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Abstract

Currently Quantum computer are expected to be biggest threat in public key cryp-
tography. My thesis work is about study and practical implementation of the
code based cryptosystem. This thesis is inspired by the research work done by
Dr. Bhaskar Biswas during his ph.d. at INRIA, Paris. Here we have discussed
the improvised version of Mc’Eliece Cryptosystem. Improvised version is known as
HYMES( Hybrid McEliece Encription Scheme). Thesis is divided in three parts:
Theory, Implementation and Further Research work. Theory parts cover the math-
ematical background behind this cryptosystem and also study of the original code
based crypto-schemes. Implementation of the project is done in the ”C” program-
ming language, this part includes study of necessary pseudo codes. We have also
tried to make some new additions in Niederreiter Cryptosystem, these improvements
will help to make encryption and decryption faster than before. Hence we have given
a brief detail about these additions in Further Research Work.
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Introduction

Here we start with a brief introduction of Public Key Cryptography and Coding
Theory. For better understanding of coding theory we will also introduce basics of
Group Theory, Field Theory and Galois Theory. Later we will move to Public Key
Cryptography based on theory of error correction-detection code, emphasizing on
McEliece Cryptosystem and Niederriter Cryptosystem.

Public Key Cryptography

The data transferred from one system to another over public network can be pro-
tected by the method of encryption. In traditional cryptography, the sender and
receiver of a message know and use the same secret key; the sender uses the secret
key to encrypt the message, and the receiver uses the same secret key to decrypt
the message. This type of cryptosystem is called the Symmetric key cryptosystem.
Here main challenge is to distribute the key between sender and receiver so that no
one else come to know about the key. In this case both sender and receiver have to
agree for the key.

In order to solve the key management problem, Whitfield Diffie and Martin
Hellman introduced the concept of public-key cryptography in 1976 [6]. Public-key
cryptography is a cryptographic approach which involves the use of asymmetric key
algorithms instead of or in addition to symmetric key algorithms. This cryptosystem
doesn’t require initial key exchange problem or we some time call it key-management
problem. Security of this cryptosystem depends on the difficulties of prime factor-
ization, logarithmic problems and other algebraic problems.

Key generation is the most important part of the public key cryptosystem.
Key generation algorithm generates the two pairs of keys, one is used as a public
key and other is used as private key and it is computationally hard to calculate the
private key from the given pairs of public key.

Any public key cryptosystem consists of following three components
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1. Key generation scheme: This scheme generates pair of keys using the difficul-
ties of algebra and number theory. One pair is published for encryption by the
sender which is called public key and the second pair is used for decryption,
called private key.

2. Encryption function: The encryption function E(m,Kpublic), takes the message
m (as an integer) and public key to compute corresponding cipher text c.

3. Decryption function: The decryption function D(c,Kprivate), takes the cipher
text c (as an integer) and private key to regenerate corresponding plain text
m.

Some Public Key Cryptography schemes are listed below:

1. Diffie−Hellman key exchange protocol

2. ElGamal

3. RSA encryption algorithm

4. Merkle−Hellman knapsack cryptoshceme

5. DSS (Digital Signature Standard), which incorporates the Digital Signature
Algorithm

6. Various elliptic curve techniques

7. McEliece Cryptosystem

8. Niederriter Cryptosystem

There are many other PKC schemes but they are not widely used.

PKC based on coding theory

Currently known quantum computers are nowhere near powerful enough to attack
real crypto systems, many cryptographers are researching new algorithms, in case
quantum computing becomes a threat in the future. Hence the cryptosystem based
on the coding theory play an important role. It has a firm, well developed mathe-
matical background. This is also considered as Post-quantum cryptography scheme
(Schemes which are unbreakable using quantum computer also in polynomial time
using Shor’s algorithm[18]). In contrast, most current symmetric cryptography

6
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(symmetric ciphers and hash functions) is secure from quantum computers. Thus
post-quantum cryptography does not focus on symmetric algorithms.
Most of the previous work have been devoted to cryptanalysis and semantic se-
curity, but very few attempt have been made to examine implementation issues.
Implementing public key cryptosystem creates a compromise between security and
efficiency, this means to get the more security we need the large parameter hence less
efficiency. For that reason, cryptanalysis and implementation have to be considered
in unison.
Here we are going to discuss McEliece cryptosystem first. There have been many
modification to this cryptosystem and Niederreiter is one of its variant.
Regarding security, code based cryptosystems are more safer than other public key
cryptosystem. There many attacks have been made on McEliece cryptosystem but
most of them are decoding attacks.
Here we have divided our thesis in three parts. First part contains the Theory be-
hind cryptosystem used and second part contains the details of implementation.
In theory Chapter 1 contains the algebraic background needed for the implemen-
tation. This chapter is divided in different sections which contains the details of
different field of algebra and basic algorithms. In second chapter we will discuss
about coding theory. This chapter will contain some basic definitions and concepts
of coding theory. Third chapter will contain the details of McEliece and Niederri-
eter cryptosystem. In this chapter we had present The Hybrid McEliece Encription
Scheme(HYMES). This is an improved version of original McEliece cryptosystem.
Idea of HYMES was given by Biswas and Sendrier [4]. This new hybrid cryptosystem
has following two modifications:

• Increase the information rate by putting some data in error pattern

• Reduce the public key size by using reducible row-echelon form of the generator
matrix.

Biswas used “Constant weight encoding ”[17] method to encode the information
into error pattern. Here in my thesis we are not including this step. In my thesis
work I am generating the random error pattern as given in original cryptosystem.
Implementation of his work is given on the following weblink:
http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes
The Idea of McEliece system is to hide the structure of code by means of transforma-
tion of generator matrix. The transformed generator matrix becomes the public key
and the trapdoor information is the structure of goppa code together with the trans-
formation parameters. The security relies on the fact that the decoding problem for
general linear code is NP -complete.
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Theory
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Chapter 1

Algebraic Background

This chapter will cover the theoretical background, needed for the implementation
of code based cryptography scheme. Here we need a brief introduction of field theory
and Galois theory. We will start with definition of finite field, its basic properties,
then will move to field extension, its different representations and algorithms used
for the implementation. I have also briefly described basics of coding theory, the
error correcting codes and binary goppa codes with details, in next chapter.

1.1 Finite Fields

A field (F, +, ∗) is a set of elements, with two binary operations, “+”and “∗”, such
that it satisfies the following axioms.

1. F is a additive group(Closed under addition and there exist an identity 0F ,
and additive inverse ‘−a ’for all a ∈ F).

2. F− {0} is a multiplicative group(Closed under multiplication and there exist
identity ‘1F ’and a multiplicative inverse, ‘b’, for all a ∈ F, such that a ∗ b = 1,
here b is unique for every a) .

3. It follows the distributive property. a ∗ (b + c) = a ∗ b + a ∗ c holds for all
a, b, c ∈ F,

A field with finite number of elements is called finite field. Some important defini-
tions are as follows

Definition 1.1.1 (Characteristic):Characteristic of a field, is a smallest integer p,
s.t. p1F = 0, where 1F is multiplicative identity of the field. If no such p exist, the
characteristic is assumed to be 0.

11



12 CHAPTER 1. ALGEBRAIC BACKGROUND

Definition 1.1.2 (Prime Fields): For any prime p, Fp = Z/Zp, is called prime
field.

Definition 1.1.3 (Order): Order of field is the number of element in the field. For
any p prime a field always has the order equals to pm, for some integer m.

Definition 1.1.4 (Subfield): Any subset, of a field F, which satisfies the field ax-
ioms,with same operations, is called subfield.

Characteristic of field is either 0 or prime p. Field genetated by multiplicative
identity is called prime-subfield, which is isomorphic to Fp (characteristic p) or Q
(characteristic 0).

1.2 Field Extension

Later we are going to use this section extensively, hence we have to study this section
thoroughly.

Definition 1.2.1 If K is a field containing the subfield F , then K is said to be an
extension field, or extension of field F , denoted as K/F .

If K is a field with no subfield, then it is called prime field.

Definition 1.2.2 Primitive element of a finite field F is a generator of the multi-
plicative group of the field, which is necessarily cyclic.

Definition 1.2.3 The degree of field extension K/F is the demension of K as a
vector space over the field F . It is denoted by [K : F ]. Hence [K : F ]=dimF (K)

Theorem 1.2.4 If F is a finite field of cardinality q ≥ 2, then

1. q = pn, where p is some prime and n is any integer.

2. F is unique upto isomorphism.

Definition 1.2.5 If the field K is generated by a single element α over F , K =
F (α), then K is said to be a simple extension of F , and the element α is called
primitive element for the extension.
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Definition 1.2.6 Trace of any element α ∈ Fpm over the field Fp is defined by

TrFpm/F (α) = α + αp + ........+ αp
m−1

If K = F (α), then K ' F [x]

p(x)
, where p(x) ∈ F [x] is an irreducible polynomial of

degree [K : F ]. Hence every element of field K can be written in the form of a
polynomial of degree n, where n is degree of extension of field K over F .
More information about the primitive polynomial is given in the next section, which
help us to understand the properties of polynomial.

1.3 Polynomials

This section is very important part for our implementation work. Our main interest
is to disucss about the propertis of polynomials of finite degree.
Let R be a commutative ring with identity. The following expression

f(x) =
i=n∑
i=0

aix
i = a0 + a1x+ a2x

2 + ......+ anx
n

where n ≥ 0 , each coefficient ai ∈ R and x is called indeterminate over R. If n 6= 0,
then it is called degree of polynomial f(x). Set of all polynomials over any ring R
also forms a ring, which is denoted as R[x]. Properties of R[x] are following

1. R[x] is commutative if and only if R is commutative.

2. R[x] have identity similar to the R.

3. R[x] is an integral domain if and only if R is an integral domain.

If every element of R[x] have an inverse in R[x], then R[x] is itself a field. This
infact bring the notation of irreducible polynomial. We can define addition on the
elements of Fp[x]. If f(x) =

∑i=n
i=0 aix

i and g(x) =
∑i=m

i=0 bix
i are two polynomial in

Fp[x], then addition can be defined as follows

f(x) + g(x) =

i=max(m,n)∑
i=0

(ai + bi)x
i)

Addition of ai and bi is done modulo p, because they both are elements of field Fp.
Similarly we can also define the multiplication of two polynomial over Fp[x].
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f(x)g(x) =
k=m+n∑
k=0

(
∑
i+j=k

(aibj)x
k)

Definition 1.3.1 (Irreducible Polynomial) A polynomial p(x) ∈ Fp[x] is said to be
irreducible over field Fp if this polynomial doesn’t have any root in Fp or it can’t be
written as a product of two polynomial of Fp[x], which are not unit.

Definition 1.3.2 A primitive polynomial is a polynomial that generates all elements
of an extension field from a base field.

Theorem 1.3.3 For p(x) ∈ Fp[x],the residue class ring Fp[x]/p(x) is a field if and
only if p(x) is irreducible over Fp.

1.4 Vector Space

A vector space is a mathematical structure formed by a collection of vectors.

Definition 1.4.1 A vector space is a set V over a field F together with two binary
operators(‘+’and ‘.’) that satisfy axioms listed below. Elements of V are called
vectors. Elements of F are called scalars. Then V is a vector if ‘+’and ‘.’operators
satisfy the following axioms. If u, v, w ∈ V and a, b ∈ F

• (Group) V is a commutative group under addition(‘+’).

• (Distributivity) a.(v + w) = a.v + a.w and (a+ b).v = a.v + b.v.

• (Associativity) a.(b.v) = (a.b).v

F is called the scalar field of the vector V .

Definition 1.4.2 A subset S of V is called a set of linearly independent vectors if
an equation α1v1 +α2v2 + ..........+αnvn, with α1, α2, ....αn ∈ F and v1, v2, ....vn ∈ S
implies α1 = α2 = ... = αn = 0. Otherwise they are called linearly dependent.

Definition 1.4.3 A basis of a vector space V is an ordered set of linearly inde-
pendent vectors which spans V . In particular two bases will be considered different
if one is simply an arrangement of the other. This is sometimes referred to as an
ordered basis.
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Definition 1.4.4 If φ : V −→ U is a linear transformation of vector spaces over
F, ker(φ) is sometimes called null space of φ, and the dimension of ker (φ) is called
the nullity of φ. If ker φ = 0, the transformation is said to be nonsingular.

This theory part will help us a lot in implementing the code. We are going to
work on extension field Fpm over Fp, so using the representation of field elements will
help us in implementing the code. Most commonly we used to represent the field
element in the form of power of the primitive element. If α is a primitive element
of Fpm , then it can be written as

Fpm = {0, 1, α, α2, ......, αp
m−2}

Definition 1.4.5 In the field Fpm, there exits a β, such that

{β, βp, ......., βpm−1}

are linearly independent, where p is the characteristic of the field. Then this set
forms a normal basis for Fpm.

This basis is frequently used in cryptographic applications that are based on the
discrete logarithm problem such as elliptic curve cryptography. Hardware imple-
mentations of normal basis arithmetic typically have far less power consumption
than other bases.

Definition 1.4.6 A natural representation of finite field elements as polynomial
over a ground field is known as standard basis. It is also known as polynomial
basis. Let α ∈ Fpm be the root of a primitive polynomial of degree m over Fp. The
polynomial basis of Fpm is then

{1, α, ....., αm−1}

Thus every element of Fpm can be represent in the form of polynomial of degree
m− 1

a0 + a1α + a2α
2 + ............+ am−1α

m−1

where ai ∈ Fp. Every polynomial of above type can also be written as some power
of α using Zech’s Logarirthm [11]. Because of its simplicity standard basis represen-
tation has been widely used.
Similar to the linear algebra, concept of dual basis can be applied in context of finite
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extensions. A dual basis isn’t a concrete basis like the standard basis or the normal
basis ; rather it provides a way of using a second basis for computations. Consider
two basis set B1 and B2 in Fpm

B1 = α0, α1, ........., αm−1

and

B2 = β0, β1, ........., βm−1

then B2 can be consider as dual basis of B1, provided

Tr(αi.βj) = { 0, if i 6= j
1, otherwise

Using a dual basis can provide a way to easily communicate between devices that
use different bases, rather than having to explicitly convert between bases using the
change of bases formula. Furthermore, if a dual basis is implemented then conversion
from an element in the original basis to the dual basis can be accomplished with a
multiplication by the multiplicative identity.

Example(F23) F23 is an extension over F2(binary field), where degree of ex-
tension is 3. Choose p(x) = x3 + x+ 1 as a primitive irreducible polynomial. Let α
is a root of p(x). So we can represent F8 as

F8
∼=

F2[x]

x3 + x+ 1

F2[x], is a ring of polynomials over F2. Hence we can represent its element in order
form and in polynomial form as given below

0 0
α0 1
α1 α
α2 α2

α3 1 + α
α4 α + α2

α5 1 + α + α2

α6 1 + α2

Using the coefficient of the polynomial we can represent an element of the field
F8 as an m-tuple. Power reresentation helps us in mathematical framework, while
m− tuple representation helps in dealing with digital hardware.
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1.5 Matrices

Idea of matrices comes in the picture for solving the system of linear equation.
Moreover in linear algebra, a linear transformation of vector space can be com-
pletely determined by matrix. General vector spaces do not possess multiplication
operation.

Definition 1.5.1 (Algebra:) A vector space equipped with an additional bilinear
operator, defining the multiplication of two vectors is called an algebra over a field
F .

As we have already discussed in the section 1.4, that an extension field F2m can be
treated as vector space with the ground field F2 and whose dimension is m. We
get a matrix representation by choosing a basis and taking its linear transformation
with coefficients in the field F2m .
For a given polynomial p(x), A is its companion matrix [9] of size (deg(p) + 1) ×
(deg(p) + 1), we have p(A) = 0. The matrix A generates the cyclic group < A > of
order m− 1, which is isomorphic to multiplicative field F∗2m . Hence ring of matrices

F2[A] = {0, I, A,A2, ...., Am−2}

Which is also isomorphic to the extension field F2m over F.

Definition 1.5.2 (Row-Echlon Form:)In linear algebra a matrix is in row ech-
elon form if

• All nonzero rows (rows with at least one nonzero element) are above any rows
of all zeroes, and

• The leading coefficient (the first nonzero number from the left, also called the
pivot) of a nonzero row is always strictly to the right of the leading coefficient
of the row above it.

We have following example of row-echelon form of matrix1 a1 a2 a3
0 1 a4 a5
0 0 1 a6


A matrix is in reduced row echelon form (also called row canonical form) if every
leading coefficient is 1 and is the only nonzero entry in its column, like in this
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example: 1 0 0 b1
0 1 0 b2
0 0 1 b3


For implementing McEliece algorithm we need to have our generator matrix in
reduced row-echelon form, for that detailed algorithm we are going to discuss in
implementation chapter. We shall need to define the matrix multiplication as well.
Let α ∈ F2m , be a field element, hence we will consider the following statements

• Binary vector representation of field element α, size of the vector will be m.

• Polynomial representation of α. If α = α0α1.......αm−1,(αi ∈ {0, 1}), then its
polynomial representation p(x) =

∑m−1
i=0 αix

i

• Matrix representation

A.g(x) =


g(x)
xg(x) mod(p(x))

...
...

xm−1g(x) mod(p(x))


A is a non-singular binary matrix, where row shows the vector representation
of α.

1.6 Algorithms:

Here we are discussing those algorithm which would later help us in implementation.
Theoretical background needed for the algorithms we have already discussed in
previous sections. Algorithms are as follows

1.6.1 Gaussian Elimination

In linear algebra, Gaussian elimination is an algorithm for solving systems of linear
equations, finding the rank of a matrix, and calculating the inverse of an invert-
ible square matrix. Elementary row operations are used to reduce a matrix to row
echelon form. GaussJordan elimination, an extension of this algorithm, reduces the
matrix further to reduced row echelon form.
Gaussian elimination writes a given m × n matrix A uniquely as a product of an
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invertible m ×m matrix S and a row-echelon matrix T . Here, S is the product of
the matrices corresponding to the row operations performed. We will discuss about
the pseudo code of this algorithm in chapter implementation.
Row Echelon form of a matrix is not unique. Every non-zero matrix can be reduced
to many echelon forms using elementary matrix transformations. However, all ma-
trices and their row echelon forms correspond to exactly one matrix in reduced row
echelon form.
Gaussian elimination writes a given m × n matrix A uniquely as a product of an
invertible m ×m matrix S and a row-echelon matrix T . Here, S is the product of
the matrices corresponding to the row operations performed.

1.6.2 Euclidean Algorithm

The Euclidean algorithm calculates the greatest common divisor (GCD) of two in-
tegers a and b. Similar algorithm is also used for GCD of two polynomials. If there
are two polynomials p, q ∈ Fqm , then a polynomial of maximum degree which can
divide (without any remainder) both polynomial p and q is called greatest common
divisor of polynomials p and q. In mathematics, the Euclidean algorithm [5] (also
called Euclid’s algorithm) is an efficient method for computing the greatest common
divisor (GCD).
Let f&g are two polynomials in F2m [x], then we can use division algorithm to write

f = p ∗ g + r

where p and r are two polynomials in F2m [x], such that deg(r) ≤ deg(g) or r = 0.

• If r = 0, this implies f = g ∗ p, means f is divisible by g. Hence GCD(f, g) =
cg, where c ∈ F2m [x].

• If r 6= 0 then GCD(f, g) = GCD(g, r) (can easily be checked using basics of
number theory).

This step reduces the degree of polynomial involved, and so repeating the procedure
leads to the greatest common divisor of two polynomials in the finite number of
steps. GCD of g and f can be written as below:

GCD(g, f) = a.g + b.f

where a and b are two polynomials.
The extended Euclidean algorithm is an extension to the Euclidean algorithm for
finding the greatest common divisor (GCD) of polynomials f and g: it also finds
the polynomials a and b in F2m .
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1.6.3 Irreducibility Check

To check a polynomial is irreducible or not, we have to find its factors. If a polyno-
mial p(x) ∈ F2m [x] can’t be factorized in the field F2m [x] then polynomial p is called
irreducible in the field F2m [x].
A given polynomial p(x) ∈ F [x] has a factor of degree i if and only if, it has a com-
mon factor with x2

im − x. Hence, we can say that if ∀i ≤ deg(p(x))/2, GCD(p(x),
x2

im−x)=1, then p(x) is an irreducible polynomial in the field F2m . The polynomial
x2

im−x, has very much high degree to handle directly. Hence in place of computing
it directly we use an indirect method, where we calculate hj(x) = x2

j
mod(p(x)),

by successive squaring modulo(p(x)). Hence:

GCD(p(x), x2
im − x) = GCD(p(x), him(x)− x)

this step greatly simplifies the calculation.

1.6.4 Zech’s logarithm

Zech logarithms are also called Jacobi Logarithm. Zech’s logarithms are used with
finite fields to reduce a high-degree polynomial that is not in the field to an element
in the field (thus having a lower degree). Unlike the traditional logarithm, the Zech’s
logarithm of a polynomial provides an equivalence it does not alter the value.
Let α ∈ F2m is a primitive root of the polynomial f(x) over F2, then z(n) Zech’s
logarithm of integer n may be defined such that:

αz(n) = 1 + αn

This implies that z(n) = logα(1 + αn), if αn = −1, then zech’s logarithm is not
defined. Zech’s logarithms are also used when finite field elements are represented
exponentially. The produce of αa and αb, will be αa.αb = α(a+b) mod 2m−1. Here
addition not as easy as multiplication, addition will be as following(assume that
b ≥ a):

αa + αb = αa(1 + αb−a mod (2m−1)) = αa+z(b−a)

z(b− a) can be obtained from the zech’s log table [1]



Chapter 2

Coding Theory

Claude Shannons 1948 paper “A Mathematical Theory of Communication”gave
birth to the twin disciplines of information theory and coding theory. Coding theory
is the study of the properties of codes and their fitness for a specific application.
Codes are used for data compression, cryptography, error-correction and more re-
cently also for network coding. Codes are studied by various scientific disciplines,
such as information theory, electrical engineering, mathematics, and computer sci-
ence for the purpose of designing efficient and reliable data transmission methods.
This typically involves the removal of redundancy and the correction (or detection)
of errors in the transmitted data.
There are essentially two aspects to Coding theory:

2.1 Data compression (or, source coding)

The aim of source coding is to take the source data and make it smaller. Data
compression or source coding is the process of encoding information using fewer
bits (or other information-bearing units) than an decoded representation would use,
through use of specific encoding schemes.

2.2 Error correction (or, channel coding)

Here in this chapter our main interest is in discussing error correcting codes. The
aim of channel coding theory is to find codes which transmit quickly, contain many
valid codewords and can correct or at least detect many errors. Coding theory
with applications in computer science and telecommunication, error detection and
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correction or error control are techniques that enable reliable delivery of digital
data over unreliable communication channels. Many communication channel are
noisy, hence there is always a chance that error can introduce during transmission.
Error detection techniques allow detecting such errors, while error correction enables
reconstruction of the original data. We limit our attention to binary error correcting
block codes, where the “block”denotes fixed message size. Here two operations are
performed on a message:

• An encoder converts the message m into a codeword, and

• the decoder attempts to convert the received codeword into original message
m, where m is our fixed size binary message block.

The general idea for achieving error detection and correction is to add some re-
dundancy (i.e., some extra data) to a message, which receivers can use to check
consistency of the delivered message, and to recover data determined to be erro-
neous. For every scheme, detection of error is always greater than( or, equal to)
correction of errors. Each encoder/decoder scheme can handle a set of predefined
error conditions. Every scheme has certain limit of error correction and detection.
Error-detection and correction schemes can be of two types:

• Symmetric: In a symmetric scheme, the transmitter sends the original data,
and attaches a fixed number of check bits (or parity data), which are derived
from the data bits by some deterministic algorithm. If only error detection is
required, a receiver can simply apply the same algorithm to the received data
bits and compare its output with the received check bits; if the values do not
match, an error has occurred at some point during the transmission. Since
the receiver does not have to ask for retransmission of data, it is also called as
forward error correction (FEC) code.

• Non-symmetric: The original message is transformed into an encoded mes-
sage that has at least as many bits as the original message.

We are going to use following notation throughout the chapter for discussing error
correcting codes.

k Number of information or message bits

r Number of parity check bits

n code length n = r + k

u information bit vector, u0, u1, ..., uk−1
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p parity check bit vector, p0, p1, ..., pk−1

s syndrome vector, s0, s1, ..., sk−1

Definition 2.2.1 (Block Codes) A block code of size M over an alphabet with q
symbols is a set of M , q − array sequence of length n called codewords. If q = 2,
the symbols are bits and code is called binary.

Definition 2.2.2 (Hamming Weight) The Hamming weight of a string is the
number of symbols that are different from the zero-symbol of the alphabet used.

Definition 2.2.3 (Hamming distance)In information theory, the Hamming dis-
tance between two codewords of equal length is the number of positions at which the
corresponding symbols are different. If codewords are of finite length than hamming
distance will be of finite length too.

Definition 2.2.4 (Minimum distance) Given a code C, if d is the minimum of
hamming distances between all codewords, then d is called minimum distance and
denoted as d(C).

A code C can correct t errors if and only if d(C) ≥ 2t + 1. In this chapter we are
going to discuss linear codes in details because these codes are used in code based
cryptography. We will also discuss Goppa code, in detail because we are going to
use this code for implementation of our cryptosystem.

2.2.1 Linear code

A linear code is an error-correcting code for which any linear combination of code-
words is another codeword of the code. A linear code of length n and rank k is a
linear subspace C with dimension k of the vector space Fqn , where Fq is a finite field
with q elements. Any subspace of the field satisfy the property of linear codes. Such
a code with parameter q is called a q − ary code.

Definition 2.2.5 (Generator Matrix) Matrix formed by using all the basis vec-
tors of subspace C, is called generator matrix. If v1, v2, ..., vk is a basis for (n, k)
code C, then any codeword can be written as a linear combination of these basis
vectors. then generator matrix can be written as

v1
v2
:
:
vk
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A code is often represented by describing its generator matrix. To compute a gen-
erator matrix of a given code C of length n, first determine basis for the code as a
vector space over field Fq. Then put these vectors in the form of a k × n matrix,
where k is the dimension of vector space C over Fq.
For a code C ∈ Fqm , the code C⊥ = {x ∈ Fqm :

∑n
i=0 xici = 0; ∀ci ∈ C} is called

dual code of C.

Definition 2.2.6 (Parity Check Matrix) A parity check (H) matrix of a linear
code (C) is a generator matrix of its dual code (C⊥). Hence we have the relation
GHT = 0, where , G is the generator matrix of code C.

Definition 2.2.7 (Syndrome) Given the received vector y = c+e (c is a codeword
and e is error pattern) and a parity check matrix H, the syndrome of y is S = HyT .

Observe that,

S = HyT = H(c+ e)T = HcT +HeT = HeT

c is a codeword hence its syndrome will be equal to zero. i.e., the syndrome depends
only on the error pattern e and not the transmitted codeword c.

2.2.2 Decoding a linear code

Here we are going to discuss following two important decoding method for linear
codes:

Definition 2.2.8 (List Decoding) An algorithm which, for a given code C and a
received word y( a vector), outputs the list L(y|C, T ) of all codewords at distance T
apart

L(y|C, T ) = {c ∈ C : d(y, c) ≤ T}
is called a list decoding algorithm with decoding radius T

For a code C with minimum distance d, a list decoding with decoding radius T =
bd−1

2
c, is called bounded distance decoding. Note that in this case list L(y|C, T ), is

either empty or consist of single code vector.

Definition 2.2.9 (Maximum likelihood decoding) For a given code C if re-
ceived message vector is x ∈ C, then it gives the word which have least hamming
distance from y, means which is most likelihood word.

Definition 2.2.10 (Bounded Decoding) Bounded decoder is a probabilistic Tur-
ing machine, which takes as an input a matrix/syndrome pair and outputs a string
of binary elements
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2.3 Binary Goppa Code

Parameters needed for binary Goppa codes are m, n and t, where m is degree of
extension, n is length of the codeword and t is size of error which can be detected
and corrected by binary Goppa code. Our n should be less than equals to 2m and
t < n/m. In our implementation program we have used n = 2m. A binary Goppa
code is denoted as Γ(L, g). A binary Goppa code Γ(L, g), is defined by using a
support L and an irreducible monic polynomial g(z) of degree t, in F2m [z], called
generator. L is defined as an ordered subset {α1, α2, ...., αn} of F2m with cardinality
n. This code consists of all words {a1, a2, ...., an} in the field Fn2 , such that

(2.1) Ra(z) =
n∑
j=1

aj
z − aj

mod(g(Z)) = 0

This code is linear has dimension(k) greater than equals to n − tm and minimum
hamming distance will be 2t+ 1, hence it can correct t errors. The set of all binary
Goppa code, with support L of cardinality n and generator polynomial g over F2m

is denoted by ζm,n,t.

Decoding of Binary Goppa Code

In this section we will give theoretical background of decoding a binary Goppa code,
which will be used in the implementation part. Our implementation section will use
this theory to write the program and its pseudo code for coding and decoding. We
will use Patterson algorithm for decoding the code.
Let we are going to send the message x through the channel then if received word is
y, then y can be written as sum of x+ e, where e is the error in the message which
can be corrected if its hamming weight is less than equals to t. Since the received
word y = x + e mod (g(z)). The syndrome of the received word, with reference to
equation 2.1 can be written as,

s(z) =
n∑
j=1

y

x− αj
mod(g(z)) =

n∑
j=1

x+ e

x− αj
mod(g(z))

=
∑n

j=1

x

x− αj
mod(g(z)) +

∑n
j=1

e

x− αj
mod(g(z)) =

∑n
j=1

e

x− αj
mod(g(z))

Definition 2.3.1 (Error Locater Polynomial) A polynomial which locates the
error positions of binary Goppa code is called error locator polynomial. If j1, j2, ....jt



26 CHAPTER 2. CODING THEORY

are the t locations of errors(e) of our binary Goppa code Γ(L, g), then error locator
polynomial σe(z) is defined as

σe(z) =
t∏
i=1

(z − αji)eji

were e is the error. We define σ′e(z) as the derivative of σe(z).

To recover the error locator polynomial we have to solve the key equation:

s(z)σe(z) = σ′e(z)(2.2)

Remark: Equality can be easily checked using some general example. We can cal-
culate the error polynomial by splitting it into even polynomial and odd polynomial
parts

σe(z) = u(z)2 + z.v(z)2

Derivative of σe(z) will be equal to

σ′e(z) = v(z)2

After substituting σe(z) into the equation (2.2), we finally determine the fol-
lowing equation which need to be solved to determine the error locator polynomial:

(2.3) s(z)(u(z)2 + z.v(z)2) = σ′e(z) mod(g(z)) = v(z)2 mod(g(z))

If we take T (z) = s(z)−1, then

(2.4) (z + T (z))v(z)2 = u(z)2 mod(g(z))

We can also replace the
√

(z + T (z)) by S(z), then

(2.5) S(z)v(z) = u(z) mod(g(z))

Decoding of binary code uses following steps:

1. Computation of syndrome s(z) for the word y.

2. Computation of inverse of the syndrome, denoted as T (z).

3. computation of S(z) =
√
T (z) + z

4. Computation of u(z) and v(z), by using the equation S(z)v(z) = u(z)mod(g(z)).

5. Computation of locator polynomial σe(z) = u(z)2 + z.v(z)2 mod(g(z).

6. Finding the root of the equation σe(z)

7. Returns the error position.
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2.3.1 An approach to solve key equation

We are going to Patterson’s Algorithm algorithm to solve the key equation, to
calculate the error locator polynomial. N. J. patterson gave this algorithm in [16].
Given R(z) and g(z) in F2m [z], where g(z) is generator polynomial of degree t, we
have to find the error locator polynomial (σ(z)) of degree t such that:

R(z)σ(z) = σ′(z) =
d

dz
(σ(z))

Take σ(z) = σ0(z)2 + zσ1(z)2, hence d
dz

(σ(z)) will be equals to σ1(z)2. Now we have

(1 + zR(z))σ1(z)2 = R(z)σ0(z)2 mod g(z)

Now we can see that g(z) is irreducible polynomial of degree t, and R(z) ∈ F2m [z],
hence we can have a polynomial h(z) = z +R−1(z). Now we have

h(z)σ1(z)2 = σ0(z)2 mod g(z)

The mapping f(z) 7→ f(z)2mod(g(z)) is linear and bijective over the field Ftm2 , so
we will have a unique polynomial S(z)2 = h(z)mod(g(z)).

Now we have
S(z)σ0(z) = σ1(z)

The polynomial σ0(z) and σ1(z) are unique solution of the equations, which
are called key equations:

S(z)σ0(z) = σ1(z)

degσ0 ≤ t/2

degσ1 ≤ (t− 1)/2

Both σ0(z) and σ1(z) are computed using Extended Euclidean algorithm. Detailed
algorithm and pseudo code we will discuss in implementation.

2.3.2 Root Finding of Error Locater Polynomial

Computing the root of the error locator polynomial in decoding of binary Goppa
code is most time consuming and complex step. Hence it should be our initial
motivation to investigate the possible paths to make the step faster. This problem
is similar of many equivalent classes codes. Currently many approaches are available
for root finding problem in binary extension field, their efficiency and complexity
depends on the degree of extension m and degree of generator polynomial t. We are
going to discuss following approaches:
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1. Chien search: It is a fast algorithm for determining roots of polynomials
defined over a finite field. When implemented in hardware, this approach sig-
nificantly reduces the complexity, as all multiplications consist of one variable
and one constant, rather than two variables as in the brute-force approach.
This approach is used when our degree of extension m is small. The most typ-
ical use of the Chien search is in finding the roots of error-locator polynomials
encountered in decoding Reed-Solomon codes and BCH codes.
Let we have the polynomial (whose roots we have to determine) p(x) =
a0 + a1x + ..... + atx

t, with coefficients in F2m . Let α be a generator of the
multiplicative group F∗2m
Now p(αi) will be :

p(αi) = a0 + a1(α
i) + .....+ at(α

i)t

similarly

p(αi+1) = a0 + a1(α
i)α + .....+ at(α

i)tαt

Now set ai,j = aj(α
i)j. It is easy to obtain since we have that ai+1,j = αjai,j.

Hence if
∑t

j=0 ai,j = 0, the αj is root of p(x)

2. Berlekamp Trace Algorithm: This algorithm was originally published in
[1]. This is a very efficient algorithm for finite field with small characteristic.

Definition 2.3.2 (Trace:) The trace function Tr() of elements of F2m over
F2 is defined as

Tr(z) = z + z2 + z2
2

+ .......+ z2
m−1

It maps the field F2m over its ground field F2. A key property is that if
{α1, ....αm} is basis of the extension field F2m , then every element α ∈ F2m can
be uniquely represented as binary m-tuple of the following form:

(Tr(β1α), ......, T r(βmα))

{β1, β2, ......., βm} is any basis of F2m over F2. The main idea of BTA algorithm
is that any f(z) ∈ F2m [z], with f(z)|(z2m − z), splits into two polynomials

g(z) = gcd(f(z), T r(β.z)) and h(z) = gcd(f(z), 1 + Tr(β.z))

Will see its pseudo code in chapter implementation of next part.
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3. (Zinoviev method:)This method was first published in [20]. This procedure
used to find the roots of the polynomial of degree lesser or equal to 10. Zinoviev
methods find the monic affine multiple of smallest degree of f of degree d ≥ 0
and lesser that 10 [20]. At step i ≥ 0, we compute multiple of f of degree
2dlog2de+1 and we try to decimate the non linear terms by solving a system of
homogeneous equations. If system has no solution we go i + 1 step. Besides,
an algorithm proposed by Berlekamp, Rumsy and Solomon in [2] ensue to find
a affine multiple degree 2d−1 and thus guarantee Zinoviev method terminates,
in the worst case at step d− 1−dlog2de. After that finding the roots of affine
polynomial is quite easier than general case. There we just have to solve linear
system of order m over F2, then we have to determine the roots of f among
the roots of affine polynomial we have found.

Definition 2.3.3 (Linearized Polynomial) A polynomial over Fqm of the form:

L(x) =
n∑
i=0

li.x
qi

is called linearized polynomial, where li ∈ Fqm and ln = 1

Definition 2.3.4 (Affine Polynomial:) If L is linearized polynomial over Fqm
and c ∈ Fqm, then affine polynomial A(x) will have the form:

A[x] = L[x] + c

.

But in our case we are using q = 2. The trace polynomial is example of linearized
polynomial.
Let we have affine polynomial A(x) = L(x) + c

A(x) =
n∑
i=0

li.x
qi + c
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Chapter 3

Code Based Cryptography

We have already given a brief description of cryptography in introduction. Here we
are going to discuss code based cryptosystems. We are going to do implementation
of following two cryptosystems in out project work.

3.1 McEliece cryptosystem

The McEliece cryptosystem is an asymmetric encryption algorithm. This cryptosys-
tem was developed in 1978 by Robert J McEliece [14]. This was the first scheme
in public key cryptography to use randomization in encryption. This cryptography
system is not being used frequently by the cryptographers but is a member of “Post
Quantum Cryptography“, as it is immune to attack by quantum computes using
shor’s algorithm [18]. This system has good security reduction, is efficient but have
large public key size. That’s why encryption and decryption both uses lengthier
procedure. There are several attempts made to reduce the key size to standard level
without compromise in security, following P. Gaborits papers in 2005[8]. The algo-
rithm is based on the hardness of decoding a general linear code (which is known
to be NP-hard). To generate the key for this cryptosystem, we have to select a
particular error-correcting-code for which an efficient decoding algorithm is known,
and which is able to detect and correct the t-errors. The original algorithm uses
binary Goppa codes, though the original parameters are proved to be weak [3].

3.1.1 Scheme Description

Similar to any public key cryptography scheme, McEliece scheme also consists of
three algorithms: a probabilistic key generation algorithm which produces a public

31
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and a private key, a probabilistic encryption algorithm, and a deterministic decryp-
tion algorithm. Common security parameters are n,k and t which are shared by all
the users.

Key generation

The objective of this algorithm is to generate the set of keys that will be used for
encryption(uses public key) and decryption(uses private key).

1. Alice selects a (n,k)-binary Goppa code Γ capable of correcting t errors. This
code must possess an efficient decoding algorithm.

2. A k × n generator matrix G is generated by Alice for the code Γ.

3. Alice selects a random k × k binary non-singular matrix S.

4. Alice selects a random n× n permutation matrix P.

5. Alice computes the k × n matrix Ĝ = SGP .

6. Alices public key is (Ĝ, t); her private key is (S,G, P ).

Encryption

Suppose Bob wishes to send a message m to Alice whose public key is (Ĝ, t):

• Bob encodes the message m as a binary string of length k.

• Bob computes the vector c′ = mĜ.

• Bob generates a random n-bit vector e containing exactly t ones (a vector of
hamming weight t, with length n)

• Bob computes the ciphertext as c = c′ + e.

Decryption

After receiving the ciphertext c Alice uses the following steps to decrypt the cypher
text:

• Computes the inverse of P, P−1.

• Alice computes ĉ = cP−1.
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• Uses the decoding algorithm for the code C to decode ĉ to m̂.

• Alice computes m = m̂S−1.

3.1.2 Theory behind the Scheme

For each irreducible polynomial g(x) over F2m(where m is degree of field extension)
of degree t, there exits a binary irreducible Goppa code of length n = 2m and
dimension k ≥ n−mt, which is capable of correcting at most t− errors. Because of
being a linear code, it can be described by its generator matrix G, of size k× n. As
given in key generation algorithm, we also need a non-singular k × k binary matrix
and a permutation matrix P of size n×n. We can now calculate our Ĝ, which hides
the structure of generator matrix G and used as a public key.

Ĝ = SGP

Now we have two pair of keys: public key (Ĝ) and secret key (S,G, P ). It is
hard to calculate the generator matrix G, using Ĝ, without knowing its structure.
Encryption algorithm consists of multiplication of the message m(in the form n
bit binary array) by Ĝ and addition of a error vector e of hamming weight t with
modulo 2(because we are working with binary field). Hence after encryption stage
Alice receive the ciphertext c

c = (m.Ĝ⊕ e)

To decrypt the ciphertext c, at first Alice multiply c with P−1, Hence we receive

ĉ = c.P−1 = (m.Ĝ.P−1 + e.P−1) = m.S.G⊕ e′.

We have replaced eP−1 by e′

After using the decoding algorithm we receive m̂ = m.S. By multiplying S we
can receive the message m in the form of binary arrays, which is our original plain
text.

3.1.3 Security and attacks

Due to hardness of decoding of general linear code this cryptosystem is considered to
be fairly secure. Variants of this cryptosystem exist, using different types of codes.
Most of them were proven less secure; they were broken by structural decoding.
McEliece with Goppa codes has resisted cryptanalysis so far. Recently used two
main approaches to attack by cryptanalysis are given below:
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Structural attacks These attacks are also knows as key attacks. In these attacks
cryptanalyst try to reconstruct a decoder for the code generated by the public-
key Ĝ by studying its structure. From the very construction of the system,
the code generated by the public-key Ĝ is equivalent to Γ. The best known
attacks consist in enumerating the codes in the family to find a code which is
equivalent to Γ[12, 13, 7].

Decoding attacks Also knows as message attacks. Since Γ is equivalent to the
code generated by the matrix Ĝ, both codes have the same error-correcting
capability. The cost of the attack depends on the parameter of the code,
its length, its dimension and its error correcting capability. It implies that
the parameters of the system have to be chosen carefully. A recent paper
describes both an attack and a fix [3]. Another paper shows that for quantum
computing key sizes must be increased by a factor of four due to improvements
in information set decoding [3].

3.2 Niederreiter cryptosystem

The Niederreiter cryptosystem is a variation of the McEliece Cryptosystem devel-
oped in 1986 by Harald Niederreiter [15]. Niederreiter is equivalent to McEliece
from a security point of view. Similar to McEliece this cryptosystem also uses bi-
nary Goppa code for key generation. This cryptosystem uses parity check matrix for
key generation in place of generator matrix. In this cryptosystem syndrome is used
as ciphertext and message as an error pattern. Let H be an (n− k)×n parity check
matrix for the code C, M any (n − k)×(n − k) randomly generated non-singular
binary matrix and P is a random permutation. The encryption of Niederreiter is
about ten times faster than the encryption of McEliece. The system is described
below:

Key generation

• Alice calculate H ′ = MHP .

• Alice use ( H ′, t) as public key and (H,M,P ) as secret key.

Encryption

Our message will be n bit binary array of hamming weight t. Our ciphertext c =
H ′mT .
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Decryption

Alice receive the ciphertext c and does the following:

• Alice computes M−1c = HPmT .

• Alice applies a syndrome decoding algorithm to recover PmT .

• Alice computes the message m via mT = P−1PmT .

Recommended values for these parameters are n = 1024, t = 38, k = 644. Nieder-
reiter’s original proposal was broken[19], but the system is secure when used with a
binary Goppa code.

3.3 The Hybrid McEliece Encryption Scheme (HYMES)

Here, we will describe a slightly modified version of the scheme (which we call
hybrid). As we have already stated that this scheme has two important modification.
Two modifications are, the first increases the information rate by putting some data
in the error pattern. The second reduces the public key size by making use of a
generator matrix in row echelon form. Here we will describe the system after these
modifications. Similar to original McEliece cryptosystem, here also we choose a
generator polynomial g(x) ∈ F2m [x] of degree t and support L = {α1, α2, ....., αn}.
We construct the generator matrix G for the Goppa code Γ(L, g). Later as we have
told before, we change generator matrix G in its reduced row-echelon form. Hence
we can write G = [Id|R]. Here Id will be the identity matrix. Here R will be our
public key and (L, g) will be secret key.
Let m and t are two integers then n = 2m and k = n−mt.

Key generation

• Bob selects a random binary (n, k)-Goppa code, Γ(L, g) which can correct t
errors and for which an efficient decoding algorithm exist.

• Bob generates the a matrix R of size k × (n − k) such that (Id|R) is a row
echelon form of generator matrix.

• We permute the columns of matrix R using a permutation array Perm, which
is generated by column permutation used during the transformation of gener-
ator matrix into reduced row echelon form.

• Public Key=R̂ = Perm(R) and Secret Key =(L, g)
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Encryption

• Encodes the message(x) into binary string of size k.

• Encodes the error(e) into binary string of size n and hamming weight t.

• Sends the ciphertext y = (x|xR̂) + e to Bob.

Decryption

• Use efficient decoding algorithm to correct the t errors and to calculate y′ =
(x|xR).

• Calculates the y using y′.

Cryptographic security

The first reductional proof of security for the McEliece encryption scheme was given
by Kobara and Imai in [10]. In the same paper, several semantically secure con-
versions, generic and ad-hoc, are proposed. The purpose of those conversion is
to transform a One Way Encryption (OWE) scheme, the weakest notion of secu-
rity, into a scheme resistant to adaptive chosen ciphertext attack (IND-CCA2), the
strongest notion of security (in the random oracle model).



Part II

Implementation
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Chapter 4

Implementation of HYMES in “C”

We have the complete project in C language. This program can easily run on linux
based systems without any changes. People are allowed to make any changes in
the program for the research purpose. We can characterize this project in four
sections, Library functions, Key-generation, Encryption and Decryption. Here we
are describing each one in detail.

4.1 Library Function

In this section we define Galois field, polynomial over Galois field and matrix prop-
erties. We divide this section in following subsections.

Parameter

We will make a library file param.h, which contains the parameters, needed for
our source code. We need two parameters for the source code, first degree of
extension(m) and second error weight(t). Here we have defined degree of exten-
sion as LOG LENGTH and error weight as ERROR WEIGHT. We have restricted
our value of LOG LENGTH to be less than 16. Hence we have initially taken
LOG LENGTH=11 and ERROR WEIGHT=30, which can be changed later.

Size

To define the size of different variables used, we make a library field size.h. This file
includes the param.h in which we define the following variables and functions.
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• Degree of extension m

• Maximum number of errors, which could be corrected by our Goppa Code t

• Length of the code word in the Goppa code will be less than equal to 2m. But
here we are choosing of code of length 2n.

• CODIMENSION=EXT DEGREE*NB ERRORS=m*t. This function gives
co-dimension of the generator matrix as defined in Goppa code.

• DIMENSION = LENGTH-CODIMENSION=n-m*t. This function gives di-
mension of the Goppa code.

• SECRETKEY BYTES =(LENGTH * sizeof (long) * BITS TO LONG(CODIMENSION)
+ (LENGTH + 1 + (NB ERRORS + 1) * NB ERRORS) * sizeof (gf t). This
function gives the number of bytes needed for storing secret key.

• PUBLICKEY BYTES =(BITS TO LONG(CODIMENSION) * sizeof(long) *
DIMENSION). This function gives number of bytes needed for storing public
key. Our public key is the generator matrix Ĝ, which have the dimension
equals to CODIMENSION*DIMENSION.

• CIPHERTEXT BYTES BITS TO BYTES(LENGTH). This function gives num-
ber of bytes needed for the ciphertext and same number of bytes would be
needed for message.

Galois Field

In this section we are going to discuss the implementation part for the properties of
field F2m , which is an extension field of degree m, over a binary field. If P (X), is
the irreducible polynomial of degree m, then

F2m ≈
F2[X]

P (X)
(4.1)

Field F2m , is collection of all possible combination of 0s and 1s of length m. If
α is a primitve element of this field then every element(except 0), can be generated
by α. Hence F2m = {0, α, α2, ...., α2m−1 = 1}. We know that 2 is always primitve
element for binary extension field, hence to make things easily computable, here
we are going to use α = 2. We are going to implement our code in ‘C’. We know
that our computer stores everything in binary form. Hence every element of field
F2m , can be represented in form of some integer. We made two library files gf.c and
gf.h, which uses the every property of the Galois field elements. gf.c file includes the
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library file gf.h.Here we will start with definition of Galois field elements (see section
1.2). Here we are interested in binary field. The usual XOR operation serves the
purpose of addition. However for the extension field F2m , we needed the operations
defined Galois field element is denoted as gf t here. Firstly we define type of the
gf t, its type would be unsigned short which have size 2 bytes. gf.c file includes the
library file gf.h.
Here we take maximum degree of extension= 16. We are taking maximum degree
of extension to be 16, because we have defined our Galois field element of type un-
signed short, which is of size 2 bytes (16 bits), hence it can store only 16 bit binary
number in extension field.
Our implementation needs irreducible polynomial ofm(degree of extension) hence we
store these polynomial in an array. Our array would be of sizemaximum extension degree.
This array contains the decimal value of the irreducible polynomial of degree m,
where 2 ≤ m ≤ 16.
In Galois field library we include the following properties of the Galois field:

• Exponentiation:If α is generator of the Galois field F2m then any element
x of the field can be written in the form of αi, where i is unique for every x.
It is called exponential representation of the field element x. Here we already
choose exponential value of 0 equals to 0. Pseudo code for the calculation of
exponential value is given in the section 5.1

• Logarithm: This properties inverse of the exponentiation. If αi is a Galois
field element of the field F2m then it will have a logarithmic value x less than
equal to m.

• Multiplication, Division and Inverse: If x = αi and y = αj are two Galois
field elements then their multiplication will be addition of their power. Hence

Mult(x, y) = x.y = αiαj = αi+j

From the property of primitive element, α2m−1 = 1, hence if |i+ j| ≥ 2m − 1,
then

Mult(x, y) = α((i+j) mod(2m−1))

Similarly we can define division in following way:

(4.2) Div(x, y) = x.y = αi/αj = αi−j

if |i+ j| ≥ 2m − 1, then

Div(x, y) = α((i−j) mod(2m−1))

If we take x = 1 then Div(x, y) = Inv(x).
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Note:

Pseudo codes regarding the properties of Binary Galois field are given in appendix
A.1.

Polynomial

During the implementation of the cryptosystem we need to represent the field in the
form of polynomial. We also need to calculate irreducible polynomial over our Galois
field F2m . Here we take the coefficient of elements as field elements of Galois field.
We need to use the properties of Galois field hence here we include library functions
of the Galois field also. We define our structure of polynomial using coefficients,
size and degree. Here size of the polynomial will always be greater than or equal to
the degree of polynomial. We use the following properties of the polynomials in our
program:

• Degree:Degree of the polynomial P (x) is defined as the greatest power of x,
which have non-zero coefficient in the polynomial.

• Addition: Here addition of the polynomial is addition of coefficient of same
degree in Galois field. Resulting polynomial will have the size equal to max-
imum of the size of the polynomials. We can calculate the degree of this
polynomial using the above definition.

• Multiplication: If there are two polynomial p(x) =
∑k1

j=0 pjx
j and q(x) =∑k2

i=0 qix
i then multiplication of the polynomials will be:

r(x) = p(x) ∗ q(x) =

k1∑
l=0

rlx
l

where rl =
∑

l=i+j piqj.

• Division: Let there are two polynomials p(x) and q(x). If we have to calculate
p(x)/q(x), then division have to be done using algebraic methods. Let degree
of polynomial p is less than degree q then its remainder will be equal to p(x)
and quotient will be equal to 0. Remainder of the polynomial will be of degree
degree(p)− 1 and quotient will be of degree equals to degree(p)− degree(q).

• Inverse: Inverse of the polynomial in the field F2m [x] is done using irreducible
polynomial of degree t.
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• Squaring of polynomial: Here we will also do the squaring of polynomial
with respect to the irreducible polynomial g(x) of degree t. Square function
is implemented with all previously computed value x2i modulo(g(x)), later we
adjust coefficients. Here we simply square the first t/2−1 coefficient and later
coefficients are squared using the precomputed values of z2i modulo g(z).

• Square root: Calculation of square root is done with the help of the following
equation:

z2
mt−1

=
√
z mod(g(z))

Hence we have to compute all zi/2 mod(g(z)) for all odd value of i less than
and equal to g(z).

• Degree of smallest factor of polynomial: Calculation of degree of smallest
factor of polynomial help us to check the irreducibility of the polynomial.

• Irreducibility Check We have seen that in the implementation of the pro-
gram we need to generate an irreducible polynomial g(z) of degree t in F2m [z].
Irreducibility check depends on the definition that for a irreducible polynomial
g(z), there exist no i < t such that g(z)|(z2mi − z) or z2

mi
= z mod(g(z)).

This implies that if g(z)|(z2mi − z) then g(z) have a factor of degree i hence as
given above if degree of smallest factor of g(z) is less than t then polynomial
is reducible.
Here we solve z2

mi
mod(g(z)) for all i ≤ t/2. If these equation do not give any

result equals to z then polynomial g(z) will be an irreducible polynomial.

Note

Pseudo codes regarding the properties of Binary Galois field are given in appendix
A.2

Matrix

As we have discussed in the theory section that matrix property help us highly in
key generation part. Hence here we are going to discuss the matrix structure and its
properties. To design a matrix structure we need to have two inputs variable first
number of columns and second number of rows. To make the computation faster
we will design a structure in which this matrix will store the bits in the form of
blocks of 8*sizeof(unsigned long), which is called as a word and the length is define
as BITS PER LONG.
Here we are discussing following properties of the matrix.
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• Addition:Addition of two matrix is possible if and only if dimension of both
matrices are equal. Addition will be binary addition of its elements. If there
are two matrix A = [aij] and B = [bij] then addition is defined as

C = A+B = [(aij + bij) mod 2]

• Matrix Multiplication: Multiplication of two matrix Al×m and Bm× n is
possible if only if number of rows of B is equals to number of columns of B.
If Cl×n = A.B then its coefficient will be

Ci, j =
k=m∑
k=0

ai,k.bk,j

• Row echelon form Definition of the row echelon form is given in the section
(1.5). By using elementary row operations we change any matrix into its row
echelon form. Here in our program when we change a matrix in its row echelon
form using Gaussian Elimination method then we also receive a permutation
array which would be used in permuting the generator matrix.

Note:

Pseudo codes regarding the properties of Binary Galois field are given in appendix
A.3

4.2 Keypair

Reference binary Goppa code. We have two input parameters m and t, where m is
the degree of extension and t is the number of errors for the Goppa code. Hence we
can calculate the length n = 2m and co-dimension r = mt and dimension k = n−mt.
We denote binary irreducible Goppa code as Γ(L, g), where L is called support and
g is defined as generator polynomial.

• Support L = (α1, α2, ...., αn) distinct in F2m and

• g(x) ∈ F2m [x] monic irreducible polynomial of degree t.

Let {β1, β2, ...., βm} is a simple basis of vector space F2m over the binary field. Then
any γ ∈ F2m can be uniquely written as

γ = a1β1 + a2β2 + ......+ amβm
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where βi ∈ F2, ∀i. We can define parity check matrix (H) for the binary irreducible
Goppa code as follows:

H =


1 1 ... 1
α1 α2 ... αn
: : : :

αt−11 αt−12 ... αt−1n


g(α1)

−1

. . .

g(α1)
−1


Hence

H =


g(α1)

−1 g(α2)
−1 ... g(αn)−1

α1

g(α1)

α2

g(α2)
...

αn
g(αn)

: : : :
αt−11

g(α1)

αt−12

g(α2)
...

αt−1n

g(αn)


Hence binary irreducible Goppa code Γ(L, g) = {a ∈ F{0, 1}n|aHT = 0} H is a
parity check matrix of (n, k)-binary Goppa code. There are t parity check equations
with coefficient in F2m , thus at most r = mt parity check equations with binary
coefficient, because the codimension is at most mt.
We are going to use Γ(L, g)-binary Goppa code, to detect and correct at most t
errors hence its minimum distance, dmin(Γ(L, g)) ≥ 2t+ 1. Γ(L, g)) is an alternate
code of designed distance t+ 1. Key generation scheme uses the following steps:

• Support L ∈ F2m .

• generator g(x) ∈ F2m [x] a monic irreducible polynomial of degree t.

• Feed the parity check matrix H

• Apply Gaussian Elimination algorithm. We will get H = S(R|I)P , where S
is a non-singular binary matrix, I is identity matrix and P is permutation
matrix. We denote Ĥ = (R|I), hence Ĝ = (I|RT ).

• Permute the support(L) using permutation matrix(P).

• Secret Key =(g, t), Public Key RT

Here we will show how to generate set of keys. Here we made a file keypair.c. This
files contains the functions which generate public key and secret key( see the section
3.3). This file includes the library files, size.h, gf.h, poly.c and matrix.h. This file
contains the following functions:
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• gop supr(int n,gf t *L), this function calculates the Goppa support L. Initially
input array L have the value L[i] = αi, where i varies 0 to n−2 and L[n−1] = 0.
This function randomly permutes the array to give Goppa support L. u32rand
is used for generating random number.

• key genmat(gf t *L, poly t g), this function gives the generator matrix H for
the Goppa code Γ(L, g). This matrix will be of the dimension r × n, where
r = (numberoferrors).(extensiondegree) and n = 2extdeg(). Firstly we put
H = 0, means every element of the matrix of H equals to zero. Now our first
will be to calculate x = g(L[i]), later we will calculate inverse of x that we will
store in x itself hence our command line for that will be x = gf inv(x). We
also take one more variable y which will store the value of x = 1

g(L[i])
. Our x is

in the field F2m , which is of size EXT DEGREE bits, hence we will expand
the x in binary form and will write these element in matrix H by using the
following for loops

for(k=0;k < EXT DEGREE;k++)
{
if(y & (1<< k))
mat set coeff to one(H,j*EXT DEGREE + k,i)
}

Hence IF statement will check if y and 2k have common factors then it will
put 1 there. In this way we get the binary representation of y. In next step
we will multiply y by L[i], hence our y will be y = L[i].y, this step is used t
number of times, where t is the NB ERROR. The similar steps are followed
for all i from 0 to n− 1. Now we have parity check matrix H.
Now our next target is to get the reducible row echelon for of the matrix H of
size (n− r)× r. Because we can write H = SRP , where S is singular binary
matrix R is reduced row echelon generator matrix and P is permutation matrix
which will be have bijective relation with the array perm. We use function
mat rref(H) to get the reducible row-echelon matrix R and permutation array
perm.Here our matrix will have one r× r identity matrix and one (r× (n− r)
matrix which will be in the row-echelon form. If perm is nill then this function
will return NILL, else takes a matrix R = 0 of size r × (n− r). This matrix
takes the element of from the second matrix of H after tranformation and then
permuting the row by array perm.(See the code). This function will return
the matrix R. Step used above are as followed
Hr×n = [Ir×r|Rr×(n−r)], R̂ = perm((R)T ).

After generating the generator matrix R, we will generate the key-pair. pair contains
public key and secret key. We save the key in binary files named as pk(public key)
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and sk(secret key or personal key).

Public Key

Public key file is named as pk.bin. This file contains length of the code n, number
of errors t and matrix R, returned from the function key genmat.

Secret Key

Secret key file is named as sk.bin. This file contains inverse of the Goppa support
L named as Linv, polynomial g, square root of polynomial g in the field F2[z]/g(z)
and precomputed syndrome Rc(z), where c[i] = 1 for every ‘i’.
You can refer the pseudo code for the key generation in appendix A.4.

4.3 Encryption

Encryption of the message using HYMES scheme is very easy. Our public key for
the encryption will be R. If input message is M then we divide the message into
blocks of length k. Here we will also generate the error e[ ] of length n and hamming
weight t. Our ciphertext c will be:

(4.3) c = [m|mR] + e[ ]

Pseudo code for the encryption is given in appendix A.5.

4.4 Decryption

Decryption of the ciphertext is done using the private key or secret key (sk). De-
crypted message is divided in block size of n. We use error correcting algorithm
to correct the error e in the ciphertext. The decryption process uses the Patterson
Algorithm[section 2.3.1] for decoding.
There are three steps of decoding:

Syndrome Computation

To make the syndrome computation faster it would be preferable to calculate

fαj
(z) =

1

z − αj
mod(g(z))
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for all αj ∈ L, 1 ≤ j ≤ n.
This work is already done during key generation. Hence our secret key already have
fαj

(z). This will speed up the computation of syndrome. Let c = {c1, c2, ..........., cn}
is the received word then syndrome Rc(z) will be

Rc(z) =
i=n∑
i=1

ci
z − αi

=
i=n∑
i=1

ci.fαi

Solving the Key Equation

If σ(z) is the error locator polynomial and Rc(z) is the syndrome of word c, then
key equation will be:

(4.4) σ(z).R(z) = σ′(z)

we can devide σ(z) into odd and even parts: σ(z) = σ2
0(z) + σ2

1(z).z. We finally
determine the following equation which needs to be solved to determine error posi-
tions:

(4.5) (σ2
0(z) + σ2

1(z).z).R(z) = σ2
1(z)

(4.6) (1 + zR(z)).σ2
1 = R(z)σ2

0 mod(g(z))

We can put h(z) = z + R(z)−1 mod(g(z)). If S(z)2 = h(z)mod(g(z)) then we can
write the equation(4.5) as

(4.7) R(z).S(z) = σ0(z)

To solve the key equation we have to calculate the square root of zi for all i from 0
to t.

(4.8) Ti(z) =
√
zi

We use this method to calculate the polynomial S(z) from h(z).

Here we use extended euclidian algorithm(section 1.6.2) to calculate the poly-
nomials σ0(z) and σ1(z). Hence we can calculate the error locator polynomial σ(z).

(4.9) σ(z) = σ0(z)2 + σ1(z)2z
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Solving Error Locator Polynomial

Root finding of polynomials over finite fields is a classical algebraic algorithmic prob-
lem. It is considered as one of the most time-consuming sub-process of the decoding
process of Reed-Solomon, BCH and Goppa codes. There are some well known ap-
proaches for finding roots of the so-called error-locator polynomial. The most widely
known root finding algorithm is Chien search method [17], which is a simple sub-
stitution of all elements of the field into the polynomial, so it has very high time
complexity for the case of large fields and polynomials of high degree. Berlekamp
Trace Algorithm (BTA) [6] is another well known method. It is a recursive method
based on the trace function properties.
Here we present a hybrid method involving BTA and a method proposed by Zi-
noviev [20]. Zinoviev proposed direct root finding procedures for polynomials with
degree at most 10. Our idea is to compute directly the roots with Zinoviev proce-
dures up to some degree and to use BTA for greater degrees. Moreover, we improve
Zinoviev procedures for polynomials of degree 2 and 3 with time-memory tradeoffs.
We analyze both the theoretical complexities and the experimental complexities of
our proposal. We obtain a theoretical gain of 93% over Chien method and 46% over
BTA. Experimental results confirm theory up to degree 4 at least. For instance with
m = 11, t = 32 and dmax = 4, our method takes 60% of the total decryption time
with respect to 72% for BTA and 87% for Chien. Error locator polynomial will have
atmost t roots if our code can fix the t errors. The error locator polynomial will be

(4.10) σe(z) =
i=n∏
i=1

(z − αi)ei , where ei ∈ {0, 1}

If σe(z) can locate t errors then
∑i=n

i=1 ei = t. We can see that if ei 6= 0 then σ(αi) = 0
and vice-versa.
The efficiency of the root finding algorithms is a problem that we study in code-
based cryptography. McEliece-type cryptosystems are often based on binary Goppa
codes. Their decryption algorithm employs an algebraic decoding process to recover
the original message from the cyphertext. The most time-consuming stage, in the
implementation of algebraic decoding of binary Goppa codes, with practical param-
eters, is the root finding of the error locating polynomial. This polynomial fulfills
the above mentioned properties.

Decryption Complexity Theoretical Complexity = number of arithmetic oper-
ations in F2m required to decrypt in the worst case.

• Syndrome computation O(nt)

• Key equation solving O(t2)
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• Error locator polynomial root finding

1. Berlekamp Trace Algorithm O(mt2)

2. chien’s search Algorithm O(nt)

Important step BTA algorithm is to calculate tract of an element α ∈ F2m .

Trace Calculation

We know that trace of z will be

(4.11) Tr(z) = z + z2 + ..........+ z2
m−1

Tr(z) will be a polynomial in z. We can change this polynomial into a polynomial
of degree t using the polynomial g(z) by following way:

(4.12) Tr(z) =

∣∣∣∣∣∣∣∣∣∣
z mod(g(z))
z2 mod(g(z))

:
:

z2
m−1 mod(g(z))

∣∣∣∣∣∣∣∣∣∣
.

Trace of any elements αi ∈ F2m , will be

(4.13) Tr(z) =

∣∣∣∣∣∣∣∣∣∣
αiz mod(g(z))

(αiz)2 mod(g(z))
:
:

(αiz)2
m−1 mod(g(z))

∣∣∣∣∣∣∣∣∣∣
.

To solve the error locator polynomial σ(z) we use BTA algorithm as given in
section(2.3.2). This algorithm gives t error poisitions. Hence now we have an error
vetor e of hamming weight t and size n. If y is the cipher text then we can retrive
the message in following way:

y′ = y + e = [x|xR] + e+ e = [x|xR]

x is our plain text here.

All the pseudo codes regarding decryption process are given in the appendix
A.6.
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Chapter 5

Improvisation in Niederreiter
Cryptosystem

The Niederreiter cryptosystem is a variation of the McEliece Cryptosystem devel-
oped in 1986 by Harald Niederreiter. It applies the same idea to the parity check
matrix H of a linear code. Niederreiter is equivalent to McEliece from a security
point of view. It uses a syndrome as cipher-text and the message is an error pat-
tern. The encryption of Niederreiter is about ten times faster than the encryption
of McEliece. In the Niederreiter scheme one important step is to encode a message
m into an array of size n and hamming weight less than equal to t. In the original
Niederreiter scheme, he used to concatenate n − t zeros to the binary message of
size t, if we are using a Goppa code which can correct t errors. Our Goppa code
Γ(L, g) can correct maximum t errors. If we use the list decoding then number of

elements in the list will be
∑t

i=0

(
n
i

)
. But if we use one encoding method such

that it gives an array of length n and hamming weight t, then size of the list will be(
n
t

)
. Hence if the hamming weight is fixed to t, then it would be easy to correct

the errors.
Nicolas Sendrier published one encoding method for this scheme in his paper [17].
This method is known as ”Constant Weight Encoding”. Constant weight encoding
function (φ) can be represent as:

φ : A→ W(n, t)

If A is the collection of binary array of length l and W(n, t) is collection of all the
binary arrays of length n and hamming weight t, then |A| = 2l and |W(n, t)| =

53
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n
t

)
. φ is constant weight encoding and also it should be invertible hence,

|A| = |W(n, t)|

2l =

(
n
t

)
Hence required length for encoding a message should be equal to l = log2

(
n
t

)
.

Constant weight encoding method described by Nicolas Sendrier have linear time
complexity in n. Here we are going to discuss one easier encoding method with
lesser time complexity. Assume that our encoding function φ is such that it takes
a message array of length l and gives encoded message of length n and hamming
weight t.

φ : Al → W(n,t)

Here Al is the collection of the message arrays of length l and W(n,t) is as defined
before. Now our aim is to calculate the length l using our new encoding method.
Here our main aim is to find t positions for 1 in between 0 to n − 1, defined as
{δ1, δ2, ....., δt}.
Our next aim will be to calculate the length l for this encoding method. This length
l would be a multiple of t for our encoding method. Now we will devide the binary
array of the length l in t subarrays of length x. Here we will calculate the decimal
representation of all t subarrays, defined as {d1, d2, ...., dt}. Now we will calculate
the {δ1, δ2, ....., δt} in following way.

δ0 = 0

δi = δi−1 + d1 + 1 where1 ≤ i ≤ t

By using the above equations we can see that

δt = d1 + d2 + ..........+ dt + t− 1

Maximum value of di can be equals to 2x, hence maximum value of δt will be equals
to

δt = t.2x + 1

If we are using the Goppa code Γ(L, g) with codewords of length n, then we want δt
to be less than n. Hence we can calculate the value of x by the following equation

x = blog2(
n− 1

t
)c

From the value of x we can calculate the length l = x.t. We can see if we use this
method then decoding is also very easy.
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Remark 5.0.1 Main draw-back of this encoding system is that maximum value
of δt we can choose is t.2x + 1. Also the length(l) of binary message m is less

than log2

(
n
t

)
. But our encoding method have time complexity linear in l hence

our method is much faster than the existing constant weight encoding method given
by Nicolas Sendrier. We can increase the length l of the message m, if we have
the effective algorithm to calculate the maximum value of

∑
xi.li less then equal to

log2

(
n
t

)
, where xi is the number of subarrays of length li. We also have to keep

in mind that sum of all the subarrays should be exactly equal to t and the maximum
δt should be less than n.
This algorithm is expected to be much faster than existing old methods. This encoding
method is easy to implement and lesser complexity.
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Appendix A

Pseudo Codes

We have divided all the Pseduo Codes in following five sections:

A.1 Galois Field

Algorithm A.1.1 Pseudo code for cardinality and multiplicative order of extension
field

Input: deg.ext=Degree of extension
gf.cardinality ← 1 << deg.ext
gf.mult.order ← ((1 << deg.ext)− 1)

Algorithm A.1.2 Code for exponentiation

Input: deg.ext.
gf.exp[0]← 1
for i = 1 to gf.mult.ord do
gf.exp[i]← gf.exp[i− 1] << 1

end for
if gf.exp[i− 1]&(1 << deg.ext− 1) then

gf.exp[i]∧ = prim.poly(deg.ext)
end if
gf.exp[gf.mult.order] = 1
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Algorithm A.1.3 Code for logarithm

Input: deg.ext.
gf.log[0]← gf.ord()
for i = 1 to gf.mult.ord do
gf.exp[i]← i

end for

Algorithm A.1.4 Code for modular function

Input: q if q ≥ gf.mult.order.
return (q&gf.mult.order ⊕ (q >> deg.ext())

Algorithm A.1.5 Code for addition(gf.add), multiplication(gf.mult) and divi-
sion(gf.div)

Input:two element x and y of the field F2m .
Output: gf.add(x, y)=addition of x and y

return (x⊕ y)
Output: gf.mul(x,y)= multiplication of x and y
if x = 0 or y = 0 then

return 0
else

return gf.exp[gf.mod(gf.lox[x] + gf.log[y])]
end if
Output: gf.div(x,y)=x divided by y
if x=0 then

return 0
else

return gf.exp[gf.mod(gf.lox[x]− gf.log[y])]
end if
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Algorithm A.1.6 Code for square(gf.sqr), square root(gf.sqrt) and inverse(gf.inv)

Input:A element x of the field F2m .
Output: gf.sqr(x)=square of x

if x=0 then
return 0
return gf.exp[gf.mod(gf.lox[x] << 1)]

end if
Output: gf.sqrt(x)=square root of x

if x = 0 then
return 0
return gf.exp[gf.mod(gf.lox[x] << (deg.xt()− 1))]

end if
Output: gf.inv(x)=inverse of x
return gf.exp[gf.mult.ord()− gf.log[x]]

Algorithm A.1.7 Code for calculating exponent

Input:Two elements x and y of the field F2m .
Output: gf.pow(x, y)=xy

if x=0 then
return 0

else
if y=0 then

return 1
end if

else
while y>>deg.ext() do
y ←(y & (gf.mult.order())) + (y >> deg.ext())

end while
y∗ = gf.log[x]
while y>>deg.ext() do
y ←(y & (gf.mult.order())) + (y >> deg.ext())

end while
return gf.exp[i]

end if
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A.2 Polynomial

Algorithm A.2.1 Code for calculating degree of a polynomial

Input:a polynomial p.
Output: degree of the polynomial

d← p.size-1
while ((d ≥ 0)&& (p.coeff(d)==0)) do

–d
end while
deg(p)=d
return d

Algorithm A.2.2 Code for multiplying two polynomials

Input:two polynomials p and q.
Output: multiplication of two polynomials

poly.calculate.deg(p)
poly.calculate.deg(q)
dp=deg(p), dq=deg(q)
r=poly.alloc(dp+dq) note:poly.alloc(Allocate a memory for the polynomial of size
dp+dq+1)
for i = 0; i <= dp; + + i do

for j = 0; j <= dq; + + j do
r(i+ j) = r(i+ j) + p(i) ∗ q(j)

end for
end for
poly.calculate.deg(q)
return r
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Algorithm A.2.3 Code for evaluating a polynomial p(x) at some x=a

Input:a polynomial p(x) and a point x = a.
Output: p(a)
d = deg(p)
b = p.coeff [d−−]
for ; d >= 0;−− d do

if b 6= 0 then
b = b ∗ a+ p.coeff [d]

else
b = coeff [d]

end if
end for
return b

Algorithm A.2.4 Code for GCD of two polynomials using

Input:Two polynomials p and q, deg(p) and deg(q) are degrees of polynomial p
and q respectively.
Output: gcd(p,q)

if deg(p) ≤ deg(q) then
a← poly.copy(p),b← poly.copy(q)
g1← 1, g2← 0, h1← 0, h2← 1
while a6= 0 do
j ← deg(a)− deg(b)
if j < 0 then
a← b
g1← g2
h1← h2
j ← −j

end if
u← u+ xjv
g1 ← u+ xjg2
h1 ← u+ xh2v

end while
d← v, g ← g2, h← h2

else
gcd(q, p)

end if
return d, g, h {d = g ∗ p+ h ∗ q}
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Algorithm A.2.5 To calculate quotient of a polynomial p with respect to another
polynomial q

Input:Two polynomials p and q, deg(p) and deg(q) are degrees of polynomial p
and q respectively.
Output: quotient(p,q)
r ← p,s ← poly(deg(p) − deg(q)) Note: poly(k) gives a polynomial structure of
size k + 1.
deg(s)← deg(p)-deg(q)

a← 1

q[deg(q)]
for i=deg(p);i ≥ deg(q);–i do

b← a ∗ r[i]
s[i-deg(q)]← b
if b 6=0 then

r[i]← 0
end if
for j=i-1;j≥ i-deg(q);–j do

r[j]=r[j]+b*q[deg(q)-i+j]
end for

end for
return s {p=q*s+r}
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Algorithm A.2.6 To calculate remainder of a polynomial p with respect to another
polynomial q

Input:Two polynomials p and g, deg(p) and deg(g) are degrees of polynomial p
and g respectively.
Output: remainder(p,g)

d← deg(p)− deg(g)
if d≥ 0 then

a← 1

g[deg(g)]
for (i=deg(p);d≥ 0; –i;d++) do

if p[i]6= 0 then
b← a ∗ p[i]
for (j=0;d<deg(g);++j) do

p[j+d]← p[j+d]+b*g[i]
end for
p[i]←0

end if
end for
deg(p)← deg(g)-1
while ((deg(p)≥ 0)&&(p[deg[p]==0)) do

deg(p)← deg(p)-1
end while

end if

Algorithm A.2.7 To Generate a irreducible monic polynomial over field Fqm

Input:Size of the polynomial t.
Output: polynomial g

deg(g)←t
g[t]←1
while g is irreducible do

i=0
for (i=0;i<t;++i) do

g[i]←g[rand(1,n)]
end for

end while
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Algorithm A.2.8 To square a polynomial in field F2m

Input:a polynomial p and irreducible polynomial g.
Output: polynomial sq = p2mod(g)

d=deg(g)
for i=0 to d/2− 1 do
sq[i] = p2i

end for
for i=d/2 to d-1 do
sq[i] = p2.sq[i− 1]mod(g)

end for
adjust coefficient and update degree of sq
return sq

Algorithm A.2.9 To check irreducibility of a polynomial

Input:a polynomial g.
Output: True or false

f(x)← x
for i=1 to deg(g)/2 ∗ deg.ext() do
f(x) = f(x)2 mod(g(x))

end for
if gcd(g(x),f(x)-x)6=1 then

return TRUE
else

return FALSE
end if
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A.3 Matrix
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Algorithm A.3.1 Gaussian Elimination

Input: Generator matrix H of size r × n
Output: New generator matrix R of size r× (n− r), and a permutation

array P of size n
max←coln-1
for i=1 to n do

P[i]← i
end for
failcnt←0
for i=1 to rown(H), max– do

findrow←0
for j=i to rown(H) do

if H[j,max] then
if i 6=j then
H[i, :]∧ = H[j, :]

end if
findrow =1
break

end if
end for
if findrow=0 then

P[coln[H]-rown[H]-1-failcnt]←max
failcnt++
if max=0 then

return null
end if
i–

else
P[i+coln[H]-rown[H]←max
for j=i+1 to rown(H) do

if H[j,max] then
H[j, :]∧ = H[i, :]

end if
end for
for j=i-1 to 0, j– do

if H[j,max] then
H[j, :]∧ = H[i, :]

end if
end for

end if
end for
R←0
for i=1 to i=n-r do

for j=0 to j=r do
if H[j, P[i]]=1 then

Rchange[i,j]
end if

end for
end for
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Algorithm A.3.2 Matrix Multiplication

Input:two Matrix A and B.
Output: Matrix C = AB, with dimension (rown(A),coln(B))

if coln(A)neqrown(B) then
C=NILL

else
for i=1 to i=rown(A) do

for j=1 to j=coln(B) do
for k=1 to k=rown(N) do

C[i,j]=
∑n

k=1A[i,k]B[k,j]
end for

end for
end for

end if
return C

A.4 Key-Generation

Algorithm A.4.1 Permuting support array L

Input:Support L and permutation array P.
Output: Permuted array L′

if P = Id then
L′ ← L

else
for i=0 to i=1 do
L′[i]← L[P [i]]

end for
end if
return L′
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Algorithm A.4.2 Key-generation

Input:degree of extension m and size of error t.
Output: Public Key PK = R and Secret Key SK = (L′, g)

L← perm(F2m)
g ← random.irred.poly(t)
(R,P )← get.Matrix.Perm(L, g)
L′ ← permute(L, P )
PK ← R
SK ← (L′, g)
return PK, SK

A.5 Encryption

Algorithm A.5.1 Encryption

Input: Message m of block length k and public key pk.
Generate a random binary array e[ ] of length n and hamming wait t.
%% now we will calculate mR
for i = 0 to i < n− k do

for j = 0 to j < k do
mRi →

∑j=k−1
j=0 mj.R(j,i)

end for
end for
ciphertext= [m|mR] + e[ ]
return ciphertext
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A.6 Decryption

Algorithm A.6.1 Syndrome Computation

Input: Receved word c = {c1, c2, ........, cn} and collection of f ′αi
s where 1 ≤ i ≤ n

R→ 0
for from i = 1 to i = n do
R→ R + ci.fαi

(z) mod (g(z))
end for
return R

Algorithm A.6.2 Solving Key Equation

Input: Received cipher text y and Goppa Code Γ(L, g).
compute syndrome Rc(z) for the cipher text y.
compute T (z) = 1/(Rc(z) mod( g(z))
compute S(z) =

√
(T (z) + z)

Now Solve σ1(z).S(Z) = σ0(z) using Extended Euclidean Algorithm.
compute the error locator polynomial σ(z) = σ1(z)2 + z.σ1(z)2

return σ(z)
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Algorithm A.6.3 Berlekamp Trace Algorithm

Input: Error locator polynomial σ(z),d = degree(σ(z)) and i = 0. Function is
written as BTA(σ, i, d)
if degree(σ(z)=0) then

return 0
end if
if degree(σ(z) = 1) then

return root[i]← σ(z)0/σ(z)1
end if
gcd1 ← gcd(σ, Tr(αi.z)
gcd2 ← gcd(σ, 1 + Tr(αi.z)
e← degree(gcd1)
return BTA(gcd1, i+1,e), BTA(gcd2, i+1,d-e)



Bibliography

[1] E. R. Berlekamp. Algebraic Coding Theory. Aegen Park Press, 1968.

[2] E. R. Berlekamp, H. Rumsey, and G. Solomon. On the solution of algebraic
equations over finite fields. volume 10, pages 553–564, June 1967.

[3] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and de-
fending the mceliece cryptosystem. pages 31–46, 2008.

[4] Bhaskar Biswas and Nicolas Sendrier. McEliece cryptosystem implementation:
Theory and Practice. In PQCrypto, pages 47–62, 2008.

[5] P. Camion. An iterative euclidean algorithm. Rapport de recherche 844, INRIA,
May 1988.

[6] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, November 1976.

[7] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-
based cryptosystems. 5912:88–105, 2009.

[8] Philippe Gaborit. Shorter keys for code based cryptography. International Work-
shop on Coding and Cryptography - WCC, Bergen, Norway, 2005.

[9] I. Herstein. Topics in Algebra. John Wiley, New York, 1975.

[10] K. Kobara and H. Imai. Countermeasure against reaction attacks (in japanese).
In The 2000 Symposium on Cryptography and Information Security : A12,
January 2000.

[11] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1983.

[12] P. Loidreau and N. Sendrier. Some weak keys in McEliece public-key cryp-
tosystem. In IEEE Conference, ISIT’98, Cambridge, MA, USA, August 1998.

71



72 BIBLIOGRAPHY

[13] P. Loidreau and N. Sendrier. Weak keys in McEliece public-key cryptosystem.
IEEE Transactions on Information Theory, 47(3):1207–1212, April 2001.

[14] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.
DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA,
pages 114–116, January 1978.

[15] H. Niederreiter. Knapsack-type crytosystems and algebraic coding theory. Prob.
Contr. Inform. Theory, 15(2):157–166, 1986.

[16] N. J. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions
on Information Theory, 21(2):203–207, March 1975.

[17] N. Sendrier. Encoding information into constant weight words. In IEEE Con-
ference, ISIT’2005, Adelaide, Australia, September 2005.

[18] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[19] V. M. Sidel’nikov and S. O. Shestakov. On cryptosystem based on generalized
Reed-Solomon codes. Discrete mathematics (in russian), 4(3):57–63, 1992.

[20] V.A. Zinoviev. On the solution of equations of degree ≤ 10 over finite fields
GF(2q). 1996.


	Acknowledgement
	Abstract
	Introduction
	I Theory
	Algebraic Background
	Finite Fields
	Field Extension
	Polynomials
	Vector Space
	Matrices
	Algorithms:
	Gaussian Elimination
	Euclidean Algorithm
	Irreducibility Check
	Zech's logarithm


	Coding Theory
	 Data compression (or, source coding)
	Error correction (or, channel coding)
	Linear code
	Decoding a linear code

	Binary Goppa Code
	An approach to solve key equation
	Root Finding of Error Locater Polynomial


	Code Based Cryptography
	McEliece cryptosystem
	Scheme Description
	Theory behind the Scheme
	Security and attacks

	Niederreiter cryptosystem 
	The Hybrid McEliece Encryption Scheme (HYMES)


	II Implementation
	Implementation of HYMES in “C”
	Library Function
	Keypair
	Encryption
	Decryption


	III Further Research Work
	Improvisation in Niederreiter Cryptosystem
	Pseudo Codes
	Galois Field
	Polynomial
	Matrix
	Key-Generation
	Encryption
	Decryption



