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Abstract

In this report we have studied the near field and the far field plasmonic prop-
erties of gold nanocylinders arranged linearly in a Fibonacci number chain
and compared the results with those arranged in a conventional geometry.
Assigning the radius of first two nanocylinders as 10nm, we have arranged
five gold nanocylinders linearly with radii varying according to Fibonacci
numbers and compared the optical properties with conventional geometry.
Using FEM simulation we explored the near field distribution and the far
field radiation pattern of the two geometries for various excitation angles.
Our study reveals significant backscattered intensity in the far field radia-
tion pattern for excitation angles along the chain for Fibonacci geometry,
which was otherwise absent in conventional geometry. A systematic varia-
tion in near field enhancement is observed as a function of excitation angles
which could guide us to tune Raman enhancement by changing the angle of
excitation. We have obtained the maximum near field enhancement in the
gap of two largest nanocylinders which is in contrast to the results obtained
in the self similar chain of nanostructures. In addition we have explored
the polarization dependent plasmonic properties of 1D silver nanowires and
observed the strong dependence of incident polarization on propagation of
surface plasmon polaritons.
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Chapter 1

Introduction

1.1 Literature Survey

Research in interaction of light and a system of metallic nanocylinders has
been at its peak in the past few years demonstrating enhancement of Ra-
man scattering in the near fields as high as 1012 [1, 2]. Generation of these
plasmonic properties strongly depend on the shape, size and the dielectric
environment involved in the system [3] and change for a system of two or
more metallic nanoparticles in close proximity, acting as a potential area
of research [4]. This extraordinary enhancement is due to the coupling of
Localized Surface Plasmons (LSPs) which gives rise to high electric field
enhancement and generates what is known as electromagnetic hot spots in
the gaps between nanoparticles in dimer [5] leading to applications in SERS
and single molecule spectroscopy [6]. From single nanoparticle to assemblies
and chains of nanoparticles various geometries of gold and silver nanoparti-
cles are studied extensively for propagation and localization of light [7-11].
Among them chains of metallic nanoparticles have acquired a huge attention
in recent years leading to many interesting applications including waveguides
below diffraction limit, optimized SERS [7, 12-15], construction of integrated
nanophotonic devices [16, 17], optical data storage systems [18-20], and bi-
ological sensing [11, 21]. Periodic linear structures like Self similar chain of
metallic nanostructures have a wide range of applications including high lo-
cal field enhancement, nano-optical detection, Raman characterization, nano
focusing and manipulation of Light at nanometer scale and many more [9,
22-24]. Strong localization arising due to deterministic aperiodic structures
is proven to have biological applications in enhancing sensitivity of a pro-
tein monolayer as small as tens of angstroms[25]. Linear chains of metallic
nanostructures also have been extensively studied for their applications in
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near field coupling and electromagnetic transport [7, 8, 26-30].
Most of the studies on linear chains till now have considered uniform size

of metallic nanostructures [29, 31, 32]. Apart from conventional regular [8] or
periodic array of metallic nanostructures, deterministic aperiodic plasmonic
arrays (with some specific aperiodicity) have also captured attention in inter-
esting applications like designing of sub wavelength optical fields on chip scale
devices [33]. Hence it would be interesting to explore and compare optical
properties of unconventional geometries to that of conventional one. Hence
in this report we have explored the near field and far field optical properties
of gold nanocylinders arranged in a linear geometry with size varying accord-
ing to Fibonacci number [34]. Their comparison with the conventional chain
of nanocylinders shows some unfamiliar results which were found absent in
conventional chain geometry.

Self similar arrangement of metallic nanostructures used by [9, 23] presents
the maximum enhancement of electromagnetic fields around the smallest
nanostructure. In contrast to this result we have found the electromagnetic
fields enhancement to be maximum in between the gaps of largest nanocylin-
ders. In our current study we have arranged the radius of five consecutive
gold nanocylinders in a Fibonacci number array and compared the plasmonic
properties with conventional geomtry using FEM numerical method . Con-
ventionally we have used the first two radius of the Fibonacci chain as 10nm
and the surface to surface distance between consecutive nanocylinders to be
5nm. Radius for conventional geometry was chosen to be 25nm.

1.2 Plasmonics

Surface of metals such as Gold, Silver, Copper etc. are filled in a sea of con-
duction electrons and ions, together the term is called the Plasma. Oscillation
of the free electron gas density on the surface of metal is called the Plasma os-
cillations and the quantum unit is called Plasmons [37]. Illumination of light
on these surfaces may give rise to collective coherent oscillations of electron
density at the metal-dielectric interface, quantized unit commonly known as
surface plasmons [37]. When the wavelength of incident light matches the
wavelength of the oscillation of surface plasmons, then the electrons resonate
with the incident frequency resulting in the reduced scattered intensity due to
coupling with surface plasmons giving rise to a phenomenon called Surface
Plasmon Resonance (SPR) [37]. Interaction of photons and nanoparticles
forms a wide range of study called nanophotonics; ‘plasmonics’ constitute
the major part of nanophotonics exploring confinement of electromagnetic
fields of the order of wavelength of incident light and smaller [40]. Metal-
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Figure 1.1: Different size solutions of Gold nanoshells .[83]

lic nanoparticles have large surface to volume ratio hence more number of
electrons resides on the surface giving rise to SPR in large extent hence this
phenomenon is strongly observed in gold and silver nanoparticles [80]. In
fact different color solutions of gold and silver nanoparticles at visible light
are one of the fascinating consequences of SPR [80]. Besides the formation
of fascinating different color solution of metallic nanoparticles plasmonics
have a wide range of applications in SERS and bio sensing in which metal
nanoparticle could be used to enhance electric field enhancement around
DNA molecule or protein [41]. Plasmonic circuits could help in designing of
ultra fast interconnect chips that could work at speed as high as the speed
of light beside the current limited transfer speed [42]. Metamaterials are
negative refractive index materials which could be used for optical cloaking
[43, 44] and solar cells is another future application of plasmonics [45]. One
of the major challenges in plasmonics is the difficulty in confining light at
nanoscale due to optical diffraction limit [42]. A nanoparticle dimer is formed
when two nanoparticles are brought close together at a surface to surface dis-
tance of around few nanometers. Metallic nanoparticle dimers shows some
extraordinary enhancement under the illumination of visible light and is thus
useful for many application purposes. Local field enhancement and surface
plasmon resonance of asymmetric metallic nanocylinders pairs have a huge
application in focusing and manipulation of Light at nanometer scale [22].

We investigated the Near Field and Far Field for a gold nanoparticle chain
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arranged in a Fibonacci number array using Finite Element Method (FEM)
analysis by RF module of COMSOL 3.5a Multiphysics Modeling Software.

1.2.1 Near field and far field

Near fields and far fields for a system observed at nanoscale regime can
basically be represented by Fresnel number.

Fresnel number is defined as

N =
a2

Lλ

Where, a is the radius of the aperture, l is the wavelength of light, L is the
distance of the screen from the aperture. Far Field region is defined as the
region where N<<1. For N<<1 Fraunhoffer diffraction occurs, in this region
the wave is only dependent on the angle from the source and independent
of the distance from the source. Source of any shape can be considered as a
point source while observing wave in this region. Near field region is defined
as the region where N≥1. This is characterized by Fresnel diffraction. This is
the region within few wavelengths from the aperture, where evanescent wave
due to excitation of the surface plasmons is still strong [47].

1.2.2 Dielectric Constant

All metals exhibit dispersive properties i.e. their dielectric function (both
the real and imaginary part) depends on the incident frequency. Dielectric
constant plays a major role in the interaction of photon with metals. Optical
phenomenon of electromagnetic wave like attenuation, reflection, refraction
and polarization can be explained and derived using analytic expression of
dielectric constant.

Assuming an incoming electromagnetic wave having electric field of the
form E = E0 exp(kz − iωt) an expression for dielectric constant in the case
of absence of any external charge density can be derived as follows [53].

Maxwell’s Equations for no external charge density can be written as:

∇.E = 0 . . . (1)
∇.H = 0 . . . (2)
∇× E = −1

c
∂H
∂t

. . . (3)
∇× H = 4π

c
j + 1

c
∂E
∂t

. . . (4)
from the above two equations (3) & (4) we get

∇× (∇× E) = iω
c

(4πσ
c
E − iω

c
E) . . . (5)
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where,

σ = σ0

1−iωτ ; σo = ne2τ
m

. . . (6)

From (5)

−∇2E = ω2

c2
(1 + 4πiσ

ω
)E . . . (7)

The above equation has the form of the usual wave function with the term
in the paranthesis given by ε(ω) (dielectric constant) and τ is the relaxation
time

ε(ω) = 1 + 4πiσ
ω

Above equation can be simplified to :

ε(ω) = 1− ω2
p

ω2+iγω
. . . (8)

Where ωp is the plasma frequency and given by: and γ = 1/τ ; τ is the

relaxation time

ωp =
√

4πne2

m
. . . (9)

Equation (8) consist of a real part and an imaginary part which can be
seperated applying rationalisation to above formula which finally gives as:

Real part

ε1(ω) = 1−
ω2
pτ

2

1 + ω2τ 2

. . . (9)

And Imaginary Part as

ε2(ω) =
ω2
pτ

ω(1 + ω2τ 2)

. . . (10)

1.2.3 Refractive index (n):

n = c
v(medium)

= 1√
µ0ε0
· √µ0ε0 ·

√
µmedεmed

n =
√
µmedεmed =

√
εmed . . . (11)

(considering cases only for non-magnetic media hence taking µ(media) =
1) [81]
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Hence the refractive index of a medium is proportional to the dielectric
function of the medium thus is also complex. The two parts real and complex
of the reafractive index can be represented as;

n = n+ iκ . . . (12)

Here the real part of the refractive index (the ordinary refractive index
n) determines the phase speed and the imaginary part (κ) determines the
amount of absorption loss of the electromagnetic wave through the material
[81]. Using equations (9), (10), (11) we can obtain an expression for refractive
index in terms of frequency and also the real and imaginary parts of the
refractive index in terms of the real and imaginary parts of the dielectric
constant as:

n = 1√
2

√
(ε1 +

√
ε21 + ε22) . . . (13)

κ = 1√
2

√
(−ε1 +

√
ε21 + ε22) . . . (14)

The above two equations shows that the real and complex parts of the
refractive index are not totally independent. Also the real and imaginary
part of the dielectric constant can also be expressed in form of the two parts
of the refractive index as:

ε1 = n2 − κ2

ε2 = 2nκ . . . (15)

1.2.4 Attenuation constant:

Considering a harmonic wave travelling in z direction in a medium of refrac-
tive index ’n’ having the form E = E0 exp i(kz − ωt), where k is the wave
vector in the medium and is given by:

k = 2π
λ(med)

= 2π
λn

= n2π
λ

= ω(n+iκ)
c

Substituting this value in the wave equation

E = E0 exp i((n+ iκ)
ω

c
z − ωt)

E = E0 exp(−κω
c
z) · exp i(n

ω

c
z − ωt)
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Thus the electric field decays exponentially with the distance in the
medium. Intensity of the wave is given by I = EE∗. Therefore the ex-
pression of Intensity can be writen as:

I = E2
0 exp(−2κω

c
z)

According to Lambert-Beer’s law we have the relation of intensity as prop-
agation distance in the medium as I = I0e

−αz, Where a is the attenuation
constant. Comparing the above two equations we get

α =
2κω

c

. . . (16)
Since the attenuation constant is a function of the imaginary part of

refractive index hence it is also a function of the two parts of the dielectric
constant (κ in eq.14). Eq. (16) directly shows that the imaginary part of
the refractive index (κ) is reponsible for the attenuation of the wave in the
medium. Because κ is in turn directly related to ε2(img. part of dielectric),
it can further be extended that the imaginary part of the dielectric function
is responsible for the attenuation of the wave in the medium. For the non
transmission case i.e. the cases which we are interested in (for example -
interaction of metals with visible light) we can say that the real part of the
dielectric function ε1represents the reflectivity of light at the interface.

1.2.5 Real and Imaginary parts of the dielectric func-
tion

For large frequencies close to ωp , the product ωτ >> 1, which leads to
negligible damping as given by (10), the real part of the dielectric function
dominates (ε1 >> ε2)and therefore in this region, equation (8) simplifies to:

ε(ω) = 1−
ω2
p

ω2

. . . (17)
The above equation can be used for unreal cases for undamped free elec-

tron plasma. However practically speaking, for the case of noble metals
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in this frequency regime is completely altered by interband transitions (dis-
cussed in the next section), leading to an increase in the imaginary part of the
dielectric function and hence increase in absorption of the electromagnetic
wave.

For small frequencies we have ωτ << 1, Hence the Imaginary part of the
dielectric function dominates (ε2 >> ε1). From eqs. (13) & (14) it comes
out that the real and imaginary part of refractive index are approximately
same. This region is predominantly absorptive.

1.2.6 Surface Plasmon Polaritons (SPPs)

When Surface Plasmons couple with a photon, the resulting excitation is
called a surface plasmon polariton (SPP) [35]. On a metal dielectric interface
when light is impinged on the metal the resulting fields decays exponentially
as a function of distance because of Ohmic effects and can be written as [35].

ESP (x, z) = E0e
ikspx−kz |z|

Where KSP is the SPP wave vector which depends on the incident frequency

and the system parameters and can be written as:

K2
SP = (

ω

c
)2

εiεm
εi + εm

Above equation is also known as the dispersion relation and is plotted in

the figure (1.2). Straight line shows the light line. The decay length for the
surface plasmon can be calculated using the imaginary part of the SPP wave
vector (as imaginary part is responsible for the attenuation of the field) and
is equal to

LSP = |2 ImkSP |−1

. . . (18)

As can be seen from the figure, there is no electromagnetic wave propa-
gation until the applied frequency equals the plasma frequency of the metal.
And for further increase in frequency the above plotted curve is expected for
a metal following Drude model. The dashed line here represents the light line
i.e. applied frequency is directly proportional to its wave vector in vacuum.
It can be observed from the above figure that plasma dispersion takes place
for all the frequencies above plasma frequency.
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Figure 1.2: The dispersion relation of a free electron gas

1.2.7 Localized Surface Plasmon (LSPs)

In contrast to propagating modes, surface plasmons also exist in what is
called bound modes such excitations taking place in bounded geometries are
called localized surface plasmons [36]. Geometries such as metallic nanopar-
ticles and metallic nanostructures are very commonly used for excitation
of LSPs. Different color solutions of gold and silver nanoparticles fascinated
everyone from centuries is a typical example of LSP phenomenon. Unlike sur-
face plasmons in the bulk media, surface plasmons depend strongly on the size
and shape of the particles when considered at the nanoscale. Nanoparticles
have very large surface to volume ratio resulting in greater electron density
confinement on the surface of nanoparticles as compared to bulk compact
volume. Hence number of conduction electrons interacting with the incom-
ing electromagnetic wave is increased by a large extent resulting in enhanced
interaction.

1.2.8 Johnson and Christy values for dielectric function

Dielectric functions of gold and silver are plotted in fig 1.3:
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Figure 1.3: Dielectric function ε(ω)) of the free electron gas (solid line) fitted
to the literature values of the dielectric data for gold [Johnson and Christy,
1972] (dots).

From fig 1.3 we can deduce that drude model fits to the experimental data
for low frequencies. In the case of gold the drude model is not valid above
the boundary of near IR and Visible. This can be explained by interband
transitions taking place at the metal’s surface.

1.2.9 Interband Transitions

When light is illuminated on any metallic surface, the electrons in the metal
can possibly make transition from one level to another, these type of tran-
sitions are called Interband transitions. These transitions can occur as soon
as energy of the photons (~ω) in the incident light exceeds , En′ (k)− En(k)
for some k and for two bands n and n’, where En(k) is below the fermi level
(so that such an electron is available for excitation) and En′ (k) is above the
fermi level (so that the final electronic level is not made unavailable by the
Pauli principle) [82]. As already seen in the above section that drude model
fails to explain the behavior of metal-light interaction at higher frequencies,
however theory of Interband transitions explains the paradox. When the fre-
quencies are small enough, the interband transitions are unlikely to occur,
but as the frequencies are increased after the interband threshold, electrons
start making transitions from lower energy level to higher energy level and
hence electrons doesn’t obey Drude’s law, and hence the two curves does
not overlap at higher frequencies. Also some other effects like intraband
transtions (transitions within same band) may take place.
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Chapter 2

Methods

Near field and far field optical properties of metallic nanocylinders are thor-
oughly studied and practiced by various research groups using both theo-
retical [10, 22, 45-48] and experimental methods [31, 49]. Electrodynamic
simulation techniques are very helpful in providing a deeper understanding
of the light matter interactions and also suggest implementation of appro-
priate changes that could be useful for the experiment and hence is very
useful to guide the experiment in a better direction. In addition numerous
cases and conditions could be solved using simulations very easily which are
difficult when accessed using experiment.

In our current study we have used RF module of COMSOL 3.5a MULTI-
PHYSICS modeling software for two dimensions which uses FEM numerical
technique for calculation of near field distribution and far field radiation. We
have currently focused more on FEM and described a short introduction to
other numerical techniques.

2.1 Numerical Techniques

2.1.1 Finite Difference Time Domain (FDTD)

The basic principle of FDTD is to replace the derivates in the Maxwell’s curl
equations by finite differences and then solving them in the time domain [50].
The idea of FDTD is computing E field and H field at each and every point
in the geometry defined. FDTD traditionally use the Drude-Lorentz model
(eq.19) for the frequency dependent permittivity response for materials and
can thus cover a wide range of frequency response even for the ones which
are not yet experimentally found [51, 52]

14



εω = ε∞ −
ω2
d

ω(ω + iγd)
− 4ε.Ω2

l

(ω2 − Ω2
l ) + iΓlω

. . . .(19)

Where ω the incident frequency, ε the permittivity and other constants
are fitted accordingly using the experimentally obtained values. Results can
be visualized using softwares which take the Fourier transform of the time
domain signal corresponding to scattered electric field and magnetic fields
distributions.

2.1.2 Discrete Dipole Approximation (DDA)

Exact solutions to Maxwell’s equations are only available for simplified sym-
metric geometries like sphere, infinite cylinders etc. DDSCAT uses discrete
dipole approximation to simulate light scattering of electromagnetic wave due
to arbitrary shaped particles. Each object defined in DDA is divided into
arrays of small cubic elements. On illumination of electromagnetic wave,
these elements redistribute charges on their surface creating a dipole mo-
ment and acting like dipoles. For an individual dipole we have the radiated
field as given in [53, 54]. The sum of all the fields (fields due to scattering by
other dipoles) can be written together in a matrix form Aij [55]. The most
fundamental function of DDSCAT is to calculate this matrix and solve for
scattering cross sections using following equation [56]

σsca =
k

E2
i

∫
dS

|Escattered(r′).r̂|2dS

One big advantage of using this technique is it allows calculation of multi
sized particles in a single simulation and can simulate any arbitrary shape.

2.1.3 T-Matrix Method

T-Matrix method is widely used computational technique for calculation of
light scattering by non-spherical particle and system of such particles. For
problems involving light matter interaction, the components of the scattered
radiation in some way are related to the components of the incident radiation
and the operator in the matrix form relating the two is called the T-matrix.[

ascatteredn

bscatteredn

]
=

[
T11 T12
T21 T22

] [
aincidentn

bincidentn

]
Here the matrix consisting of T’s terms is the T-matrix and ascatteredi ,

bscatteredi are the components of scattered radiation and aincidenti ,bincidenti are
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the components of incident radiation. Elements of T matrix are determined
by matching the boundary conditions with the solutions obtained by solving
Maxwell’s equations and thus depend on refractive index of the particle and
the surrounding medium, size of the particle and wavelength of the electro-
magnetic wave [55].

2.1.4 Finite Element Method (FEM)

FEM is a numerical technique which solves and gives approximate solutions
for integral equations and partial differential equations. Numerical solutions
even in very complicated cases can be easily solved using this technique
which can be applied to a wide number of numerical problems involving
electrodynamics, mechanics, thermodynamics, chemical physics and many
more. In our case we have used the RF module of COMSOL Multiphysics
Modeling software which uses FEM simulation technique in solving problems
involving light matter interaction.

The first and very basic step of FEM is dividing a large (or small de-
pending on reference) complicated structure or object into several elements
which are quite easier to manage and then reconnects all of them at discrete
points called nodes giving rise to a set of algebraic equations, this process is
called generation of Mesh or preprocessing [57]. This process usually takes
longer time for extra fine boundaries and hence can also be done using Com-
puter Aided Design (CAD) which makes the process more convenient. Below
is an example of coarse mesh, normal mesh and finer mesh constructed us-
ing COMSOL 3.5a FEM software, figure 2.1 shows small triangular meshes
generated on surface of a circular object with sharp points as the nodes.
In order to get more accurate and detailed results mesh can be made finer
compromising with the simulation time [55].

Figure 2.1: Different Mesh sizes (a) coarse (b) normal (c) fine

Second step is the analysis of the dataset prepared after preprocessing
which involves solving of system of linear or non-linear equations in matrix
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form (eq 20) using input created by the preprocessor.

Kijuj = fi

. . . (20)
Where u is the displacement and f is the externally applied force at the

ith nodal point. The formation of K matrix depends on the parameters
chosen from the element library and the input constraints. The K matrix
is solved for every small mesh element individually so large number of mesh
elements results in increased simulation time. In fact one given problem can
be solved using the same code for different materials just by changing the
input material from the materials library; this is one of the best advantages
of FEM.

Third step is the post processing of obtained solution in which the solution
which is obtained in a matrix form is simulated in a graphical display which
is extremely helpful in visualizing the results. In the earlier days, the user
was required to list in large numbers generated by the code whereas modern
codes and commercial softwares give results in many desired form including
contour plots, arrow plots, 3D plots, boundary plots etc showing a very
clear and detailed picture of the result. FEM simulations are one of the
best for calculation of geometries involving curved surfaces and hence are
considered one of the most reliable simulation techniques. On the other hand
slow computation for 3D geometries is a big disadvantage in FEM, typically
it takes three minutes to solve for a single frequency of normal mesh in 3
dimensions (for 1GHz processor, 1GB RAM, Dual Core) and thus one has to
compromise between the computation time and the accuracy of the results.

Perfectly Matched Layers (PML): While attributing the outermost
boundary one has to make sure that there are no unnecessary back scattering
and reflections from the user defined boundary itself. This problem can be
solved by introducing a PML region covering the outermost boundary. PML’s
are absorbing layers which is used to solve problems involving free boundaries,
the most important point of having PML is the scattered outgoing waves from
the object entering the PML region is completely absorbed while the incident
wave is allowed to pass without any absorption [58].

Example of a 3D simulation in COMSOL 3.5a: Propagation of surface
plasmons in silver nanowire.

Steps towards this simulation are shown below:
Preprocessing:
1) Defining geometry:
a) Draw a cylinder (silver nanowire) 2µm long with 56nm radius.
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b) Draw a block (substrate) touching cylinder of appropriate dimen-
sions.

c) Draw boundary (medium) of finite dimensions (in form of block)
in order to contain the geometry.

d) Draw another boundary (PML) slightly bigger than above (in
form of block) with center coinciding with above boundary.

e) Draw a hypothetical cylinder on one end of the wire (as shown in
fig 2.2 below)

Figure 2.2: 3D geometry of silver nanowire in COMSOL

2) Subdomain Settings:
a) Addition of dielectric values of silver nanowire. Imported from

Johnson and Christy experimentally determined values [52].
b) Check all the PML absorption for PML subdomain.

3) Boundary Settings:
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a) Apply ‘scattering boundary condition, plane wave illumination’ to
the circular boundaries of illumination cylinder (as shown in fig 2.2).

b) Apply Impedance boundary condition to the outermost PML
boundary.

c) Apply continuity to all other boundaries.
4) Mesh and Other Parameters:
a) Change Mesh parameters accordingly in Mesh properties and Ini-

tialize Mesh
b) Specify wavelength = 633nm in scalar variables section.
c) Click on Solve.

After clicking on solve, the system solves the problem
Post processing:
After the solution is obtained there are several parameters which can be

obtained both quantitatively and analytically e.g. distribution of Electric
field (x,y,z, norm), Magnetic field (x,y,z, norm), Energy density (Electrical,
Magnetic, Total), Far Field radiation patter, extinction spectra etc. These
outputs can also be visualized in various types of plot (subdomain, boundary,
contour, arrow etc).

2.2 Calculation of Extinction Spectra

The near field and Far field spectra of metal nanoparticle chains were calcu-
lated using the RF-Module of COMSOL 3.5a Multiphysics modeling software
in two dimensions. Entire simulation was performed over a wavelength sweep
of 400nm to 900nm i.e. mostly in the visible regime which also contains in
the SPR wavelength for gold (≈ 520nm). Far Field scattering efficiency on
a spherical boundary is given by [59].

Qscat =
1

πr22E
2
inc

1

R2
f

∫
|Efar|2R2

f .dΩ

Where Rf is the radius of the far field boundary chosen, Efar is the scat-
tered electric field on boundary at Rf distance from center, Einc is the incident
electric field amplitude. One key advantage in using Comsol is that it au-
tomatically considers the term R2

f while perfoming boundary integrations
giving finally the extinction efficiency multiplied by some constant factor.
Hence scattering efficiency calculation can be easily done in Comsol by just
defining Efar at boundary and calculating the integration over line (for 2D)
or over surface (for 3D). Similarly Absorption efficiency could be determined
by integrating the time averaged resistive heating (Uav) [59]. But because we
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are considering the case when absorption is far less significant than scattering
we can approximate extinction efficiency to be equal to scattering efficiency.

2.3 Geometry used:

Geometry used in our current study is represented in fig 2.3. Fig.2.3 (a) shows
the Fibonacci number array used, numbers (above nanocylinders) represent
the ratio of radius of nanocylinders to be used in order to form a Fibonacci
array. Traditional Fibonacci number array extends to infinity but we utilize
the first five terms for our calculations. Gold nanocylinders are arranged
symmetrically with respect to x-axis on the x-axis (here x-axis corresponds
to the axis containing the chain of nanocylinders). Fig 2.3 (b) represents
conventional regular chain geometry of gold nanocylinders.

Figure 2.3: Geometry representing arrangement of gold nanocylinders ac-
cording to Fibonacci numbers. The numbers inside the nanocylinders repre-
sent their diameter in nm. Arrows E and k represent electric field polarization
and propagation vectors respectively and θ represents the excitation angle.
(b) Conventional chain of gold nanocylinders (CC) of 50nm diameter, ‘d’ is
the constant gap between the nanocylinders and is equal to 5nm

We restrict our simulation to two dimensions which assumes the gold
nanocylinders extend infinite in length towards the positive and negative z-
axis, radius of the nanocylinders are chosen to be minimum 10nm and maxi-
mum 50nm which vary according to the Fibonacci number array as shown in
the figure. Surface to surface distance between two consecutive nanocylinders
are kept constant to be 5nm throughout the simulation. The whole geometry
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was kept in air as the medium (refractive index = 1) symmetrically spread
in a region of 1.2m in diameter with respect to center of the geometry. Far
fields are calculated on the outermost boundary of the medium i.e. at 600nm
from center of the geometry. Perfectly Matched Layer (PML) region is used
at the boundary of the medium in order to absorb unwanted back scattering
of light due to boundaries.

In current study we have used TM polarized plane wave having propaga-
tion vector and electric field parallel to the plane of the geometry. Con-
ventionally the illumination direction is chosen from the side containing
nanocylinder with the largest radius, as shown in Fig.2.3 by blue arrow,
θ in the figure represents the angle convention used in the geometry. Dielec-
tric function of gold nanocylinders as a function of incident wavelength is
adapted from Johnson and Christy [52].
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Chapter 3

Results and Discussions

In our current report we have studied the near field and far field optical
properties of FC geometry and compared them with CC geometry. Some
very interesting and additional observations are made in case of FC geometry
which were quite absent in CC geometry. In addition we have also explored
propagation of surface plasmon polaritons on surface of silver nanocylinders
excited at particular wavelength.

3.1 Propagation and Localization of Light on
Metal Nanoparticle Chains

Previously it is well studied and shown by Dal Negro and co-workers [25,
33, 60-62] that deterministic aperiodic nanostructures could explore unusual
optical properties which are otherwise absent in conventional geometries.
Here in this report we have investigated the near field and far field plasmonic
properties generated due to the interaction of TM Polarized plane wave and
linear chain of gold nanocylinders whose radii are arranged according to
Fibonacci number sequence with same surface to surface distance. As shown
in this report we have obtained the far field spectrum for the geometry as a
function of incident angles and incident wavelengths demonstrating potential
applications in nano focusing and bio sensing [20-22]. An extraordinary near
field enhancement in the gap between the largest nanocylinders caused due to
the coupling of localized Plasmon resonance has wide number of applications
in SERS [12, 13]. Self similar arrangement of metallic nanostructures used by
[9, 23] presents the maximum enhancement of electromagnetic fields around
the smallest nanostructure. Exact geometry used is clearly shown in the
methods section (fig 2.3).
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3.1.1 Extinction Spectra for various excitation angles

Interaction of an electromagnetic wave with a particle or chain of particles
results in absorption and scattering collectively the term called extinction, ef-
ficiency depending mainly on the geometry, dielectric function, wavelength of
incident light and other parameters used in the system. Figure (3.1 (a and c)
shows the plot of extinction spectra for different angles (integral of the square
of the norm electric field observed at the medium boundary, that is 600nm
from the center) versus wavelength for FC geometry and CC geometry re-
spectively. Figure (3.1 (b & d) shows the excitation wavelength (wavelength
corresponding to maximum extinction at boundary of the medium) Vs An-
gle of incidence for FC and CC geometry respectively. Angle convention
used is as shown in the figure i.e. 0o is attributed to the side containing
the largest nanocylinder. Excitation wavelength for a single gold nanocylin-
der lies around 522nm, although excitation wavelength for 0o and 180o is
observed at 522nm whereas a nice variation is observed for other oblique
incident illumination angles. Also an asymmetry for the FC geometry peak
wavelength (fig 3.1 b) is visible and a continuous gradual increase in the peak
wavelength is observed for an increase in the angle of excitation, whereas for
CC geometry we observed comparatively a rapid increment. This property
of FC geometry is derived from the asymmetric arrangement and can be
potentially used in generation of electromagnetic hot spot from any desired
wavelength.

As can be inferred from the figure 3.1, the peak wavelength is observed
to be red shifted as the angle of illumination sweeps from 0o to 90o and
then the pattern reverses as it reaches 0o . The above pattern can be ex-
plained using classical harmonic oscillator problem as we are not taking into
account for the quantum effects which arise on further decreasing the length
scale. Restoring forces due to interaction of light and matter doesn’t really
depend on the angle of illumination when considered individually but when
considered collectively, consideration of angle of illumination is very critical
because of coupling between neighboring cylinders [63]. When the TM po-
larized plane wave is illuminated along the x-axis, electric field is on the Y
axis thus oscillating the cylinders along Y-axis leading to stronger coupling
between them and thus the resonance shifts to higher frequency or lower
wavelength. Whereas while considering the perpendicular illumination elec-
tric field is on the x-axis thus oscillation of cylinders is on the x-axis leading
to a reduced coupling due to neighbor shifting the resonance to lower fre-
quency or higher wavelength. This mechanism is known as the near field
coupling mechanism [64].
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Figure 3.1: (a) Far-field intensity spectra for different excitation angles in
FC geometry; (b) Variation of excitation wavelength as function of excitation
angles in FC geometry. (c) Far-field intensity spectra for different excitation
angles in CC geometry; (d) Variation of excitation wavelength as function of
excitation angles in CC geometry

3.1.2 Far Field Radiation Pattern

Here we have shown the far field radiation pattern for the two geometries
and discussed the back scattering efficiency and forward scattering efficiency
between the two. Angle of incidence plays a key role in evaluation of far field
spectra for a system of two or more nanoparticles.

Figure 3.3 basically represents the polar plot of angular pattern of inten-
sity (arbitrary units) as a function of arc length on the outer boundary of
the medium. Forward scattering and backward scattering due to the gold
nanocylinders are quantitatively expressed in figure 3.3. Fig 3.3 (a-e) rep-
resents far field radiation pattern for FC geometry at different angles (as
shown in fig) at wavelength corresponding to maximum far field. Angular
sweep used was from 0o to 180o in steps of 45o , because the geometry is
symmetric with respect to x-axis we obtain similar symmetric results while
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Figure 3.2: (Left) Radiation pattern of a dipole (arrow shows dipole moment
direction). (Right) coupling in different polarization directions [63].

sweeping angles from 180o to 360o and hence not shown here. Forward and
backward scattering calculations are particularly useful in focusing of light
at nanoscale and also pave the way for better utilization of light. Calculation
of forward and backward scattering at each wavelength gives an approximate
idea about the transmission and reflection of light at that wavelength which
might be quite useful in construction of highly efficient solar cells.

Figure 3.3 shows the far field radiation pattern for the two geometries
FC (a-e) and CC (f-j) at five different excitation angles 0o , 45o , 90o , 135o

, 180o . As can be inferred from the figure, the forward scattering is always
greater than the backward scattering except for the case of perpendicular
illumination i.e. fig 3.3 (c, h). However it is also noticeable that for 45o ,
90o and 135o excitation angles the two geometries show similar response of
forward scattering and backscattering. Whereas for 0o and 180o excitation
angle significant backscattering in case of FC is noticeable as compared to CC
in which it is completely absent. From this result we can deduce that in FC
geometry radiation is not only coupled towards the forward direction but also
in the backward direction. This is an interesting property of FC geometry
which gives us an indication that a gradient in size of the nanoparticles could
be exploited for backscattering.
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Figure 3.3: Far-field radiation pattern in FC geometry for excitation angles
(a-e) 0, 45, 90,135, 180 degrees. Far-field radiation pattern in CC geometry
for excitation angles (f-j) 0, 45, 90,135, 180 degrees.

3.1.3 Near Field Electric Distribution

So far we have discussed only the far field spectra and far field radiation
pattern for the two geometries FC and CC. In fact near field optical properties
of the two geometries depicts further interesting observations. In this section
we will mainly discuss upon the near field enhancement and near electric
field distribution for the two geometries.

Interaction of electromagnetic wave and a system of two or more nanos-
tructures when placed in closed vicinity can give rise to electromagnetic hot
spots. Analytical theory for electromagnetic interaction of touching nanopar-
ticle dimers already exists [65] and also it is now well understood that the
electric field near the vicinity of composite plasmonic nanostructures could
be enhanced by a factor as high as 104 [66]. These enhanced electric fields
explore its potential use in SERS (Surface Enhanced Raman Scattering).
Controlling and tuning such large enhancements could be one of the critical
issues. One of the best ways to tune and control these enhancements could
be done by changing the angle of excitation [67-69]. Near field enhancement
typically depends on the polarization and incident angle of the field, thus
varying these two parameters and keeping the geometry same we can tune
the near field.

In this report we have explored the near field distribution of electric field
for different excitation angles (0, 45, 90, 135, and 180) for FC and CC geom-
etry and compared the near field enhancements between them. Fig 3.4 (a-e)
represents near field distribution for FC geometry and fig 3.4 (f-j) represents
near field distribution for CC geometry. As can be seen in the figure, the
maximum magnitude of near electric field for FC geometry varied from 5000
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V/m at 90o to 1000 V/m at 0o whereas for CC geometry maximum magni-
tude of near electric field varied from 4800 V/m at 90o to 600 V/m at 0o . A
common observation in both the geometry is that the near field enhancement
monotonically increases till excitation angle reaches 90o i.e. perpendicular
illumination because as angle sweeps till perpendicular illumination coupling
gets stronger due to increased dipole-dipole interaction and is maximum when
nanocylinders are polarized in the direction perpendicular to their chain axis
i.e. for 90o illumination (see fig 3.2).

Figure 3.4: Near-field distribution for different excitation angles in FC and
CC geometry. (a, b, c, d, e) represents near-field distribution in FC for 0, 45,
90, 135, 180 degree excitation angles, respectively; and (f, g, h, i, j) represent
near field distribution of CC for 0, 45, 90, 135, 180 degree excitation angles,
respectively. Color code represents magnitude of Electric field norm and
arrow indicates the k vector.
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3.1.4 Near Field Spatial Distribution

As observed in fig 3.4 the maximum and minimum values of electric field in
the near field regime is almost same for both the geometries however a look
at their spatial distribution shows generation of multiple electromagnetic hot
spots as shown in fig 3.5 for 90o excitation angle.

Figure 3.5: (a) 3D plot of near-field distribution in FC geometry for 90o

excitation; (b) magnitude of near-field as function of linear co-ordinate in
FC geometry. (c) 3D plot of near field distribution in CC geometry for 90o

excitation; (d) magnitude of near-field as function of linear co-ordinate in FC
geometry. Insets shows the geometry and relevant linear-coordinates.

Fig 3.5a represents the 3D projection of electric field distribution and fig
3.5b represents the near field enhancement as a function of linear coordinates
along chain axis for FC geometry at 90o excitation. We observed a nice gra-
dient of near field enhancement for FC geometry and the enhancement is
proportional to cylinder’s size this is because of the coupling between local-
ized surface plasmons (LSPs) for larger cylinders coupling is more. Whereas
for CC geometry fig 3.5 (b&d) we observed an almost uniform enhancement
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of multiple hot spots this is again because of the same size of individual
nanocylinders near field enhancement is almost similar. However in spite of
same size a slight variation is clearly visible in fig 3.5 (d), i.e. near field en-
hancement is maximum around the middle nanocylinders, this can again be
explained using fig 3.2 that collective dipole radiation decays as 1/r2, hence
maximum coupling of collective dipole radiation occurs at center. This is
the scenario for 90o illumination however we can tune the near field enhance-
ment as a function of linear coordinates by changing the angle of excitation
(as shown in fig 3.6).

Figure 3.6: Near field distribution comparison for the illumination along
chain axis. Illumination direction is shown by white arrow

As evidenced in fig 3.6 we can deduce that the near field enhancement
can be tuned just by changing the angle of excitation. When nanocylinders
are excited at angles different than perpendicular and parallel polarization,
charges on the surface of nanocylinder redistributes them according to the
incident angle and results in variation of near field enhancement.

3.1.5 Raman Enhancement

As we have observed in (fig.3.4) near field coupling in between localized
surface plasmons (LSPs) can give rise to extraordinary electric field enhance-
ments and results in creation of electromagnetic hot spots. Local field en-
hancements in such Plasmonic nanostructures are ideal sources to perform
SERS. Raman enhancement factor can be calculated using the maximum
near field observed in fig.3.4 (discussed in theory) for both the geometries at
different angles as shown in fig 3.7.
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Figure 3.7: Raman enhancement in FC and CC geometries as a function of
excitation angle

30



As can be inferred from fig 3.7, the maximum Raman enhancement for
FC geometry is 5.1 × 105 and for CC it is 4.3 × 105 both observed at 90o

illumination. Minimum enhancement is observed for 0o and 180o which is
consistent with fig 3.4 and again can be explained using dipole coupling model
(fig 3.2). Another interesting consequence of the asymmetric arrangement of
FC geometry is the asymmetry in Raman enhancement as can be seen in
fig 3.7, a slight asymmetry is observed for FC as compared to CC which is
completely symmetric.

3.1.6 Comparison with self similar chain

Self similar chain of nanospheres are thoroughly studied by some research
groups [24] claiming the maximum near field enhancement around small-
est nanostructure. Quite similar to FC geometry in Self similar chain also
nanoparticles are arranged with a monotonic gradient in size. These are
periodic chains in which surface to surface distance between two successive
nanoparticles and size of next nanocylinder is directly proportional to the size
of the nanoparticle [24]. In contrast to the results observed using self sim-
ilar geometry we have obtained maximum enhancement around the largest
nanocylinders (as shown in the figure below).

Hence a possible conclusion can be made that the location and magnitude
of near field enhancement strongly depend on size of the geometry as well as
on the periodicity of the geometry chosen.

3.2 Propagation of SPPs on continuous one di-
mensional Plasmonic nanostructures

Plasmonic nanowire can serve as waveguide for SPP propagation and can
serve as a key component in designing photonic integrated circuits overcom-
ing bandwidth limitations and limited data transmission rate in electronic
circuits [11, 70-73]. SPPs when excited on plasmonic nanostructures (e.g.
silver nanowire, nanoparticle chains etc) can travel distances as long as tens
of nanometers [74-77]. Propagation of SPPs depends strongly on the dielec-
tric property of metal and environment, wavelength of light as usual and also
the polarization of the incident electromagnetic field is a key factor [78].

Here in this report we have demonstrated the propagation of SPPs on
a 2µm long silver nanowire of radius 56nm using 3D RF module of COM-
SOL Multiphysics 3.5a, refer to fig(2.2). Throughout the simulation we have
kept the incident wavelength to be equal to 633nm, as in case of experimen-
tal justification 633nm red laser is easily available, and the corresponding
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Figure 3.8: (a) Near field distribution for self similar geometry (b) Near field
magnitude as function of linear coordinate along chain axis (c) Near field
distribution for FC geometry (d) Near field magnitude as a function of linear
coordinate along chain axis. Arrow shows the illumination direction.

refractive index is used for Ag metal [52]. One another reason for using sin-
gle wavelength is the limited processor RAM and processing speed because
wavelength sweep for small meshes might crash the system. Electric field
is illuminated towards one of the end of the Ag nanowire and slice plot at
nanowire’s surface is used to visualize the propagation of SPPs.

As can be inferred from the above figure, for polarization along the wire
axis (fig 3.9a) propagation of SPPs is clearly witnessed with minimum loss.
End points of nanowire are accompanied with red dots (i.e. high electric
fields) which give a clear implication of high transmission. In second case we
saw minimal propagation of SPP for polarization perpendicular to nanowire
axis (fig 3.9b) and also the end caps are not accompanied with significant
electric field. We obtained contrasting results in the two cases; this is be-
cause polarization of electric field along the wire axis creates oscillation along
the wire length which gets carried over towards other end, whereas for other
case oscillation is perpendicular to the wire length resulting in minimal prop-
agation along wire. The third case is very interesting in which we observe
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Figure 3.9: Slice plot for Ag nanowire representing near field distribution.
Electromagnetic wave is incident towards Y-direction on the circle drawn
with three different polarizations (a) Along Z-axis (b) along X-axis (c) cir-
cularly polarized. Double headed arrows represent the incident polarization.

propagation of chiral plasmons [79] on the surface of nanowire for circular
polarization illumination. In this case the oscillation is along both parallel
to the wire as well as perpendicular to the wire with equal amplitude. The
formation of chiral plasmons at nanoscale regime could explore potential ap-
plications in probing of enantiomeric molecules at nanoscale [79].
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Chapter 4

Conclusion

We have numerically explored the near field and far field excitation angle
dependent optical properties of gold nanocylinders arranged in Fibonacci
number chain (FC) geometry and compared the obtained results with the
conventional chain geometry (CC). Comparison of Far field radiation pat-
tern shows that a gradient in size of nanoparticles could give an enhanced
amount of backscattered intensity for excitation angles along the chain of
nanoparticles. We found that near field enhancement around the chains of
metallic nanoparticles (both FC and CC) can be tuned by varying the angle
of incidence which can be harnessed for applications in SERS and chip based
nanophotonics devices. For perpendicular excitation in FC geometry we ob-
served a gradient of near field enhancement around gold nanocylinders as a
function of size with maximum enhancement around largest nanocylinder,
this could be used in tuning of Raman enhancement as a function of size i.e.
tuning both size and angle gives more flexibility for specific required enhance-
ment. Comparison of near field enhancement for FC geometry and self sim-
ilar geometry clearly indicates the difference in near field optical properties
for periodic and a periodic nanostructures. Finally we studied the polariza-
tion dependence of propagation of SPPs along the silver nanowire chain and
found that linear polarization along the wire axis could induce propagation
of SPPs for few ums and is not significant for polarization perpendicular to
the chain axis. In addition observation of chiral plasmon propagation was
very fascinating to be observed for incident circular polarization.

4.1 Future Direction

Our angular dependent near field studies for different geometries explored
alternative methods of fine tuning the near field enhancement. Hence any
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amount of required value for field could be maintained and hence could be
used as a source of electric field for photonic integrated circuits or photonic
crystal waveguides, in which the applied field can be varied by fine tuning the
angle of excitation. Our far field studies indicate that for FC geometry we get
very continuous distribution of excitation wavelength for different excitation
angles, hence could be a useful technique of absorbing maximum photons of
any wavelength.

4.2 Drawbacks
We approximated our simulation for 2D geometry as because of limited com-
puter resources it was very difficult to carry out wavelength dependent 3D
simulations for curved geometries in COMSOL. Also we direclty substituted
the values of dielctric constant for gold and silver as taken from Johnson
and Christy values [1976], however dielectric properties at nanoscale might
change.
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