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Abstract

Permutation polynomials have for long been an area of immense interest for re-

searchers worldwide. Though properties of permutation polynomials have been well

documented, few special classes of permutation polynomials are presently known.

Recent application of permutation polynomials in construction of public key encryp-

tion protocols has provided major incentive towards research in this area. A major

direction of current research is construction of some special classes.

The aim of this work is to study latest research in this area and building upon the

techniques therein provide some new classes of permutation polynomials over finite

fields. Most of the work done is inspired by research of Cunsheng Ding et al [5, 6].

The research utilizes their method of obtaining the permutation polynomials using

computations and explaining their class by theoretical methods.

The particular kind of polynomials studied are (xp − x + δ)s + x over the field

Fpm for different values of s.

Besides a synopsis of results published recently, main results of this thesis are es-

sentially contained in various chapters dealing with polynomials over separate fields

based upon the base prime number. Some of the new classes formed thereby are not

particular to those fields and could be immensely useful for general applications.
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Preface

This thesis contains work on permutation polynomials over finite fields.Besides a

survey of published and basic results in this area, there are also contained a few

original results on the classes of permutation polynomials over finite fields.

Chapter 1 contains a collection of all the basic results of permutation polynomials

from standard text, those which shall be used in subsequent chapters in proving

various classes of polynomials to be permutations. The results are motivated by the

study of [4] and [3].

Chapter 2 is a reproduction of results obtained in the research of Cunsheng Ding and

Jin Yuan [5], [6]. It contains classes of polynomials over finite fields of even cardinality

based on the relation of Kloosterman identities and permutation polynomials.

Results in chapter 3 and 4 are classes of permutation polynomials over finite fields of

odd cardinality, an extension work inspired by the results of chapter 2.

Throughout the thesis, extensive use of MATLAB computing has been made. In view

of recent applications of permutation polynomials in Turbo codes and LDPC codes,

this work becomes even more interesting.
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Chapter 1

Permutation Polynomials: An

Introduction

1.1 Permutation Polynomials

This thesis is a summary of classes of permutation polynomials obtained as a result

of recent research inspired by the investigation of relation between Kloosterman sums

and special type of polynomials discussed in this thesis throughout. This kind of work

was pioneered by Helleseth and Zinoviev [2].

This chapter develops the notion of permutation polynomial over a finite field and

provides results which shall be used subsequently in different chapters to construct

new classes of permutation polynomials. We shall start by defining a permutation

polynomial over a finite field.

Definition 1.1.1. Let Fpm, where p is a prime, be a finite field. Then a polynomial

f(x) ∈ Fpm [x] is called a permutation polynomial if the associated function f : c →
f(c) is a permutation of Fpm.

The existence of permutation polynomials is trivial as every mapping of a finite

2
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field into itself is expressible as a polynomial. Linear transformations are also an

example of permutation polynomial.

There are however a few more profound problems associated with these polynomials.

Determination of a permutation polynomial is a long settled question, which following

section shall answer, but for arbitrary polynomials to be permutations, conditions are

normally complicated and of larger interest.

1.2 Criteria for permutation polynomials

If we have a polynomial f(x) over a finite field Fpm , the question one may ask is:

How do we determine if the polynomial is a permutation polynomial for the finite

field?

The answer, thanks to the finiteness of the field, is quite easy to provide.

Lemma 1.2.1. The polynomial f(x) ∈ Fpm is a permutation polynomial over Fpm

if and only if one of these conditions is satisfied:

1. the function f : c → f(c) is onto

2. the function f : c → f(c) is one-one

3. f(x) = d has one solution in Fpm for all d

4. f(x) = d has a unique solution in Fpm for all d
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Although, all the above conditions are equivalent, the one most used in practice

and which shall repeatedly be invoked in this thesis is the last one. Clearly, if a finite

field is permuted by a function, the function has to be one-one and onto.

Many other criterion could be provided for the polynomials to be permutation, but

we shall restrain with the following important one.

1.3 Hermite’s criterion and consequences

Theorem 1.3.1. (Hermite’s criterion):Let Fpm be a finite field. Then f ∈ Fpm [x] is

a permutation polynomial over it if and only if following two conditions hold:

1. f has exactly one root in Fpm

2. for each integer t with 1 ≤ t ≤ pm − 2 and t not divisible by p, the residue

f(x)tmod(xpm − x) has degree ≤ pm − 2

A detailed proof for the theorem is given in [3]. Above theorem is a widely used

criterion for establishing a polynomial to be a permutation polynomial. One of its

major corollaries is given below.

Corollary 1.3.2. If d > 1 is a divisor of pm − 1 then there is no permutation

polynomial of degree d over Fpm.

Proof. If deg(f) = d, then deg(f (pm−1)/d) is pm − 1. Hence the last condition of

Hermite’s criterion is violated.
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Precisely for above reason, if f(x) is a permutation polynomial, then f(x)k is a

permutation polynomial if and only if k is coprime to pm − 1.

Due to this, in subsequent chapters, whenever a polynomial is raised to some power,

care is taken to ascertain that the exponent is relatively coprime to pm − 1, in order

not to change the permutation nature of the given polynomial.

In most cases, we have made use of the prime integer p itself. Details can be seen in

further sections.

In the next section we shall discuss some basic types of permutation polynomials

which are encountered more often. In later chapters, we shall try and recognize these

basic classes before going for more complex ones.

1.4 Elementary permutation polynomials

In this section various examples of simplest forms of permutation polynomials are

discussed. Often, complicated classes of permutation polynomials can be reduced to

one of these general classes by certain manipulations, thereby proving their permu-

tation nature.

Theorem 1.4.1.

1. Every linear polynomial over Fpm is a permutation polynomial

2. The monomial xn is a permutation polynomial over Fpm if and only if (n, pm −
1) = 1.
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Proof. Part (1) is trivial, as linear polynomials are one-one. Part(2) is consequence

of the property that in a finite field, the function f : c → cn is onto if and only if

(n, pm − 1) is 1.

1.4.1 Linearized polynomials

Definition 1.4.1. Polynomials of the type L(x) =
∑m

i = 0 aix
pi

with ai ∈ Fp is

called a linearized polynomial over Fpm.

We now see when can a linearized polynomial be a permutation.

Theorem 1.4.2. A linearized polynomial L(x) is a permutation polynomial if and

only if it has no non-zero root in the field Fpm.

Proof. L(x) is a linear operator over Fpm taken as a vector space over base field. A

linear operator can only be one-one if ker(L) is zero. This implies that only root of

the polynomial is 0.

A lot of polynomials that we shall see in subsequent chapters fall under this

class of permutation polynomials. This is by far one of the most common type of

permutations.

From here we move to another special type of polynomials which have been studied

extensively[4].

1.4.2 Dickson’s Polynomials

We shall now discuss a new class of polynomials called Dickson’s polynomials which

give some new classes of permutation polynomials.
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Definition 1.4.2. The polynomial of the type

gk(x, a) =
∑b(k/2)c

j = 0
k

k−j

(
k−j

j

)
(−a)jxk−2j is called a Dickson’s polynomial of degree k

over Fpm.

Similar to above case, Dickson’s polynomials are permutation polynomials under

certain conditions.

Theorem 1.4.3. The Dickson’s polynomial gk(x, a) is a permutation polynomial if

and only if gcd(k, p2m − 1).

For results on Dickson’s polynomials the reader is referred to [4]. In subsequent

chapters, arbitrary polynomials are manipulated to convert them to appropriate Dick-

son’s polynomials and hence establish that they are permutation polynomials.

We have now mentioned all the basic permutation polynomials that we need to use

in further chapters of this thesis. The type of permutation polynomials we are about

to deal with are:

(xp − x + δ)s + x where δ is an element of Fpm with non-zero trace and s is an

integer.

There are reasons to choose this particular type which are discussed in next section.

1.5 Kloosterman polynomials

We start by defining weight of an integer c.
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Definition 1.5.1. Let the binary representation of an integer c =
∑

ci2
i. Then the

weight is defined as w(c) =
∑

ci.

Given integers c, d ∈ (0, 1, ..., 2m − 1) we define a polynomial function as follows:

Lc,d(x) =
∑

cix
2i

+
∑ di

x2i

given that Lc,d(0) = 0.

Definition 1.5.2. Let e = w(c) mod 2. The polynomial Lc,d(x) on F2m is called a

Kloosterman polynomial if w(d) is even and Lc,d maps the set of trace 1 elements

bijectively to trace e elements.

The objective of this section is to present a relationship between Kloosterman

polynomials and the permutation polynomials of a special form. Ding and Yuan [6]

have shown that L1,d = x +
∑

di

x2i is a Kloosterman polynomial if and only if

for some δ ∈ F2m , T race(δ) = 1 the polynomial 1
Ld(x) + δ

+ x is a permutation

polynomial.

This motivated research to find such permutation polynomials in case of d = 10 and

subsequent chapters deal with the classes of permutation polynomials obtained as a

result of that enquiry.

A very special type of permutation polynomial were obtained as a result in identifying

new Kloosterman identities and these are the type of polynomials we shall focus upon.
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1.6 Conclusion

In Helleseth and Zinoviev [2], some new identities for Kloosterman sums were in-

troduced. The subsequent research in this thesis is motivated by findings that the

polynomials of the type, (xp − x + δ)s + x are permutation polynomials over F2m

for some values of s.

Extending the idea to finite fields of odd cardinality, we found that similar results are

obtained there too. It is however a difficult task to show how such polynomial forms

arise.

Nevertheless, it is a helpful technique to search for various new classes of permu-

tation polynomials. This chapter contains a summary of important results about

permutation polynomials over finite fields. For a detailed study reader is advised to

refer to [3].



Chapter 2

Permutation Polynomials over F2m

2.1 Introduction

Permutation polynomials associated with Kloosterman sum identities have brought

about a new method to construct classes. Helleseth and Zinoviev [2] made use of per-

mutation polynomials of following kind in determining new Kloosterman sum identi-

ties over F2m :

(x2 − x +δ)s + x = (x2 + x +δ)s + x for δ an element of F2m with non zero trace.

While the explanation for only 2 classes was provided in [2], some other classes were

explained by Cunsheng Ding et al [5]. The method employed is repeated in all other

chapters. Using a computer program, values of s for which the above polynomial is a

permutation of F2m are obtained. Theoretical explanations are subsequently provided

for those polynomials in form of classes of permutation polynomials.

Our interest is in the values s such that 2 ≤ s ≤ 2m−2 and (x2 + x + δ)s + x is a

permutation polynomial for δ an element of F2m with non-zero trace. For s = 1 the

10
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polynomial reduces to a monomial x2 which is a permutation polynomial by Theorem

1.4.1(ii). These values are numerated in the table 2.1 given in the section 2.2.

This chapter contains four special classes of permutation polynomials over F2m . Some

of the values are as yet not classified but an attempt to a possible solution has been

provided.

2.2 Computed values of s for different m

Following the methods of Helleseth and Zinoviev [2], using a MATLAB program,

designed for calculations over general finite fields of even cardinality, following values

of s were obtained such that (x2 + x + δ)s + x is a permutation polynomial over

F2m . The values of interest are of course those lying in between 2 and 2m − 2.

Table 2.1: Values of s for which (x2 − x + δ)s + x permutes F2m

m minimal polynomial δ s
5 x5 + x2 + 1 α5 2a , 4a , 8a , 14 , 16a , 21c , 29b , 30b

6 x6 + x + 1 α5 4a, 5, 8a, 28d, 32a, 61b, 62b

7 x7 + x + 1 α7 2a, 8a, 32a, 64a, 85c, 125b, 126b

8 x8 + x5 + x3 + x + 1 α3 2a, 4a, 8a, 16a, 32a, 64a,
120d, 128a, 165e, 253b, 254b

In the table each value has been marked with a letter which indicates the class of

permutation polynomial it corresponds to. The description of all classes is provided

in the rest of the chapter.
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2.3 Linearized permutation polynomials

We have seen in previous chapter that one of the most commonly found class of the

permutation polynomials is that of linearized polynomials. We shall identify these

from the table first.

Let s = 2k for some integer k. Then the polynomial reduces to:

(x2 + x + δ)2k
+ x = (x2k+1

+ x2k
+ δ2k

) + x

Above polynomial is the sum of a linearized polynomial L(x) = (x2k+1
+ x2k

+ x)

and a constant.

Values marked with a in the table correspond to this class. Using a computer program

it can be ascertained that these values satisfy the conditions of theorem1.4.2.Hence

they are permutation polynomials.

Other values of s missing from the table which are powers of 2 don’t satisfy this

condition.

2.4 Polynomials with s = (2m − i): i = 2, 3.

For each value of m there are certain values of s marked with b. These values were

shown by Helleseth and Zinoviev [2] to be corresponding to a new class of permuta-

tion polynomials. In this section we shall discuss that result and reproduce it in a

compact way.

The values marked b correspond to s = 2m − 2 or s = 2m − 3. Given below is

the lemma which shall provide the classification of such polynomials.

Lemma 2.4.1. Let δ ∈ F2m be an element with Trace 1. Then in each of the cases
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i = 2, 3 p(x) = (x2 + x + δ)2m−i + x is a permutation polynomial.

Proof. First we consider the case when i = 2. Then we show that p(x) = a has

a unique solution in F2m . Since Tr(δ) = 1, (x2 + x + δ) 6= 0 for all x. Then

suppose p(x) = a

(x2 + x + δ)2m−2 + x = a (2.4.1)

1

(x2 + x + δ)
+ x = a (2.4.2)

1 + x((x2 + x + δ)) = a(x2 + x + δ) (2.4.3)

x3 + (a + 1)x2 + (a + δ)x + aδ + 1 = 0 (2.4.4)

Replacing x by y + a we have

y3 + ax2 + a2x + ax2 + a2 + ax + δx + a2 + 1 = 0 (2.4.5)

y3 + y2 + (a2 + a + δ)y + 1 = 0. (2.4.6)

Let b = (a2 + a + δ), then Tr(b) = Tr(δ) = 1. Replacing y = z + 1, we have

z3 + (b + 1)z + b + 1 = 0, T r(b) = 1 (2.4.7)

We need to show that above equation has atmost one solution in F2m . It is known

from Berlekemp et al that this is possible if Tr(b + 1) 6= Tr(1) which is evidently

true.

For the second part, we assume there are two solutions to the equation p(x) = a
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x, y ∈ F2m . Then,

(x2 + x + δ)2m−3 + x = (y2 + y + δ)2m−3 + y (2.4.8)

1

(x2 + x + δ)2
+ x =

1

(y2 + y + δ)2
+ y (2.4.9)

Transferring and multiplying by denominators we have

(x + y)(((x2 + x + δ)(y2 + y + δ))2

= (x2 + x + δ + y2 + y + δ)2

(x + y)((x2 + x)(y2 + y) + δ(x2 + x + y2 + y) + δ2)2

= (x2 + y2 + x + y)2

Substituting u = (x + y) and v = xy, we have following equation.

u(v(u + v + 1) + δ(u2 + u) + δ2)2 = (u2 + u)2 (2.4.10)

Raising both sides by 2m−1 we have

v2 + (u + 1)v + δ(u2 + u) + δ2 + (u2 + u)/u2m−1

= 0 (2.4.11)

Now if, u = 1,v = δ, then Tr(v/u2) = 1. This means that the polynomial (z2 + uz + v)

has no solution in F2m . This is a contradiction since x, y are assumed to be two roots

of this polynomial. So, u 6= 1.

Assume u 6= 0. Then, the equation 2.4.11 has a solution for v only if following is true

Tr(
δ(u2 + u) + δ2 + (u2 + u)/u2m−1

(u + 1)2
) = 0 (2.4.12)
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However, we have by trace calculations,

Tr(
δ(u2 + u) + δ2 + (u2 + u)/u2m−1

(u + 1)2
) = Tr(

δu

u + 1
+

δ

u + 1
+

u

(u + 1)u2m−1 )

= Tr(δ +
u2

(u + 1)2u
)

= 1 + Tr(
u2

(u + 1)2u
)

= 1 + Tr(
1

u + 1
+

1

(u + 1)2
)

= 1

Hence, u = 0. So, x = y. This ends the proof.

We shall now proceed towards the next section of the chapter.

2.5 Polynomials when m is odd

Suppose m is an odd integer. Then we can provide a class, due to [5] of permutation

polynomials. Let k and m be two positive integers. We know 2k + 1 and 2m − 1 are

coprime if and only if m
gcd(k,m)

is odd [1].

Theorem 2.5.1. Let δ be trace 1 element of F2m and let m
gcd(k,m)

be an odd number.

Then f(x) = (x2k
+ x + δ)k′ + x is a permutation polynomial whenever k′(2k +

1) ≡ 1 mod (2m − 1).

Proof. 2k + 1 and 2m − 1 are coprime. Then raising the power to (2k + 1) on both

sides of the following equation:
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(x2k

+ x + δ)k′(2k+1) = (c + x)2k+1, c ∈ F2m

(x2k

+ x + δ) = (c + x)2k+1

It suffices to show that above equation does not have more than one solutions. Re-

formulating the equations as follows:

x2k

+ x + δ + x2k+1 + cx2k

+ c2k

x + c2k+1 = 0 (2.5.1)

x2k+1 + (c + 1)x2k

+ (c + 1)2k

x + c2k+1 + δ = 0 (2.5.2)

(x + c + 1)2k+1 + (c2k+1 + c2k

+ c + 1 + δ) = 0 (2.5.3)

(x + c + 1)2k+1 = d (2.5.4)

Since (2k + 1) is coprime to (2m−1),then above equation is a permutation polynomial.

Hence it has a unique solution. This completes the proof.

For values of s marked as c polynomials correspond to the polynomials of above

class with k = 1. Hence those values are explained by this class.

2.6 Polynomials when m is even

In case m is an even integer, this section discusses 3 classes of permutation polyno-

mials on F2m . Two of these are of the type studied in [2] and one is different. We

shall start by following theorem due to [5].
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Theorem 2.6.1. For an even integer m and trace 1 element δ the polynomial (x2 +

x + δ)s + x2m/2+1
where s = 2m/2 − 1 is a permutation polynomial over F2m.

Proof. It suffices to show that the equation:

(x2 + x + δ)2m/2 −1 = (x2m/2+1

+ d) (2.6.1)

has a unique solution for d ∈ F2m .

Substituting x2m/2
= z we have:

z2 + z + δ2m/2

= (z2 + d)(x2 + x + δ) (2.6.2)

Raising both sides by 2m/2, we get

(x2 + x + δ) = (x2 + d2m/2

)(z2 + z + δ2m/2

) (2.6.3)

Multiplying 2.6.2 and 2.6.3 we have

(z2 + d)(x2 + d2m/2

) = 1 (2.6.4)

From 2.6.3 and 2.6.4

z2 + z + δ2m/2

=
(x2 + x + δ)

(x2 + d2m/2)
(2.6.5)

z =
(x2 + x + δ + 1)

(x2 + d2m/2)
+ δ2m/2

+ d (2.6.6)

d(x2 + d2m/2
) + 1

x2 + d2m/2
= [

(x2 + x + δ + 1) + (x2 + d2m/2
)(δ2m/2

+ d)

(x2 + d2m/2)
]2(2.6.7)
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Taking all the powers of x together we obtain

x4 =
δ2 + 1 + δ2m/2+1

d2m/2+1
+ d2d2m/2+1

+ dd2m/2+1
+ δ2m/2

1 + δ2m/2+1 + d2 + d
(2.6.8)

Now Tr(1 + δ2m/2+1
+ d2 + d) = Tr(δ) = 1 because Tr(1) = 0 as m is even.

Hence, (1 + δ2m/2+1
+ d2 + d) 6= 0 and x4 is properly defined. Since monomial x4 is

a permutation polynomial, we have unique solution for x. This completes the proof

of the theorem.

The values of s marked with d correspond to polynomials of this class. The corollary

of this polynomial provides a different class altogether which is not similar to one

discussed in [2].

We shall now detail another class of polynomials as a corollary to above theorem.

Corollary 2.6.2. If m is even and δ is a trace one element of F2m, then

(1 + δ2 + x2m/2
+ δ2m/2+1

x2m/2+1
+ x2m/2+1+1 + x2m/2+1+2)(1 + δ2m/2+1

+ x + x2)2m−2 is

a permutation polynomial of F2m.

Proof. From theorem2.6.1 we have

x4 =
δ2 + 1 + δ2m/2+1

d2m/2+1
+ d2d2m/2+1

+ dd2m/2+1
+ δ2m/2

1 + δ2m/2+1 + d2 + d
= g(d) (2.6.9)

We shall show that g is an injective map from F2m to F2m . Suppose for d1, d2 ∈ F2m ,

we have g(d1) = g(d2). Since we have unique values of x for each d,hence let

f(xi) = di. So x4
1 = x4

2 implying that x1 = x2 as x4 is a permutation polyno-

mial. This means d1 = d2. Hence the map is injective. Since the injective mapping

is on same fields hence it has to be a permutation. This completes the proof.
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This is a polynomial of different structure than the one we are dealing with. Ob-

viously, there are no values of s which correspond to this class of polynomial in the

table. We shall now describe another class of polynomials which is similar to the

ones we are discussing in the thesis. This polynomial class is in the case when m is

divisible by 4.

Theorem 2.6.3. Let m be divisible by 4 and δ be an element with trace 1 in F2m.

Then h(x) = (x2 + x + δ)(2m+1−2m/2−1)/3 + x is a permutation polynomial over F2m.

Proof. It suffices to show that h(x) = d has a unique solution for all d ∈ F2m . Since

m is divisible by 4 hence m/2 + 1 and m are coprime. Then 2m/2+1 − 1 and 2m − 1

are also coprime [1].

Consider the expression (2m+1−2m/2−1)(2m/2+1−1)
3

. We now have

(2m+1 − 2m/2 − 1)(2m/2+1 − 1)

3
− (2m/2 − 1) (2.6.10)

=
(2m+1 − 2m/2 − 1)(2m/2+1 − 1)− 3(2m/2 − 1)

3
(2.6.11)

=
23m/2+2 − 2m+1 − 2m/2+1 − 2m+1 + 2m/2 − 2m/2+1 − 2m/2 + 4

3
(2.6.12)

=
23m/2+2 − 2m+2 − 2m/2+2 + 4

3
(2.6.13)

=
4(2m/2 − 1)

3
(2m − 1) (2.6.14)

Since m is even hence 3 divides (2m/2 − 1). Therefore

(2m+1 − 2m/2 − 1)(2m/2+1 − 1)

3
− (2m/2 − 1) = 0mod(2m − 1)
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(2m+1−2m/2−1)(2m/2+1−1)
3

= (2m/2 − 1) mod(2m − 1).

Now raising both sides of the equation h(x) = d by (2m/2+1 − 1) we have following

equivalent equation.

(x2 + x + δ)2m/2−1 = (x + d)2m/2+1−1 (2.6.15)

Since Tr(δ) = 1, hence d 6= x. Substituting z = x2m/2
,we have following equations

(z2 + z + δ2m/2

)(x + d) = (z2 + d2m/2+1)(x2 + x + δ) (2.6.16)

Raising the power by 2m/2 on both sides, we get

(z + d2m/2

)(x2 + x + δ) = (z2 + z + δ2m/2

)(x2 + d2) (2.6.17)

Multiplying 2.6.16 and 2.6.17,

(x + d)(z + d2m/2

) = 1 (2.6.18)

z =
1

x + d
+ d2m/2

(2.6.19)

Combining this result with2.6.16 we get,

z2 +
1

x + d
+ d2m/2

+ δ2m/2

=
(x2 + x + δ)

x2 + d2

1

(x + d)3
(2.6.20)

Transferring terms to right hand side, we have

z2 =
x + δ + d2 + (d2m/2

+ δ2m/2
)(x + d)3

(x + d)3
(2.6.21)

Combining 2.6.21 with the value of z obtained above, we get

x + δ + d2 + (d2m/2
+ δ2m/2

)(x + d)3

(x + d)3
=

(d2m/2
x + d2m/2

d + 1)2

(x + d)2
(2.6.22)
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Above equation is equivalent to following

(d2m/2

+ d2m/2+1

+ δ2m/2

)(x + d)3 = (d2 + d + δ) (2.6.23)

Putting z = (x + d) the equation obtained is

y3 = (d2m/2

+ d2m/2+1

+ δ2m/2

)2m/2−1 (2.6.24)

Since 3 divides 2m/2 − 1 the possible solutions of this equation are (d2m/2
+ d2m/2+1

+

δ2m/2
)(2m/2−1)/3ωi where ω is a cube root of unity and i = 0, 1, 2.

Assume that there are two possible solutions yiand yj. But we know that y.y2m/2
= 1.

Hence, y2m/2+1
i = y2m/2+1

j = 1. This implies that ω2m/2+1 = 1.

This however is not possible as 2m/2 + 1 is not divisible by 3. Hence, there can atmost

be one yi satisfying the condition. This argument completes the proof.

In the table the values marked by e correspond to this class of permutation poly-

nomial.

2.7 Conclusion

This chapter presented some classes of permutation polynomial over F2m . However it

is observed that there are 2 pairs of (m, s) values which do not correspond to any of

the classes described above. They are (5, 14) and (6, 5).

It is interesting to note that in case of m being even but not divisible by 4 we have

(2m/2±1 + 1) coprime to (2m − 1). Hence an argument on the lines of 2.6.3 was tried

in the case of (6, 5). More insight in this matter might be obtained if we have the
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values of s for higher values of m, preferably m = 10. It is interesting to find out if

these values correspond to a new class of permutation polynomial.



Chapter 3

Permutation Polynomials over F3m

3.1 Introduction

J.Yuan et al [6], considered the cases where the polynomial p(x) = (x3 − x + δ)s + x, Tr(δ) 6= 0

is a permutation polynomial over the field F3m . The motivation for this work was the

finding that over F3m , the map

x → x − 1/x − 1/x3 is injective

This chapter is a review of the results obtained by them and a discussion of those

results have been provided. The method adopted is similar to the one in previous

chapter. A number of values of s such that 2 ≤ s ≤ 3m − 2 such that p(x) is

permutation polynomial are obtained by means of a MATLAB computer program.

These values are given in the table 3.1 in section 3.2.

Afterwards theoretical explanations for the classification of these polynomials are pro-

vided in subsequent sections. This chapter contains 3 special classes of permutation

polynomials, besides the linearized polynomials.

23
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3.2 Computed values of s for different m

As in previous chapter, using a MATLAB program, designed for calculations over

general odd prime finite fields, following values of s were obtained such that (x3 −
x + δ)s + x is a permutation polynomial over F3m . The values of interest are of

course those lying in between 2 and 3m − 2.

Table 3.1: Values of s for which (x3 − x + δ)s + x permutes F3m

m minimal polynomial δ s
3 x3 − x + 1 α2 3a , 9a , 11, 13d, 16, 21c, 24, 25b

4 x4 − x3 − 1 α 9a , 30 , 40d , 79b

5 x5 − x + 1 α4 3a , 9a , 27a , 81a , 97c , 121d, 241b

6 x6 − x4 + x2 − x− 1 α2 9a, 81a, 364d, 727b

The values of s given in the table above are marked with letters indicating the sec-

tion where the explanation of their permutation nature is provided. Corresponding

to these values, subsequent sections contain proofs of these permutations.

3.3 Linearized permutation polynomial

As in previous chapter, first and foremost, we shall provide the values s which corre-

spond to linearized polynomials over the field F3m .

The values of s in the table marked with a are powers of 3 each of which give a

linearized polynomial of the type:

x3k + 1 − x3k
+ x + δ3k
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A computer program given was used to verify if these linearized polynomials are also

permutation polynomials under the condition of Theorem 1.4.2.

This covers values of s marked with a. We shall now proceed to some other classes

of permutation polynomials.

3.4 Polynomials with s = − 1

In this section, we discuss an important class of permutation polynomials over F3m

namely p(x), s = − 1. The polynomial then reduces to 1
(x3 − x + δ)

+ x.

We shall now show that the equation

1

(x3 − x + δ)
+ x = a : a ∈ F3m (3.4.1)

has a unique solution. This shall be proved by following theorem.

Theorem 3.4.1. Let δ ∈ F3m have non zero trace.Then the polynomial 1
(x3 − x + δ)

+ x

is a permutation polynomial over F3m.

Proof. We shall prove that 3.4.1 has at most one solution for all a. Rearranging 3.4.1

as:

(x3 − x + δ)(x − a) + 1 = 0 (3.4.2)

Putting (x− a) as y, we have following equivalent equation:

y4 − y2 + (δ − (a3 − a))y + 1 = 0 (3.4.3)
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Let b = (δ − (a3 − a)).Then Tr(b) = Tr(δ) 6= 0. Now we shall assume that

above equation has 2 solutions,z and (z+d). Then we have following set of equations:

z4 − z2 + bz + 1 = 0 (3.4.4)

(z + d)4 − (z + d)2 + b(z + d) + 1 = 0 (3.4.5)

Consider equation 3.4.5. It is equal to:

(z4 − z2 + bz + 1) + d(z3 + (d2 + 1)z + d3 − d + b) = 0 (3.4.6)

This reduces to

z3 + (d2 + 1)z + d3 − d + b = 0 (3.4.7)

From above it follows that d 6= 0 and d2 6= 1 since it would force Tr(b) = 0.

Multiplying 3.4.7 by z and then subtracting 3.4.4 from it we get:

(d2 − 1)z2 + d(d2 − 1)z − 1 = 0. (3.4.8)

Dividing by z2 throughout,we then have

1

z2
+ 2d(d2 − 1)

1

z
− (d2 − 1) = 0

(1/z + (d3 − d))2 = (d2 − 1)(d2 + 1)2

This means that (d2 − 1) = β2 for some β ∈ F3m . Then
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(d2 − 1)(d2 + 1)2 = β2(β2 + 2)2

= β2(β2 − 1)2 = (β3 − β)2

Hence 1/z = ± (β3 − β) + (d3 − d). This means that the Tr(1/z) = 0. But

Tr(b) = Tr(−z3 + z + 1/z) = Tr(1/z) 6= 0. Hence we get a contradiction. So,

our assumption that there are 2 solutions is wrong. This completes the proof of the

theorem.

The class of permutation polynomials described above covers all the values that

are marked with b in the table.

3.5 Polynomials with odd m

For certain odd integer values of m we obtain classes of permutation polynomials in

which s is expressed as a function of m. It can be seen that the polynomial might be

reduced to some known classes of basic permutation polynomials, in this case Dick-

son’s polynomial of appropriate degree.

In this section we discuss two such classes of permutation polynomials over F3m . The

result, illustrated in subsequent theorem is due to Yuan et al [6].

Theorem 3.5.1. Let b ∈ F3m. If m ≡ 3 mod 4 then let s = 4.(3m−1)+1
5

and if

m ≡ 1 mod 4 let s = 2(3m−1)+1
5

. Then the polynomial (x3 − x + δ)s + x when δ

is an element with non zero trace in F3m is a permutation polynomial.
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Proof. We have following results:

when m ≡ 3 mod 4 then 4.(3m−1)+1
5

= 5−1mod(3m−1). Similarly, when m ≡ 1 mod 4

then 2.(3m−1)+1
5

= 5−1mod(3m − 1).

In either case the polynomial reduces to (x3 − x + δ)5−1
+ x. It suffices to prove

that following equation has unique solution in F3m .

(x3 − x + δ)5−1

+ x = a, a ∈ F3m (3.5.1)

Since m is odd, 3m − 1 is coprime to 5. Hence

(x3 − x + δ) = (a − x)5, a ∈ F3m (3.5.2)

Replacing (a− x) by y, we have

((a− y)3 − (a− y) + δ) = y5 (3.5.3)

y5 + y3 − y = a3 − a + δ (3.5.4)

Above polynomial is a Dickson’s polynomial of degree 5 [4]. Since 5 is coprime to

(32m − 1), it is also a permutation polynomial, by theorem 1.4.3. This ends the

proof of the theorem.

The values of s in table marked with c are the ones which lie in this class of

permutation polynomials. A similar approach is taken to create classes for higher

prime fields in next chapter. A analogous result however doesn’t exist for even values

of m.
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3.6 A special class of permutation polynomials

In this section, a general class of permutation polynomial is obtained which is based

on the property of L(x) a linearized polynomial being a linear operator of F3m taken

as a vector space over base field.

We shall prove a theorem below and then see that a polynomial of kind we have

considered satisfies the condition of the theorem.

Theorem 3.6.1. Let h(x) be a function defined over Fpm. Let L(x) be a linearized

polynomial over Fpm such that for any a, b ∈ Fpm, we have h(a) − h(b) ∈ ker(L)

= {x ∈ Fpm|L(x) = 0}. Then f(x) = h(L(x) + c) + x is a permutation

polynomial of Fpm for any c ∈ Fpm.

Proof. Assume there exist x, y ∈ Fpm such that f(x) = f(y). Then we have

x − y = h(L(y) + c) − h(L(x) + c) ∈ ker(L). So L(x) = L(y), which in turn

implies x − y = h(L(y) + c) − h(L(x) + c) = 0. Hence f is a permutation

over Fpm . This completes the proof of the theorem.

We shall now use above theorem to prove certain polynomials to be permutation

polynomials. Now assume s = (3m − 1)
2

. Then 3s ≡ s mod (3m − 1). Also

consider the function h(x) = xs and L(x) = x3−x. Under these conditions assume

h(a) − h(b) = x. We see that
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L(x) = L(as − bs)

= (as − bs)3 − (as − bs)

= (a3s − b3s) − (as − bs)

= (as − bs) − (as − bs)

= 0

Hence, h(x) satisfies the conditions of the theorem. So, f(x) = (x3 − x + δ)s + x

is a permutation polynomial when s = (3m − 1)
2

. The values of s in the table marked

d are the ones which fall under this class.

It is to be mentioned that an alternative proof for these polynomials has also been

provided which creates a class that includes these polynomials also. We shall mention

in detail that proof in next chapter.

3.7 Conclusion

This chapter is a detailed survey of known classes of permutation polynomial of the

type p(x) = (x3 − x + δ)s + x, Tr(δ) 6= 0 over the field F3m . Most of

the results included in this chapter are due to Yuan et al [6]. However, we have

tried to reconstruct the proofs in section 3.4 and 3.6 in a more comprehensible way.

Especially, we have not resorted to the arguments using quadratic residues in section

3.6 but presented a more neat calculation based proof.

It is observed that certain values of s still need to be classified from the table. It

would be interesting to find if they give rise to any new classes of polynomials.



31

Few ideas from this chapter are continued to next one in obtaining some new classes

of permutation polynomials.



Chapter 4

New classes of Permutation

Polynomials over F5m

4.1 Introduction

The results discussed in previous chapters provide a motivation to search for simi-

lar results in the case of finite fields with base prime 5. In this chapter, we shall

embark upon similar methods of searching computationally, the existence of permu-

tation polynomials over field F5m .

Our interest is in the values s such that 2 ≤ s ≤ 5m−2 and (x5−x + δ)s + x is a

permutation polynomial over F5m for δ an element of F5m with non-zero trace. Using

the computer program, which was used in previous chapter, various such values are

obtained for different values of m. These values are listed in the table 4.1 given in

the section 4.2.

This chapter contains certain new classes of permutation polynomials, which explains

various values of s obtained. Some of the values are as yet not classified while a few
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can be shown to belong to no class but to be default values for permutation polyno-

mial. All of these values have been accordingly discussed.

Additionally, to obtain a better perception of classes of permutation polynomials over

F5m and to avoid computational limitations, the values of s have also been obtained

for the m = 2.

4.2 Computed values of s for different m

As in previous chapter, using a MATLAB program, designed for calculations over

general odd prime finite fields, following values of s are obtained such that (x5 −
x + δ)s + x is a permutation polynomial over F5m . The values of interest are of

course those lying in between 2 and 5m − 2.

Table 4.1: Values of s for which (x5 − x + δ)s + x permutes F5m

m minimal polynomial δ s
2 2x2 + x + 1 α0 2b , 3 , 5a, 6c, 12c, 18c, 19
3 2x3 + 3x2 + 1 α0 5a , 21 , 25a , 31c , 62c , 67 , 83d , 93c

4 2x4 + 2x3 + x2 + 1 α0 5a , 26 , 156c , 312c , 468c

The values of s given in the table above are marked with letters indicating the sec-

tion where the explanation of their permutation nature is provided. Corresponding

to them, subsequent sections contain explanations for these values.
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4.3 Linearized permutation polynomials

As in previous chapters, first and foremost, we shall provide the values s which cor-

respond to linearized polynomials over the field F5m .

The values of s in the table marked with a are powers of 5 each of which give a

linearized polynomial of the type:

x5k + 1 − x5k
+ x + δ5k

A MATLAB computer program can check if these linearized polynomials are also per-

mutation polynomials under the condition of theorem 1.4.2. It turns out that these

are the only values which give linearized permutation polynomials.

This covers values of s marked with a.

4.4 Nature of (xp − x + δ)2 + x

In this section, we shall prove that (xp − x + δ)2 + x is always a permutation

polynomial over field Fp2 . We start by stating the following lemma.

Lemma 4.4.1. Polynomial (xp − x + δ)2 + x over the finite field Fp2 , δ is an

element of the field with non-zero trace, is a permutation polynomial

Proof. The polynomial (xp − x + δ)2 + x over the finite field Fp2 is a permutation

polynomial if and only if following equation has only one solution.

(xp − x + δ)2 + x = d (4.4.1)

for some d, element of the field Fp2 .
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This means,

(xp − x + δ)2 = (d − x) (4.4.2)

has only one solution. Raising both sides to the power of p since p is coprime to

p2 − 1, the resultant is still a permutation polynomial. Hence,

(xp − x + δ)2p = (d− x)p (4.4.3)

(xp2 − xp + δp)2 = (d− x)p (4.4.4)

(x − xp + δp)2 = (d− x)p (4.4.5)

has only one solution.

Substituting (d− x) = y we get;

[dp − d + δ − (yp − y)]2 = y (4.4.6)

(c1 − (yp − y))2 = y (4.4.7)

in place of 4.4.2 and

[dp − d − δp − (yp − y)]2 = yp (4.4.8)

(c2 − (yp − y))2 = yp (4.4.9)

in place of 4.4.5.

Substituting (yp − y) = z and substracting 4.4.7 from 4.4.9, we get;

(c1 − z)2 − (c2 − z)2 = z (4.4.10)

(c1 − c2)(c1 + c2 − 2z) = z (4.4.11)

(1 + 2(c1 − c2))z = c2
1 − c2

2 (4.4.12)

z =
c2
1 − c2

2

1 + 2(c1 − c2)
(4.4.13)
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Substituting this value of (yp − y) = z in 4.4.7, we get

y = [c1 +
c2
1 − c2

2

1 + 2(c1 − c2)
]2 (4.4.14)

Since, all the quantities on right hand of the equation are constants, it is clear that

for some unique d, value of y and hence x is unique. This proves that the polynomial

(xp − x + δ)2 + x over the finite field Fp2 , δ is an element of the field with non-zero

trace, is a permutation polynomial.

Values of s in the table that are marked b are explained in this section. Since this

proof does not take into account the base prime of the finite field hence it is evidently

true for all finite fields.

Next section deals with a another class of polynomials which again is not dependent

upon the base prime of the field.

4.5 Polynomials with s = k(pm − 1)
p − 1 over Fpm

If the polynomial (x5 − x + δ)s + x with δ an element of F5m with non-zero trace,

is such that s = k(5m − 1)
4

, k = 0, 1, 2, 3, then it is possible to establish their

permutation property under the following general theorem.

The result makes use of following lemma about elements of finite fields.

Lemma 4.5.1. Let x be an element of finite field Fpm. Then xs = xps, where

s = k(pm − 1)
p − 1

,k ∈ [0, 1, 2, ..., p− 2].
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Proof. The proof requires nothing more than a restructuring of the expression for s.

ps =
(pm − 1)(p − 1 + 1)k

p− 1

ps = k(pm − 1) +
(pm − 1)k

p− 1

Hence, it follows,

xps = xk(pm − 1).x
(pm − 1)k

p−1

xps = 1.xs

This proves the lemma.

We shall now state the main theorem and provide a proof for the same.

Theorem 4.5.2. If s = k(pm − 1)
p − 1

and δ is an element of the field Fpm with its trace

non zero, then the polynomial (xp − x + δ)s + x is a permutation polynomial over

the same finite field.

Proof. Given polynomial is a permutation polynomial if and only if the following

equation has not more than single solution in the given finite field.

[xp − x + δ]s + x = d (4.5.1)

for some element d in the field.

Transferring x to left hand side and substituting (d − x) = y we get following

equation

[dp − d + δ − (yp − y)]s = y (4.5.2)
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Raising on both sides to power of p, since p is coprime to (pm − 1) we get following,

[dp − d + δ − (yp − y)]ps = yp (4.5.3)

From Lemma 4.5.1 and eqn 4.5.2, we get yp = y.

This means that (y(p − 1) − 1)(y) = 0. However, if y = (d − x) = 0, then

polynomial [xp − x + δ] must have a root in the field. However, this polynomial is

irreducible for all values of p as Tr(δ) is non zero.

So we can conclude that, y(p − 1) − 1 = 0.

Only possible solutions of this equation are

y = α
i(pm − 1)

p − 1 ; i = 0, 1, 2, .., (p − 1)

where α is a primitive element of the field. Putting back x = d − α
i(pm − 1)

p − 1 in

eqn.4.5.1, we get the following

[dp − d + δ − (α
ip(pm − 1)

p − 1 − α
i(pm − 1)

p − 1 )] = α
i(pm − 1)

p − 1

By Lemma 4.5.1

α
pi(pm − 1)

p − 1 = α
i(pm − 1)

p − 1

hence we have

[dp − d + δ] = α
i(pm − 1)

p − 1

Since, the right hand side is a constant, it means for a given d, there can be only one

possible value of i that can be chosen. Hence, eqn 4.5.1 has at most a single solution.

So the polynomial is a permutation polynomial.

It must be stated that choosing different values of k we can have p − 2 different

values of s, excluding the obvious choices of 0 and p − 1, which give rise to permu-

tation polynomials over finite fields. The values of s in the table that are marked c
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are covered under this class of polynomials.

Also it is notable that in previous chapters certain polynomials fall under this class

besides their given classification. However, for prime p = 2, class is trivial. Under

p = 3, this class explains single polynomials for each value of m which are explained

otherwise.

The size of this class however increases with the value of base prime and as such

it is a simple but important class of polynomials.

In the next section we discuss an important class of permutation polynomial based

on the nature of m.

4.6 Permutation polynomial over F52k+1

In previous chapters we observed that if we know whether m is an odd or even number,

we can provide certain expressions for s in terms of p and m such that the resultant

polynomial is a permutation polynomial. Many such classes of polynomials have been

discussed previously.

In this section, we provide such a class of permutation polynomial for the case when

m is an odd integer.

Theorem 4.6.1. Let m = 2k + 1 be an odd integer. Then for s = 2.5m − 1
3

the

polynomial (x5 − x + δ)s + x is a permutation polynomial over F5m.

Proof. Consider s = 2.5m − 1
3

. Then;
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3s = 2(5m − 1) + 1 = 1mod(5m − 1)

s =
1

3
mod(5m − 1)

For odd m 3 is coprime to (5m − 1). We need to show that the equation (x5 −
x + δ)s + x = d has atmost a single solution in the given finite field, in order to

show that it is a permutation polynomial.

Taking the equation and raising both sides to power of 3, we get;

(x5 − x + δ)1/3 = (d − x) (4.6.1)

(x5 − x + δ) = (d − x)3 (4.6.2)

Taking (x − d) = y we obtain following;

y5 − y + d5 − d + δ = −y3 (4.6.3)

y5 + y3 − y = d − d5 − δ = b (4.6.4)

Above polynomial, as in previous chapter is, a Dickson’s polynomial. Since 5 is

coprime to 52m − 1, it is also a permutation polynomial by theorem 1.4.3. Hence

given polynomial permutes the elements of the finite field.

In the table the values marked as d are covered by this class.

4.7 Conclusion

This chapter includes some novel and as yet unknown classes of permutation polyno-

mials. It can, however, be observed that still some values obtained computationally,
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don’t fall under any of these classes.

We also saw that it is possible for one polynomial to be the only representative of

its class. Consequently, it would be a matter of further inquiry as to whether the

remaining values of the s in the table give rise to any new class of polynomials or is

the lone member of its own class.

In case of the section 4.5, we observed that the key step was establishing the fact

that xp − x is independent of x and is a constant. Hopefully, this could be an useful

technique for further research in this area.



Appendix

4.8 Used MATLAB Programs

1.For even prime

m = input(’m=’)
for i= 2:2^m-1

x = gf(i,m);
sum = gf(0,m);
for k = 0:m-1

sum = sum + x^(2^k);
end
if (sum == 1)

delta = x;
break

end
end
delta

p = 1;
for s = 0:2^m-1

for n = 1:2^m
c(n)= 0;

end
for i= 0:2^m-1

x = gf(i,m);
d = (x^2 + x + delta)^s;
o_poly = 1/d + x;

for j = 0:2^m-1
if (o_poly == gf(j,m))

c(j+1)= c(j+1)+1;
end

end
end
l= 0;
for k = 1:2^m

if (c(k)==1)
l= l+1;

end
end
if (l==2^m)

s_array(p) = s;
p = p+1;

42
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end
end
s_array

2.For odd primes

clear all
clc

p = input(’prime=’);
m = input(’index=’);
field = gftuple([-1:p^m-2]’,m,p);
prim_poly = gfprimdf(m,p)

for i = -1:p^m-2
trace = i;
for j = 1:m-1

x = gfmul(i,i,field);
for k = 1:p^j-2

x = gfmul(x,i,field);
end
trace = gfadd(trace,x,field);

end
if(trace > 0)

d = i;
break

end
end
d
t = 1;
%s = input(’s=’);
for s = 2:p^m-2
k = 1;
for i = -1:p^m-2

x = gfmul(i,i,field);
for mu = 1:p-2
x = gfmul(x,i,field);
end
y = gfsub(x,i,field);
z = gfadd(y,d,field);
w = gfmul(z,z,field);
for j = 1:s-2

w = gfmul(w,z,field);
end
poly(k) = gfadd(w,i,field);
k = k+1;

end
poly;
r = 0;
for k = 1:p^m

for j = 1:p^m
if (poly(k)== poly(j) & k~=j)

break
else

r = r+1;
end

end
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end
if (r == p^(2*m))

s_array(t)= s;
t = t+1;
%’yes’

end
end
s_array
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