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Abstract

An accelerated charged particle radiates according to the Classical Electro-
dynamics. In standard literature, the dynamics of an accelerated charged
particle is described by introducing a ‘radiation reaction force’ i.e. by re-
sorting to the Lorentz-Abraham-Dirac (LAD) equation of motion. However,
it is clear that the LAD equation of motion give pathological solutions even
in the simplest case. Many alternate possibilities are discussed in literature.
However, these remedies are not successful in eradicating these issues. Here
we approach this issue from energy conservation point of view. Using simple
energy conservation relation we derive the equation of motion to describe the
dynamics of accelerating charged particle. To the point we have explored it
in few cases, we find our equation of motion free of any unphysical solutions.
A similar situation arises in Gravity due to emission of gravitational waves.
We extend our idea to write the equation of motion in this case. Further,
we study the ‘Unruh Effect’ which states that an accelerating detector in
flat Minkowski spacetime vacuum would find itself in a thermal bath which
has a temperature proportional to its acceleration. Our aim is to consoli-
date various ideas presented in literature on this issue so that it can serve as
a good starting point for further research on the connection between these
phenomena.
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Chapter 1

Introduction

Radiation has played a pivotal role in development of Physics. It is by
the virtue of radiation that we have made immense advances in high speed
communication, medical sciences etc. Even at the fundamental level it has
been crucial on deciding upon the fate of a theory. One remarkable example is
that of discarding the Rutherford’s model of atom on the argument based on
radiation from accelerated electrons. More recent examples are the ‘Cosmic
Microwave Background Radiation’ and ‘Gravitational Waves’, which have
helped the development of Cosmology.
But in the course of time since the establishment of Electromagnetic radiation
some of the most foundational issues related to it have been sidelined at
the cost of immense applicability of this phenomenon. The most noted one
is the equation of motion for an accelerating charged particle. The first
attempt to solve this was made by Lorentz and Abraham around 1900. Later,
Dirac generalised their idea to the relativistic case. Since then people have
identified various problems with this approach and still continue to search
for a consistent way to tackle it. The so called ‘radiation reaction force’
or ‘radiation damping’ is usually introduced very superficially in standard
textbooks (eg. [1]). In the absence of any concrete equation of motion even
the physical picture is unnecessarily made complicated and unappealing. It
is pretended that there are no issues and that literature has several remedies
for it. However, we will see later that these remedies are only case specific
and sometimes only give rise to other problems. So our aim is to convince
the reader that the existing equation of motion even in the simplest case has
unphysical implications and that the existing remedies have no satisfactory
answer to it. Hence we take a route, which has been partially taken by some
earlier attempts, to tackle this problem in a very simple way. Particularly,
in our analysis the energy lost as radiation is not identified with a ‘force’ at
any stage. We apply our method to a few cases and find that at least in the
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simple cases that we consider, our equation of motion gives physically correct
solutions.
Analogous to an accelerating charged particle giving electromagnetic radia-
tion, we have gravitational waves emitted by accelerating massive systems.
Here also we have the ‘back reaction’ issue. Using our idea from electrody-
namics, we simply write an equation of motion for this case. However, we
do not attempt to solve it in this work. Rather we take new look on the
Gravitational waves. It is stated in many standard texts that the reason for
quadrapole nature of gravitational waves is that in a gravitating system the
center of mass is not accelerating (since no external force) and hence we do
not have a second derivative of dipole term in the expression of power as in
the case of Electrodynamics. There is however physically more transparent
reason for the absence of second derivative of dipole term in power expres-
sion. Motivated from a rough sketch in [2] we try to calculate the power
emitted by a system of two masses assuming dipolar gravitational radiation
from the individual mass. We compare our result to the power obtained from
the usual quadrapole formula for gravitational radiation and find that they
do not match exactly. However, our picture gives a nice way to perceive
quadrapole nature of the gravitational waves.
As a further step in exploration of accelerated systems, we investigate the
‘Unruh Effect’. It was shown by Unruh [3] that an accelerating detector in flat
Minkowski spacetime vacuum would not detect it as a vacuum state. Rather
it would detect it as a many particle state in equilibrium at a temperature
(T = ~a/2πkBc) proportional to its acceleration. The important issue is
whether there is any experimental evidence of ‘Unruh Effect’. We argue how
is this issue in contrast to some assertions based on spin depolarization in
accelerator storage rings. This allows us to assert that circular acceleration
is not the right setting to expect Unruh Effect in accelerated frames. Apart
from this there is a controversial aspect to this effect as to whether or not
such a system would radiate/detect radiation. In this section, we present a
brief literature survey on this topic.
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Chapter 2

Radiation reaction in
Electrodynamics

2.1 Lorentz-Abraham-Dirac equation of motion
Soon after the advent of Classical Electrodynamics, Lienard and Wiechert
calculated potentials due to moving charges. It was quickly realised that an
accelerated charged particle radiates since its field has a component which
goes as 1/r (r is the distance between the source and the observer) and
hence the Poynting vector has non-zero value as r → ∞. For the case of
non-relativistic (speed of particle is much less than that of speed of light
in vacuum) point charge the power radiated away due to its acceleration is
given by the Larmor’s formula:

P =
q2a2

6πε0c3
(2.1)

where P is the power radiated, a is the acceleration of the particle, c is the
speed of light in vacuum and q is the charge of the particle. Now by the virtue
of the phenomenon of radiation any charged particle undergoing acceleration
would loose its energy in the form of radiation. To describe this phenomenon
Lorentz was the first to give an equation of motion for a charged particle
taking into consideration the radiation emitted by the particle. The analysis
is based on the fact that there exists a recoil force which accounts for the
energy lost due to the radiation. In the following steps we sketch a heuristic
derivation of equation of motion given by Lorentz as found in most of the
standard textbooks [1]. According to the standard arguments, the average
work done by this radiation reaction force Frad must be equal to the power
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lost in the form of radiation. So,∫ t2

t1

Frad · vdt = − q2

6πε0c3

∫ t2

t1

a2dt (2.2)

Integrating the RHS by parts, we get∫ t2

t1

a2dt =

∫ t2

t1

(
dv

dt
) · (dv

dt
)dt = (v · dv

dt
)|t2t1 −

∫ t2

t1

d2v

dt2
· vdt (2.3)

If we consider periodic motion then at t = t2 both the velocity and accelera-
tion have the same values as they did at t = t1. Hence we get the standard
expression of the so called ‘radiation reaction force’ as follows:

Frad =
q2ȧ

6πε0c3
(2.4)

So the equation of motion for a charged particle taking into account the
radiation emitted by it in the non-relativistic limit is:

ma = Fexternal + Frad (2.5)

This was first obtained by Lorentz and then the relativistic version was de-
rived by Abraham. Later Dirac derived it in a covariant form. Thus the
Lorentz-Abraham-Dirac (LAD) equation of motion looks as follows (for a
simple derivation see [4]):

mν̇µ = F µ
ext + F µ

self (2.6)

where
F µ
self =

q2

6πε0c3
(ν̈µ − νµν̇αν̇α) (2.7)

and ν is the four velocity. In this limit F µ
self is further classified as addition of

Fschott (the first term) and Frad (the second term) [5]. However these details
are not required for our further analysis.

2.2 Problems with the Lorentz-Abraham-Dirac
equation

Lorentz-Abraham-Dirac equation of motion involves the third derivative of
the position or one can say it the ‘jerk’. This makes it difficult to obtain
solution in many cases. However solving the LAD equation is not a major
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issue compared to tackling its many unphysical solutions. The major worries
are the runaway solutions and solutions predicting acausal preacceleration
(for a detailed discussion see [6]). For clarity, we demonstrate below one
such obvious inconsistency in the non-relativistic limit. In the absence of
any external force the LAD equation of motion takes the form:

ma = Frad (2.8)

So we have the solution,
a = a0e

6πmε0c3t/q2 (2.9)

This means that the acceleration of the particle would keep increasing! This
is absurd because we expect the particle to slowly loose away all its energy
and come to rest (since there is no mechanism to increase particle’s energy).
There are many kinds of tricks in the literature to somehow get away from
these issues (for eg. setting a0 = 0). However these difficulties persist not
only for this non-relativistic case but also in the relativistic regime.

2.3 Remedies in literature to overcome unphys-
ical solutions of LAD equation

In the course of time many interpretations and conclusions have appeared
in the literature ([6] gives a detailed account) to address the above problem
with the LAD equation of motion. Some have the opinion that the absurd
solutions imply the breakdown of point particle limit [7, 8] and one has to
resort to calculations taking into account finite size. Due to divergences of
self field at the centre of charged particle, renormalization techniques were
also introduced [8].While others have taken a view to modify the equation
of motion [9]. Recently it has been claimed [6] to settle all these issues with
the advent of modified equation of motion in the following form:

ma = Fext +
q2

6πmε0c3
Ḟext (2.10)

Although this is derived in a much rigorous way in [9] still it is quite absurd
because in the absence of time varying external force the radiation term ap-
parently goes away! Actually the above equation of motion is also derived in
[10] as an iterative correction. In any case the physical motivation of relat-
ing the radiation to a force (radiation reaction force) is not very convincing.
Even from the radiation pattern one knows that there is no radiation in the
direction of the motion (in case of linear motion). Then there exists no phys-
ical quantity in this direction (except for the external force) which might
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affect the particles motion in this direction. In fact the maximum radiation
is in the lateral direction. So associating this phenomenon with a ‘force’ in
the direction of motion clearly seems wrong.

2.4 Our approach to Radiation reaction
Here we approach the problem simply from the energy point of view. There
were earlier attempts which start with a similar view but involves force at
some stage in the discussion. In contrast, in our view energy lost as radiation
is never treated as a force of back action. We would be working essentially in
the Newtonian limit. Considering the conservation of total energy we argue
that the rate of loss of kinetic energy (E) is equal to the sum of rate of work
done by external field and power radiated. In the absence of any other energy
mechanism this relation seems the most correct.

∂E

∂t
= F.v − q2a2

6πε0c3
(2.11)

Here a is the acceleration of the particle and F is the external force. The
last term on the RHS is the standard formula of power radiated by a charged
particle (in SI units). Putting the expression for kinetic energy in the above
expression we get the following equation:

mv.
dv

dt
− F.v +

q2a2

6πε0c3
= 0 (2.12)

Let us investigate Eqn. 2.12 in the absence of any external field. So the
equation of motion now takes the form,

mv.
dv

dt
+

q2a2

6πε0c3
= 0 (2.13)

A trivial solution to the above equation is v̇ = 0, which is quite obvious. The
other solution is found by solving,

mv +
q2a

6πε0c3
= 0 (2.14)

We first differentiate this equation to solve an initial problem in acceleration
(because physically that is what governs the dynamics). Here we get the
solution,

a = a0e
−t/τ (2.15)

τ =
q2

6πmε0c3
(2.16)
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where a0 is the initial acceleration. Clearly we see that the acceleration
decreases exponentially as expected. The velocity follows the following trend:

v = v0 + a0τ − a0τe
−t/τ (2.17)

where v0 is the initial velocity.

2.4.1 An illustration in Non-relativistic regime

Another case we investigated is that in the presence of constant electric field.
Here we proceed by first solving the quadratic in v̇ from the equation of
motion 2.12.

v̇ =
−mv ±

√
m2v2 + 4AFv

2A
(2.18)

where,

A =
q2

6πε0c3
(2.19)

We consider the positive root of Eqn. 2.19 and after making a series of sub-
stitutions during integration we get the following expression (considering
F > 0):

t

τ
= 2[

√
m2v2 + 4AFv√

m2v2 + 4AFv −mv
−

√
m2v2

0 + 4AFv0√
m2v2

0 + 4AFv0 −mv0

] +

ln[
(
√
m2v2 + 4AFv +mv)(

√
m2v2

0 + 4AFv0 −mv0)

(
√
m2v2 + 4AFv −mv)(

√
m2v2

0 + 4AFv0 +mv0)
] (2.20)

Where v0 is the initial velocity of the particle and τ is as defined in Eqn. 2.16.
Here we see that explicit expression in v seems impossible. So we explore
its behavior numerically. For various values of initial conditions and value
of electric field we find that the velocity profile is almost similar to the case
when radiation is neglected for very low charged objects (even with high q/m
ratio). We have plotted one such profile comparison in Fig. 2.1.
The distinction between velocity profile with radiation and without radiation
is more evident in particles with higher charge. As an example we have
plotted (see Fig. 2.2) a comparison figure for an object of mass 1gm and
q/m ≈ 107. In both these cases we see that the velocity of object is lower
when radiation is considered. This is to be expected because we had the
initial velocity in the direction of the external force.
Next we consider the initial velocity to be in the direction opposite to that
of the external force. Here we see that the velocity goes to zero much quicker
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Figure 2.1: We consider a proton with initial velocity v0 = 1m/s in a constant
electric field E = 1V/m. The blue curve shows velocity profile corresponding
to Eqn. 2.21. The red curve is plotted for the case when radiation is neglected.
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Figure 2.2: We consider an object with mass 1gm and q/m ≈ 107 having
an initial velocity v0 = 10m/s in a constant electric field E = 1V/m. The
blue curve shows velocity profile corresponding to Eqn. 2.21. The red curve
is plotted for the case when radiation is neglected.
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than the case when radiation is neglected and after that the rise in velocity
is again less compared to the case when radiation is neglected (see Fig. 2.3).
Even this is expected because when the velocity is in the direction opposite
to that of the external force, both radiation and external force are decreasing
the kinetic energy of the particle. Whereas once the velocity becomes zero
and starts going in direction of the force, external force is increasing the
kinetic energy while the radiation is trying to decrease it.
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Figure 2.3: We consider an object with mass 1gm and q/m ≈ 107 having
an initial velocity v0 = 10m/s in a constant electric field E = 1V/m. The
blue curve shows velocity profile corresponding to Eqn. 2.21. The red curve
is plotted for the case when radiation is neglected. In contrast to above two
plots, we see that blue curve is above red curve for negative values of velocity.

2.4.2 An illustration in Relativistic case

All the ideas discussed above can be easily extended to the relativistic limit.
According to Lienard’s generalization of Larmor’s formula,

P =
γ6q2a2

6πε0c3
(2.21)

where
γ =

1√
1− v2/c2

(2.22)
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For the relativistic case, energy of the particle in the presence of an electric
field would be:

E =
√
p2c2 +m2c4 + qφ (2.23)

dE

dt
=

p√
p2c2 +m2c4

dp

dt
+ q

dφ

dt
(2.24)

p = γmv (2.25)
p√

p2c2 +m2c4
= v (2.26)

dγ

dt
=
γ3vv̇

c2
(2.27)

where q is the charge and φ is the electric potential. Using above relations and
demanding conservation of energy once again we equate the rate of change
of energy of the particle to the power lost in radiation. Thus we get the
following equation of motion:

γmvv̇ +mγ3v
3v̇

c2
− qE.v +

γ6q2v̇2

6πε0c3
= 0 (2.28)

In general in the presence of a force we may write the EOM as:

γmvv̇ +mγ3v
3v̇

c2
− F.v +

γ6q2v̇2

6πε0c3
= 0 (2.29)

As we did in the Non-relativistic case, let us investigate this EOM in the
absence of any force. In this case one solution is that the velocity remains
constant (this is obvious) and the other solution is derived by solving the
following equation:

v̇ = −
mv + mγ2v3

c2

Aγ5
(2.30)

A =
q2

6πε0c3
(2.31)

(2.32)

Upon integration we get the following expression:

c
√
c2 − v2 − (c2 − v2) ln[2(c+

√
c2−v2)
v

]

(c2 − v2)
= −mt

A
(2.33)

which can be simplified as follows (A = mτ):

t

τ
= ln[

2c

v
(1 +

1

γ
)]− γ (2.34)
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This is a non-algebraic equation. So it seems very difficult to get an explicit
expression for v. But we can surely comment on the long time behavior of v
by investigating its behavior in the limit of t → ∞. We can easily see that
v → 0 as t → ∞. This is again in accordance with our intuition that the
velocity must approach zero in the long time limit. Even here we see that
the relevant time scale is again τ (as in equation (11)).

2.5 Discussion
Using the basic principle of Energy conservation, we have successfully derived
the equation of motion (which are free from any unphysical solutions) for an
accelerated charged particle in 1D. The same principle can be easily extended
in higher dimensions as well. To base our theory even more concretely, we
tried to derive the above equation of motion from a suitable Lagrangian.
But since a Lagrangian for a dissipative system is not guaranteed this job
was not successful. Of course as a next step we would like to explore the
quantum regime. The main motivation would be to address the age old
question of ‘why an electron in an atom is stable?’ (although some claim
that Quantum Electrodynamics has answer for this!) Apart from the above
discussed problem there is another major debatable issue of ‘whether or not
a uniformly accelerated charged particle radiates’. Several articles have been
written on this due to its deep connection to ‘Equivalence Principle’ [11].
However all the analysis is based upon consideration that a constant force
leads to a constant acceleration. We do not attempt to solve this issue but we
would like to point out that in the light of Eqn. 2.19, it is difficult to obtain
constant acceleration. A closer analysis of this issue taking into consideration
the correct equation of motion is essential.
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Chapter 3

A few radiation aspects in
Gravity

3.1 Radiation reaction in Gravity
Similar to the radiation reaction in the case of electrodynamics there is anal-
ogous effect in the presence of gravity. Due to the emission of gravitational
waves a particle looses energy, whose standard expression [12] in terms of the
reduced Quadrapole moment tensor is as follows:

dE

dt
= − G

5c5

...
Q

2 (3.1)

where
...
Q

2
=

...
Qαβ

...
Q
αβ

Qαβ = Iαβ −
1

3
δαβI (3.2)

Iαβ(t) =

∫
yαyβT 00(t,y)d3y (3.3)

Iαβ is the Quadrapole moment tensor and T ab is the stress-energy tensor.
Now we will consider the simplest case of constant gravitational field. This
means that all the components of the metric tensor are independent of the
coordinate x0, also called the world time. In this case [10] the energy of the
particle is given by:

E = −c ∂S
∂x0

(3.4)

E = γmc2√g00 (3.5)

Where S = −mc
∫
ds is the action and ds = gabdx

adxb is the invariant
interval. Using our earlier ideas we equate the rate of change of this energy
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(note that taking time derivative is a bit subtle issue in GR - for eg. refer
chap. 10 of [10]) to the energy radiated away to get the following relation:

γ3√g00mvv̇ +
G

5c5

...
Q

2
= 0 (3.6)

3.2 Power emitted by Gravitational Waves: An
attempt to write it as a power from two
individual dipoles

Power from dipoles

Figure 3.1: Two particles of equal mass undergoing harmonic oscillation. The
dotted lines represent the rotated co-ordinate system at an angle θ w.r.t the
original co-ordinate

MTW [2] considers a system of two particles attached to the opposite ends
of a rotating rod and notes that roughly dipole power from two particles
(acquired by adding the individual amplitudes with appropriate phase differ-
ence) is proportional to the standard quadrapole formula. Here we consider
a simple system where two particles of equal mass are executing Harmonic
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oscillation along x-axis and their motion is out of phase (because of momen-
tum conservation). The two masses are placed along the x-axis such that the
mean position of particle 1 is x = x0/2 and that of particle 2 is x = −x0/2.
We can describe their motion as follows:

x1 = A cos(ωt) +
x0

2
(3.7)

x2 = −A cos(ωt)− x0

2
(3.8)

x1 is the position of particle 1 and x2 is that of particle 2.Here A is the
Amplitude of the oscillation such that A < x0/2.
Now let us consider an observer positioned at a distance R along a vector
which makes an angle θ with the x-axis. Our aim is to calculate the power
received by this observer as dipole radiation from particle 1 and that from
particle 2. Throughout the calculation we will assume non-relativistic mo-
tion.
We know that along the direction of acceleration of a dipole there is no
radiation. Hence it is convenient to consider a co-ordinate system in which
the corresponding x-axis (we call it x′-axis) points toward the observer. Now
we see that the motion along the x′-axis would not contribute anything. Only
the oscillations along y′-axis would play a significant role. As we proceed, let
us first write the position of the two particles in this new co-ordinate system.

x′1 = (A cos(ωt) +
x0

2
) cos θ (3.9)

x′2 = −(A cos(ωt)− x0

2
) cos θ (3.10)

y′1 = −(A cos(ωt) +
x0

2
) sin θ (3.11)

y′2 = (A cos(ωt)− x0

2
) sin θ (3.12)

Now for the dipole we need the second derivate of the y co-ordinates. Let
us denote the individual dipole field amplitudes for particles 1 and 2 at the
point P (where the observer is located) by g1 and g2 respectively. Apart from
proportionality constants (which we have set to unity) and a factor of 1/R,
we can now write:

g1 = mÿ′1 (3.13)
g2 = mÿ′2 (3.14)

Now let the final field amplitude at point P be Gf . Then we can write,

|Gf |2 = |g1|2 + |g2|2 + 2g1 · g2 cos(∆φ) (3.15)
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where ∆φ is the phase difference between the two waves arriving at P. Using
simple geometry we can see that at any instant of time the path difference
between the two waves is ∆x = |x1 − x2| cos θ. So the corresponding phase
difference becomes ∆φ = ωL cos θ, where L = |x1 − x2|. Now substituting
all the known relations in Eqn. 3.15, we get

|Gf |2 = 2m2A2ω4 cos2(ωt) sin2 θ(1− cos(∆φ)) (3.16)

we can expand cos(∆φ) = 1 − (∆φ)2/2. Analogous to ED dipole radiation
formula, we can write an expression for the Gravitational dipole power which
is proportional to the square of the field (P = −G |Gf |2 /4πc3) and hence
we get the gravitational wave power emitted by this source in terms of the
individual dipole contributions to be:

P = − G

4πc5
m2A2ω6L2 cos2 ωt sin2 θ cos2 θ (3.17)

This is the power emitted per solid angle. To get the total power emitted by
the source we need to integrate over the solid angle (this integration gives a
factor of 8π/15).A quick glance to the above expression shows that P = 0 at
θ = 0, π/2, π, 3π/2. This is very much the nature of a Quadrapole radiation!
However we should consider a time-average of the above quantity as power.
Upon averaging we get:

P = −Gm
2A2ω6

15c5
[3A2 + x2

0] (3.18)

Power calculated using usual GW Quadrapole formula

The power of Gravitational waves as calculated using General Theory of
Relativity depends on the third derivative of the reduced Quadrapole moment
tensor Q.

dE

dt
= − G

5c5

...
Q

2 (3.19)

where
...
Q

2
=

...
Qαβ

...
Q
αβ

Qαβ = Iαβ −
1

3
δαβI (3.20)

Iαβ(t) =

∫
yαyβT 00(t,y)d3y (3.21)

Iαβ is the Quadrapole moment tensor and T ab is the stress-energy tensor.
Basically I is the moment of Inertia. For our system the various components
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of I are as follows:

I = m(x′1
2 + y′1

2) +m(x′2
2 + y′2

2) (3.22)
Ix′x′ = m(x′1

2 + x′2
2) (3.23)

Iy′y′ = m(y′1
2 + y′2

2) (3.24)
Ix′y′ = m(x′1y

′
1 + x′2y

′
2) (3.25)

For clarity, we also write the third derivatives of the corresponding compo-
nents.

...
I =

...
I x′x′ +

...
I y′y′ (3.26)

...
I x′x′ = 4mAω3 cos2 θ sinωt[4A cosωt+

x0

2
] (3.27)

...
I y′y′ = 4mAω3 sin2 θ sinωt[4A cosωt+

x0

2
] (3.28)

...
I x′y′ = −4mAω3 sin θ cos θ sinωt[4A cosωt+

x0

2
] (3.29)

...
Q

2
=

...
I

2
x′x′ +

...
I

2
y′y′ + 2

...
I

2
x′y′ −

...
I

2

3
(3.30)

...
Q

2
=

128

3
m2A2ω6(L− 3x0

4
)2 sin2 ωt (3.31)

Using the above expressions we can now write down the expression for the
power as follows:

dE

dt
= −128G

15c5
m2A2ω6(L− 3x0

4
)2 sin2 ωt (3.32)

Upon time-averaging the above expression we arrive at the following expres-
sion:

P = −4Gm2A2ω6

15c5
[16A2 + x2

0] (3.33)

Discussion
It is claimed in many textbooks (for eg. [12], [2]) that in a system of masses
emitting Gravitational radiation since the center of mass is not accelerating
(in the absence of any other force on this system), we can not have dipole
radiation. Although this true in a gross sense, the real physical effect is
that of individual dipoles radiating with a phase correlation that effectively
becomes quadrapolar. In the simple case of two equal masses, we can easily
see that the individual dipole contribution cancels only along the line of
motion and along the perpendicular direction to it. In other directions one
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has to take into account proper phase factors and hence the individual dipoles
need not cancel out! In fact we have shown that the quadrapole nature (at
least qualitatively) can be viewed as an outcome of the interference term of
the two individual dipole radiation. However comparing Eqn. 3.18 and 3.33,
we see that our approach does not match exactly with the existing formula
for power from Gravitational waves.
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Chapter 4

Exploration of the Unruh Effect

It has been a dream of physicists since quite some years to unify Gravity and
Quantum Mechanics. Many believe that the first step to wards this is the
prediction of Hawking radiation. Shortly after that Davies and Unruh [3]
predicted a similar result for accelerating particles in flat space time, which
is now famously known as the ‘Unruh Effect’. In this section we will discuss
our study about the Unruh Effect. This would be basically a brief survey
rather than any significant original piece of work. The idea is to put together
various approaches to this problem that we came across so that the material
serves as a good starting point for students to study this problem. However
this survey is based on our understanding and interpretation of the discussed
problem. So most of the analogies and ideas discussed are from our view
point.
Consider the zero temperature vacuum state in flat Minkowski space time.
A uniformly accelerated observer (with acceleration a) would not perceive it
as a vacuum state, rather the observer would detect that the system is in a
thermal bath of temperature

T =
~a

2πkBc
(4.1)

where ~ is the reduced planck’s constant, kB is the Boltzmann constant and
c is the value of speed of light in vacuum. This is the basic essence of the
Unruh Effect. The effect arises mainly because the notion of vacuum is in
general different for observers in different frame of references. This can be
understood in the light of Quantum Field Theory [13]. Consider a complete
set of orthonormal solutions to the Klein - Gordon equation:

�fα(x) = 0 (4.2)
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Being a complete set, {fα(x)} can be used to expand any real field operator
Φ̂(x) as:

Φ̂(x) =
∑
α

âαfα(x) + â†αf
†
α(x) (4.3)

where âα and â†α are annihilation and creation operators such that the vacuum
state |0〉f satisfies the relation âα |0〉f = 0 for all α. Also,

[âα, âβ] =
[
â†α, â

†
β

]
= 0 (4.4)[

âα, â
†
β

]
= δαβ (4.5)

Annihilation and creation operators or one can say the mode functions fα(x)
can change if one makes a transformation to another frame of reference.
This would then result in general in change of states too, particularly the
vacuum state. As an illustration one can consider a new set of mode functions
constructed through Bogoliubov transformation:

Fα(x) ≡
∑
β

Mαβfβ +Nαβf
†
β (4.6)

Now,

Φ̂(x) =
∑
α

âαfα(x) + â†αf
†
α(x) =

∑
α

ÂαFα(x) + Â†αF
†
α(x) (4.7)

such that

âα =
∑
β

(MαβÂβ +N∗βαÂ
†
β) (4.8)

â†α =
∑
β

(M∗
βαÂ

†
β +NβαÂβ) (4.9)

The vacuum state corresponding to this new set of mode functions is defined
by the relation Âα |0〉F = 0. The two vacua state |0〉F and |0〉f are entirely
different. In fact, it turns out that the expectation value of the particle
number in the state |0〉f calculated using the new mode functions is

〈n〉 =f 〈0| Â†αÂα |0〉
f =

∑
β

|Nαβ|2 (4.10)

It means that the state which was vacuum for a choice of mode functions (in
this case {fα}) can be a many particle state (for non-zero value of Nαβ) for
another choice of mode functions (in this case {Fα})!
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4.1 Derivation of Unruh effect
All inertial frames are related to each other via Lorentz transformation which
is essentially a linear transformation and hence the form of the solution to
Klein-Gordon equation remains same. So all inertial observers share the
same vacuum state. However, in the case of a uniformly accelerated frame,
the transformation for mode functions is non-trivial. To discuss the dynam-
ics of uniformly accelerated system one needs to resort to Rindler co-ordinate
system. The region with |t| < z and |t| < −z in the flat space time (t, z) is
called Right and Left Rindler wedge respectively. The co-ordinate transfor-
mation to the right rindler wedge is given by (for simplicity, throughout the
derivation we will stick to (1+1) dimension):

t =
eaξ

a
sinh(aτ) (4.11)

z =
eaξ

a
cosh(aτ) (4.12)

and that for the left rindler wedge is:

t =
eaξ̄

a
sinh(aτ̄) (4.13)

z = −e
aξ̄

a
cosh(aτ̄) (4.14)

where a is a positive constant. The physical motivation to consider this co-
ordinate system is that ξ = 0 corresponds to the world line of a particle with
uniform acceleration a and τ is the proper time in this frame of reference.
The massless scalar field Φ̂(t, z) in flat minkowski space time can be expanded
in terms of the solutions to the K-G equation as discussed above (we proceed
with the derivation as discussed in [14]).

Φ̂(t, z) =

∫ ∞
0

dk√
4πk

(b̂−ke
−ιk(t−z)+b̂ke

−ιk(t+z)+b̂−ke
ιk(t−z)+b̂ke

ιk(t+z)) (4.15)

The creation and annihilation operators satisfy the commutation relation:[
b̂±k, b̂

†
±k′

]
= δ(k − k′) (4.16)

Since the right and left moving solutions are independent we can group their
respective terms by defining U = t − z and V = t + z. Thus we can write
Φ̂(t, z) = Φ̂(U) + Φ̂(V ), where

Φ̂(V ) =

∫ ∞
0

dk[b̂kfk(V ) + b̂kf
∗
k (V )] (4.17)

fk(V ) =
1√
4πk

e−ιkV (4.18)
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Figure 4.1: The region |t| < z is the Right Rindler wedge and the region
|t| < −z is the Left Rindler wedge

Also we will now concentrate only on the left moving sector of the field
since the treatment for the right moving part is essentially the same. The
minkowski vacuum state |0M〉 is defined by the relation b̂k |0M〉 = 0 for all k.
Now in the right rindler wedge, we have a similar K-G equation:

(
∂2

∂τ 2
− ∂2

∂ξ2
)gω = 0 (4.19)

So the solutions are again similar to that we discussed above in the case of
minkowski. Here also we can separate out the left and right moving sectors
by defining u = τ − ξ and v = τ + ξ. Note that,

U = −a−1e−au (4.20)
V = a−1eav (4.21)

As discussed earlier we can now expand the scalar field Φ̂ in terms of these
new mode functions such that,

Φ̂(V ) =

∫ ∞
0

dω[âRωgω(v) + âR†ω g
∗
ω(v)] (4.22)

gω(v) = (4πω)−1/2e−ιωv (4.23)

where â and â† are the annihilation and creation operators for this new choice.
These operators satisfy the usual commutation relations discussed above.
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Similar procedure is to be followed in the left rindler wedge. Here we define
ū = τ−ξ and v̄ = τ+ξ for the same reason discussed above. All the relations
written for the right rindler wedge hold in this case with v replaced by v̄ (such
that V = −a−1e−av̄) and the creation/annihilation operators of right rindler
wedge replaced by those in the left rindler wedge (âωL and âωL†). The rindler
vacuum state |0R〉 is defined by the relation âRω |0R〉 = âLω |0R〉 = 0.
Since both gω and fk form complete set and are used to expand the scalar
field, gω can be written as a linear combination of fk and f ∗k . Thus we have,

θ(V )gω(v) =

∫ ∞
0

dk√
4πk

(αRωke
−ιkV + βRωke

ιkV ) (4.24)

θ(−V )gω(v̄) =

∫ ∞
0

dk√
4πk

(αLωke
−ιkV + βLωke

ιkV ) (4.25)

where θ(V ) is the Heaviside function such that θ(V ) = 0 if V < 0 and
θ(V ) = 1 if V > 0. The α and β in the above relation are called the
Bogoliubov coefficients. These are crucial in the derivation of the Unruh
effect.
Let us now proceed to calculate the Bogoliubov coefficients. In order to
calculate αRωk, we multiply Eqn. 4.24 by eιkV /2π and integrate over V . This
gives us:

αRωk =

√
k

ω

∫ ∞
0

dV

2π
(aV )−ιω/aeιkV (4.26)

Thus we get,

αRωk =
ιeπωc/2a

2π
√
ωk

(
a

k
)−ι/ωaΓ(1− ιω

a
) (4.27)

After similar procedure we get rest of the bogoliubov coefficients as follows:

βRωk = −ιe
−πωc/2a

2π
√
ωk

(
a

k
)−ι/ωaΓ(1− ιω

a
) (4.28)

αLωk = −ιe
πωc/2a

2π
√
ωk

(
a

k
)ι/ωaΓ(1 + ι

ω

a
) (4.29)

βLωk =
ιe−πωc/2a

2π
√
ωk

(
a

k
)ι/ωaΓ(1 + ι

ω

a
) (4.30)

Note that

βLωk = −e−πω/aαR∗ωk (4.31)
βRωk = −e−πω/aαL∗ωk (4.32)
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Now the most crucial part is to construct functions which are linear combi-
nation of positive frequency modes e−ιkV in Minkowski space time. This is
done by substituting above relations in Eqn. 4.24 and 4.25.

Gω(V ) = θ(V )gω(v) + e−πω/aθ(−V )g∗ω(v̄) (4.33)
Ḡω(V ) = θ(−V )gω(v̄) + e−πω/aθ(V )g∗ω(v) (4.34)

Now inverting these two relations and substituting into

Φ̂(V ) =

∫ ∞
0

dω[θ(V )(âRωgω(v) + âR†ω g
∗
ω(v)) + θ(−V )(âLωgω(v̄) + âL†ω g

∗
ω(v̄))]

(4.35)
we get

Φ̂(V ) ∝
∫ ∞

0

dω[Gω(V )(âRω − e−πω/aâL†ω ) + Ḡω(V )(âLω − e−πω/aâR†ω ) +H.c.]

(4.36)
At this point it is important to stress the need of doing all this mathematical
jugglery. Our aim is to find a relation between the old and new annihila-
tion/creation operators. For this we proceed by expressing the scalar field
in terms of the two sets of complete mode functions (which we did). Then
we write one of the modes in terms of the other. We did this by expressing
gω in terms of fk. Now we must substitute these relations in the scalar field
expansion and make a comparison to the earlier expansion to get the desired
relations between annihilation and creation operators. Simply putting, the
process is similar to substituting Eqn. 4.6 in Eqn. 4.7 to get Eqn. 4.8
and 4.9. Now the problem here is that the two Rindler wedges are causally
disconnected and one can see that easily even from Eqn. 4.35. So we need
another function in terms of fk which is continuous and hence we made an
effort to construct the functions Gω and Ḡω which connects the two rindler
wedges.
Now upon comparing Eqn. 4.36 to Eqn. 4.15, we find that (âRω −e−πω/aâL†ω )
and (âLω − e−πω/aâR†ω ) take the role of b̂k and hence must annihilate the
Minkowski vacuum state.

(âRω − e−πω/aâL†ω ) |0M〉 = 0 (4.37)
(âLω − e−πω/aâR†ω ) |0M〉 = 0 (4.38)

To make our further calculations simpler and easier to understand we dis-
cretize the Rindler energy levels ω. Thus as a modification in notations we
will replace ω with ωi. So using the discrete version of the above relations
and the commutators of the creation and annihilation operators, we find that

〈0M | âR†ωi â
R
ωi
|0M〉 = e−2πωi/a 〈0M | âL†ωi â

L
ωi
|0M〉+ e−2πωi/a (4.39)

〈0M | âL†ωi â
L
ωi
|0M〉 = e−2πωi/a 〈0M | âR†ωi â

R
ωi
|0M〉+ e−2πωi/a (4.40)
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Now solving these two relations we find

〈0M | âR†ωi â
R
ωi
|0M〉 = 〈0M | âL†ωi â

L
ωi
|0M〉 =

1

e2πωi/a − 1
(4.41)

This gives the expectation value for the particle number in the minkowski
vacuum state as seen by the accelerated observer. We see that this is identical
to the Bose-Einstein distribution with an associated temperature Tu (Unruh
Temperature) given by

Tu =
~a

2πkBc
(4.42)

In short this means that a system undergoing uniform acceleration with re-
spect to zero-temperature vacuum will come to equilibrium at an effective
temperature given by above expression.
Initially it was thought that the presence of a horizon (due to acceleration of
system from infinite past to infinite future) is essential for the Unruh effect.
However, it has been shown that even for finite time acceleration, the effect
remains valid [15, 16].

4.2 Alternate derivation of the Unruh Effect
The derivation of the Unruh effect given above is technically very challeng-
ing. There exists another way to derive this result in a more physically
intuitive way [17]. We all are accustomed to the phenomenon of Doppler
effect. Any observer moving at a constant velocity with respect to a wave
source would experience a constant shift in the frequency of emitted way.
Well, what happens if instead of constant velocity we consider constant ac-
celeration? Intuitively we expect a time dependent Doppler shift i.e. the shift
in frequency observed would change with time. More precisely speaking, the
phase of the wave would be time dependent.
The trajectory of a uniformly accelerated particle in a (1+1) flat Minkowski
spacetime (t,z) is given by:

t(τ) =
c

a
sinh(

aτ

c
) (4.43)

z(τ) =
c2

a
cosh(

aτ

c
) (4.44)

where τ is the proper time of the accelerated observer and a is the accel-
eration. Standard Minkowski plane wave with frequency ωk has the form
proportional to eιφ± ≡ eι(kz±ωkt), k = ωk/c. Now if we substitute above
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relations in the expression for φ, we get:

φ± = kz ± ωkt =
ωkc

a
e±aτ/c (4.45)

One quickly see the meaning of this relation if one identifies that

φ± ≡
∫ τ

ω′k(τ
′)dτ ′ (4.46)

This means that
ω′k(τ) = ωke

aτ/c (4.47)

which is consequence of time dependent Doppler shift. From this one calcu-
late the frequency spectrum S(Ω).

S(Ω) ≡
∣∣∣∣∫ ∞
−∞

dτeιΩτeι(ωkc/a)eaτ/c
∣∣∣∣2 =

2πc

Ωa

1

e2πΩc/a − 1
(4.48)

We see the planck factor appearing in the above expression which hints to-
wards Unruh effect. But this is not quite the complete derivation. The
reason is the following. We have considered only a single frequency of the
Minkowski mode and hence we would detect only a single frequency (though
Doppler shifted) at a time in an accelerated frame too. However, quantum
field in vacuum has components at all frequencies. So, if we consider all
these frequencies only then can we realize the Unruh effect. Consider again
a massless scalar field in (1+1) dimension quantized in a volume V:

Φ̂ =
∑
k

√
2π~c2

ωkV
(âke

−ιωkt + â†ke
ιωkt) (4.49)

Consider the fourier transform operator,

ĝ(Ω) =
1

2π

∫ ∞
−∞

dtΦ̂eιΩt (4.50)

Since for a thermal state, â†kâk has the expectation value (e~ωk/kBT − 1)−1,
the expectation value

〈
ĝ†(Ω)ĝ(Ω′)

〉
in thermal equilibrium is〈

ĝ†(Ω)ĝ(Ω′)
〉

=
∑
k

2π~c2

ωkV

〈
â†kâk

〉
δ(Ω− Ω′)δ(ωk − Ω) (4.51)

In the limit of V →∞ we have〈
ĝ†(Ω)ĝ(Ω′)

〉
= ~c2

∫ ∞
−∞

dk

ωk

δ(|k| c− Ω)δ(Ω− Ω′)

(e~Ω/kBT − 1)
=

2~c/Ω
(e~Ω/kBT − 1)

δ(Ω− Ω′)

(4.52)
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Now let us do a similar calculation for an observer in uniform acceleration in
the vacuum field of the accelerated frame. Here we have to use appropriate
Doppler shifted frequencies.

ĝ(Ω) =
1

2π

∫ ∞
−∞

dτeιΩτ
∑
k

√
2π~c2

ωkV
[âke

ι(εkωkc/a)e−εkaτ/c + â†ke
−ι(εkωkc/a)e−εkaτ/c ]

(4.53)
where εk is |k| /k. By using the fact that

〈
âkâ

†
k′

〉
= δkk′ and performing

the integral over τ as above, we get the expectation value for the correlation
function to be

〈
ĝ†(Ω)ĝ(Ω′)

〉
=

~c2

πa

∣∣∣∣Γ(
ιΩc

a
)

∣∣∣∣2 e−πΩc/aδ(Ω− Ω′) =
2~c/Ω

e2πΩc/a − 1
δ(Ω− Ω′)

(4.54)
Thus we get the usual expression describing the Unruh Effect.

4.3 Experimental approaches to detect Unruh
Effect

Although Unruh effect has sound mathematical basis and also a physically
intuitive understanding, it has a controversial aspect to it and it is whether
or not such an accelerated system emits radiation (we discuss this issue in the
next section). This has stimulated a great interest in devicing an experiment
to settle this issue. At the same time it is easy to see how difficult it is
to proceed with an experiment involving purely mechanical motion. The
value of acceleration corresponding to a Unruh temperature of 1 K is a =
2.4 × 1020m/s2. Any body linearly accelerated at this value is likely to be
distorted and deformed [18]. So alternate methods are to be deployed.
Although high linear accelerations are difficult to achieve, one can reach
very high centripetal accelerations. Accelerations as high as of the order of
1023m/s2 (this gives corresponding unruh temperature of the order of 1000K)
can be achieved in accelerator rings. It was well known theoretically and ex-
perimentally that circulating electrons in such storage rings become polarized
to a very high degree. But the slight depolarization observed appealed Bell
and Leinaas [18, 19] to investigate if this was an evidence for the Unruh
effect. However the temperature they found for the distribution of residual
depolarized electrons was about 1.4 times higher than that predicted by the
expression for the Unruh temperature. Another similar scenario arises within
an atom due to centripetal acceleration of the electrons. This suggests that
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a study of distribution of electrons in energy levels very close to that of the
ground state at very low ambient temperatures could reveal some connection
to Unruh effect. There is a recent proposal to study this effect in larger
atoms like oxygen and fluorine [20].
If we consider a Hydrogen atom, the acceleration (a = γ2c2/r) in the rest
frame of an electron in its ground state (i.e. at a distance of first bohr
orbit r0 = 5.3× 10−11m such that γ = 1) is a = 1.69× 1027m/s2. This gives
tremendous amount of corresponding Unruh temperature (Tu = 48364262K).
Now the energy corresponding to the hyperfine splitting of hydrogen atom
at 21cm wavelength is about Ehy = 9.4 × 10−27J . It is easy to see that
kBTu >> Ehy. Hence if there existed Unruh radiation, we must expect that
the probability distribution in the hyperfine states to be 1/2. However, most
of the Hydrogen in the Universe is in the ground hyperfine state! As a possible
resolution we conjecture that ‘Unruh Effect’, if it exists, is only applicable
for linear acceleration and not for circular case with nearly constant angular
velocity.
Another recent proposal [21] suggests using ‘Berry’s phase’ to observe the
Unruh effect. According to the investigation, the berry’s phase for an inertial
detector is different from that of an accelerated detector. This difference if
observed, according to them can be viewed as an outcome of the Unruh effect.
There are also proposals to construct superconducting circuits to realize this
effect (on the similar lines to the way Dynamical Casimir Effect is being
claimed to have been observed). Also looking at electrons in microwave
cavity is another approach (for more details see [14]). However, most of
these experimental proposals aim at observing the Unruh effect and are not
aimed at proving or disproving the existence of the corresponding Unruh
radiation. So the radiation aspect to this effect still remains controversial.

4.4 Radiation corresponding to the Unruh Ef-
fect

Many feel it obvious for the accelerated system to radiate since it is at an
elevated temperature w.r.t. minkowski zero temperature [15]. However, Ford
and O’Connell [22] have shown using detailed balance calculation that the
uniformly accelerated system would not radiate. There are few others who
have the opinion that there is no Unruh radiation.
We find the phenomenon of ‘Unruh Effect’ very similar to the picture of
‘pseudo force’ in Newtonian mechanics. Consider a ball attached to string
hanging from the ceiling of a closed car with an observer inside it. In an
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inertial frame this setup has its natural ground state in the vertical position.
However if the closed car mentioned above is uniformly accelerating then the
ball’s equilibrium position is shifted from vertical position to a position at
an angle which depends on the acceleration of the car. Now the observer
accustomed to being in an inertial frame would obviously conclude that the
ball is in an excited state in the presence of a force (which he can not detect!).
However, since this is the new equilibrium position there is no question of the
ball coming back to the vertical position to minimize its energy. The situation
in case of Unruh effect is somewhat similar. In the accelerated frame the
system is in its new vacuum state. Then why should it radiate? As long as
the system is accelerating there should not be any radiation emitted by the
system. However, if such an accelerating system comes to a halt suddenly,
then we can expect it to radiate because the state in which it is freezed is
a many particle state w.r.t. Minkowski spacetime! However, even if such
radiation does exist it would not be appropriate to call it Unruh radiation
since this would be an outcome of a transient phenomenon. But surely it can
serve as a good proof to Unruh effect because the existence of such radiation
after stopping (i.e. after removal of external forcing agent) must necessarily
imply that the system was in an excited state. This is a bit difficult to work
out and requires some time. So it was not possible to make progress in this
direction.

Figure 4.2: Schematic of string-ball system in a stationary car and an accel-
erating car

Also in general for many atoms the corresponding Unruh temperature due to
centripetal acceleration is very high. However we do not see any spontaneous
excitations to excited state in such atoms [23]. So it is very hard to believe
that radiation corresponding to Unruh effect does exist.
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4.5 Further Work
We have conjectured above the absence of ‘Unruh Effect’ in the circular
case. However we would like to make some progress in the experimental
determination of the ‘Unruh Effect’ in future. Apart from this we mainly
aim at working on three important issues:

1. Study of radiation phenomenon in the context of relation between ac-
celeration and Gravity. This includes study of ‘Equivalence Principle’
in the presence of radiating charged particle.

2. Relation between Unruh Effect, Hawking radiation and Dynamical
Casimir Effect. Since all these phenomena are related to the ‘Quantum
vacuum’, it is important to understand their relation to each other. Al-
ready many attempts have been made in this direction. We would like
to revisit these due to its importance from experimental determination
point of view.

3. The puzzle regarding the absence of radiation from stationary orbits in
atoms in the context of rest of the radiation phenomena.
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