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Abstract

Combinatorial Surface

by Sandeep Suman

The contents of this thesis are basic notions in combinatorial topology and simplicial

homology theory. Some existing techniques of how we can compute the homology

groups are also presented. The results on classification of all closed combinatorial

surfaces has been discussed. Methods of generating triangulation of surfaces by using

computers has been discussed. It is based on the project work which I undertook in

IIT Patna as reading project followed by programming to generate triangulations.
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Chapter 1

Introduction

Topology usually refers to point-set topology developed from the general theory of

sets by Georg Cantor and first book appeared in 1912 by Hausdorff. The study of

combinatorial topology now algebraic topology was started by Henri Poincaré during

1895-1901. It is not based on set theory but geometric problem of curves, surfaces

and the geometry of Euclidean spaces. One of the problem, point set topology and

algebraic topology tries to answer is to classify topological spaces up to homeomor-

phism.

In this report we will see the examples of two of main working techniques in algebraic

topology first is the idea of invariants(here topological invariants) and other is known

classification theorem. Topological invariant is a property of a topological space which

is invariant under homeomorphism. For example connectedness and compactness are

topological invariants. In general, classification theorem tries to distinguish topo-

logical spaces on the basis of some equivalence relation and each topological space

belongs to exactly one class. We want to find a set of topological invariants, if they

are identical for any two topological spaces then they belong to the same equivalence

class. For example a closed surface is represented by a polygon with even number of

edges. Polygon has directed edges appears exactly twice. We can use signed symbols

to distinguish two direction of an edge. Then Euler characteristic(V − E + F ) and

orientability will be able to classify all closed surfaces.

We associate groups with topological spaces which are topological invariant, i.e.,

homeomorphic space has isomorphic group. Once we define a method to associate a

group to the topological space, we can find some results about the topological space

using algebraic arguments. If two space have non-isomorphic group then we clearly

say that they are not homeomorphic. But usually it is not other way round, i.e., if

1



2 CHAPTER 1. INTRODUCTION

two groups are isomorphic then we can not say the underlying space is homeomorphic.

Two most common group we study are homotopy and homology.

First homotopy group or fundamental group is based on loops and curves on topolog-

ical space. If we are able to continuously deform one loop to other then they belong

to the same class. A trivial loop is the one which can be continuously deformed into a

point. A simply connected space is the one in which any loop can be deformed into a

point and hence the fundamental group of a simply connected space is trivial. R2 and

S
2 are examples of simply connected space. In circle(S1), a loop which encloses the

hole can not be deformed into point thus it is a non-trivial element of the fundamental

group of the circle. Two loops belong to same equivalence class iff number of time it

will go around the hole and their direction will be the same. It’s fundamental group

is a infinite group generated by one element. R2 and circle has different fundamental

group hence they are not homeomorphic. But we can see that R2 and S
2 has same

fundamental group but they are not homeomorphic, R2 is not compact while S
2 is

compact. A loop is a continuous map from S
1 to the topological space X . Then there

is a generalization of higher dimensional homotopy group in which n-th dimensional

loop can be thought as continuous map from S
n to the topological space X .

Like homotopy, homology group also look for holes in the topological space. Consider

a simple configuration below:

a
b

c

d

e

Figure 1.1: Polyhedron

It consist of the triangle < abc > and it’s boundary and also edges < ad >,< de >

and < ae >. Such kind of space are called polyhedron. A 2-chain will be a linear

combination of triangles while a 1-chain will be linear combination of edges. For sim-

plicity take the coefficient modulo 2, i.e., zero or one. A 2-chain is < abc > because

our polyhedron has only one triangle, while a 1-chain is any combination of 6 edges

in the polyhedron. For example, a 1-chain is

< ab > + < ac > + < de >,
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Other edges can be thought as has coefficient zero.

Now we define a boundary operator which is actually the boundary of these closed

sets as follows

∂ < abc > = < ab > + < bc > + < ac >

∂ < ab > = < a > + < b >

Extending this linearly we can find the boundary of any chain. For If any p-chain is

the boundary of some (p + 1)-chain, then it is called a p-boundary. Also a p-cycle is

a p-chain such that it’s boundary is zero.

Now the 1-cycle < ab > + < bc > + < ac > encloses a 2-chain < abc >, while 1-cycle

< ad > + < ae > + < de > bounds a hole. Thus we see that a non-trivial cycle

can be the boundary of a higher dimensional chain or it encloses a hole. This is the

idea of homology group to find holes in the polyhedron by finding cycles which are

not boundaries.
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Chapter 2

Basic Combinatorial Topology

In this section our aim is to define polyhedra. We recall the basic definitions from

Croom [1].

Definition 2.0.1. A set of k + 1 points are geometrically independent if it is not

contained in the hyperplane of dimension less than k.

If {a0, a1, · · · , ak} are the geometrically independent points than {a1−a0, · · · , ak−

a0} will span a vector space of dimension k.

Definition 2.0.2 (Simplex). Let A = {a0, a1, · · · , ak} be a set of geometrically in-

dependent points in R
n. Then a k-dimensional geometric simplex or k-simplex, σk,

spanned by A is the set of points in R
n such that,

σk =
{

x =
k
∑

i=0

λiai |, λi ∈ R, λi ≥ 0,
∑

λi = 1
}

Here the numbers λ0, · · · , λk are called the barycentric coordinates of the points x

and a0, · · · , ai are called the vertices of the simplex, σk. We can represent σk =<

a0a1 · · · ak >.

If all the λi are strictly positive then the simplex spanned by the {a0, a1, · · · , ak} will

be an open subset of Rn and called open geometric k-simplex.

Definition 2.0.3 (Faces). A simplex σk is a face of a simplex σn, k ≤ n if each vertex

of σk is a vertex of σn. All the faces of the σn other than σn itself are called proper

faces.

Example 2.0.4. Let < a0a1a2 > be a 2-simplex. Then the 2-simplex will be itself

and 1-simplexes will be < a0a1 >, < a1a2 > and < a0a2 >, and 0-simplex will be

< a0 >, < a1 > and < a2 >.

5



6 CHAPTER 2. BASIC COMBINATORIAL TOPOLOGY

Definition 2.0.5. Two simplexes are called properly joined if they do not intersect

or their intersection will be a face of both.

Once we have our bricks and the way to combine them we can now look at the

structure which can actually represent some topological spaces.

Definition 2.0.6 (Geometric Complex). A geometric complex or complex, K, is a

finite collection of simplexes with two condition.

• Each face of a simplex in K is also a member of K.

• Any two simplex in K must be properly joined.

The dimension of K is the largest positive integer n, such that σn ∈ K. The union

of members of K with the Euclidean subspace topology is denoted by | K | and called

geometric carrier of K or the polyhedron associated with K.

Definition 2.0.7. Let X be a topological space such that, there exist a geometrical

complex K whose geometric carrier | K | is homeomorphic to the X, then X is said

to be a triangulable space, and K is called the triangulation of X.

Thus K represent the topological space X in a simple way and we can expect

some of the properties can be shared by both.

Definition 2.0.8. The closure of a k-simplex σk, Cl(σk), is the complex consisting

of σk and all its faces.

Definition 2.0.9. If K is a geometric complex. For a positive integer r, the r-skeleton

is the complex consist of all simplexes of K of dimension less than or equal to r.

Example 2.0.10. A three simplex σ3 =< a0a1a2a3 > is a tetrahedron which 2-

skeleton will be it’s boundary and homeomorphic to the sphere(S2). Consider K be

the collection of all proper faces of the σ3, Then K will be the triangulation of S2.
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Example 2.0.11. Möbius strip is obtained by identifying two opposite ends of a

rectangle with a flip.

ao a1 a2 a3

a3 a4 a5 a0

Figure 2.1: A Triangulation of Möbius strip

Definition 2.0.12 (Orientation of Geometric Complexes). An oriented n-simplex, is

obtained by choosing an ordering of it’s vertices, The equivalence class of even per-

mutation of the chosen ordering is positively oriented while other is called negatively

oriented.

An oriented geometric complex is obtained by assigning an orientation to each of its

simplexes.

We can assign orientation to each of it’s geometric simplex separately or we can

give an ordering of all it’s vertices, which will induce ordering of each simplex by

removing all the vertices which are not in the simplex from the ordered list of all

vertices.

Definition 2.0.13. Let K be an oriented geometric complex with simplexes σp+1

and σp whose dimensions differ by 1. Then we can associate an incidence number

[σp+1, σp] defined as follows:

• [σp+1, σp] = 0 If σp is not a face of σp+1.

• [σp+1, σp] = 1 If σp =< a0 · · · ap > is a face of σp+1 and v be a vertex of σp+1

doesn’t belongs to σp and < va0 · · · ap > belongs to the even permutation of the

σp+1.

• [σp+1, σp] = −1 If σp =< a0 · · ·ap > is a face of σp+1 and v be a vertex of σp+1

doesn’t belongs to σp and < va0 · · · ap > belongs to the odd permutation of the

σp+1.

Example 2.0.14. Let +σ1 = + < a0a1 >, then [σ1, < a0 >] = −1 and [σ1, < a1 >

] = 1
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Theorem 2.0.15. Let K be an oriented complex, σp is an oriented p-simplex of K

and σp−2 is a face of σp. Then,

∑

[σp, σp−1][σp−1, σp−2] = 0, σp−1 ∈ K

Proof. Let +σp−2 =< v0 · · · vp−2 >, Then σp will have two more vertex a and b, We

can assume +σp =< abv0 · · · vp−2 > All non-zero terms occur in the summation for

two values of σp−1,

σp−1
1 =< av0 · · · vp−2 >, σp−1

2 =< bv0 · · · vp−2 >

Now we have to solve each combination of the orientation of these σp−1.

Case I. Suppose that,

+σp−1
1 = + < av0 · · · vp−2 >, +σp−1

2 = + < bv0 · · · vp−2 >

Then,

[σp, σp−1
1 ] = −1, [σp−1

1 , σp−2] = +1,

[σp, σp−1
2 ] = +1, [σp−1

2 , σp−2] = +1,

So the summation in the product is zero.

Case II. Suppose that,

+σp−1
1 = + < av0 · · · vp−2 >, +σp−1

2 = − < bv0 · · · vp−2 >

Then,

[σp, σp−1
1 ] = −1, [σp−1

1 , σp−2] = +1,

[σp, σp−1
2 ] = −1, [σp−1

2 , σp−2] = −1,

So the summation in the product is again zero.

Similarly,

Case III. Suppose that,

+σp−1
1 = − < av0 · · · vp−2 >, +σp−1

2 = + < bv0 · · · vp−2 >

Then,

[σp, σp−1
1 ] = +1, [σp−1

1 , σp−2] = −1,
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[σp, σp−1
2 ] = +1, [σp−1

2 , σp−2] = +1,

So the summation in the product is again zero.

Case IV. Suppose that,

+σp−1
1 = − < av0 · · · vp−2 >, +σp−1

2 = − < bv0 · · · vp−2 >

Then,

[σp, σp−1
1 ] = +1, [σp−1

1 , σp−2] = −1,

[σp, σp−1
2 ] = −1, [σp−1

2 , σp−2] = −1,

So the summation in the product is again zero. Hence, the expression in theorem is

zero.

2.1 Simplicial Homology Group

Definition 2.1.1. Let K be a oriented geometric complex. For a given positive in-

teger, a p-chain is a function cp from the family of the oriented p-simplexes of K to

the integers such that, for each p-simplex σp, cp(−σ
p) = −cp(σ

p). The group struc-

ture of Z will induce a group structure on the family of p-chains. This is called a

p-dimensional chain group of K and the group is denoted by Cp(K).

An elementry p-chain is a p-chain cp for which there is a p-simplex σp, such that

cp(τ
p) = 0, ∀τ p 6= σp.

An arbitary p-chain, dp can be written as finite sum of of elementary p-chains as

follows

dp =
∑

gi · σ
p
i

Where i runs over all p-simplexes.

Now if cp =
∑

fi · σ
p
i and dp =

∑

gi · σ
p
i are two p-chain on K, Then

(i) cp + dp =
∑

(fi + gi) · σ
p
i

(ii) The additive inverse of the chain cp in the group will be −cp =
∑

−fi · σ
p
i

(iii) The chain group Cp(K) is isomorphic to the direct sum of finite number of Z.

Suppose there are n number of p-simplexes in K. Then Cp(K) is isomorphic to direct

sum of n number of copies of Z. One isomorphism is given by

n
∑

i=1

gi · σ
p
i ↔ (g1, g2, · · · gn).
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Definition 2.1.2. Let g · σp is an elementary p-chain with p ≥ 1, the boundary of

g · σp, ∂(g · σp) is defined by

∂(g · σp) =
∑

[σp, σp−1
i ]g · σp−1

i , σp−1 ∈ K

If cp =
∑

fi · σ
p
i is an arbitrary p-chain, Then

∂(cp) =
∑

∂(fi · σ
p
i )

The boundary of the 0-chain is defined to be zero.

Thus boundary ∂ is homomorphism of the groups Cp(K) and Cp−1(K).

Theorem 2.1.3. If K is an oriented complex and p ≥ 2, then the composition ∂∂ :

Cp(K)→ Cp−2(K) in the diagram

Cp(K)
∂
−→ Cp−1(K)

∂
−→ Cp−2(K)

is a the trivial homomorphism.

Proof. We have to show that ∂∂(cp) = 0, ∀ cp ∈ Cp(K). Due to linearity of ∂, it is

sufficient to show this for an arbitrary elementary p-chain g · σp.

∂∂(g · σp) = ∂(
∑

σ
p−1

i
∈K

[σp, σp−1
i ]g · σp−1

i )

=
∑

σ
p−1

i
∈K

∂([σp, σp−1
i ]g · σp−1

i )

=
∑

σ
p−1

i
∈K

∑

σ
p−2

j
∈K

[σp, σp−1
i ][σp−1

i , σp−2
j ]g · σp−2

j

Reversing the order of summation and applying theorem 2.0.15, we get

∂∂(g · σp) =
∑

σ
p−2

j
∈K

∑

σ
p−1

i
∈K

[σp, σp−1
i ][σp−1

i , σp−2
j ]g · σp−2

j

= 0

Definition 2.1.4 (Cycle and Boundary). Let K be an oriented geometric com-

plex. A p-dimensional cycle or p-cycle for p ≥ 1, on K is a p-chain zp such
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that ∂(zp) = 0. Thus the family of p-cycle is the kernel of the homomorphism

∂ : Cp(K) → Cp−1(K) and subgroup of Cp(K). This subgroup is denoted by Zp(K),

is called the p-dimensional boundary group of K.

A p-chain bp is a p-dimensional boundary on K, or p-boundary, if there is a (p +

1)-chain cp+1 such that ∂(cp+1) = bp. The family of p-dimensional boundary is

∂(Cp+1(K)) will be a subgroup of Cp(K). This subgroup is denoted by Bp(K).

If the dimension of K is n. Then there is no p-chain for p > n, Hence Cp(K) is zero

∀ p > n and thus Bn(K) = 0.

Theorem 2.1.5. If K is an oriented complex, then Bp(K) ⊂ Zp(K) ∀ p such that

0 ≤ p ≤ n, where n is the dimension of K.

Proof. From the definition p-dimensional boundary Bp(K) ∼= ∂(Cp+1(K)). Let cp+1 ∈

Cp+1(K), using theorem 2.1.3, we know that ∂∂(cp+1) = 0. Hence, ∂(cp+1) ∈ Zp(K)⇒

Bp(K) ⊂ Zp(K)∀p

Definition 2.1.6. Two p-cycle wp and cp on a complex K are homologous, wp ∼ cp,

If there is a (p+ 1)-chain cp+1 such that

∂(cp+1) = wp − cp.

Then if a p-cycle tp is the boundary of a (p + 1)-chain, then tp is homologous to

zero, i.e., tp ∼ 0.

This is a equivalence relation which leads to the partition of the Zp(K),

[zp] = {wp ∈ Zp(K) | wp ∼ zp}.

Definition 2.1.7. If K is an oriented complex, the p-dimensional homology group of

K is the quotient group

Hp(K) = Zp(K)/Bp(K).

Example 2.1.8. Let K be the closure of a 2-simplex < a0a1a2 > with orientation

induced by the ordering of the vertex a0 < a1 < a2.

Then K contain positively oriented 2-simplex < a0a1a2 >, 1-simplex < a0a1 >,<

a1a2 > and < a0a2 > and 0-simplex < a0 >,< a1 > and < a2 >.

An arbitary 0-chain will be of the form

c0 = g0 < a0 > +g1 < a1 > +g2 < a2 >; gi ∈ Z.
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Then C0(K) ∼= Z⊕ Z⊕ Z. Also C0(K) ∼= Z0(K), Hence Z0(K) ∼= Z⊕ Z⊕ Z.

An arbitrary 1-chain will be of the form

c1 = h0 < a0a1 > +h1 < a1a2 > +h2 < a0a2 >; hi ∈ Z.

Then C1(K) ∼= c0 = g0 < a0 > +g1 < a1 > +g2 < a2 >; gi ∈ Z. Now

∂(c1) = h0(< a1 > − < a0 >) + h1(< a2 > − < a1 >) + h2(< a2 > − < a0 >)

= (−h0 − h2) < a0 > +(h0 − h1) < a1 > +(h0 + h2) < a2 >

Now c1 will be a 1-cycle, if ∂(c1) = 0 hence,

−h0 − h2 = 0, h0 − h1 = 0, h0 + h2 = 0

⇒ h0 = h1 = −h2 = h.

The form of 1-cycle will be

h < a0a1 > +h < a1a2 > −h < a0a2 > .

Since there is only one independent variable in 1-cycle. Hence C1(K) ∼= Z.

There is only on 2-simplex in K. Hence 2-chain will be of the form

c2 = h < a0a1a2 >; h ∈ Z.

Here, C2(K) ∼= Z. Also,

∂(c2) = h(< a0a1 > + < a1a2 > − < a0a2 >).

The 2-cycle has one independent variable, Hence Z2(K) ∼= Z. Also the form of 2-cycle

is the same the 2-dimensional boundary, Hence B2(K) ∼= Z2(K).

Now H2(K) ∼= 0

1-cycle and 1-boundaries has same form, Hence

Z1(K) ∼= B1(K)⇒ H1(K) = 0.
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To find H1(K) we observe that any 1-cycle has the form

g0 < a0 > +g1 < a1 > +g2 < a2 >= ∂(g1 < a0a1 > +g2 < a0a2 >)+(g0+g1+g2) < a0 >

Hence every 1-cycle is homologous to h < a0 > for h is an integer, hence H1(K) = Z.

Overall we get H0(K) = Z, H1(K) = 0 and H2(K) = 0.

Theorem 2.1.9. Let K1 and K2 be the oriented geometric complex of same complex

K with different orientation. Then groups Hp(K1) ∼= Hp(K2) for each dimension p.

Proof. To prove this we will find a isomorphism of the Hp(K1) −→ Hp(K2).

Let 1σp and 2σp be the positively oriented simplex in the complex K1 and K2 for the

simplex σp ∈ K. We can have a function α defined on the simlexes of K which takes

the value ±1, Then,
1σp = α(σp)2σp.

Define a sequence of homomorphism φ = {φp}

φp : Cp(K1) −→ Cp(K2)

such that,

φp(
∑

gi ·
1σp

i ) =
∑

α(σp
i )gi ·

2σp
i

Where
∑

gi ·
1σp

i is arbitrary p-chain on K1.

For an elementary p-chain g · 1σp on K1, p ≥ 1, We have

φp−1∂(g ·
1σp) = φp−1

(

∑

σp−1∈K

[1σp, 1σp−1]g · 1σp
)

=
∑

σp−1∈K

[1σp, 1σp−1]α(σp−1)g · 2σp

=
∑

σp−1∈K

α(σp)α(σp−1)[2σp, 2σp−1]α(σp−1)g · 2σp

=
∑

σp−1∈K

[2σp, 2σp−1](α(σp)g) · 2σp

= ∂(α(σp)g · 2σp)

= ∂φp(g ·
1σp)
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Thus we got the relation φp−1∂ = ∂φp, or we can say the following diagram commutes:

Cp(K1)
φp

//

∂

��

Cp(K2)

∂

��

Cp−1(K1)
φp−1

// Cp−1(K2)

Now, zp ∈ Zp(K1), then using above relation

∂φp(zp) = φp−1∂(zp) = φp−1(0) = 0,

Hence φp(zp) ∈ Zp(K2)⇒ φp(Zp(K1)) ⊂ Zp(K2).

Also φp∂(cp+1) ∈ Bp(K1), then

φp∂(cp+1) = ∂φp+1(cp+1),

hence φp∂(cp+1) ∈ Bp(K2)⇒ φp(Bp(K1)) ⊂ Bp(K2).

Then φ∗

p will induce an homomorphism between Hp(K1)) and Hp(K2) defined as

follows

φ∗

p([zp]) = [φp(zp)]

for each class [zp] ∈ Hp(K1).

Reversing the role of K1 and K2 we will get an homomorphism from Hp(K2) to

Hp(K1). Which tells us that both are isomorphic.

Definition 2.1.10. Let K be a complex. Two simplexes s1 and s2 are connected if

either of the following condition is satisfied:

(a) s1 ∩ s2 = φ; and

(b) There is sequence σ1, · · ·σn of 1-simplexes of K such that s1 ∩ σ1 a vertex of s1

and s2 ∩ σn is a vertex of s2, and sii ∩ σi+1 is a common vertex of σi and σi+1 for

1 ≤ i < p.

It means that is a polygonal path exist between these two disjoint simplexes.

This is an equivalence relation on K. It will partition the set K into different

combinatorial component. If the complex contain only one combinatorial component

then it is said to be connected.

Theorem 2.1.11. Let K be a complex with r combinatorial components, then H0(K)

is isomorphic to the direct sum of r copies of the group Z.
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Proof. Let K ′ be a combinatorial component of K. Then any < a >,< b >∈ K ′ we

have a sequence of 1-simplexes

< aa0 >,< a0a1 >, · · · , < anb >

such that any two consecutive 1-simplex will have a common vertex. We can define

a 1-chain c1 on the sequence of this 1-simplex by assigning either g or −g to each

simplex so that ∂(c1) is either g· < b > −g· < a > or g· < b > +g· < a >. Hence any

0-chain g· < b > on K ′ is homologous to either g· < a > or −g· < a >. Hence any

0-chain on K ′ is homologous to an elementary 0-chain h· < a > for some integer h.

Applying the result for each combinatorial component of K1, · · ·Kr of K, for vertex

ai ∈ Ki any 0-chain Ki is homologous to the 0-chain of the form hi· < ai > for some

integer hi. Then any 0-chain c0 on K will be

c0 ∼
r
∑

i=1

hi· < ai > .

Suppose that two 0-chain
∑

hi· < ai > and
∑

gi· < ai > belongs to the same

homology class. Then there exist a 1-chain such that,

∂(c1) =
∑

(gi − hi)· < ai >

Now each ai belongs to the different combinatorial components of K, then the equa-

tion holds only if gi = hi∀i. Hence each homology class c0 ∈ Ho(K) has a unique

representative of the form hi· < ai >. The natural bijection

∑

hi· < ai >−→ (h1, · · · , hr)

will the isomorphism between H0(K) to the direct sum of r copies of Z.

Definition 2.1.12 (n-pseudomanifold). An n-pseudomanifold is a complex K with

the following properties:

(i) Each simplex of K is a face of some n-simplex or K.

(ii) Each (n− 1)-simplex is a face is exactly the face of two n-simplex.

(iii) If σn
1 and σn

2 are any two n-simplex in K, there exist a sequence of n-simplex

beginning with σn
1 and ending with σn

2 such that any two consecutive simplex has a

common (n− 1)-simplex.
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We can expect triangulation of a manifold is a pseudomanifold. But not all man-

ifold are triangulable. Hence if a manifold is triangulable then it’s triangulation will

be a pseudomanifold.

Example 2.1.13. The boundary of the 3-simplex is homeomorphic to S
2. Thus the

family of all proper faces of a 3-simplex is a 2-pseudomanifold as well as triangulation

of S2.

Euler characteristic plays an important role in theory of surface. Euler character-

istic can be defined for surfaces made of properly joined convex polygons by Kinsey

[3].

Definition 2.1.14. Let K be a surface made of properly joined convex polygons, Then

the Euler characteristic denoted by χ(K) is defined as

χ(K) = V − E + F

Where V is number of vertices, E is number of edges and F is number of 2-dimensional

faces.

If we triangulate each polygons then we get 2-pseudomanifold. Hence the Euler char-

acteristic of a 2-pseudomanifold, K, will be

χ(K) = α0 − α1 + α2

Where α0 is number of vertices, α1 is number of 1-simplexes and α2 is number of

2-simplexes.

Definition 2.1.15. A rectilinear polyhedron in R
3 is a solid bounded by properly

joined convex polygons. The bounding polygon are faces, then the intersection of

faces are called edges and the intersection of edges are vertices. A simple polyhedron

is a rectilinear polyhedron whose boundary is homeomorphic to S
2.

Theorem 2.1.16 (Euler’s Theorem). If S is a simple polyhedron with V vertices, E

edges, and F faces, then V − E + F = 2.

Proof. S is a simple polyhedron. It’s boundary consist of polygons which may not be

triangular. But we can make it triangular. Triangulation doesn’t change the value of

V − E + F = 2. Now remove one of the face, which reduce the number of faces by



2.1. SIMPLICIAL HOMOLOGY GROUP 17

one, other will remain the same. Hence we will have to show

V −E + F = 1.

Rest part will be a plane made of triangles. Remove one triangle from boundary by

either removing an edge or a vertex the value V −E+F will remain constant. Repeat

the process till we get only one triangle. For a triangle the value of V − E + F =

3− 3 + 1 = 1.

Theorem 2.1.17. Let K be a 2-pseudomanifold with α0 number of vertices, α1 edges

and α2 faces(2-simplexes). Then,

(i) 3α2 = 2α1

(ii) α1 = 3(α0 − χ(K)).

(iii) α0 ≥
1
2
(7 +

√

49− 24χ(K))

Proof. A face consist of 3-edges and each edge is belongs to exactly two faces. Since

there are α2 number of faces then total number of edges will be 3α2 in which each

edges counted twice, Hence 3α2 = 2α1.

Also,

χ(K) = α0 − α1 + α2

= α0 − α1 +
2

3
α1

= α0 −
1

3
α1

Then,

α1 = 3(α0 − χ(K)).

To prove the third inequality, we have

α1 ≤

(

α0

2

)

=
1

2
α0(α0 − 1)
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Now,

α1 ≤
1

2
α0(α0 − 1)

3(α0 − χ(K)) ≤
1

2
α0(α0 − 1)

−3χ(K) ≤
1

2
α0(α0 − 1)− 3α0

≤
1

2
α0(α0 − 7)

−6χ(K) ≤ α2
0 − 7α0

49− 24χ(K) ≤ (2α0 − 7)2

Hence,

α0 ≥
1

2
(7 +

√

49− 24χ(K))

Definition 2.1.18. Let K be an n-pseudomanifold. If for all σn−1 ∈ K, a common

face of two n-simplex σn
1 and σn

2 . We have orientation of K such that

[σn
1 , σ

n−1] = −[σn
2 , σ

n−1]

Then, K has an coherent orientation. A n-pseudomanifold is orientable if it can be

given an coherent orientation. Otherwise it is non-orientable.

In case of orientable n-pseudomanifold each (n − 1)-simplex should get incidence

number with opposite sign with respect to two n-simplex of which it is a common face.

Theorem 2.1.19. An n-pseudomanifold K is orientable if and only if the nth ho-

mology group Hn(K) is not trivial.

Proof. (⇒) Let K is orientable. Then there is an orientation such that, if σn−1 is

(n− 1)-face of σn
1 and σn

2 , with

[σn
1 , σ

n−1] = −[σn
2 , σ

n−1]

We will explicitly find a non-trivial element of Hn(K). Let any n-chain with fixed
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integer g of the form

c =
∑

σn
i
∈K

g · σn
i

∂(c) =
∑

σn
i
∈K

∑

σn−1

j
∈K

[σn
i , σ

n−1
j ]g · σn−1

j

∂(c) =
∑

σn−1

j
∈K

∑

σn
i
∈K

[σn
i , σ

n−1
j ]g · σn−1

j

Since σn−1
j will be the face of exactly two n-simplex and using the condition of ori-

entability we get,

∂(c) =
∑

σn−1

j
∈K

0

= 0

Thus c is a n-cycle, i.e., Zn(K) 6= 0 but, Bn(K) = 0. Hence we can conclude that

Hn(K) 6= 0.

(⇐) Let Hn(K) 6= 0 and

z =
∑

σn
i
∈K

gi · σ
n
i

is a non-zero n-cycle. Then,

∂(z) =
∑

σn
i
∈K

∑

σn−1

j
∈K

[σn
i , σ

n−1
j ]g · σn−1

j

∂(z) =
∑

σn−1

j
∈K

∑

σn
i
∈K

[σn
i , σ

n−1
j ]g · σn−1

j

From the definition of n-pseudomanifold we know that any two n dimensional simplex

is connected by a series of a sequence of n dimensional simplexes where intersection

of consecutive term will have a common (n− 1) dimensional face.

∂(z) =
∑

σn−1

j
∈K

([σn
j1, σ

n−1
j ]gj1 + [σn

j2, σ
n−1
j ]gj2) · σ

n−1
j

Where σn
j1 and σn

j2 are two faces with common face σn−1
j .

Since ∂(z) = 0 hence gi should have a same absolute value for all i with different sign,
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i.e., gi = ±g.

Now reverse the orientation of σn
i for gi = −g. Then the above cycle will be

z =
∑

σn
i
∈K

g · σn
i = g

(

∑

σn
i
∈K

1 · σn
i

)

Hence
∑

σn
i
∈K 1 ·σn

i is an n-cycle. This assures us that each common (n− 1)-face will

have positive incidence number with respect to one simplex while negative incidence

number with respect to the other simplex, i.e., K is orientable.

2.2 Classification of Combinatorial Surface

A combinatorial surface is 2-pseudomanifold. Here we will present a classification

theorem for closed combinatorial surface as given by Dehn and Heegard(1907). I will

follow this section from Stillwell [2].

Definition 2.2.1 (Schemata). A closed combinatorial surface can be build from finite

set of polygons with oriented edges labelled by letters, and every letter appears twice.

Such a system is called schema.

Triangulation of such surface can be obtained by triangulating each polygons.

Example 2.2.2. Let’s have a simple example which can convey the main idea. Sup-

pose we have a schema,

a d

b d

c

a b

c

Figure 2.2: A Schema

To understand this surface we have to know how the corner of the polygons fits

together. Start with any vertex (say A). We will go around A in a small circular

path identifying each till we get a complete disc. All the vertex which identified with

A gets the same label A. Now take a vertex which is not labelled, label it and find
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a d

b d

c

A

A

AB

B

a b

cA

B

B

Figure 2.3: A Schema After Labelling the Vertex

all the vertices which will identified with this. After labelling the vertices we get the

following picture:

Thus we got two vertices and the Euler characteristic χ = V −E+F = 2−4+2 = 0.

Hence it can be either Torus or Klein bottle.

Combinatorial surface have polygons with directed edges. Each polygon can be

represented by a word made of edges. In the above example the two polygons are

abc−1d−1d−1 and cba−1.

Now if some edge is on two different polygon of the schema then we can identify and

get one polygon. Thus any connected combinatorial surface can be represented by

only one polygon with directed edges as follows:

a d

b d

c

a c

A

AB

AB

B

Figure 2.4: Surface with one Polygon

Thus any compact connected combinatorial surface can be represented by single

word of edges in which each edge will come twice.

A portion of the boundary of a polygon of the form aba−1b−1 and aa is called handle

and crosscap respectively.

Now the classification theorem in terms of handle and crosscap can be stated as

follows:
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Theorem 2.2.3. Any connected combinatorial surface can be one of the following

three types:

• Sphere (aa−1).

• Sphere with n-handle(a1a2a
−1
1 a−1

2 · · ·a2n−1ana
−1
2n−1a

−1
n ).

• Sphere with k-crosscaps(a1a1 · · · anan).

Proof. The main tool for the proof is cut and paste. We can cut a polygon into two

by forming two identified edges. Paste is the method of attaching two polygon on

identified edges.

We follow a step by step method to reduce any surface to a standard normal form of

type one of the above in the theorem.

Step I. Reduction to a single polygon with single vertex.

Since the surface is connected we can get a single polygon by pasting the identified

edges of different polygon. Before doing anything collapse the pair like aa−1. Now

partition the vertices of this polygon into equivalence classes of vertices which are

identified together. If number of classes is ≥ 2. We can always reduce it to one by

the following method. Let A and B are two different class then number of points in

B is decreased by one by the following construction:

a b

a

c

A

A

B

B

a

c

bc

A

A

B

cut along c

paste along a

Figure 2.5: Reducing one Vertex of Type B

We will continue this process till we get only one edge in the equivalence class B. But

then the edges incident on B will be are of the type a and a−1 hence collapse which

leads to elimination of all vertices of type B. Thus the number equivalence class of

vertices is reduced by one. We will continue this process till we get all the vertices of

same equivalence class. The advantage of this construction is that if we now do the

cut and paste operation all the vertices will remain in the same class.



2.2. CLASSIFICATION OF COMBINATORIAL SURFACE 23

Step II. Normal form for same direction edges.

After the above process the surface will have same direction edges and opposite direc-

tion. The aim of this step is to bring all same direction edges to form crosscap, i.e.,

of type aa. The following process will make a crosscap corresponding to each pair of

same direction edges.

a

a

c a

c

c

cut along c

paste along a

Figure 2.6: Making Same Direction Edges Adjacent

This process will be repeated till we get crosscaps for every pair of same direction

edges. Also note that it does not effect ordering of other edges.
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Step III. Normal form for opposite direction edges.

Now we want to get a normal form for opposite direction edges. If they are adjacent

then either it will be a sphere or it will collapse. Since all the vertices identified to

the same point hence oppositely directed edges will occur in crossed pairs as follows

· · · a · · · b · · · a−1 · · · b−1 · · ·

The following process will form a handle corresponding to each crossed pair of the

above type:

aa

b

b

c

c

c

a a

d

d c

c d

cut along c

paste along b

cu
t a
lo
ng

d

pa
st
e
al
on
g
a

Figure 2.7: Getting Handle from a Pair of Opposite directed Edges

Repeating the process a finite number of times it will exhaust all such crossed pair.
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Step IV. Conversion of handle into crosscap.

The resulting surface from all above steps will have either handles or a mixture of

crosscaps and handle. But our standard form can have only one. Standard normal

form is achieved by the property that one handle with one crosscap lead to three

crosscaps, Below the construction has been shown:

a

a

b

c

b

c

d

d

c

b

c

b

d

cut along d

paste along a

Figure 2.8: Transforming Handle into Crosscaps

We will use same process in step II to convert this into crosscaps. Thus all compact

combinatorial surface can be brought to one of the above type.

Remark 2.2.4. If any combinatorial surface will have a single pair of same

direction edges then it will be non-orientable. Thus in example 2.2.2 we had

a non-orientable surface and hence Klien bottle.

T. Rado in 1925 proved that every compact surface is triangulable. If we consider

this result, then we actually get a classification of all compact surfaces.

In the proof of classification of combinatorial surface we used ”cut and paste” as only

tools to carry out all the process. In both the process the quantity Euler characteristic

remain constant.
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Theorem 2.2.5. Any combinatorial surface can be identified with it’s Euler Charac-

teristic and orientability.

Proof. Compute the Euler characteristic for all three type of surface as follows:

• Sphere χ = 2− 1 + 1 = 2.

• Sphere with n-handle χ = 1− 2n+ 1 = 2− 2n

• Sphere with k-crosscaps χ = 1− k + 1 = 2− k

We know from theorem 2.1.14 that sphere has Euler characteristic 2 and we can see

that only sphere can have Euler characteristic 2. Orientable surfaces are represented

by sphere with n-handle while non-orientable surface are represented by sphere with

k-crosscaps. All orientable surface are distinguished by Euler characteristic and sim-

ilarly for non-orientable surface. If we take orientation of the surface into account

we can find a surface uniquely. Thus orientation and Euler characteristic is able to

identify a combinatorial surface uniquely.
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Searching a Triangulation

Every compact surface is triangulable. LetK be triangulation of a connected, compact

surface without boundary. Then all its edges will be incident on exactly two faces

and each face will meet three edges such that.

Figure 3.1: Triangulation as a Graph

We can think the situation as a graph such that each triangle represents a vertex

and two vertices are connected if there is a common face between them. Thus a

triangulation will be a graph such that each vertex has degree exactly three. It is suf-

ficient to write the triangle with sides to represent a triangulation, thus the minimal

spanning tree of this graph will be a desired triangulation. We can use Depth-first

search or Breadth-first search algorithms to find a minimal spanning tree of the tri-

angulation.

An important issue will be to justify whether the surface is orientable or not. In ori-

entable surface each edge incident on two triangles with opposite incidence numbers,

27
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so we can start with any arbitrary node and give it a positive orientation. Then it’s

neighbour will get an orientation such that the common edge will get opposite orien-

tation from both the face. If we are able to orient the whole K then it is orientable

else non-orientable.

Triangulation has finite number of elements and we can use computer to do dif-

ferent type of computation related to them. The theory applied effectively on com-

binatorial surfaces mainly due to classification theorem. The classification theorem

requires only Euler characteristic and orientabiliy. Euler characteristic has a simple

expression in terms of number of edges, vertices and faces, V − E + F , hence it

is easy to compute. So we will focus on the way we can handle orientability from

Edelsbrunner and Harer [6].

Ordered Triangle

The most fundamental piece of data structure will consist of triangle and a function

which keeps track of orientation and direction it is connected to other such triangles.

An ordered triangle can be represented by permutation on three letters hence, Set of

all ordered triangle will form a group isomorphic to symmetric group of

three elements, i.e., S3. Each element of this group represent an ordered triangle.

But since we want to distinguish on the basis of orientability we will have two class

and each class has three elements of S3. We represent a triangle by 123, then cyclic

shift retains the orientation while swapping any two element will change the orienta-

tion. It will better to define two function to handle such thing as follows:

SWAP swaps two of the leading edge of triangle and change the orientation. Thus

the function SHIFT and SWAP are able to navigate us from a standard triangle

labelled 123 with leading edge 12 to other ordered triangles.

We store a triangle in a node. We will have a pointer, µ to the node and an inte-

ger, i, which represent the ordered version of the triangle 123. i = 0, 1, 2, 4, 5, 6 for

123, 312, 231, 213, 132, 321. Now the functions SHIFT and SWAP can be defined as

follows:

function SHIFT((µ, i))

if i ≤ 2 then return (µ, (i+ 1) mod 3)

elsereturn (µ, (i+ 1) mod 3 + 4)
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1 2

3

(123)
SHIFT
−−−−→ (312)

SHIFT
−−−−→ (231)

2 1

3

(213)
SHIFT
←−−−− (132)

SHIFT
←−−−− (321)

S
W

A
P

−−
−
−→

Figure 3.2: Getting all ordered triangle from one using SHIFT and SWAP function

end if

end function

and

function SWAP((µ, i)) return (µ, (i+ 4) mod 8)

end function

Data Structure

Here we will see the data structure for representing the triangulation of a connected,

compact, 2-pseudomanifold without boundary. We have an array V [n] to store the

vertex. To store the graph of triangulation as discussed above we need pointers which

refers to other nodes of neighboring triangles. The degree of each node will be three

hence each node has to store pointers of these three neighbors and the vertices of the

triangle itself from V .

Here abc be a triangle and x, y, z the respective third vertices of the neighbour tri-

angles. Each ordered version of triangle points to it’s leading edge and shares the

leading edge with on of it’s neighbour. Let µ, µx, µy, µz points towards the four trian-

gle with ordering given by i = 0 corresponding to the triangle abc, abx, ayc, zbc in the

above figure. Let a is stored in position i in V and ab is the leading edge of abx, the

ordered triangle stores pointers (µ, 0).org = 1 and (µ, 0).fnext = (µx, 0). Similarly if
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a b

c

x

y z

Figure 3.3: A Triangle with Neighbours

j and k be the position of b and c in V , then other five ordered triangle will store the

pointer j, k, j, k, i and to the ordered triangles (µ, 1)(µx, 1), (µy, 1), (µz, 1). Now with

the following function we can move around triangulation.

Searching the Tree. Now we have stored whole triangulation in our data structure.

To find the triangulation we have to write all the triangles, i.e., find the spanning

tree of the graph and write all the nodes of this tree. This can be done by two basic

search algorithms Breadth-first search and Depth first search. Here we use Depth

first search. Let all the nodes are unmarked in the beginning, we can start the search

with an arbitrary triangle µ0.

function Visit((µ))

if µ is marked then

mark µ;P1

for all neighbour ν of µ do visit (ν)

end for;P2

else;P3

end if

end function

Where P1, P2 and P3 are the conditions we can impose to the different stage to

customize our search. Now we will put appropriate condition on statement P1, P2

and P3. We will try to orient each triangle such that shared edges between any

two neighboring triangles should get opposite direction. If we are able to find such

orientation for all triangulation, then we will get orientable surface otherwise non-

orientable surface.
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Suppose we will start with triangle (µ0, i0).

function IsOrientable((µ, i))

if µ is unmarked then

mark µ and choose orientation containing i;

bx ← IsOrinetable(FNEXT (SWAP (µ, i)))

by ← IsOrinetable(FNEXT (SWAP (µ, i)))

bz ← IsOrinetable(SWAP 2(SYM(µ, i))) return bx, by and bz

elsereturn [orientation of µ contains i]

end if

end function

3.1 Generating a lexicographic triangulation

Lexicographical ordering is the ordering similar to the alphabetical ordering. The

algorithm following by Lutz [4] will be able to generate a triangulation of a surface

on fixed number of vertices in lexicographical order.

Let {1, · · · , n} be a set of n-vertices. We have to find a connected 2-dimensional

geometric complex such that every edge is contained in exactly two triangles. Since

we are interested in finding triangulation of surfaces up to combinatorial equivalence,

i.e., relabelling of vertices, hence 123 will always be present in the triangulation.

In lexicographically minimal triangulation, the collection Bdeg(1) of triangles contain-

ing the vertex 1 is of the form

123, 124, 146, 157, · · · , 1deg(1)(deg(1) + 1)

, where deg(1) is the degree of the vertex 1 and 3 ≤ deg(1) ≤ n− 1.

Now, in a lexicographically sorted list of triangulated surface the beginning segment

of Bk will come before Bk+1. So, we will start searching with B3 and then by B4 by

the method of backtracking as in Lutz [4]:

Start with some triangle and add further triangles as long as no edge is contained

in more than two triangles. If this condition is violated, then backtrack. A set of

triangles is closed if every of its edges is contained in exactly two triangles. If the link

of every closed set of triangles is a circle, then this set of triangles gives a triangulated

surface.

We can implement the above idea using sparse matrix. Say we have fixed number
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of vertices n. The number of edges will be nC2 and number of faces will be nC3.

Store the triangle in rows of a triangle-edge incidence matrix. As we go along the

triangulation we will add the corresponding rows. If any entries become 3 it means

that corresponding edges belongs to three triangles, which is not allowed. Then we

will backtrack till we get all the entries consist of 2 and 0. It will then be a candidate

for a triangulated surface.

We have to check whether a candidate is actually a triangulated surface. For this we

have to check that neighbourhood of every vertex is a disc.

Example 3.1.1. Similar method had been used in higher dimension to compute

all combinatorial 3-manifold on 8 vertex. A. Altshuler in his paper “Combinatorial

3-manifold with few vertices” computes all possible combinatorial 3-manifold with 8

vertices. He uses an algorithm which can be extended to find a combinatorial manifold

on given set of vertices satisfying a set of conditions.

The method is based on exhaustive search, e.g., searching all possible combinatorial

3-manifolds on given number of vertices. This algorithm is a search tree which grows

in size while simultaneously satisfying the condition of a 3-pseudomanifold. Searching

the tree for a given set of conditions either we get a desired geometric complex or we

are in a position to say that no geometric complex satisfies the given set of condition.

The basic steps involved are as follows :

Suppose our aim is to find a combinatorial 3-manifold on n vertices.

• Take any 3-simplex say (1, 2, 3, 4) that will be root of the search tree.

• A 2-simplex will be precisely the face of two three simplices and this will be the

most prominent condition in this process. A two simplex will be covered if it is

the face of two 3-simplices. Consider any non-covered face of the 3-simplex say

(1, 2, 3).

• Now consider all possible new simplex which can contain the above 2-simplex.

This will form the children of the above node if none of its face is already

covered.

• Since the number of vertex is finite this process will end up in finite steps and

we can search for a particular triangulation along this tree.
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3.2 Programs/Language useful for computation

SAGE. SAGE is a Mathematics open-source software. It is actually an interface

which brings many open source Mathematics program at one place. It is based on

python. It can also be used as python compiler. It has many inbuilt Mathematical

functions. Latest version, SAGE 4.8 has many function which helps us do calculation

based on finite geometric complex. Using these functions specific calculation can be

done very easily.

GAP. ”GAP-Groups, Algorithms, programming” is a software for computational dis-

crete algebra with an emphasis on computational group theory. It has a programming

language and many inbuilt functions. It also has large data libraries of groups. Dif-

ferent type of symmetric properties of geometric complexes can be studied by making

different groups act on these objects as group of automorphism.
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