∫
dφ

1

2

[
Cφ̃aδφ̃a +Dρaδφ̃a + Aφ̃aδρa +Bρaδρa

]
The above variation simplifies to our required form

δC = − k

4π

∫
dφ

[
1

2
ξ1δM+

1

2
Υ1δN +

1

2
(δφ̃aλaS + δρaλaR),

]

for the following choice

A = D =
1

24α̂
Υ1, B =

1

24α̂
ξ1, C = 0

It can be checked that the above charge rightly reproduces the algebra (4.2.10). Finally,

inserting back the constraints, we get the expression for the transformation parameter:

Λ =ξ1M1 + Υ1J1 +

(
λaS +

1

24α̂
Υ1φ̃a

)
Sa +

(
λaR +

1

24α̂
Υ1φ̃a +

1

24α̂
ξ1ρa

)
Ra

− (ξ1)′M0 − (Υ1)′J0 +
1

4

[
2(Υ1)′′ −Υ1

(
M− 1

48α̂
ρaρa

)]
J−1

− 1

4

[
−2(ξ1)′′ + Υ1

(
N − 1

24α̂
φ̃aρa

)
+ ξ1

(
M− 1

48α̂
ρaρa

)]
M−1 .
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