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Abstract

Introduction to Affine and Projective Varieties

by Ayesha Fatima

In this thesis we give detailed solutions of the exercises in the first chapter of the

textbook ’Algebraic Geometry’ by Robin Hartshorne. We have followed this with

an essay in which we have proved two theorems which bring out some relationships

between the algebro-geometric notions and those coming from complex manifolds.
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Chapter 1

Affine Varieties

Exercise 1.0.1. (a) Let Y be the plane curve y = x2 i.e., Y is the zero set of the

polynomial f = y − x2. Show that A(Y ) is isomorphic to a polynomial ring in

one variable over k.

(b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a poly-

nomial ring in one variable over k.

(c) Let f be any irreducible quadratic polynomial in k[x, y], and let W be the conic

defined by f . Show that A(W ) is isomorphic to either A(Y ) or A(Z). Which one

is it when?

Solution:

(a) We have Y = Z(y − x2). We prove that y − x2 is an irreducible polynomial.

Consider y − x2 as a polynomial in x with coefficients in k[y]. Suppose y − x2

is reducible. Then it has two factors each of degree 1. Let ax + b and cx + d

be the two linear factors where a, b, c, and d are elements of k[y]. Therefore we

have ac = −1. Therefore a and c are elements of k such that a = −1/c. We

also have ad + bc = 0. Putting c = −1/a in this, we get a2d − b = 0 i.e.,

b − a2d = 0. But bd = y i.e., (ad)2 = y. This means that y is a square of a

polynomial in y which is not true. Therefore y − x2 is irreducible. Since k[x, y]

is a Unique Factorization Domain, (y − x2) is a prime ideal of k[x, y] and√
(y − x2) = (y − x2). Therefore I(Y ) =

√
(y − x2) = (y − x2).

1
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A(Y ) = k[x, y]/I(Y ) = k[x, y]/(y − x2). We claim that k[x, y]/(y − x2) is

isomorphic to a polynomial ring in one variable k[t]. Define a map

φ : k[x, y] −→ k[t] by f(x, y) 7→ f(t, t2). This map is clearly a ring

homomorphism. Also, any polynomial f(t) ∈ k[t] is the image of the

polynomial f(x) ∈ k[x, y]. Therefore this is a surjective ring homomorphism.

Let f(x, y) be an element in the ideal generated by y − x2. Therefore

f(x, y) = (y − x2)g(x, y) for some polynomial g(x, y) and thus f(t, t2) = 0.

Therefore (y − x2) ( kerφ.

Let f(x, y) be an element of kerφ. Consider f(x, y) as a polynomial in y with

coefficients in k[x]. If we divide f(x, y) by the polynomial y − x2, which is a

linear polynomial in y, then we have f(x, y) = (x2 − y)g(x, y) + h(x, y). Since

deg h(x, y) < deg (y − x2) = 1, h(x, y) is polynomial in y of degree 0 i.e., a

polynomial in x. Since f(t, t2) = 0, we have h(t) = 0. Therefore h(x) is the

zero polynomial and hence f(x, y) ∈ (y − x2). Therefore ker φ = (y − x2).

Therefore we have A(Y ) = k[x, y]/(y − x2) ∼= k[t].

(b) Z = Z(xy − 1). We claim that xy − 1 is irreducible. Consider xy − 1 as a

polynomial in x with coefficients in k[y]. Suppose it is reducible. Then it has

two linear factors. Suppose ax + b and cx + d are the two linear factors of

xy − 1. Then ac = 0 and bd = 1. Therefore both b and d are elements of k.

also either a or c is equal to 0. Suppose a = 0. Then ax + b ∈ k. This

contradicts the fact that ax + b is a polynomial of degree 1 in x. Therefore

xy − 1 is an irreducible polynomial and (xy − 1) is a prime ideal of k[x, y] and

thus
√

(xy − 1) = (xy − 1). Therefore I(Z) = (xy − 1) and A(Z)

= k[x, y]/I(Z) = k[x, y]/(xy − 1).

We claim that k[x, y]/(xy − 1) is isomorphic to the Laurent polynomial ring in

x, k[x, 1
x
]. Define a map φ : k[x, y] −→ k[x, 1

x
] by sending the polynomial

f(x, y) to the Laurent polynomial f(x, 1
x
). This map is clearly a ring

homomorphism. Also, φ is surjective because any Laurent polynomial f(x, 1
x
) is

the image of the polynomial f(x, y).

Suppose f(x, y) is a polynomial in (xy − 1). Then f(x, y) = (xy − 1)g(x, y)

for some polynomial g(x, y) in k[x, y]. Therefore f(x, 1
x
) = 0 and

f(x, y) ∈ kerφ. Therefore (xy − 1) ⊂ kerφ.
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Let f(x, y) be an element of kerφ. Consider f(x, y) as a polynomial in y with

coefficients in k[x]. If we divide f(x, y) by the polynomial xy − 1, which is a

linear polynomial in y, then we have f(x, y) = (xy − 1)g(x, y) + h(x, y).

Since deg h(x, y) < deg (xy − 1) = 1, h(x, y) is polynomial in y of degree 0

i.e., a polynomial in x. Since f(x, 1
x
) = 0, we have h(x) = 0. Therefore

f(x, y) ∈ (xy − 1) and thus kerφ = (xy − 1). Thus

A(Y ) = k[x, y]/(xy − 1) ∼= k[x, 1
x
].

Suppose k[x, 1
x
] ∼= k[t], polynomial ring in the variable t. Suppose ϕ is an

isomorphism from k[x, 1
x
] to k[t]. Since ϕ maps an invertible element to an

invertible element, ϕ(k×) ⊂ k×. Also since x is an invertible element of k[x, 1
x
],

ϕ(x) has to be an invertible element of k[t] and therefore an element of k×.

Therefore ϕ(k[x, 1
x
]) ⊂ k. This is a contradiction. Therefore k[x, 1

x
] is not

isomorphic to a polynomial ring in one variable.

(c) Suppose f = ax2 + bxy + cy2 + dx + ey + f be any irreducible quadratic

polynomial. We let x = ucos θ − v sin θ and y = u sin θ + v cos θ for a some

angle θ (This amounts to a rotation of axes by an angle θ). Substituting these

equations in f and letting the coefficient of uv be 0, we get tan θ = b/a− c.
The equation is now of the form Au2 + Cv2 + Du + Ev + F = 0.

Completing the squares and by a change of coordinates, we can convert the

irreducible equation to one of the following standard forms:

Y = X2 (parabola) −→ (eq. 1) (when AC = 0)

X2

A2
1

+
Y 2

B2
1

= 1 (ellipse) −→ (eq. 2) (when AC > 0)

X2

A2
1

− Y 2

B2
1

= 1 (hyperbola) −→ (eq. 3) (when AC < 0)

Equation (1) is the case considered in part (a). Putting X1 = X/A1 and

Y1 = iY/B1 in the equation (2) converts it to the equation X2
1 − Y 2

1 = 1.

Putting X1 = X/A1 and Y1 = Y/B1 in the equation (2) converts it to the

equation X2
1 − Y 2

1 = 1. Putting X1 = (U − V )/
√

2 and Y1 = U + V/
√

2, the

equation X2
1 − Y 2

1 = 1 gets converted to UV = 1 which is the same as the

case considered in part (b).

Exercise 1.0.2 (The twisted cubic curve). Let Y ( A3 be the set Y = {(t, t2, t3) | t ∈
k}. Show that Y is an affine variety of dimension 1. Find the generators of the ideal
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I(Y ). Show that A(Y ) is isomorphic to the polynomial ring in one variable over k.

We say that Y is given by the parametric representation x = t, y = t2, z = t3.

Solution:

Y = Z(y − x2, z − x3). We claim that I = (y − x2, z − x3) is a radical ideal.

Consider the map φ : k[x, y, z]/I −→ k[x] which sends the element f(x, y, z) to

the element f(x, x2, x3) and the map ψ : k[x] ←→ k[x, y, z]/I sending the

element f(x) to itself. Then φ and ψ are ring homomorphisms. Also φ(ψ(f)) = f

for any polynomial f ∈ k[x]. If f is an element of k[x, y, z]/I, then ψ(φ(f))

= ψ(f(x, x2, x3)) = f(x, x2, x3). Since x2 ≡ y and x3 ≡ z in k[x, y, z]/I,

f(x, x2, x3) ≡ f(x, y, z) in k[x, y, z]/I. Therefore the ring homomorphisms φ and

ψ are inverses of each other and thus k[x, y, z]/(y − x2, z − x3) ∼= k[x]. Since k[x]

is an integral domain, (y − x2, z − x3) is a prime ideal and thus a radical ideal.

Therefore I(Y ) =
√

(y − x2, z − x3) = (y − x2, z − x3).

Therefore A(Y ) = k[x, y, z]/I(Y ) ∼= k[x] and

dimY = dimA(Y ) = dimk[x] = 1. Therefore A(Y ) is an affine variety of

dimension 1.

Exercise 1.0.3. Let Y be the algebraic set in A3 defined by two polynomials x2 − yz

and xz − x. Show that Y is the union of three irreducible components. Describe them

and find their prime ideals.

Solution:

Y = Z(x2 − yz, xz − x). Therefore for any point (x, y, z) ∈ Y we have

x2 − yz = 0 and x(z − 1) = 0. If x = 0, we have yz = 0 and therefore either

y = 0 or z = 0. Therefore any point of the form (0, t, 0) or (0, 0, t) in A3 belongs

to Y where t ∈ k.

If z = 1, we have x2 = y. Therefore any point of the form (t, t2, 1) belongs to Y

for all t ∈ k.

Therefore Z(x2 − yz, xz − x) = Z(x, z) ∪ Z(x, y) ∪ Z(x2 − y, z − 1).

Let I1 = (x, z), I2 = (x, y) and I3 = (x2 − y, z − 1). We claim that we have

k[x, y, z]/Ii ∼= k[t] for i = 1, 2, 3.

To prove for i = 1:

Let φ : k[x, y z] −→ k[y] be the map defined by sending the element f(x, y, z) to

the element f(0, y, 0). This map is clearly a ring homomorphism. Also, any
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f(y) ∈ k[y] is the image of the element f(y) ∈ k[x, y z]. Therefore φ is a surjective

ring homomorphism. Let f(x, y, z) ∈ (x, z). Then

f(x, y, z) = xg(x, y, z) + zh(x, y, z) for some polynomials g(x, y, z),

h(x, y, z) ∈ k[x, y, z]. Since φ(f(x, y, z)) = 0, f(x, y, z) ∈ ker φ. Therefore

(x, z) ⊂ ker φ. Conversely, let f(x, y, z) be an element of ker φ. Therefore

f(0, y, 0) = 0. Write f(x, y, z) as xg(x, y, z) + h(y, z) where g and h are

polynomials. Therefore h(y, 0) = 0. Write h(y, z) as zp(y) + q(y) where p and q

are polynomials. Therefore q(y) = 0. Thus f(x, y, z) = xg(x, y, z) + zp(y) i.e.,

f(x, y, z) ∈ (x, z). Therefore k[x, y, z]/(x, z) ∼= k[y] ∼= k[t].

To prove for i = 2:

Let ψ : k[x, y z] −→ k[z] be the map defined by sending the element f(x, y, z) to

the element f(0, 0, z). This map is clearly a ring homomorphism. Also, any

f(z) ∈ k[z] is the image of the element f(z) ∈ k[x, y z]. Therefore ψ is a surjective

ring homomorphism. Let f(x, y, z) ∈ (x, y). Then

f(x, y, z) = xg(x, y, z) + yh(x, y, z) for some polynomials g(x, y, z),

h(x, y, z) ∈ k[x, y, z]. Since ψ(f(x, y, z)) = 0, f(x, y, z) ∈ ker ψ. Therefore

(x, y) ⊂ ker ψ. Conversely, let f(x, y, z) be an element of ker ψ. Therefore

f(0, 0, z) = 0. Write f(x, y, z) as xg(x, y, z) + h(y, z) where g and h are

polynomials. Therefore h(0, z) = 0. Write h(y, z) as yp(z) + q(z) where p and q

are polynomials. Therefore q(z) = 0. Thus f(x, y, z) = xg(x, y, z) + yp(z) i.e.,

f(x, y, z) ∈ (x, y). Therefore k[x, y, z]/(x, y) ∼= k[z] ∼= k[t].

To prove for i = 3: Let ϕ : k[x, y, z]/I3 −→ k[x] be the map defined by sending

the element f(x, y, z) to the element f(x, x2, 1). This map is clearly a ring

homomorphism. Also, any f(x) ∈ k[x] is the image of the element

f(x) ∈ k[x, y, z]. Therefore ϕ is a surjective ring homomorphism. Let

φ : k[x] −→ k[x, y, z]/I3 be the map defined by sending the element f(x) to itself.

φ is clearly a ring homomorphism. Also ϕ(φ(f(x))) = f(x) for any element

f(x) ∈ k[x]. For any element f(x, y, z) ∈ k[x, y, z]/I3, φ(ϕ(f(x, y, z))) =

f(x, x2, 1). Since x2 ≡ y and z ≡ 1 in k[x, y, z]/I3, we have

f(x, x2, 1) ≡ f(x, y, z) in k[x, y, z]/I3. Therefore the ring homomorphisms φ and

ϕ are inverses of each other and thus k[x, y, z]/I3 ∼= k[x] ∼= k[t].

Since k[t] is an integral domain, Ii is a prime ideal and thus I(Z(Ii)) =
√
Ii = Ii

for each i = 1, 2, 3. Therefore we have Z(I1), Z(I2) and Z(I3) as the irreducible
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components of Y with I1, I2 and I3 as their respective prime ideals.

Exercise 1.0.4. If we identify A2 with A1 × A1 in the natural way, show that the

Zariski topology on A2 is not the product topology of the Zariski topologies on the two

copies of A1.

Solution:

Proper closed subsets of A1 are finite subsets of A1. Closed sets of A1 × A1 in

product topology are finite union of basic open sets which are of the form X × Y

where X and Y are closed in A1. If X (or Y ) is equal to A1, then X × Y looks like

a finite union of horizontal (or vertical) lines in A1 × A1. If both X and Y are

proper subsets of A1, then X × Y is finite set of points in A1 × A1. If both X and

Y are equal to A1 (or ∅), then X × Y is equal to A1 × A1 (or ∅).
Consider the closed set Z(y − x) in A2. It is an infinite subset of A2 because it is

equal to the set {(t, t)| t ∈ k}. We claim that it is also not equal to union of finite

number of vertical and horizontal lines. Suppose that it is equal to a union of finite

number of vertical and horizontal lines Hi and Vj where i = 1, . . . , n and

j = 1, . . . , m for some non-negative integers m and n. Each Hi is of the form

{(t, hi) | t ∈ k} for a fixed element hi ∈ k and each Vj is of the form

{(vj, t) | t ∈ k} for a fixed element vj ∈ k. Each Hi has only one point of the form

(t, t) i.e., the point (hi, hi) and each Vj has only one point of the form (t, t) i.e.,

(vj, vj). Therefore there are only finitely many points of the form (t, t) in

(
⋃n
i=1Hi) ∪ (

⋃m
j=1 Vj). This is a contradiction since Z(y − x) = {(t, t)| t ∈ k} has

infinitely many points (because k is an algebraically closed field). Therefore

Z(y − x) is not a closed set of A1 × A1. Therefore the product topology and the

Zariski topology on A2 is not the same.

Exercise 1.0.5. Show that a k-algebra B is isomorphic to the affine coordinate ring of

some algebraic set in An, for some n, if and only if B is a finitely generated k-algebra

with no nilpotent elements.

Solution:

Suppose B is a k-algebra such that B ∼= k[x1, x2, . . . , xn]/I(Y ) where Y is an

algebraic set in An. Clearly B is a finitely generated k-algebra. Let x be nilpotent

element of B. Then xm = 0 for some m. Therefore xm ∈ I(Y ) i.e.,

x ∈
√
I(Y ) = I(Y ) (because I(Y ) is a radical ideal).
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Conversely, suppose B is a finitely generated k-algebra with no nilpotent elements.

Then B is of the form k[x1, x2, . . . , xn]/I for some n. We claim that I is a radical

ideal. If x ∈
√
I, then xm ∈ I for some m and x is a nilpotent element of B. But

B has no nilpotent elements; therefore, x = 0 i.e., x ∈ I. Therefore I is a radical

ideal and I(Z(I)) = I. Thus B is the affine coordinate ring of Z(I).

Exercise 1.0.6. Any non empty open subset of an irreducible topological space is

dense and irreducible. If Y is a subset of a topological space X, which is irreducible

in its induced topology, then the closure Y is also irreducible.

Solution:

Let U be a non-empty open subset of the irreducible topological space X. Suppose

closure of U , U , is a proper subset of X. Then X can be written as union of two

non empty proper closed subsets U c and U which is a contradiction. Therefore

U = X i.e., U is dense.

Suppose U is reducible. Let U = A1 ∪ A2 where A1 and A2 are proper closed

subsets of U .

Then A1 = B1 ∩ U and A2 = B2 ∩ U for some proper closed subsets B1 and B2 of

X.

Then X = (B1 ∪ U c) ∪ B2. Since B1 ∪ U c and B2 are proper closed subsets of X,

this is a contradiction. Therefore U is irreducible.

Suppose Y is reducible. Let Y = A1 ∪ A2 where A1 and A2 are proper closed

subsets of Y . Since Y is the smallest closed subset containing Y , Y is not properly

contained in either A1 or A2 and A1 ∩ Y and A2 ∩ Y are proper closed subsets of

Y . But then Y = (A1 ∩ Y ) ∪ (A2 ∩ Y ) which is a contradiction. Therefore Y is

irreducible.

Exercise 1.0.7. (a) Show that the following conditions are equivalent for a topologi-

cal space X:

(i) X is noetherian; (ii) every non-empty family of closed subsets has a minimal

element;

(iii) X satisfies the ascending chain condition for open sets (iv) every non-empty

family of open subsets has a maximal element.
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(b) A noetherian topological space is quasi compact, i.e., every open cover has a finite

sub-cover.

(c) Any subset of a noetherian topological space is noetherian in its induced topology.

(d) A noetherian space which is also Hausdorff must be a finite set with the discrete

topology.

Solution:

(a) 1) =⇒ 2): Suppose there exists a non empty family Σ of closed subsets of X

which has no minimal element. Let C1 be any closed set in Σ. Since C1 is not a

minimal element of Σ, there exists a closed subset C2 such that C2 ( C1. Since

C2 is not minimal, there exists a closed subset C3 in Σ such that C3 ( C2.

Proceeding in this way, we can produce by the axiom of choice an infinite

strictly decreasing chain of closed sets of Σ. Therefore X is not noetherian.

2) =⇒ 3): Consider an ascending chain of open subsets

U1 ( U2 ( . . . ( Un ( . . . . Let Ci = U c
i . Then C1 ⊃ C2 ⊃ . . . Cn ⊃ . . .

terminates because the collection of closed subsets {Ci} has a minimal element.

Therefore the chain U1 U2 ( . . . ( Un ( . . . terminates.

3) =⇒ 4): Suppose there exists a non empty family Σ of open subsets which has

no maximal element. Let U1 be any open set of Σ. Since U1 is not maximal,

there exists an open set U2 in Σ such that U1 ( U2. Since U2 is not maximal,

there exists an open set U3 in Σ such that U2 ( U3. proceeding in this way, we

can construct by axiom of choice an infinite strictly increasing chain of open

sets in Σ.

4) =⇒ 1): Consider any descending chain C1 ⊃ C2 ⊃ . . . Cn ⊃ . . . of X. Let

Ui = Ci. Then {Ui} is a family of open subsets of X. Let Un be the maximal

element of this family. Then Um = Um+1 for all m ≥ n. Therefore Cm = Cm+1

for all m ≥ n and the descending chain of closed subsets terminates.

(b) Let {Ui}i∈I be an open cover of the noetherian topological space X. Consider

the family Σ consisting of all open sets which are finite unions of open sets in

the open cover. Then Σ has a maximal element. Suppose the maximal element
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is U1 ∪ U2 ∪ . . . Un. For any open set Ui in the open cover,

U1 ∪ U2 ∪ . . . Un ∪ Ui = U1 ∪ U2 ∪ . . . Un, i.e., Ui ⊂ U1 ∪ U2 ∪ . . . Un.

Therefore U1 ∪ U2 ∪ . . . Un forms a finite sub-cover of the open cover {Ui}i∈I .
Therefore there exists a finite sub-cover of every open cover of X and X is quasi

compact.

(c) Let Y be a subset of the noetherian topological space X. Let

A0 ( A1 ( A2 . . . be an ascending chain of open subsets of Y . Then

Ai = Bi ∩ Y for some open subset Bi of X. We have an ascending chain of

open subsets B0 ( B0 ∪B1 ( B0 ∪B1 ∪B2 ( . . .. Therefore for some n we

have B0 ∪B1 ∪ . . . ∪Bn = B0 ∪B1 ∪ . . . ∪Bn ∪Bn+1 i.e.,

Bn+1 ( B0 ∪B1 ∪ . . . Bn. Thus Bn+1 ∩ Y ( (B0 ∪B1 ∪ . . . Bn) ∩ Y =

(B0 ∩ Y ) ∪ (B1 ∩ Y ) ∪ . . . ∪ (Bn ∩ Y ) = A0 ∪ A1 ∪ . . . ∪ An = An Therefore

An+1 = An and any ascending chain of open subsets of Y terminates and Y is

noetherian.

(d) Let Y be any subset of a Hausdorff, noetherian topological space X. From part

(c) we have that Y is noetherian. Therefore Y is quasi compact. We claim that

any quasi-compact subset of a Hausdorff space is closed. To prove this let

x ∈ X \ Y be a point. Since X is Hausdorff, for any y 6= x in X we can find

two disjoint open subsets Uy and Vy of X such that y ∈ Uy and x ∈ Vy.

Therefore {Uy}y ∈Y is an open cover of Y . Since Y is quasi-compact, there

exists a finite sub-cover of {Uy}y ∈Y . Let Uy1 , Uy2 , . . . Uyn be the finite

sub-cover. A =
⋂n
i=1 Vyi is an open subset of X containing x such that

A ∩ Uyi = ∅ for i = 1, 2, . . . n. Therefore A ∩ Y = ∅. Therefore for every

x ∈ X \ Y we can find an open subset A of X such that x ∈ A and

A ( X \ Y i.e., X \ Y is open. Therefore Y is closed. Therefore any subset of

a Hausdorff, noetherian topological space X is closed and thus X has discrete

topology. So, X \ {x} is closed for any point x ∈ X and thus {x} is open.

Consider the open cover
⋃
x∈X{x} of X. This has a finite sub-cover and thus X

has a finite number of points.

Exercise 1.0.8. Let Y be an affine variety of dimension r in An. Let H be a hyper-

surface in An, and assume that Y * H. Then every irreducible component of Y ∩ H
has dimension r − 1.
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Solution:

Let H = Z(f) for some irreducible polynomial f ∈ k[x1, x2, . . . xn]. Let X be any

closed irreducible component of H ∩ Y . Since X ( H ∩ Y in Y ,

I(H ∩ Y ) ( I(X) in A(Y ). Since X is an irreducible component i.e., a maximal

irreducible subset, I(X) is a minimal prime ideal containing I(Y ∩ H). Therefore

I(X) is a minimal prime ideal of A(Y ) containing f . Since Y * H, f does not

belong to I(Y ) and therefore is not zero or nilpotent in A(Y ). From Krull’s

Haupidealsatz we have ht(I(X)) = 1 in A(Y ). We have dimA(Y ) = dimY = r.

Therefore dimA(Y )/I(X) = dimA(Y ) − ht(I(X)) = r − 1. dimA(X) =

dimk[x1, x2, . . . xn]/I(X) = dimA(Y )/I(X) because I(Y ) ( I(X). Therefore

dimX = dimA(X) = r − 1.

Exercise 1.0.9. Let a ( A = k[x1, x2, . . . xn] be an ideal which can be generated

by r elements. Then every irreducible component of Z(a) has dimension ≥ n − r.

Solution:

Let Y be an irreducible component of Z(a). Therefore I(Y ) is a minimal prime over

I(Z(a)) =
√

(f1, . . . , fr). We claim that I(Y ) is minimal prime ideal over a.

Suppose Q is a prime ideal such that a ⊂ Q ⊂ I(Y ). Since
√

a is the intersection

of all prime ideals that contain a,
√

a ⊂ Q ⊂ I(Y ). This contradicts the

minimality of I(Y ) over
√

a. Therefore I(Y ) is a minimal prime ideal containing a.

Krull’s dimension theorem states that in a noetherian ring any prime ideal which is

minimal over an ideal generated by r elements has height ≤ r. Therefore

height I(Y ) ≤ r. DimY = dimA(Y ) = dimA − height I(Y ) ≥ n − r.

Exercise 1.0.10. (a) If Y is any subset of a topological space X, then dimY ≤
dimX.

(b) If X is a topological space which is covered by a family open subsets {Ui}, then

dimX = sup dimUi.

(c) Give an example of a topological space X and a dense open subset U with dimU <

dimX.
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(d) If Y is a closed subset of an irreducible finite dimensional topological space X,

and if dimY = dimX, then Y = X.

(e) Give an example of a noetherian topological space of infinite dimension.

Solution:

(a) Let Y0 ( Y1 ( . . . ( Yt be any chain of irreducible closed subsets of Y .

Consider the chain of irreducible closed subsets of X, Y0 ( Y1 ( . . . ( Yt. We

claim that Yi are distinct. Assume the contrary. Suppose Yi = Yi+1. Since

Yi+1 ( Yi+1 = Yi, we have Y ∩ Yi+1 ( Y ∩ Yi = Yi which is a contradiction.

This proves the claim. Thus dimY ≤ dimX.

(b) Let X =
⋃
Ui. Since dimX ≥ dimUi, dimX ≥ sup dimUi. Consider any

chain of distinct irreducible closed subsets Z0 ( Z1 ( . . . ( Zt of X. For any

open set U of X, Zi ∩ U is an open subset of the irreducible subset Zi and is

therefore irreducible. Also, closure of U ∩ Zi in Zi is equal to Zi. Since Zi is

closed in X, closure of U ∩ Zi in X is also equal to Zi. Let x be any point in

Z0. Since {Ui} forms an open cover of X, x ∈ Ui for some i. Then

Z0 ∩ Ui ⊂ . . . ⊂ Zt ∩ Ui is a chain of irreducible closed subsets of Ui. Also,

each of the subsets in the chain is distinct. If Zj ∩ Ui = Zk ∩ Ui, then

Zj ∩ Ui = Zj = Zk ∩ Ui = Zk which is not true. Therefore we get a chain of

distinct irreducible subsets of Ui. Therefore dimUi ≥ dimX and hence

sup dimUi ≥ X. Therefore, dimX = sup dimUi.

(c) Let X = { a, b, c }. Define topology on X by letting X, ∅, { a, b } and { a } to

be the closed subsets. U = { c } is an open subset. The smallest closed subset

containing U i.e., closure of U is X itself. Therefore U is a dense open subset of

X. Since no non empty closed subset is contained in U , dimU = 0. But

{ a, b } ( X is a chain of irreducible subsets of X. Therefore dimX ≥ 1.

(d) Suppose dimX = dimY = n. Let Y0 ( Y1 ( . . . ( Yn be a chain of closed

irreducible subsets of Y . Since Y is closed in X, each of the Yi is closed in X.

Therefore we have a chain Y0 ( Y1 ( . . . ( Yn ( X of closed irreducible

subsets of X. If Yn ( X, we have dimX ≥ n + 1 which is a contradiction.

Therefore Yn = X. But Yn ( Y . Therefore X = Y .
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(e) Let X = { a1, a2, . . . an, . . . }. Let the closed sets of X be X, ∅ and all sets of

the form { ai }ni=1. This space is noetherian. But it has infinite dimension

because we have an infinite chain { a1 } ( { a1, a2 } ( { a1, a2, a3 } . . . of

irreducible closed subsets of X.

Exercise 1.0.11. Let Y ( A3 be the curve parametrically given by x = t3, y = t4,

z = t5. Show that I(Y ) is a prime ideal of height 2 in k[x, y, z] which cannot be

generated by two elements. We say that Y is not a local complete intersection.

Solution:

For a monomial f = xα yβ zγ ∈ k[x, y, z] we define degw(f) (weighted degree) to

be 3α + 4 β + 5 γ. For any polynomial f ∈ k[x, y, z] we define degw(f) to be the

maximum of the weighted degrees of the monomial terms of f . Therefore, the

minimum weighted degree that a non- zero polynomial can have is 3. We call a

polynomial f weighted homogeneous if all its monomial have the same weighted

degrees.

Suppose f = be a polynomial in I(Y ). We can write f as g1 + g2 + . . . gr where

gi = ai1 x
αi1 yβi1 zγi1 + ai2 x

αi2 yβi2 zγi2 + . . . + ain x
αin yβin zγin is a weighted

homogeneous polynomial of weighted degree di. Therefore 3αij + 4 βij + 5 γi = di

for j = i, . . . , n. f(t3, t4, t5) = 0 for all t. Therefore, td1(a11 + . . . + a1n) +

td2(a21 + . . . + a2n) + . . . tdr(ar1 + . . . + arn) = 0. Therefore, ai1 + . . . + ain = 0

for each i = 1, . . . , r. Therefore f belongs to the ideal generated by the set of

weighted homogeneous polynomials with sum of coefficients equal to 0.

Conversely, assume that f = a1 x
α1 yβ1 zγ1 + a2 x

α2 yβ2 zγ2 + . . . + an x
αn yβn zγn is

weighted homogeneous with sum of coefficients equal to 0. Then f(t3, t4, t5) = 0.

Therefore we have that I(Y ) is the ideal generated by the set of weighted

homogeneous polynomials with sum of coefficients equal to 0.

We claim that (1, 0, 1) and (0, 2, 0) are the only non-negative integer solutions of

3α + 4 β + 5 γ = 8. For any positive integers α and γ, 3α + 5 γ ≥ 8. Therefore

8 − 4 β ≥ 8 which implies that β = 0. Then 3α + 5 γ = 8. For γ ≥ 2,

3α + 5 γ ≥ 10. Therefore γ = 1 which implies α = 1. Therefore (1, 0, 1) is the

only non-negative solution of 3α + 4 β + 5 γ = 8 such that both α, γ 6= 0.

Suppose γ = 0 and α 6= 0. Then 3α = 8 − 4 β. Therefore 8 − 4α ≥ 3 which

implies that β ≤ 5/4 i.e., β = 1. Therefore 3α = 4 which is clearly a

contradiction. Therefore there exist no solution for which γ = 0 and α 6= 0.
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Suppose α = 0 and γ 6= 0. Therefore 5 γ = 8 − 4 β. Therefore 8 − 4α ≥ 5 which

implies that β ≤ 3/4 i.e., β = 0. Therefore 5α = 8 which is clearly a

contradiction. Therefore there exist no solutions for which α = 0 and γ 6= 0.

Therefore α = 0 and γ = 0 which implies that β = 2. Therefore (0, 2, 0) is the

only solution which allows γ = 0 and α = 0.

Thus (0, 2, 0) and (1, 0, 1) are the only solutions and therefore f1 = x z − y2 is the

only weighted homogeneous polynomial (upto multiplication by an element of k) of

weighted degree 8 in I(Y ).

We claim that (3, 0, 0) and (0, 1, 1) are the only non-negative integer solutions of

3α + 4 β + 5 γ = 9. For any positive integers β and γ, 4 β + 5 γ ≥ 9. Therefore

9 − 3α ≥ 9 which implies that α = 0. Then 4 β + 5 γ = 9. For γ ≥ 2,

4 β + 5 γ ≥ 10. Therefore γ = 1 which implies β = 1. Therefore (0, 1, 1) is the

only solution of 3α + 4 β + 5 γ = 9 such that both β, γ 6= 0.

Suppose β = 0 and γ 6= 0. Then 3α + 5 γ = 9. Therefore 5 γ = 9 − 3α ≥ 5

which implies α ≤ 4/3. Therefore α = 0 or 1. When α = 0, we get 5 γ = 9 which

is not possible. When α = 1, we get 5α = 6 which is also not possible. Therefore

there exists no solution for which β = 0 and γ 6= 0.

Suppose β 6= 0 and γ = 0. Then 3α + 4 β = 9. Therefore 4 β = 9 − 3α ≥ 4

which implies α ≤ 5/3. Therefore α = 1 or 0. When α = 0, we get 4 β = 9 which

is not possible. When α = 1, we get 4 β = 6, which is also not possible. Therefore

there exists no solution for which β 6= 0 and γ = 0.

When β = γ = 0, we get 3α = 9 or α = 9. Therefore (3, 0, 0) is the only solution

which allows both β and γ to be equal to 0.

Therefore (3, 0 0) and (0, 1, 1) are the only solutions and therefore f2 = x3 − y z is

the only weighted homogeneous polynomial (upto multiplication by an element of k)

of weighted degree 9 in I(Y ).

We claim that 3α + 4 β + 5 γ = 7 has only one non-negative integer solution

(1, 1 0). If both β and γ are non zero, then 3α + 4 β + 5 γ ≥ 9. Therefore either β

or γ has to be 0. If β = 0, then 3α + 5 γ = 7. α = 0 (or γ = 0) is not possible

because 7 is not a multiple of 5 (or 3). But for γ, α ≥ 1, 3α + 5 γ ≥ 8. Therefore

there is no solution with β = 0. If γ = 0, then 3α + 4 β = 7. α = 0 (or β = 0) is

not possible because 7 is not a multiple of 4 (or 3). For α 6= 0 and β 6= 0, there is

only one solution (1, 1, 0) which is thus the only solution.
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By similar arguments we can show that there is only one non-negative integer

solution to 3α + 4 β + 5 γ = n for n = 3, 4, 5, 6 and no non-negative integer

solution for n = 2, 3.

Since any weighted homogeneous polynomial of I(Y ) is such that the sum of

coefficients is 0, f1 = x z − y2 and f2 = x3 − y z are the two weighted

homogeneous non-zero polynomials of least weighted degree that belong to I(Y )

(upto multiplication by an element of k).

Suppose I(Y ) is generated by two elements. We then claim that the generators are

f1 and f2. Let g1 and g2 be the two generators of I(Y ). Then, for i = 1, 2 gi is a

weighted homogeneous polynomial whose sum of coefficients is zero. Since

f1 ∈ I(Y ), f1 = g1h1 + g2h2 for some polynomials h1, h2 ∈ k[x, y, z]. Therefore

degw(f1) = max{degw(g1) + degw(h1), degw(g2) + degw(h2)}. Suppose

degw(g1) + degw(h1) ≥ degw(g2) + degw(h2). Then,

degw(f1) = degw(g1) + degw(h1). Since f1 is the homogeneous polynomial of least

weighted degree that belongs to I(Y ), degw(h1) = 0, i.e., h1 = a ∈ k. Therefore

g1 = a f1 for some scalar a.

Since we are assuming g1 6= g2, degw(g2) ≥ 9. Since f2 ∈ I(Y ), f2 = af1h1 + g2h2

for some polynomials h1, h2 ∈ k[x, y, z]. Suppose degw(g2) > 9. Then h2 = 0

which implies that degw(h1) = 1 which is not possible. Therefore degw(g2) = 9.

Since x3 − y z is the only weighted homogeneous polynomial in I(Y ) of weighted

degree 9 (upto multiplication by an element of k), we have g2 = bf2 for some b ∈ k.

Consider the weighted degree 10 polynomial f = x2 y − z2 in I(Y ). Then it cannot

be written as an element of the ideal generated by f1 and f2. Because if

f = f1h1 + f2h2 for some polynomials h1, h2 ∈ k[x, y, z] , then either

degw(h1) = 2 or degw(h2) = 2 both of which are not possible. Therefore I(Y )

cannot be generated 2 elements.

To prove that I(Y ) is a prime ideal:

Suppose f = a1 x
α1 yβ1 zγ1 + a2 x

α2 yβ2 zγ2 + . . . + an x
αn yβn zγn and

g = b1 x
λ1 yµ1 zν1 + b2 x

λ2 yµ2 zν2 + . . . + bm x
λm yµm zνm be two polynomials such

that fg ∈ I(Y ). Then the sum of coefficients of fg,

(a1 + a2 + . . . + an) (b1 + b2 + . . . + bm) is equal to zero. Therefore either

(a1 + a2 + . . . + an) = 0 or (b1 + b2 + . . . + bm) = 0. Also replacing x with X3,
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y with Y 4 and z with Z5, we have fg is a homogeneous polynomial (in the usual

sense) in X, Y and Z. Therefore either f or g is a homogeneous polynomial (in the

usual sense) in X, Y and Z. Therefore either f or g is weighted homogeneous in x,

y and z and thus I(Y ) is a prime ideal.

Exercise 1.0.12. Give an example of an irreducible polynomial f ∈ R[x, y] whose

zero set Z(f) in A2
R is not irreducible.

Solution:

Let f = x2(x2 − 1) + y2 = x4 − 2x3 + x2 + y2. We claim that f is irreducible in

R[x, y]. Consider f as a polynomial in y with coefficients in R[x]. If f were

reducible then it has two factors ay + b and cy + d, each of degree 1 in y. Here

a, b, c, d ∈ R[x]. Then ac = 1 which implies that a, c ∈ R. Also, ad + bc = 0.

Putting c = 1/a in this we get b = −a2d. Therefore

bd = x4 − 2x2 + x2 = (x2 − x)2 = −(ad)2. Since a ∈ R, this implies that

a2 = −1 which is not possible in R. Therefore f is irreducible. But

Z(f) = { (0, 0), (1, 0)} which is not an irreducible subset of A2
R because it can be

written as a union of two closed proper subsets Z(x2 + y2) = {(0, 0)} and

Z((x− 1)2 + y2) = {(1, 0)}.
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Chapter 2

Projective Varieties

Exercise 2.0.13 (Homogeneous Nullstellenstaz). Prove the homogeneous nullstellen-

staz which states that if a ⊂ S is a homogeneous ideal, and if f is a homogeneous

polynomial with deg f > 0, such that f(P ) = 0 for all P ∈ Z(a) in Pn, then f q ∈ a

for some q > 0.

Solution:

Let a be a proper ideal of S. Let Ẑ(a) denote the set

{P ∈ An+1 | f(P ) = 0 ∀ f ∈ a}. For any point P = (a0 : . . . : an) ∈ Pn, let P̂

denote the subset {(ta0, ta1, . . . tan) ∈ An+1 | t ∈ k}. Since a is a homogeneous

ideal of S, if (a0, a1, . . . , an) ∈ Ẑ(a) then P̂ ⊂ Ẑ(a). Therefore if P ∈ Z(a), then

P̂ ⊂ Ẑ(a). Moreover, Ẑ(a) is exactly equal to these points and 0.

If a non constant homogeneous polynomial f vanishes at all points of Z(a), then it

vanishes at all points of Ẑ(a). From the usual nullstellensatz, we have f q ∈ a for

some q.

Exercise 2.0.14. For any homogeneous ideal a ⊂ S show that the following condi-

tions are equivalent:

(i) Z(a) = ∅;
(ii)
√

a is either S or the ideal S+ =
⊕

d> 0 Sd;

(iii) a ⊃ Sd for some d > 0.

17
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Solution:

i) =⇒ ii):

Case i :

If a is a proper ideal of S, then from the solution to problem 1, we know that if

Z(a) = ∅ then Ẑ(a) = { 0 }. Let I(Ẑ(a)) be the ideal of Ẑ(a) when considered as

a subset of An+1. Then we have
√

a = I(Ẑ(a)) = I(0) = S+ i.e., all polynomials

with constant term equal to 0.

Case ii:

If a = S, then Ẑ(a) = ∅ and therefore
√

a = I(Za(a)) = I(∅) = S.

ii) =⇒ iii): Consider the ideal I generated by the elements x0, x1, . . . , xn. Then

I ⊂
√

a. Since I is finitely generated Id ⊂ a for some d > 0. But any element of

Sd belongs to Id. Therefore Sd ⊂ a for some d > 0.

iii) =⇒ i): Suppose P = (a0 : a1; . . . : an) ∈ Z(a). Then f(P ) = 0 for any

homogeneous polynomial f ∈ a. But since Sd ⊂ a, xdi ∈ a for i = 0 to n.

Therefore adi = 0 for i = 0 to n. Since S is an integral domain, ai = 0 for i = 0 to

n. This is not possible. Therefore Z(a) = ∅.

Exercise 2.0.15. (a) If T1 ⊂ T2 are subsets of Sh, then Z(T1) ⊃ Z(T2).

(b) If Y1 ⊂ Y2 are subsets of Pn, then I(Y1) ⊃ I(Y2).

(c) For any two subsets Y1, Y2 of Pn, I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

(d) If a ⊂ S is a homogeneous ideal with Z(a) 6= ∅, then I(Z(a)) =
√

a.

(e) For any subset Y ⊂ Pn, Z(I(Y )) = Y .

Solution:

(a) Let P ∈ Z(T2). Then f(P ) = 0 for all f ∈ T2 and hence for all f in T1.

Therefore P ∈ Z(T1).
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(b) Let A = {f ∈ S | f is homogeneous and f(P ) = 0 for all P ∈ Y2} and

B = {f ∈ S | f is homogeneous and f(P ) = 0 for all P ∈ Y1}. We have

A ⊂ B and therefore (A) ⊂ (B). But (A) = I(Y2) and (B) = I(Y1).

Therefore I(Y1) ⊃ I(Y2).

(c) Let A and B be as above. Then I(Y1 ∪ Y2) is the ideal generated by the

homogeneous polynomials f that vanish at points of Y1 ∪ Y2. Clearly, if any

homogeneous polynomial f vanishes on Y1 and on Y2, then f vanishes at

Y1 ∪ Y2. Therefore I(Y1) ∩ I(Y2) ⊂ I(Y1 ∪ Y2). Conversely, consider any

polynomial f in the generating set of I(Y1 ∪ Y2). Then f is a homogeneous

polynomial that vanishes on all points of Y1 ∪ Y2 and therefore f vanishes on all

points of Y1 and on all points of Y2. Therefore f ∈ A and f ∈ B. Therefore

f ∈ I(Y1) ∩ I(Y2).

(d) From problem 1 we have that I(Z(a)) ⊂
√

a. Since a is a homogeneous ideal,
√

a is homogeneous. Let f be any one of the generating elements of
√

a. Then

f q ∈ a for some q > 0. Also, f q is a homogeneous element. Since for any

homogeneous polynomial g ∈ a, g(P ) = 0 for all points P ∈ Z(a), we have

f q(P ) = 0 for all points P ∈ Z(a). Therefore f(P ) = 0 for all points

P ∈ Z(a). Therefore f ∈ I(Z(a)) and I(Z(a)) =
√

a.

(e) Suppose P /∈ Z(I(Y )). Then there is a homogeneous polynomial f ∈ I(Y )

such that f(P ) 6= 0. But f(Q) = 0 for any point Q ∈ Y . Therefore P /∈ Y .

Therefore Y ⊂ Z(I(Y )). Since Y is the smallest closed subset containing Y ,

Y ⊂ Z(I(Y )). To prove the converse, assume that P /∈ Y . Therefore there is a

homogeneous polynomial f ∈ I(Y ) such that f(P ) 6= 0. Since Y ⊂ Y ,

I(Y ) ⊂ I(Y ). Therefore f ∈ I(Y ). Since f(P ) 6= 0, P /∈ Z(I(Y )). Therefore

Z(I(Y )) ⊂ Y . Hence Z(I(Y )) = Y .

Exercise 2.0.16. (a) There is a one-one inclusion reversing correspondence between

algebraic sets in Pn, and the homogeneous ideals of S not equal to S+, given by

Y 7−→ I(Y ) and a 7−→ Z(a). Note: Since S+ does not occur in this correspon-

dence it is sometimes called the irrelevant maximal ideal of S.
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(b) An algebraic set Y ⊂ Pn is irreducible if and only if I(Y ) is a prime ideal.

(c) Show that Pn itself irreducible.

Solution:

(a) For any subset Y ⊂ Pn, I(Y ) is clearly a homogeneous ideal. Also, when Y is a

closed subset i.e., Y = Z(a), we have from part (d) of Exercise 2.3√
I(Y ) = I(Z(I(Y ))). From part (e) of the same Exercise,

Z(I(Y )) = Y = Y . Therefore
√
I(Y ) = I(Y ). Therefore the map I is from

the set of algebraic sets to the set of homogeneous radical ideals. Also, if

I(Y1) = I(Y2), then Z(I(Y1)) = Z(I(Y2)) i.e., Y1 = Y2. Therefore the map is

1-1. If I1 and I2 are radical ideals none equal to S+ or S such that

Z(I1) = Z(I2), then I(Z(I1)) = I(Z(I2)) .i.e., I1 = I2. Also, when a = S

Z(a) = ∅. When Z(a) 6= ∅ from exercise 2.3 we get that I(Z(a)) = a. When

Z(a) = ∅, we have
√

a = S or S+. But since we are not considering S+ in the

image of the map I,
√

a = S. Therefore these two maps are inverses of each

other. Also, from part (a) and (b) of Exercise 2.3, these maps are inclusion

reversing.

(b) Suppose I(Y ) is not a prime ideal. Then there exist homogeneous elements f

and g such that fg ∈ I(Y ) but f /∈ I(Y ) and g /∈ I(Y ). Let Y1 = Z(f) ∩ Y

and Y2 = Z(g) ∩ Y . Then Y1 and Y2 are proper closed subsets of Y Then

Y1 ∪ Y2 ⊂ Y . Since fg ∈ I(Y ), Z(I(Y )) = Y ⊂ Z(fg) = Z(f) ∪ Z(g).

Therefore Y = Y1 ∪ Y2 and Y is reducible.

Conversely, assume that Y is reducible. Let Y = Y1 ∪ Y2 where Y1 and Y2 are

proper closed subsets of Y . Since I(Y ) ⊂ I(Y1) and I(Y ) ⊂ I(Y2), there exist

polynomials f1 ∈ I(Y1) \ I(Y ) and f2 ∈ I(Y2) \ I(Y ). But

f1f2 ∈ I(Y1) ∩ I(Y2) = I(Y1 ∪ Y2) = I(Y ). Therefore I(Y ) is not a prime

ideal.

(c) I(Pn) = { 0 }. Since the zero ideal is a prime ideal (because S is an integral

domain), Pn is irreducible.
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Exercise 2.0.17. (a) Pn is a noetherian topological space.

(b) Every algebraic set in Pn can be written uniquely as a finite union of irreducible

algebraic sets, no one containing the another. These are called the irreducible

components.

Solution:

(a) Let Y1 ⊃ Y2 ⊃ . . . ⊃ Yn ⊃ . . . be a decreasing chain of closed subsets of Pn.

Then I(Y1) ⊂ I(Y2) ⊂ . . . ⊂ I(Yn) ⊂ . . . is a chain of homogeneous radical

ideals in S. Since S is homogeneous, there exists an N such that I(YN) = I(Yi)

for all i > N . Therefore Z(I(Yi)) = Z(I(YN)) for all i > N . Therefore every

descending chain of closed subsets in Pn terminates and thus Pn is a noetherian

topological space.

(b) The statement is true because of the result which states that every closed subset

of a noetherian topological space can be written as a finite union of irreducible

closed subsets, no one containing another.

Exercise 2.0.18. If Y is a projective variety with homogeneous coordinate ring S(Y ),

show that dimS(Y ) = dimY + 1.

Solution:

Let Ui be the open set of Pn defined by ai 6= 0. Let ϕi : U0 −→ An be the

homeomorphism defined by sending the point (a0, a1, . . . , an) to the point with the

affine coordinate
(
a0

ai
, . . . , xn

ai

)
with ai

ai
omitted. We may assume, for notational

convenience, that i = 0. Let Y0 = ϕ(Y ∩ U0) and let A(Y0) be the affine coordinate

ring of Y0. Assume that Y0 6= ∅. We note that localization is exact i.e., for any ring

S and any ideal I of S, D−1(S/I) = D−1S/D−1I where D is a any multiplicatively

closed subset of S. Define a map θ : k[y1, y2, . . . , yn] −→ S(Y )x0 by sending the

polynomial f(y1, . . . , yn) to the element f
(
x1

x0
, . . . , xn

x0

)
mod I(Y )x0 .

We claim that ker θ = I(Y0). To prove the claim first suppose that f ∈ kerθ.

Therefore f
(
x1

x0
, . . . , xn

x0

)
∈ I(Y )x0 . Suppose deg f = e. Then

xe0f
(
x1

x0
, . . . , xn

x0

)
∈ I(Y ). Therefore for any point a = (a0 : a1 : . . . : an) ∈ Y ,
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ae0f
(
a1

a0
, . . . , an

a0

)
= 0. If a ∈ Y ∩ U0, then a0 6= 0 and therefore

f
(
a1

a0
, . . . , an

a0

)
= 0. Therefore f ∈ I(Y0).

Conversely if f ∈ I(Y0), then for any point a =
(
a1

a0
, . . . , an

a0

)
∈ Y0,

f
(
a1

a0
, . . . , an

a0

)
= 0. Suppose deg f = e. Then ae0 f

(
a1

a0
, . . . , an

a0

)
= 0. Therefore

xe0f
(
x1

x0
, . . . , xn

x0

)
∈ I(Y ) and thus f

(
x1

x0
, . . . , xn

x0

)
∈ I(Y )x0 . This proves the

claim that ker θ = I(Y0).

Therefore A(Y0) is isomorphic to a subring of S(Y )x0 . We identify A(Y0) with the

subring of S(Y )x0 that is the isomorphic image of A(Y0). Any element of A(Y0) is a

homogeneous element of degree 0. Also, if some element

f(x0, . . . , xn)/xe0 ∈ S(Y )x0 is homogeneous of degree 0, then deg f = e. Therefore,

f(x0, . . . , xn)/xe0 = f
(

1, x1

x0
, . . . , xn

x0

)
= θ(f(1, y1, . . . , yn). Therefore, image of ϕ

is equal to the set of all homogeneous elements of degree 0 in S(Y )x0 and thus A(Y0)

is isomorphic to the subring of homogeneous elements of degree 0 of the localized

ring S(Y )x0 . We identify A(Y0) with this subring of S(Y )x0 .

We claim that S(Y )x0
∼= A(Y0)[x0, x

−1
0 ]. To prove this, consider an element

f(x0, . . . , xn)/xe0 ∈ S(Y )x0 . Suppose degree of f = d. Then f can be written as

g0 + g1 + . . . + gd where gi is homogeneous of degree i. Then,

f(x0, . . . , xn)/xe0 = g0
xe0

+ . . . + gd
x0

. We have gi
xe0

= gi
xi0
xi−e0 . Since gi

xi0
is a

homogeneous element of degree 0, it is an element of A(Y0). Therefore, gi
xe0

is an

element of A(Y0)[x0, x
−1
0 ] and hence f(x0, . . . , xn)/xe0 is an element of

A(Y0)[x0, x
−1
0 ]. Therefore S(Y )x0

∼= A(Y0)[x0, x
−1
0 ] and thus

dimS(Y )x0 = dimA(Y0)[x0, x
−1
0 ].

This result is independent of the assumption that i = 0 and can be deduced for any

i for which Yi 6= ∅. Therefore S(Y )xi
∼= A(Yi)[xi, x

−1
i ] and

dimS(Y )xi = dimA(Yi)[xi, x
−1
i ] for any i for which Yi 6= ∅.

Let A(Yi)[xi, x
−1
i ] be denoted by Bi. When Yi 6= ∅, we know that Bi is an integral

domain which is finitely generated as a k−algebra. Therefore dimBi is equal to the

transcendence degree of the quotient field K(Bi) of Bi over k. But

K(Bi) = K (A(Yi))(xi). Therefore the transcendence degree over k of K(Bi) is

equal to the transcendence degree of K(A(Yi)) + 1. Since transcendence degree of

K(A(Yi)) = dimA(Yi) = dimYi, we have dimS(Yi)xi = dimYi + 1.
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We have dimS(Yi)xi is equal to the transcendence degree of the quotient field

K(S(Yi)xi). But K(S(Yi)xi) = K(S(Y )). Therefore dimS(Yi)xi = dimS(Y ) and

thus dimYi = dimS(Y ) − 1 whenever Yi 6= ∅.

Since ϕ is a homeomorphism, dimYi = dim (Y ∩ Ui). But {Y ∩ Ui} forms an open

cover of Y . Therefore, from exercise 1.10, dimY = sup dim (Y ∩ Ui) = sup dim Yi.

But whenever Yi 6= ∅, dimYi = dimS(Y ) − 1 and is equal to −1 whenever

Yi = ∅. Therefore dimY = dimS(Y ) − 1.

Exercise 2.0.19. (a) dimPn = n.

(b) If Y ⊂ Pn is a quasi projective variety, then dimY = dimY .

Solution:

(a) From the exercise 2.6, we know that dimPn = dimk[x0, . . . xn] − 1. From

Theorem 1.8A. we know that dimk[x0, . . . , xn] is equal to the transcendence

degree of the quotient field of k[x0, . . . , xn] over k which is equal to n + 1.

Therefore dimPn = n + 1 − 1 = n.

(b) If Y ⊂ Pn is a quasi-projective variety, then Y ∩ Ui is a quasi-affine variety

when Ui is identified with An using the homeomorphism of Theorem 2.2. Also,

since Ui is an open cover of Pn, there exist at least one i for which Y ∩ Ui 6= ∅.

We know that closure of Y ∩ Ui in Ui ∼= An is equal to Y ∩ Ui. Let Y0 denote

the closure of Y ∩ Ui in Ui. Then the closure Y0 of Y0 in An is equal to Y . Since

Y0 is closed in Ui which is open in An, we get Y0 = Y ∩ Ui.

The family of curves {Y ∩ Ui} is an open cover of Y . Therefore from Exercise

1.10, dimY = sup dimY ∩ Ui

From proposition 1.10, we have dim (Y ∩ Ui) = dim (Y ∩ Ui). From the

solution to Exercise 2.6, dim (Y ∩ Ui) = dimY whenever Y ∩ Ui 6= ∅. When

Y ∩ Ui = ∅, dimY ∩ Ui = −1. Therefore dimY = sup{dimY , −1} = dimY .

Exercise 2.0.20. A projective variety Y ⊂ Pn has dimension n − 1 if and only if

it is the zero set of a single irreducible homogeneous polynomial f of positive degree.

Y is called a hypersurface in Pn.
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Solution:

Suppose dimY = n − 1. We have dimS(Y ) + height I(Y ) = dimS. Since

dimS(Y ) = dimY + 1, we have height of I(Y ) = 1. Since S is a noetherian

integral domain which is a unique factorization domain, from theorem 1.12A, I(Y )

is a principal ideal. Therefore I(Y ) = (f) for some irreducible polynomial f ∈ S.

Therefore Y = I(Z(f)) =
√

(f) = (f). Therefore Y is the zero set of a single

irreducible homogeneous polynomial.

Conversely, let Y = Z(f) where f is an irreducible homogeneous polynomial of

positive degree. Therefore I(Y ) = I(Z(f)) =
√

(f) = (f). Since S is a unique

factorization domain, I(Y ) is a prime ideal and height of I(Y ) = 1. Therefore

dimS(Y ) = n and thus dimY = n − 1.

Exercise 2.0.21 (Projective closure of an affine variety). If Y ⊂ An is an affine

variety, we identify An with an open set U0 ⊂ Pn by the homeomorphism ϕ0. Then

we can speak of Y , the closure of Y in Pn, which is called the projective closure of Y .

(a) Show that I(Y ) is the ideal generated by β(I(Y )), where β is as in the proof of

proposition 2.2 .

(b) Let Y ⊂ A3 be the twisted cubic curve (as in problem 1.2). Its projective closure

Y is called the twisted cubic curve in P3. Find the generators of I(Y ) and

I(Y ) and use this example to show that if f1, . . . , fr generate I(Y ), then

β(f1), . . . , β(fr) does not necessarily generate I(Y ).

Solution:

(a) We recall that α is the map from the set Sh of homogeneous elements of

S = k[x0, . . . , xn] to k[y1, . . . , yn] defined by sending the homogeneous element

f to the element f(1, y1, . . . , yn). We also recall that β is the map from

k[y1, . . . , yn] to the set Sh which sends a polynomial g of degree e to the

element xe0g(x1/x0, . . . , xn/x0).

Let A = β(I(Y )) and let J = (A). Any element of A, will be of the form

xe0g
(
x1

x0
, . . . , xn

x0

)
where g is an element of degree e in I(Y ). If we identify Y

with Y0 = ϕ(Y ∩ U0), then Y ⊂ Z(J). Therefore Y ⊂ Z(J). Therefore
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I(Z(J)) ⊂ I(Y ), i.e.,
√
J ⊂ I(Y ). Therefore J ⊂ I(Y ). Conversely, let

f ∈ I(Y ). If we identify any point (a1, . . . , an) of Y with the point

(1, a1, . . . , an) of Y0 ⊂ Y , then f(1, a1, . . . , an) = 0. Since

α(f) = f(1, y1, . . . , yn), we have α(f)(a1, . . . , an) = 0 for any point

(a1, . . . , an) ∈ Y . Therefore α(f) ∈ I(Y ) and hence

f = β(α(f)) ∈ β(I(Y )) = A. Therefore f ∈ J .

(b) Let X = {(p3 : p2t : pt2 : t3) | p, t, ∈ k, not both 0} ⊂ P3 be a subset.

Consider the subset X0 = {(p3 : p2t : pt2 : t3) | p, t, ∈ k ; p 6= 0} of X. When

p 6= 0, then (p3 : p2t : pt2 : t3) =
(

1 : t
p

: t2

p2
: t3

p3

)
. Therefore X0 is equal to

the subset ϕ−1
0 (Y ) of U0 where ϕ0 is the homeomorphism of proposition 2.2.

Henceforth we identify X0 with its homeomorphic image in U0 and call it Y .

Also X1 = X \ Y is the set consisting of the single point

(0, 0, 0, t3) = (0, 0, 0, 1) ∈ P3.

Let I ⊂ k[u, x, y, z] be the ideal (xy − uz, uy − x2, xz − y2). We claim that

Z(I) = X. Clearly, any point of X belongs to Z(I). To prove the converse, let

P = (a0 : a1 : a2 : a3) be a point in Z(I). If a0 = 0, then a0a2 = a2
1 = 0

which implies that a1 = 0. Then a2
2 = 0 which implies that a2 = 0. Therefore

P is a point of the form (0 : 0 : 0 : t) ∈ P3 which is the point corresponding to

X1. Now suppose that a0 6= 0. We can put a0 = 1. Let a1 = h for some

h ∈ k. Then a0a2 = a2
1 implies that a2 = h2. Then a1a2 = a3 implies that

a3 = h3. Therefore P = (1 : h : h2 : h3) for some h ∈ k. Let h = t
p

for some

t, p ∈ k and p 6= 0. Then P = (p3 : p2t : pt2 : t3). Thus P is a point of A.

This proves the claim that Z(I) = X.

We now claim that Y = X = A ∪ X1. Since we have that

X = Y ∪ {(0 : 0 : 0 : 1)}, it is enough to show that

P = (0 : 0 : 0 : 1) ∈ Y = Z(I(Y )). Consider any polynomial f in I(Y ). Any

point of Y ∩ U3 is of the form

(
p3

t3
:
p2

t2
:
p

t
: 1

)
for some t, p ∈ k×. Therefore

f

(
p3

t3
,
p2

t2
,
p

t
: 1

)
= 0. Let f(x0, x1, x2, 1) = g(y0, y1, y2) ∈ k[y0, y1, y2].

Then g

(
p3

t3
,
p2

t2
,
p

t

)
= 0 for all p, t ∈ k×. Therefore g(s3, s2, s) = 0 for all

s ∈ k× which implies that g(x3, x2, x) ∈ k[x] is the zero polynomial. Therefore

g(0, 0, 0) = f(0, 0, 0, 1) = 0 which proves that (0; 0 : 0 : 1) ∈ Y .
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We have β(f1) = uy − x2 and β(f2) = zu2 − x3. Consider the generator

G = xz − y2 of I. Suppose G = h1(uy − x2) + h2(zu
2 − x3). Now, any

monomial of h1(uy − x2) + h2(zu
2 − x3) will be a multiple of either uy or x2

or zu2 or x3. But neither xz nor y2 is a multiple of any of these terms.

Therefore G /∈ (β(f1), β(f2). But G ∈ I ⊂
√
I = I(Y ). Therefore

β(f1), β(f2) do not generate I(Y ).

Exercise 2.0.22 (The cone over a projective variety). Let Y ⊂ Pn be a non empty

algebraic set, and let θ : An+1 \ { (0, . . . , 0) } −→ Pn be the map which sends the

point with affine coordinates (a0, . . . , an) to the point with homogeneous coordinates

(a0, . . . , an). We define the affine cone over Y to be

C(Y ) = θ−1(Y ) ∪ { (0, . . . 0) }.

(a) Show that C(Y ) is an algebraic set in An+1, whose ideal is equal to I(Y ), consid-

ered as an ordinary ideal in k[x0, . . . , xn].

(b) C(Y ) is irreducible if and only if Y is.

(c) dimC(Y ) = dimY + 1.

Sometimes we consider the projective closure C(Y ) of C(Y ) in Pn+1. This is

called the projective cone over Y .

Solution:

(a) For any point P = (a0 : . . . : an) ∈ Y ⊂ Pn, we get

θ−1(P ) = {(ta0, . . . , tan) | t ∈ k}. Suppose Y = Z(f1, . . . , fr) for some

homogeneous polynomials fi ∈ k[x0, . . . , xn]. We claim that

C(Y ) = Ẑ(f1, . . . , fr) ⊂ An+1. Suppose P = (a0, . . . an) ∈ C(Y ). Then

either P = (0, . . . , 0) or P ∈ θ−1(Y ). Since fi are homogeneous polynomials,

(0, . . . , 0) ∈ Z(f1, . . . , fr). If P ∈ θ−1(Y ), then P = (tb0, . . . , tbn) for some

point (b0 : . . . : bn) ∈ Y . Since fi is homogeneous fi(b0, . . . bn) = 0 implies
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that fi(tb0, . . . , tbn) = 0. Therefore P ∈ Z(f1, . . . , fr). Conversely, suppose

P = (a0, . . . an) ∈ Z(f1, . . . , fr). Then either P = (0, . . . , 0) or

P 6= (0, . . . , 0). In the latter case, P ∈ θ−1(a0, . . . , an) for

(a0 : . . . : an) ∈ Pn. But since P ∈ Z(f1, . . . , fr) = Y ⊂ Pn, P ∈ θ−1(Y ).

Therefore C(Y ) is an affine algebraic subset of An+1.

To prove that I(C(Y )) = I(Y ), let f be one of the elements in the generating

set of I(Y ). Since f is a homogeneous element f(0, . . . , 0) = 0. Also, any point

in θ−1(Y ) is of the form (ta0, . . . , tan) for some point (a0 : . . . : an) ∈ Y . Since

f is homogeneous, f(a0, . . . , an) = 0 implies f(ta0, . . . , tan) = 0 for all

t ∈ k×. Therefore f ∈ I(C(Y )). Conversely, assume f ∈ I(C(Y )). Therefore,

f(ta0, . . . , tan) = 0 for any point P = (a0 : . . . : an) ∈ Y and any t ∈ k.

Suppose deg f = d. Then f = f0 + f1 + . . . + fd where fi is a homogeneous

polynomial of degree i. Therefore, f0(P ) + tf1(P ) + . . . + tdfd(P ) = 0 for all

t ∈ k. This implies that the polynomial

F = f0(P ) + xf1(P ) + . . . + xdfd(P ) ∈ k[x] has all elements of k as its roots.

Since k is an algebraically closed field, this is possible only if F is the zero

polynomial. Therefore fi(P ) = 0 for i = 0, . . . , d. Therefore for each

i = 0, . . . , d, fi is a homogeneous polynomial such that fi(P ) = 0 for any

point P ∈ Y . Therefore f ∈ I(Y ).

(b) From Corollary 1.4, C(Y ) is irreducible if and only if I(C(Y )) is a prime ideal.

From Exercise 2.4, Y ⊂ Pn is irreducible if and only if I(Y ) is a prime ideal.

Therefore Y is irreducible if and only if C(Y ) is irreducible.

(c) From proposition 1.7, dimC(Y ) = dimk[x0, . . . , xn]/I(C(Y )) = S(Y ). From

Exercise 2.6, dimS(Y ) = dimY + 1. Therefore dimC(Y ) = dimY + 1.

Exercise 2.0.23 (Linear Varieties in Pn). A hypersurface defined by a linear polyno-

mial is called a hyperplane.

(a) Show that the following two conditions are equivalent for a variety Y in Pn:

(i) I(Y ) can be generated by linear polynomials.

(ii) Y can be written as an intersection of hyperplanes.

In this case we say that Y is a linear variety in Pn.
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(b) If Y is a linear variety of dimension r in Pn, show that I(Y ) is minimally gen-

erated by n − r linear polynomials.

(c) Let Y and Z be linear varieties in Pn, with dimY = r and dimZ = s. If

r + s − n ≥ 0, then Y ∩ Z 6= ∅. Furthermore, if Y ∩ Z 6= ∅, then Y ∩ Z
is a linear variety of dimension ≥ r + s − n.

Solution:

(a) i) ⇒ ii): Suppose I(Y ) = ( f1), f2, . . . , fn) where fi are linear polynomials.

Then Y = Z(I(Y )) = Y = Z(f1) ∩ . . . Z(fn).

ii) ⇒ ii): Suppose Y Z(l1, . . . , lr) for some linear homogeneous polynomials li.

We know that by a change of coordinates we can assume li = xi. Therefore

Y = Z(x1, . . . , xr). Let I = (x1, . . . , xr). We know that

k[x1, . . . , xn]/I = k[xr+1, . . . , xn] which is an integral domain. Therefore I is a

prime ideal and thus a radical ideal. Therefore I(Y ) =
√
I = I which gives

that I(Y ) is generated by linear polynomials.

(b) Let Y = Z(f1, . . . , ft) be a linear variety. Then any point of Y is the

non-trivial solution of the system of t linear equations {fi}ti=1. Therefore Y is

the solution set of t linear equations and thus is a subspace of An. Let dimV (Y )

denote the dimension of Y as a subspace of An. Assume that dimV (Y ) = r.

We claim that Y can be written as Z(l1, . . . , ln−r) for some linear homogeneous

equations li. Let A be the coefficient matrix of the system of equations {fi}ti=1.

Then A is an t × n matrix. Let T : V n −→ V t be the linear transformation

corresponding to A where V n, V t are vector spaces over k of dimension n and t

respectively. Then Y is the null space of T . Now nullity of T = dimV (Y ) = r.

Therefore rank of T , which is equal to the dimension of the range of T , is equal

to n − r. Therefore T can be considered as a surjective linear transformation

from V n to V n− r. Let T
′

be the map T with the co-domain restricted to V n− r.

Then Y is the null space of T
′

and thus Y is the solution space of n − r

equations. Therefore Y can be written as Z(l1, . . . , ln− r).

Let dim (Y ) denote the dimension of Y as a topological space. We claim that

dimV (Y ) = dim (Y ), which will solve the exercise. Suppose dimV (Y ) = r.
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Then Y can be written as an intersection of n − r hyper-planes. Suppose

Y = Z(l0, . . . , ln− r− 1) for some linear homogeneous polynomials li. Then from

part (a) we know that I(Y ) = (l0, . . . , ln− r− 1). By a linear change of

coordinates we may assume that I(Y ) = (x0, . . . , xn− r− 1). We have that

S(Y ) = k[x0, . . . , xn]/I(Y ) which can be shown to be isomorphic to

k[xn− r, . . . , xn]. From theorem 1.8A, we know that dimS(Y ) = transcendence

degree of k(xn− r, . . . , xn) over k, which is equal to r + 1. Therefore

dim (Y ) = dimS(Y ) − 1 = r = dimV (Y ).

We know that dimY = r implies that dimS(Y ) = r + 1. Since

ht I(Y ) + dimS(Y ) = n + 1, we have height I(Y ) = n − r. Suppose

I(Y ) = (l1, l2, . . . , lm). Since Y is a variety I(Y ) is a prime ideal and therefore

is the minimal prime over (l1, l2, . . . , lm). Krull’s dimension theorem states that

in a noetherian ring the height of a prime ideal P which is minimal over an ideal

I = (a1, a2, . . . , am) is ≤ m. Therefore we have ht I(Y ) ≤ m. Therefore,

m ≥ n − r.

(c) Suppose Y = Z(f1) ∩ . . . Z(f2) ∩ . . . ∩ Z(fl) and

Z = Z(g1) ∩ Z(g2) ∩ . . . ∩ Z(gm) where fi and gj are linear equations in the

variables x0, x1, . . . , xn. From part (b) we know that l ≥ n − r and

m ≥ n − s. Any point in Y ∩ Z is a non trivial solution of the system of

l + m linear equations {fi}li=1 ∪ {gj}mj=1. Suppose Y ∩ Z = ∅ (i.e., the system

of equations has only trivial solution). Then n + 1 ≥ l + m. But

l +m ≥ (n − r) + (n − s). Therefore r + s − n < 0. Therefore Y ∩ Z 6= ∅
if r + s − n ≥ 0.

Exercise 2.0.24 (The d-Uple Embedding). For given n, d > 0, let M0, . . . ,MN be

all monomials of degree d in the variables x0, . . . , xn where N = (n+d
n

) − 1. We

define the mapping ρd : Pn −→ PN by sending the point P = (a0, a1, . . . an) to

the point ρd(P ) = (M0(a), M1(a), . . . , MN(a)) obtained by substituting the ai in the

monomials Mj. This is called the d-uple embedding of Pn in PN . For example if

n = 1 d = 2, then N = 2, and the image Y of the 2-uple embedding of P1 in P2 is

a conic.

(a) Let θ : k[y0, . . . , yN ] −→ k[x0, . . . , xn] be the homomorphism defined by sending
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yi to Mi, and let a be the kernel of θ. Then a is a homogeneous prime ideal,

and so Z(a) is a projective variety in PN .

(b) Show that the image of ρd is exactly Z(a).

(c) Show that ρd is a homeomorphism of Pn onto the projective variety Z(a).

(d) Show that the twisted cubic curve in P3 is equal to the 3-uple embedding of P1 in

P3, for suitable choice of coordinates.

Solution:

(a) We know that k[y0, . . . , yN ]/a is isomorphic to a subring of k[x0, . . . , xn]. Since

k[x0, . . . , xn] is an integral domain and since subring of an integral domain is an

integral domain, k[y0, . . . , yN ]/a is an integral domain and thus a is a prime

ideal.

Let f be an element of ker θ. Suppose f = f0 + f1 + . . . + fr where fi is a

homogeneous polynomial of degree i. We have

θ(f) = f(M0, . . . , Mn) = θ(f0) + . . . + θ(fr) = 0. But θ(fi) is a

homogeneous polynomial of degree di. Therefore each θ(fi) = 0 and thus each

fi ∈ ker θ. Therefore for any f ∈ ker θ, each of the homogeneous component

of f belongs to ker θ. Therefore ker θ is an homogeneous ideal.

(b) We first exhibit a set of generators for a. We know that each Mi is of the form

xαi00 xαi11 . . . xαinn where αik are non negative integers such that
∑n

k=0 αik = d.

Let I be the ideal generated by the set of all polynomials of the form∏
i∈ I y

di
i −

∏
j ∈ J y

dj
j for which

∑
i∈ I diαik =

∑
j ∈ J djαjk , for some subsets

I, J of {0, . . . , N}, for each k = 0, 1, . . . , n. We claim that a = I. For any

element f =
∏

i∈ I y
di
i −

∏
j ∈ J y

dj
j of the generating set of the polynomials

θ(f) =
∏

i∈ IM
di
i −

∏
j ∈ JM

dj
j . For a fixed k, the exponent of xk in

∏
i∈ IM

di
i

is equal to
∑

i∈ I diαik and the exponent of xk in
∏

j ∈ JM
dj
j is equal to∑

j ∈ J djαjk. Since for each k,
∑

i∈ I diαik =
∑

j ∈ J djαjk, we get that θ(f) = 0.

Therefore I ⊂ ker θ.
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To prove the converse, let f ∈ a. We can group together the monomials

am
∏N

i=0 y
dmi
i of f for which θ(

∏N
i=0 y

dmi
i ) =

∏N
i=0 M

βmi
i is same. Suppose

after a permutation of the terms of f that
∏N

i=0 M
dmi
i =

∏N
i=0 M

dni
i = M for

all m, n ∈ {1, . . . , l}. This means that for each m, n ∈ {1, . . . , l},∑
i∈ I diαim =

∑
n∈ J dnαnm. Let Ym denote

∏N
i=0 y

dmi
i . Therefore Ym − Yn is

an element of the generating set of I. Also, FM = (a1 + a2 + . . . + al)M = 0

and therefore a1 + a2 + . . . + al = 0. Then

fM = θ−1(FM) = a1Y1 + . . . + alYl.

Using the property that
∑l

i=1 ai = 0 we get that fM = a1(Y1 − Y2) +

(a1 + a2)(Y2 − Y3) + . . . . . . + (a1 + . . . + al−1)(Yl−1 − Yl). Therefore

fM ∈ I. But f is a sum of such fM . Therefore f ∈ I which proves that

a ⊂ I. Therefore a = I.

Suppose P = (M0(a), M1(a), . . . , MN(a)) for some point a ∈ Pn. Consider

any one of the generating elements of a:
∏

i∈ I y
di
i −

∏
j ∈ J y

dj
j for which∑

i∈ I diαik =
∑

j ∈ J djαjk for each k = 0, 1, . . . , n. Then

F (P ) =
∏

i∈ IM
di
i (a) −

∏
j ∈ JM

dj
j (a). Since F ∈ a, we get that∏

i∈ IMi −
∏

j ∈ JMj = 0 and therefore F (P ) = 0. Therefore P ∈ Z(a)

proving that image of ρd is contained in Z(a).

To prove the converse, consider P = (b0, . . . , bN) ∈ Z(a). We can label the

coordinates of PN using n+ 1 tuples a0a1 . . . an such that
∑n

i=0 ai = d.

Consider, after relabelling the coordinates, the a0a1 . . . an-th coordinate ba0...an

of P . Since P ∈ Z(a),
∏

i∈ I bαi1...αin =
∏

j ∈ J bβj1...βjn whenever for each

k = 1, . . . , n,
∑

i∈ I αik =
∑

j ∈ J αjk. Using these conditions we derive that

(ba0...an)d = (bd00...0)
a0(b0d0...0)

a1 . . . . . . (b00...0d)
an . If each coordinate of the form

b00...d...00 = 0, then ba0a1...an = 0. Since ba0a1...an = 0 was any general coordinate

of P , this would imply that all the coordinates of P are zero which is false. This

implies that at least one of the coordinates of the form b00...d...00 6= 0.

Suppose, after a permutation of the coordinates, bd00...00 6= 0. Let

u = (u0, u1, . . . un) ∈ Pn be such that

u0 = bd00......00

u1 = bd−1,100...0
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u2 = bd−1,010...0

...

un = bd−100...01

We claim that ρd(u) = P . We have ρd(u) = ρd

(
1,
u1

u0

, . . . ,
un
u0

)
. The

(a0, . . . , an)-th coordinate of the image is

=

(
u0

u0

)a0
(
u1

u0

)a1

. . .

(
un
u0

)an
= u−d0 ua0

0 u
a1
1 . . . . . . . . . uann

Using the fact that P ∈ Z(a), we derive that

(bd00...00)(u
−d
0 ua0

0 u
a1
1 . . . uann ) = ba0a1...an . Therefore the (a0, . . . , an)-th coordinate

of the ρd(u) is
ba0a1...an

bd00...00

. Since bd00...00 is a constant which is same for each

coordinate of ρd(u), we get that ρd(u) = P .

(c) To show that ρd is a continuous mapping, consider a closed subset Z(β) of

Z(a). Suppose Z(β) = (f1, . . . , fr) where fi are homogeneous polynomials in

k[x0, . . . , xN ]. We claim that ρ−1
d (Z(β)) = (θ(f1), . . . , θ(fr)). Suppose

P = (a0, . . . , an) ∈ ρ−1
d (Z(β)) i.e, ρd(P ) ∈ Z(β). Since

ρd(P ) = (M0(a), . . . , MN(a)), fi(M0(a), . . . , MN) = 0 for all i = 1 to l.

Therefore θ(fi)(P ) = 0 for all i = 1 to r. Therefore P ∈ Z(θ(f1), . . . , θ(fr)).

To prove the converse, consider a point

P = (a0, . . . , an) ∈ Z(θ(f1), . . . , θ(fr)). Therefore θ(fi)(a0, . . . , an) = 0

which implies that fi(M0(a), . . . , MN(a)) = 0. Therefore P ∈ ρ−1
d (Z(β)). This

proves that ρd is a continuous map onto Z(a).

To prove that ρd is a closed map, consider a closed subset Z(J0) of Pn. Suppose

J0 = (f1, f2, . . . , fl). Consider the ideal J = (fd1 , . . . f
d
l ). Since J ⊂ J0,

Z(J0) ⊂ Z(J ). Also, if fd(P ) = 0, then f(P ) = 0. Therefore

Z(J ) ⊂ Z(J0). Therefore Z(J0) = Z(J ).

Consider any monomial F = xα0
0 x

α1
1 . . . xαnn ∈ k[x0, . . . , xn].

F d = xdα0
0 xdα1

1 . . . xdαnn = (xd0)α0(xd1)α1 . . . (xdn)αn . This is clearly an element in
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the image of θ. Since any fdi is a sum of elements of the form F d, fdi ∈ Im(θ)

and thus J ⊂ Im(θ).

Let I be the ideal θ−1(J ). Then I is generated by the elements θ−1(fdi ) for

i = 1 to l. Let θ−1(fdi ) be denoted by gi. We claim that Z(I) = ρd(Z(J )).

Suppose P = (a0, . . . , an) ∈ ρ−1
d (Z(I)). Then

ρd(P ) = (M0(a), . . . , MN(a)) ∈ Z(I). Therefore

gi(ρd(P )) = gi(M0(a), . . . , MN(a)) = 0 which implies that θ(gi)(P ) = 0.

Since θ(gi) = fi, P ∈ Z(J ). Now suppose P = (a0, . . . , an) ∈ Z(J ).

Therefore fd(P ) = θ(gi)(P ) = 0 which implies that

gi(M0(a), . . . , MN(a)) = gi(ρd(P )) = 0. Therefore ρd(P ) ∈ Z(J ) and hence

P ∈ ρ−1
d (Z(J )). This proves that ρ−1

d is continuous. Therefore ρd is a

homeomorphism of Pn onto the projective variety Z(a).

(d) Let M0 = x3, M1 = x2y, M2 = xy2 and M3 = y3. Then the 3-uple embedding

of P1 in P3 maps a point P = (a, b) to the point (a3, a2b, ab2, b3). Therefore

Im(ρd) = {a3, a2b, ab2, b3) | a, b ∈ k} which is the twisted cubic curve in P3.

Exercise 2.0.25. Let Y be the image of the 2-uple embedding of P2 in P5. This is

the Veronese surface. If Z ⊂ Y is a closed curve (a curve is a variety of dimension

1), show that there exist a hypersurface V ⊂ P5 such that V ∩ Y = Z.

Solution:

Since ρ2 is a homeomorphism of P2 onto the image Y ⊂ P5, ρ−1
2 (Z) is a closed curve

of P2 whenever Z is a closed curve of Y . A closed curve of P2 is of the form Z(F ) for

some homogeneous polynomial in k[x0, x1, x1]. Let M0 = x2
0, M1 = x2

1, M2 = x2
2,

M3 = x0x1, M4 = x1x2 and M5 = x2x0. F (x0, x1, x2)
2 is a homogeneous

polynomial of degree 2m where m is the degree of F . Consider any monomial term

x2αy2βz2γ of F 2. Without loss of generality, we can assume that α ≥ β ≥ γ.

Therefore x2αy2βz2γ = (xy)2β(xz)2α− 2β(z)2γ− 2α− 2β. Therefore each monomial of

F 2 is a product of some powers of Mi’s. Therefore F 2 is a polynomial in Mi’s. We

substitute yi in place of Mi in F 2 to get a polynomial G in k[y0, y1, y2, y3, y4, y5].

We claim that Z(G) ∩ Y = ρ2(Z(F )). Consider a point P ∈ Z(G) ∩ Y . Let

a = (a0, a1, a2) = ρ−1
2 (P ). Hence P = (M0(a), M1(a), . . . , M5(a)). Therefore

G(M0(a), M1(a), . . . , M5(a)) = F 2(a2
0, a

2
1, a

2
2, a0a1, a1a2, a2a0) = 0. Therefore
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F 2(a0, a1, a2) = 0 and thus F (a0, a1, a2) = 0 which implies that ρ−1
2 (P ) ∈ Z(F ).

Therefore P ∈ ρ2(Z(F )) and thus Z(G) ∩ Y ⊂ ρ2(Z(F ))

To prove that Z(G) ∩ Y ⊃ ρ2(Z(F )), assume that P = (b0, . . . , bN) ∈ ρ2(Z(F )).

So P = ρ2(a) for some a = (a0, a1, a2) ∈ Z(F ) i.e.,

P = (M0(a), M1(a), . . . , M5(a)) Hence F (a0, a1, a2) = 0 and therefore

F 2(a0, a1, a2) = F 2(a2
0, a

2
1, a

2
2, a0a1, a1a2, a2a0) = 0. Therefore

G(P ) = G(M0(a), M1(a), . . . , M5(a)) = F 2(a2
0, a

2
1, a

2
2, a0a1, a1a2, a2a0) = 0.

Therefore P ∈ Z(G) and thus Z(G) ∩ Y ⊃ ρ2(Z(F )). This proves the claim.

Exercise 2.0.26 (The Segre Embedding). Let ψ : Pr × Ps −→ PN be the map

defined by sending the ordered pair (a0, . . . , ar) × (b0, . . . , bs) to (. . . , aibj, . . .) in

lexicographic order where N = rs + r + s. Note that ψ is well defined and injective.

It is called the Segre embedding. show that the image of ψ is a subvariety of PN .

Solution:

Any element of PN , where N = rs + r + s, can be considered as an

(r + 1) × (s + 1) matrix. Let r0 = r + 1 and s0 = s + 1. Consider any matrix

M = ψ(P × Q) in the image of ψ where P = (a0 : . . . : ar) ∈ Pr and

Q = (b0 : . . . : bs) ∈ Ps. We can consider P as a 1× r0 matrix over k and Q as a

1× s0 matrix over k. Then M = tPQ.

We claim that a r0 × s0 matrix M is of the form tPQ for some 1 × r0 matrix P

and 1 × s0 matrix Q if and only if rank of M is 1. Suppose M = tPQ. Let

T1 : ks0 → k be the linear transformation corresponding to Q where ks0 be the

vector space over k of dimension s0. Let T2 : k → kr0 be the linear transformation

corresponding to tP . Then the linear transformation corresponding to the matrix M

is T0 ◦ T1. Since the range of T1 is a subspace of k, the rank of T1 is either 1 or 0.

But Q is not the zero matrix. Therefore the rank of T1 is 1. Also, the rank of T2 is

either 1 or 0. But since P is not the zero matrix, the rank of T2 is 1. Therefore the

rank of T2 ◦ T1 is 1 and therefore rank of M is 1.

Conversely, suppose rank of M is 1. Let T : ks0 −→ kr0 be the linear

transformation corresponding to M . Then the rank of T , which is the dimension of

the image of T , is 1. Therefore we can write T as a composition T2 ◦ T1 where

T1 : ks0 −→ k is the surjective linear transformation which is equal to T but with

the co-domain restricted to the range of T and T2 : k −→ kr0 is the natural
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inclusion of k in kr0 . Let P
′

be the r0 × 1 matrix corresponding to T2 and let Q be

the 1 × s0 matrix corresponding to T1. Then M = tPQ where P = tP
′
. This

proves the claim.

Since the rank of M is 1, the determinant of any 2 × 2 minor of M is 0. Therefore

the image of ψ is the set of all r0 × s0 matrices for which the determinant of any

2 × 2 minor is 0. The determinant of any 2 × 2 minor is an homogeneous

expression of degree 2. Therefore the image of ψ is a closed subset of PN .

Exercise 2.0.27 (The Quadric Surface in P3). Consider the surface Q (a surface is

a variety of dimension 2) in P3 defined by the equation xy − zw = 0.

(a) Show that Q is equal to the Segre embedding of P1 × P1 in P3, for suitable choice

of coordinates.

(b) Show that Q contains two families of lines (a line is a linear variety of dimen-

sion 1) {Lt }, {Mt }, each parametrized by t ∈ P1, with the properties that if

Lt 6= Lu, then Lt ∩ Lu = ∅; if Mt 6= Mu, Mt ∩ Mu = ∅, and for all t, u,

Lt ∩ Mu = one point.

(c) Show that Q contains other curves besides these lines, and deduce that the Zariski

topology on Q is not homeomorphic via ψ to the product topology on P1 × P1

(where each P1 has its zariski topology).

Solution:

(a) We can relabel the coordinates of P3 to let x = z11, y = z00, z = z01 and

w = z10. Then from the solution to Exercise 14, the Segre embedding of

P1 × P1 in P3 is equal to Z(z11z00 − z10z01) which is nothing but Q.

(b) Consider a fixed point t = (t0, t1) ∈ P1. Then for any point b = (b0, b1) ∈ P3,

ψ(t × b) = (t0b0, t0b1, t1b0, t1b1). Therefore

ψ(t × b) = Z(t0z − t1x, t1y − t0w). This is a linear variety. Let this be called

Lt. As t varies Lt defines a family of curves in Q.
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Let I = (t0z − t1x, t1y − t0w). For any fixed t = (t0, t1), either t0 6= 0 or

t1 6= 0. Without loss of generality we may assume that t0 6= 0. Let l = t1/t0.

Then I = (z − lx, y − ly). Let ϕ1 : k[x, y, z, w]/I −→ k[x, y] be the map

sending the f(x, y, z, w)mod I to f(x, y, lx, lw). Let

ϕ2 : k[x, y] ←→ k[x, y, z, w]/I be the map sending f(x, y) to f(x, y)mod I.

Then it is clear that ϕ1 and ϕ2 are ring homomorphisms. Also,

ϕ1(ϕ2(f(x, y))) = ϕ1(f(x, y)mod I) = f(x, y). Also, for any element

f(x, y, z, w) ∈ k[x, y, z, w]mod I, ϕ2(ϕ1(f)) = ϕ2(f(x, y, lx, lw)). Since

lx ≡ z and lw ≡ z in k[x, y, z, w]/I, f(x, y, z, w) = f(x, y, lx, ly) in

k[x, y, z, w]/I. Hence the ring homomorphisms ϕ1 and ϕ2 are inverses of each

other which gives us that k[x, y, z, w]/I ∼= k[x, y]. Therefore I is a prime ideal

and therefore a radical ideal. Since I(Z(I)) =
√
I = I is a prime ideal,

Z(I) = Lt is irreducible.

Also, since it is a subset of Q, dimLt ≤ dimQ = 2. Since Q is defined by an

irreducible polynomial, Q is irreducible. From Exercise 1.10(d), if dimLt = 2,

then Q = Lt which is not true. Also, since Lt does not consists of a single

point, P ⊂ Lt is a chain of distinct irreducible closed subsets of Lt for any

point P ∈ Lt. Therefore dimLt 6= 0. Therefore dimLt = 1.

Consider a fixed point t = (t0, t1) ∈ P1. Then for any point b = (a0, a1) ∈ P3,

ψ(a × t) = (a0t0, a0t1, a1t1, a1t1). Therefore

ψ(a × t) = Z(t1x − t0y, t1z − t0w). This is a linear variety. Let this be called

Mt. As t varies Mt defines a family of curves in Q. Using arguments similar to

the ones used in calculation of dimLt, it can be calculated that dimMt = 1.

Suppose that Lt 6= Lu i.e., u 6= t. Suppose for some b = (b0, b1) and

c = (c0, c1), t × b = u × c. Therefore (t0b0, t0b1, t1b0, t1b1) =

(u0c0, u0c1, u1c0, u1c1). Therefore t0b0 = λu0c0, t0b1 = λu0c1, t1b0 = λu1c0

and t1b1 = λu1c1 for some λ ∈ k×. We have that either c0 6= 0 or c1 6= 0. If

c0 6= 0, then λt1u0c0 = t0t1b0 = λt0u1c0. Since c0, 6= 0; λ 6= 0, t1u0 = t0u1

which implies that t = u. But this is a contradiction. Therefore Lt ∩ Lu = ∅.
If c1 6= 0, λu0c1t1 = t1t0b1 = λu1c1t0 implies that t0u1 = t1u0 i.e., t = u. This

is a contradiction. Therefore Lt ∩ Lu = ∅. Similarly it can be proved that if

Mt 6= Mu, then Mt ∩ Mu = ∅. Also, Mt ∩ Lu = {t × u}.
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(c) Consider the twisted cubic curve in P3. It is equal to the subset

X = {(p2t, pt2, p3, t3) | p, t, ∈ k}. Then clearly any point of twisted cubic

curve lies on Q. We claim that X 6= Lt or Mu for any t, u ∈ P1. Any point of

the twisted cubic curve satisfies the equation y2 = wx. Any point of Mt, for a

fixed t ∈ P1, is of the form (a0t0, a0t1, a1t0, a1t1) for some (a0, a1) ∈ P1. This

point does not satisfy the given equation. Therefore Mt 6= X for any t ∈ P1.

Also. any point of Lu, for a fixed u ∈ P1, is of the form (t0a0, t0a1, t1a0, t1a1)

for some (a0, a1) ∈ P1. This point also does not satisfy the given equation.

Therefore X 6= Lu for any u ∈ P1.

Exercise 2.0.28. (a) The intersection of two varieties need not be a variety. For

example, let Q1 and Q2 be the quadric surfaces in P3 given by the equations

x2 − yw = 0 and xy − zw = 0, respectively. Show that Q1 ∩ Q2 is the union

of a twisted cubic curve and a line.

(b) Even if the intersection of two varieties is a variety, the ideal of the intersection

may not be the sum of the two ideals. For example, let C be the conic in P2 given

by the equation x2 − yz = 0. Let L be the line given by y = 0. Show that C ∩ L
consists of on point P , but I(C) + I(L) 6= I(P ).

Solution:

(a) Any point P = (x, y, z, w) in Q1 ∩ Q2 satisfies the equations x2 − yw and

xy − zw. When w = 0, x2 = 0 which implies that x = 0. Therefore,

(0, y, z, 0) ∈ Q1 ∩ Q2 for any y, z ∈ k. These points are given by

L = Z(x, w). We claim that dimL = 1. Let I = (x, w). It can be proved

that k[x, y, z, w]/I ∼= k[y, z] which is an integral domain. Therefore I is prime

and hence a radical ideal. Since L = Z(I), I(L) =
√
I = I. Now,

dimS(L) = dimk[x, y] = 2. Therefore dimL = 1. Hence L is a linear variety

of dimension 1 and hence a line.

When w 6= 0, we may assume that w = 1. Then we have x2 = y and xy = z

which implies that z = x3. Therefore any point of Q1 ∩ Q2 for which w 6= 0 is

of the form (x, x2, x3, 1) which is the twisted cubic curve.
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(b) Let C be the conic Z(x2 − yz) and let L be the line Z(y). Any point (x, y, z)

in C ∩ L has y = 0 and therefore x2 = 0. Therefore C ∩ L consists of one

point (0, 0, 1). Therefore C ∩ L = Z(x, y). Let J = (x, y) It can be shown

that k[x, y, z]/J is isomorphic to k[z] which is a PID and hence J is a prime

ideal. Therefore I(C ∩ L) =
√
J = J . Also, it can be shown that

k[x, y, z]/(y) ∼= k[x, z] which is an integral domain. Therefore I1 = (y) is a

prime ideal. Also, it can be shown that x2 − yz is an irreducible element of

k[x, y, z]. Since k[x, y, z] is a UFD, I2 = (x2 − yz) is a prime ideal. Since

L = Z(I1) and C = Z(I2), we have I(L) =
√
I1 = I1 and I(C) =

√
I2 = I2.

I(C) + I(L) = {(x2 − yz)f1 + yf2 | f1, f2 ∈ k[x, y, z]}. We claim that

x ∈ I(C) + I(L). Any term of (x2 − yz)f1 is a multiple of either x2 or yz and

any term yf2 is a multiple of y. Since x is not a multiple of either x2, yz or y,

x /∈ I(C) + I(L). Therefore I(P ) 6= I(C) + I(L).

Exercise 2.0.29 (Complete Intersections). A variety Y of dimension r in Pn is a

strict complete intersection if I(Y ) can be generated by n − r elements. Y is a set

theoretic complete intersection if Y can be written as the intersection of n − r hyper-

planes.

(a) Let Y be a variety in Pn, let Y = Z(a); and suppose that a can be generated q

elements. Then show that dimY ≥ n − q.

(b) Show that a strict complete intersection is a set theoretic complete intersection.

(c) The converse of (b) is false. For example let Y be the twisted cubic curve in P3.

Show that I(Y ) cannot be generated by two elements. On the other hand, find

hypersurfaces H1 and H2 of degree 2 and 3 respectively, such that Y = H1 ∩ H2.

(d) It is an unsolved problem whether every closed irreducible curve in P3 is a set

theoretic intersection of two surfaces.
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Solution:

(a) Let a = Z(f1 . . . , fq). Since Y = Z(a), I(Y ) =
√

a. Since Y is a variety, I(Y )

is a prime ideal. We know that for any ideal I,
√
I is the intersection of all

prime ideals containing I. Therefore I(Y ) is the minimal prime ideal over a.

From Krull’s dimension theorem we get that htI(Y ) ≤ q. From Theorem

1.8A(b) we get that dimS(Y ) ≥ n + 1 − q . Since dimY = dimS(Y ) − 1,

we get that dimY ≥ n − q.

(b) We assume that the variety Y of dimension r is a strict complete intersection,

i.e., I(Y ) can be generated by n − r elements. Let I(Y ) = (f1, . . . , fn−r).

Then Y = Z(I(Y ))Z(f1, . . . , fn−r) =
⋂n−r
i=1Z(fi). Since each Z(fi) is a

hypersurface, Y can be written as an intersection of n − r hypersurfaces and is

thus a set theoretic complete intersection.

(c) We know that the twisted cubic curve in P3 consists of points of the form

(p3 : p2t : pt2 : t3) for some p, t ∈ k such that p2 + t2 6= 0. It is clear that no

homogeneous polynomial of degree 1 in k[u, x, y, z] belongs to I(Y ) because any

homogeneous polynomial of degree 1 is of the form xi − axj for some a ∈ k×

and some xi xj ∈ {u, x, y, z}. Also, any polynomial in I(Y ) can be written as

ud1xd1yd2zd3 such that 3d0 + 2d1 + d2 = 0 and d1 + 2d2 + 3d3 = 0. Using

these equations we can deduce that the only homogeneous polynomials of degree

2 that belong to I(Y ) are f1 = uz − xy, f2 = uy − x2 and f3 = xz − y2.

Suppose I(Y ) = (g1, g2) for some homogeneous polynomials

g1, g2 ∈ k[u, x, y, z]. Then f1 = g1h1 + g2h2 for some h1, h2 ∈ k[u, x, y, z].

Since f1 is homogeneous ,we may assume that h1 and h2 are homogeneous

polynomials. Now, we have that g1h1 is homogeneous of degree deg g1 + deg h1

and g2h2 is homogeneous of degree deg g2 + deg h2. Therefore

deg g1 + deg h1 = deg g2 + deg h2 = 2. Therefore deg gi ≤ 2 for i = 1, 2. But

I(Y ) has no homogeneous polynomials of degree 1. Therefore deg gi = 2 for

i = 1, 2 and thus {g1, g2} ⊂ {f1, f2, f3}.

Suppose I(Y ) = (f1, f2). Then f3 = h1f1 + h2f2 for some homogeneous

polynomials hi. But using arguments similar to the above, we get that

h1, h2 ∈ k. Say hi = ai ∈ k for i = 1, 2. But clearly xz − y2 cannot be
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written as a1(uz − xy) + a2(uy − x2) for any constants a1, a2 ∈ k. Therefore

I(Y ) 6= (f1, f2). Similarly, if I(Y ) = (f2, f3), then f1 = a2f2 + a3f3 for some

constants a2, a3 ∈ k. But clearly this is not possible. Therefore

I(Y ) 6= (f2, f3). Similarly, it can be shown that I(Y ) 6= (f1, f3). Therefore

I(Y ) is not generated by two elements and is thus not a strict complete

intersection.

Let H1 = Z(y2 − xz) and H2 = Z(x3 + u2z − 2xyu). We claim that

Y = H1 ∩ H2. Clearly any point (p3 : p2t : pt2 : t3) of Y lies on both H1 and

H2. Consider a point P = (a : b : c : d) ∈ H1 ∩ H2. Then c2 = bd and thus

b2c2 = b3d. But b3 = 2abc − a2d. Therefore b2c2 = 2abcd − a2d2 which

implies that (bc − ad)2 = 0 i.e., bc = ad.

Since c2 = bd, we get a2c2 − a2bd = 0 which gives that

a2c2 + b4 − b4 − a2bd = 0. But b3 + a2d = 2abc. Therefore

b4 + a2c2 − 2b2ca = (b2 − ac)2 = 0. Therefore b2 = ac. Clearly any point of

this form is a point in Y . Therefore H1 ∩ H2 ⊂ Y proving that Y = H1 ∩ H2.

This proves that Y is a set theoretic complete intersection. Therefore every set

theoretic complete intersection need not be a strict complete intersection.



Chapter 3

Morphisms

We fix some notation which will be used throughout this section. For any variety X,

we denote the open set X \ Z(f) by D(f).

We state and prove a lemma which will be then used in solving the exercises.

Lemma (3 E). Let U = D(f) be a Zariski open subset of an affine variety X ⊂ An

where f is some polynomial in k[x1, . . . , xn]. Then the ring of regular functions on

U is the localization A(X)[ 1
f
].

Proof. By definition, a regular function on U is a function g such that for any point

P ∈ U we can write g = h/l for some polynomials h, l in the neighbourhood

Ul = U ∩ D(l) of P . Hence U is covered by the open subsets Ul. Since the Zariski

topology is noetherian, we can find a finite open sub-cover {Uα} of U . Here each

Uα is of the form U ∩ Ulα for some polynomial lα. We have that U ⊂
⋃
Uα which

implies that X \
⋃
Uα ⊂ X \ U . But X \ U = Z(f). Therefore we have that⋂

Cα ⊂ Z(f) where Cα = X \ Uα. But
⋂
Cα is the set of common zeroes of {lα}. By

the Nullstellensatz, we have that there exists a positive integer m such that fm ∈ I

where I is the ideal generated by the lα. Therefore we can write fm =
∑
fαlα for

some polynomials fα. Therefore fmg =
∑

(fαlα) (hα/lα) =
∑
fαhα which implies

that g =
∑
fαhα
fm

which is an element of A(X)[1/f ]. This proves the lemma.

Exercise 3.0.30. Show that

(a) Any conic in A2 is isomorphic to either A1 or A1 − {0}.

(b) A1 is not isomorphic to any proper open subset of itself.

41
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(c) Any conic in P2 is isomorphic to P1.

(d) A2 is not homeomorphic to P2.

(e) If an affine variety is isomorphic to a projective variety then it consists of only

one point.

Solution:

(a) From exercise 1.1 we know that a conic Z in A2 is isomorphic to either the

parabola y = x2 or the hyperbola xy = 1.

Case i: Let Z be isomorphic to the parabola y = x2. Then A(Z) ∼= k[x]. But

we know that A(A1) = k[x]. Therefore from proposition 3.5, we get that Z is

isomorphic to A1.

Case ii: Let Z be isomorphic to the hyperbola xy = 1. We can define a map

ϕ : A1 \ {0} −→ Z by x 7→ (x, x−1). From Lemma 3.6, we get that this map

is a morphism. It is also bijective. To see that ϕ is an isomorphism we have to

check that the inverse map of ϕ is a morphism. We can check that

ϕ−1 : Z −→ A1 \ {0} is given by (x, y) 7→ x. This is the restriction of the

projection map which is clearly a morphism.

Therefore any conic Z in A2 is isomorphic to either A1 or A1 \ {0}.

(b) Suppose U ( A1 is isomorphic to A1. Then A(U) ∼= A(A1) = k[x]. But we

know that U is of the form A1 \ {p1, . . . , pn} for some finite number of points

pi ∈ A1. Let f be the polynomial having precisely p1, . . . , pn as its roots. Then

we know from Lemma 3E that A(U) is of the form k[x][ 1
f
].

Now, suppose A1 is isomorphic to U . Then from Corollary 3.7 we know that the

the coordinate ring of U is isomorphic to the coordinate ring of A1. Therefore

k[x, 1
f
] is isomorphic to k[y] for some indeterminate y. Let φ : k[x, 1

f
] −→ k[y]

be an isomorphism. Let φ(x) = p(y) ∈ k[y]. Let f = a0 + a1x + . . . + anx
n.

Since φ is an isomorphism φ(f) = b0 + b1p(y) + . . . + bnp(y)n where

bi = φ(ai) ∈ k. Since f is a unit in k[x, 1
f
] we know that φ(f) ∈ k×. Therefore

p(x) ∈ k. This implies that φ is not surjective which is a contradiction.

Therefore φ is not an isomorphism.

(c) We claim that any two conics in P2 are isomorphic. Consider any conic Y in P2.

Then Y = Z(axy + byz + cxz + dx2 + ey2 + fz2). Let P, Q, R be any three
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non collinear points in P2. Let P = (p1 : p2 : p3), Q = (q1 : q2 : q3),

R = (r1 : r2 : r3) be any representations of these points in P2. Let

vP = (p1, p2, p3), vQ = (q1, q2, q3), vR = (r1, r2, r3) be the vectors in k3

corresponding to these representations of P,Q, R. Then clearly these vectors

are linearly independent vectors in the vector space k3. Now, given any two sets

of non collinear points in P2, we know that they give two sets of basis vectors of

the vector space k3. Hence there exists a linear transformation T : k3 −→ k3

which is the change of basis transformation corresponding to these two bases.

But a linear transformation corresponds to a linear change of coordinates which

is an isomorphism. Therefore we can assume that the points (1, 0, 0), (0, 1, 0)

and (0, 0, 1) lie on Y . Therefore Y = Z(axy + byz + cxz) for some

a, b, c ∈ k, none of them zero. Now, we scale x, y, z by a factor of λ1 =
√

c
ab

,

λ2 =
√

b
ac

and λ3 =
√

a
bc

respectively i.e., we put X = λ1x, Y = λ2y and

Z = λ3z. Then Y = Z(XY + Y Z + ZX). This proves that any curve in P2

is isomorphic to the curve Y = (xy + yz + zx) and therefore any two curves in

P2 are isomorphic. Therefore it is enough to prove that the conic

Y = Z(z2 − xy) is isomorphic to P1. We can check that

Y = {(t2, u2, tu) ∈ P2 | t, u, ∈ k; both not 0}. Define a map ρ : P1 −→ Y

by (t, u) 7→ (t2, u2, tu). Then clearly, ρ is a morphism. Also, the inverse map

ρ−1 ; Y −→ P1 can be given by (x, y, z) 7→ (1, z
x
) when x 6= 0 and by

(x, y, z) 7→ ( z
y
, 1) when y 6= 0. This map is clearly a morphism. Therefore Y

is isomorphic to P1 and hence any conic in P2 is isomorphic to P1.

(d) Let C ⊂ A2 be irreducible closed of dimension 1. If A2 is homeomorphic to P2,

then the dimension of the homeomorphic image of C is of dimension 1 in P2 and

hence is a curve in P2. If we take two curves Z(f), Z(g) in A2 which have an

empty intersection, say two parallel lines, then the homeomorphic image of these

curves in P2 should have an empty intersection. To prove this let ρ : A2 −→ P2

be the homeomorphism and ρ(Z(f)) = C1 and ρ(Z(g)) = C2. If P ∈ C1 ∩ C2,
then ρ−1(P ) ∈ Z(f) ∩ Z(g) which is a contradiction. Therefore C1 ∩ C2 = ∅.
We show in exercise 3.7 that any two curves in P2 have a non-empty

intersection. Therefore there exists no homeomorphism between A2 and P2.

(e) Suppose Y ⊂ An is an affine variety. Suppose Y : ϕ −→ Z is an isomorphism
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where Z is a projective variety. Then from the proof of Proposition 3.5, ϕ

induces an isomorphism of the ring of regular functions O(Y ) and O(Z). We

know, from Theorem 3.2 and Theorem 3.4, that O(Y ) = A(Y ) and O(Z) = k.

Therefore A(Y ) = k[x1, . . . , xn]/I(Y ) ∼= k. This implies that I(Y ) is a

maximal ideal of k[x1, . . . , xn] which in turn implies that Y consists of only a

single point.

Exercise 3.0.31. A morphism whose underlying map on the topological spaces is a

homeomorphism need not be an isomorphism.

(a) For example, let ϕ : A1 −→ A2 be defined by t 7−→ (t2, t3). Show that ϕ defines

a bijective bi-continuous morphism of A1 onto the curve y2 − x3, but that ϕ is

not an isomorphism.

(b) For another example, let the characteristic of the base field be p > 0, and define

a map ϕ : A1 −→ A1 by t 7→ tp. Show that ϕ is bijective and bi-continuous but

not an isomorphism. This is called the Frobenius morphism.

Solution:

(a) Let H denote the curve Z(y2 − x3). Let ϕ : A1 −→ A2 be the map defined by

t 7→ (t2, t3). Let x1 and x2 be the coordinate functions on A2. Then the map

x1 ◦ ϕ : X −→ k is given by t 7→ t2 and the map x2 ◦ ϕ : X −→ k is given

by t 7→ t3. Clearly, these maps are regular functions. Therefore from Lemma

3.6, we get that ϕ : X −→ Y is a morphism. This map is clearly a bijection

onto the image, which is the curve H. Now consider an closed subset X ⊂ A1.

Then X consists of a finite number of points. Since ϕ is a bijective map, we get

that ϕ(X) is a finite set and thus is a closed subset of A2 and hence ϕ is a

closed map. If we let µ denote the inverse map of ϕ, then for any closed subset

X ⊂ A1 we have that µ−1(X) = ϕ(X) which is a closed subset of A2.

Therefore ϕ is a bicontinuous bijection.

Now,, suppose that ϕ is an isomorphism of A1 onto H. Then from proposition

3.5 we know that the morphism ψ = ϕ : H −→ A1 induces a k-algebra

isomorphism ψ# from A(A1) = k[t] onto A(H) = k[x, y]/(y2 − x3) given by

f(t) 7→ f(t) ◦ ψ = f(
y

x
). But this map is clearly not surjective and hence is

not an isomorphism. Therefore ϕ is not an isomorphism.
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We can further show that H is not isomorphic to A1. Suppose that H is

isomorphic to A1. Then from proposition 3.5, A(H) ∼= A(A1) = k[x]. We now

show that A(H) = k[x, y]/(y2 − x3) is not a Unique Factorization Domain

(UFD). But since k[x] is a UFD, we get a contradiction to the assumption that

A(H) ∼= A(A2) which proves that ϕ is not an isomorphism.

Let us denote k[x, y]/(y2 − x3) by R. We claim that R is isomorphic to the

k[t2, t3] for some indeterminate t. We define a map ϕ : k[x, y] −→ k[t2, t3] by

a 7→ a for all a ∈ k, x 7→ t2 and y 7→ t3. Then clearly this map is a k-algebra

homomorphism. Also, it can be easily checked that ker ϕ = (y2 − x3). This

proves the claim. We now prove that k[t2, t3] is not integrally closed in its field

of fractions which will prove that R is not a unique factorization domain. We

know that the field of fractions of R is equal to the field k(t). Consider the

monic polynomial x3 − t3 with coefficients in k[t2, t3]. Then clearly t is a root

of this monic polynomial and hence t is integral over k[t2, t3]. But t 6∈ k[t2, t3]

which proves that k[t2, t3] is not integrally closed.

(b) Suppose char k = p > 0. Then the morphism ϕ : A1 −→ A1 defined by

t 7→ tp is an injective. Indeed, for any t, s ∈ k, we have

0 = tp − sp = (t − s)p which implies that t = s. Also, since k is algebraically

closed field, ϕ is surjective. We know that the proper closed subsets of A1 are

precisely the finite subsets of A1. Therefore to prove that ϕ is a continuous

map, it is enough to prove that the inverse image of a single point is a closed

subset of A1. But since ϕ is a bijection, the inverse image of the singleton set is

a singleton set, which is a closed subset of A1. Therefore ϕ is a continuous map.

The same argument proves that ϕ−1 : A1 −→ A1, which is a bijection, is a

continuous map. Therefore ϕ is a bicontinuous, bijection.

Consider x1 ◦ ϕ : A1 −→ k, where x1 is the coordinate function on A1, which is

nothing but the identity function. Then x1 ◦ ϕ is defined by t 7→ tp and hence

is a regular function. Therefore from Lemma 3.6, we get that ϕ is a morphism.

Suppose ϕ : A1 −→ A1 is an isomorphism. Then the map h : k[x] −→ k[x]

defined by f(x) 7→ f(x) ◦ ϕ is an isomorphism. But f(x) ◦ ϕ = f(xp). This

map is clearly not surjective and hence is not an isomorphism. Therefore ϕ is

not an isomorphism.
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Exercise 3.0.32. (a) Let ϕ : X −→ Y be a morphism. Then for each P ∈ X, ϕ

induces a homomorphism of local rings ϕ∗P : Oϕ(P ), Y −→ OP,X .

(b) Show that a morphism ϕ is an isomorphism if and only if ϕ is a homeomorphism,

and the induced map ϕ∗P on the local rings is an isomorphism, for all P ∈ X.

(c) Show that if ϕ(X) is dense in Y , then the map ϕ∗P is injective for all P ∈ X.

Solution:

(a) Let ϕ : X −→ Y be a morphism. Consider the induced map

ϕ∗P : Oϕ(P ), Y :−→ OP,X defined by (V, f) 7→ (ϕ−1(V ), f ◦ ϕ). Since ϕ is a

morphism and f : V −→ k is a regular map, we know that

f ◦ ϕ : ϕ−1(V ) −→ k is a regular map. To check that this map is well defined,

suppose that (V1, f1) = (V2, f2) i.e., f1 = f2 on V1 ∩ V2. Then we want to

prove that f1 ◦ ϕ = f2 ◦ ϕ on ϕ−1(V1) ∩ ϕ−1(V2). Consider

x ∈ ϕ−1(V1) ∩ ϕ−1(V2). Then ϕ(x) ∈ V1 ∩ V2. Therefore f1(ϕ(x)) = f2(ϕ(x))

which proves that f1 ◦ ϕ = f2 ◦ ϕ on ϕ−1(V1) ∩ ϕ−1(V2).

To check that the map is a ring homomorphism. Consider

ϕ∗P ((V1, f1) + (V2, f2)) = ϕ∗P (V1 ∩ V2, f1 + f2) =

(ϕ−1(V1 ∩ V2), (f1 + f2 ) ◦ ϕ) = (ϕ−1(V1) ∩ ϕ−1(V2), f1 ◦ ϕ + f2 ◦ ϕ) =

(ϕ−1(V1), f1 ◦ ϕ) + (ϕ−1(V2), f2 ◦ ϕ) = ϕ∗P (V1, f1) + ϕ∗P (V2, f2). This proves

that ϕ∗P is a ring homomorphism.

(b) If ϕ is an isomorphism, then it is a homeomorphism. Also, for any P ∈ X the

map (ϕ−1)∗P defines an inverse homomorphism for the map ϕ∗P .

Conversely, assume that ϕ is an homeomorphism and that ϕ∗P is an

isomorphism for each P ∈ X. We have to prove that ϕ−1 : Y −→ X is a

morphism. Let U ⊂ X be any open subset of X and f : U −→ k be any

regular map. Let P ∈ U be any point. Then (U, f) ∈ OP,X . Since ϕ∗P is an

isomorphism, it has an inverse morphism. Let µ∗P : OP,X −→ Oϕ(P ), Y be the

inverse map of ϕ∗P . Then µ∗P (U, f) ∈ Oϕ(P ), Y . Suppose µ∗P (U, f) = (V, g)

where V is an open subset of Y and g : V −→ k is a regular function. But

(U, f) = ϕ∗P (µ∗P (U, f)) = ϕ∗P (V, g) = (ϕ−1(V ), g ◦ ϕ). Therefore, f = g ◦ ϕ
on U ∩ ϕ−1(V ) which in turn implies that f ◦ ϕ−1 = g on V ∩ ϕ(U).
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Therefore, we have that f ◦ ϕ−1 is a regular function in a open neighbourhood

V ∩ ϕ(U) of ϕ(P ), i.e, f ◦ ϕ−1 is regular at ϕ(P ). Since P is any general of

point of U we have that f ◦ ϕ−1 is regular on ϕ(U). Therefore ϕ−1 : Y −→ X

is a morphism.

(c) Consider the morphism ϕ : X −→ Y and the induced morphism

ϕ∗P : Oϕ(P ), Y −→ OP,X . Suppose ϕ(X) is dense in Y . Consider an element of

(U, f) ∈ Oϕ(P ), Y such that ϕ∗P (U, f) = 0. We now prove that (U, f) = 0

which proves that ϕ∗P is injective. Now, ϕ∗P (U, f) = (f ◦ ϕ, ϕ−1(U)). Therefore

f(ϕ(x)) = 0 for all x ∈ ϕ−1(U). Therefore f = 0 on U ∩ ϕ(X) which implies

that U ∩ ϕ(X) ⊂ Z(f). If we prove that U ⊂ Z(f), then f(x) = 0 for all

x ∈ U and therefore (U, f) = 0 which will prove the claim. We have

ϕ(X) ⊂ Z(f) ∪ U c which is a closed subset of Y . Also, since U is non-empty,

U c is a proper subset of Y . Now, suppose U 6⊂ Z(f). Therefore

Z(f) ∪ U c 6= Y . Therefore Z(f) ∪ U c is a proper closed subset of Y which

contains ϕ(X), which contradicts the property that ϕ(X) is dense in Y .

Therefore U ⊂ Z(f) as required.

Exercise 3.0.33. Show that the d−uple embedding of Pn is an isomorphism onto its

image.

Solution:

Let ρd : Pn −→ PN be the d-uple embedding of Pn in PN where N =
(
n+ d
n

)
− 1.

It is defined by sending the point P = (a0 : a1 : . . . : an) to the point

ρd(P ) = (M0(a) : . . . : MN(a)) where Mi are the monomials of degree d in n + 1

variables. Since the map is defined by polynomial functions, it is clearly a

morphism. Also, from the solution to the exercise 2.12, we know that ρd is a

homeomorphism onto the image ρd(Pn).

We label the coordinates of PN using n + 1 tuples a0a1 . . . an such that∑n
i=0 ai = d. Then from Exercise 2.12 we know that for any point in ρd(Pn) at

least one of the coordinates of the form b00...00d...00 is on zero. Suppose after

permutation of the coordinates we assume that bd00...00 6= 0, then we know from the

same exercise that ρ−1(P ) = (u1, . . . , un) where u0 = bd00...00, u1 = bd− 1,1...00,

u2 = bd− 1,01...00, . . . . . ., un = bd− 1,00...01. Therefore ρ−1
d is a morphism.
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Exercise 3.0.34. By the abuse of language, we will say that a variety ‘is affine’ if

it is isomorphic to an affine variety. Let H ⊂ Pn be any hypersurface, show that

Pn − H is affine.

Solution:

Let H ⊂ Pn be a surface of degree d. Suppose H = Z(
∑

ai0...inx
i0
0 . . . xinn ). Let L

be the hyperplane Z(
∑

ai0...ainxi0i1...xin ). Consider the d-uple embedding of Pn.

Then ρd(H) = L ∩ ρd(Pn). We know that PN r Z(Yj) is isomorphic to AN . Also,

any two hyperplanes are isomorphic (by a linear change of coordinates). Therefore

PN r L is affine. Since ρd is an isomorphism of Pn onto its image in PN , we have

that Pn rH is isomorphic to ρd(Pn rH). But ρd(Pn rH) = (PN r L) ∩ ρd(Pn)

which is a closed subset of PN r L and is therefore affine.

Exercise 3.0.35. There are quasi-affine varieties which are not affine. For example,

show that X = A2 − {(0, 0)} is not affine.

Solution:

We know that X = U1 ∪ U2 where U1 = {(x, y) ∈ X | x 6= 0} and

U2 = {(x, y) ∈ X | y 6= 0} are open subset of X. Now, consider an element

f ∈ O(X). Then f is regular at every point of U1 and hence from the above lemma

we get that f is of the form g1/x
n on U1 for some positive integer n. We may

assume that g1 is not divisible by xn. Similarly, we get that f is of the form g2/y
m

on U2 for some positive integer m such that g2 is not divisible by ym. On U1 ∩ U2

we have g1/x
n = g2/y

m. Therefore g1y
m = g2x

n. But xn - g1 and ym - g2 and

k[x, y] is a unique factorization domain. Therefore we have that m = n = 0 and

hence f = g1 = g2. Therefore O(X) ∼= k[x, y].

Suppose that X is affine. Suppose X is isomorphic to the affine variety V ⊂ An.

Then from Proposition 3.5 we get that A(V ) ∼= k[x, y]. But A(A2) ∼= k[x, y]. Now

from Corollary 3.7 we get that V is isomorphic to A2. Therefore we get that X is

isomorphic to A2. Let A(A2) = k[u, t]. Now from Proposition 3.5 we get that the

identity isomorphism h from A(A2) = [u, t] to A(X) = k[x, y] induces an

isomorphism from X to A2. But the morphism induced by the identity isomorphism

h : k[u, t] −→ k[x, y] induces the inclusion morphism i : X −→ A2. But i is not

surjective and hence is not an isomorphism. This proves that X is not affine.



49

Exercise 3.0.36. (a) Show that any two curves in P2 have a non-empty intersection.

(b) More generally, show that if Y ⊂ Pn is a projective variety of dimension ≥ 1,

and if H is a hypersurface, then Y ∩ H 6= ∅.

Solution:

(a) Let Y1 = Z(f1) and Y2 = Z(f2) be two curves in P2, where f1, f2 are

homogeneous polynomials in k[x, y, z]. Let Z = Y1 ∩ Y2 = Z(f1, f2) ⊂ P2.

Let C(Y ) = Z(f1, f2) ⊂ A3. Since f1, f2 are homogeneous polynomials in

k[x, y, z], O = (0, 0, 0) ∈ C(Z). Now, Z is non-empty if and only if C(Z) has

points other than O. From Proposition 1.13 we know that the dimension of

C(Y1) is 2, where C(Y1) denotes the cone over Y1. Also, from exercise 1.8,

dimension of every irreducible component of C(Z) is 1. If C(Z) = {(0, 0, 0)},
then dimC(Z) = 0 which is a contradiction. Therefore C(Z) contains points

other than (0, 0, 0) and therefore Y1 ∩ Y2 6= ∅.

(b) Suppose dimY = r ≥ 1. Then we know that C(Y ) is an affine variety of

dimension r + 1. Now, Y ∩ H 6= ∅ if and only if C(Y ) ∩ C(H) has some point

other than (0, 0, 0). From exercise 1.8, dimension of every irreducible

component of C(Y ) ∩ C(H) is equal to r ≥ 1. If C(Y ) ∩ C(H) = {(0, 0, 0)},
then dim (C(Y ) ∩ C(H)) = 0, which is a contradiction. Therefore

C(Y ) ∩ C(H) has some point other than (0, 0, 0) and thus Y ∩ H 6= ∅.

Exercise 3.0.37. Let Hi and Hj be the hyperplanes in Pn defined by xi = 0 and

xj = 0, with i 6= j. Show that any regular function on Pn − (Hi ∩ Hj) is constant.

Solution:

Let X = Pn \ (Hi ∩ Hj). Therefore X consists of points in Pn where either xi 6= 0

or xj 6= 0. Therefore X = Ui ∪ Uj where Ui = Z(xi)
c and Uj = Z(xj)

c. We have

that f ∈ A(Ui) = k
[
x0

xi
, . . . , xn

xi

]
which implies that f = g/xri on Ui where

g ∈ k[x0, . . . , xn] and r = deg (g). Similarly we get that f = h/xsj on Uj where

h ∈ k[x0, . . . , xn] and s = deg (h). Also, on Ui ∩ Uj we get that xsjg = xrih. Using

the fact that k[x0, . . . , xn] is a unique factorization domain we get that r = s = 0.

Therefore f = g = h which are degree 0 polynomials and hence constants.

Therefore f ∈ k.
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Exercise 3.0.38. The homogeneous coordinate ring of a projective variety is not

invariant under isomorphism. For example, let X = P1 and let Y be the 2−uple

embedding of P1 in P2. Then X ∼= Y . But show that S(X) � S(Y ).

Solution:

Let ρ2 : P1 −→ P2 be the 2-uple embedding map. Then ρ2 is given by

(a, b) 7→ (a2, ab, b2). Also, ρ2(P1) = Z(y2 − xz). Let X = P1 and Y = ρ2(P1).

From exercise 3.4, we know that Y ∼= X. We know that S(X) = k[t, u] and

S(Y ) = k[x, y, z]/(y2 − xz). Let R denote k[x, y, z]/(y2 − xz). We have to show

that k[x, y] 6∼= R. We know from Hilbert Nullstellensatz that every maximal ideal

of k[t, u] is generated by two elements. We construct a maximal ideal in R which is

not generated by two elements which will prove that R is not isomorphic to k[u, t].

Let us denote the polynomial y2 − xz by f . Consider the maximal ideal

M = (x, y, z) of the polynomial ring k[x, y, z]. Then clearly f ∈ M2. We have

that M/(f) is a maximal ideal of R. Let this ideal be denoted by m. Then we claim

that m is not generated by two elements. Assume the contrary. Let g, h k[x, y, z] be

polynomials such that m = (g, h). This implies that M = (f, g, h). But we know

that M/M2 is a three dimensional vector space over k. We also know that if

M = (f, g, h), then M/M2 is generated by f, g, h as a k vector space. But since

f = 0, we have that M/M2 is generated by g, h which is a contradiction since

M/M2 is a three dimensional vector space. Therefore m is not generated by two

elements. This proves that k[x, y, z]/(y2 − xz) 6∼= k[u, t].

Exercise 3.0.39 (Subvarieties). A subset of a topological space is called locally closed

if its is an open subset of its closure, or, equivalently, if it is the intersection of an

open set with a closed set.

If X is a quasi affine (or a quasi projective) variety and if Y is an irreducible locally

closed subset, then Y is also quasi affine( respectively, quasi projective) variety, by

virtue of being a locally closed subset of the same affine or projective space. We call

this the induced structure on Y and we call Y a subvariety of X.

Now let ϕ : X −→ Y be a morphism, let X
′ ⊂ X and Y

′ ⊂ Y be irreducible

locally closed subsets such that ϕ(X
′
) ⊂ Y

′
. Show that ϕ|X′ : X

′ −→ Y
′

is a

morphism.
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Solution:

Consider the map ϕ ◦ i : X
′ −→ Y where i is the inclusion morphism X

′
↪→ X.

Since the composition of morphisms is a morphism, we get that ϕ ◦ i is a

morphism. Let ϕ ◦ i be denoted by ϕ
′
. Since ϕ(X

′
) ⊂ Y

′
, we know that

Imϕ
′ ⊂ Y

′
. Now consider the map ϕ|X′ : X

′ −→ Y
′

defined by restricting the

co-domain of ϕ
′

to Y
′
. This map is also clearly a morphism.

Exercise 3.0.40. Let X be any variety and let P ∈ X. Show there is a 1-1 corre-

spondence between the prime ideals of the local ring OP and the closed sub-varieties

of X containing P .

Solution:

Case 1: Suppose X is a quasi-affine variety. Suppose X is an open subset of the

affine variety Z ⊂ An. From theorem 3.2, we know that the prime ideals of OP are

in 1-1 correspondence with the prime ideals A(Z) contained in mP . But the prime

ideals p of A(Z), contained in mP , correspond to the varieties Y of Z containing P .

Therefore there is a 1-1 correspondence between the prime ideals of OP and the

varieties of Z containing P .

But if Y is a variety of Z, then Y ∩ X is an irreducible locally closed subset of X.

Also, if Y1 and Y2 are two varieties of Z such that Y1 ∩ X = Y2 ∩ X then Y1 = Y2.

Because if Y1 6= Y2, then A = Y1 ∩ Y2 and B = (Y1 ∩ X)c are two proper closed

subsets of Y1 such that Y1 = A ∪ B which contradicts the irreducibility of Y1.

Therefore, there is a 1-1 correspondence between the varieties of Z containing P

and the closed sub-varieties of X containing P . This implies that there is a 1-1

correspondence between the prime ideals of OP and the closed sub-varieties of X

containing P .

Case 2: Suppose X is a quasi-projective variety. Suppose X is an open subset of the

projective variety Z ⊂ Pn. From theorem 3.4, we know that the prime ideals of OP
are in 1-1 correspondence with the homogeneous prime ideals of S(Y ) contained in

mP . But the homogeneous prime ideals p of A(Z), contained in mP , correspond to

the varieties Y of Z containing P . Therefore there is a 1-1 correspondence between

the prime ideals of OP and the varieties of Z containing P .

Now, arguing as in the quasi-affine case, we get that there is a 1-1 correspondence

between the prime ideals of OP and the varieties of Z containing P .
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Exercise 3.0.41. If P is a point on the variety X, then the dimOP = dimX.

Solution:

If X is an affine variety, then the result is the same as proposition 3.2(c). Suppose

X ⊂ Pn is a projective variety, then it is covered by a finite number of affine open

subsets {Ui}n+1
i−=1 of Pn. Since P ∈ X, P ∈ Ui for some i = 1, . . . , n + 1.

Without loss of generality, we may assume that P ∈ U1. Then we know that

OP,U1 = OP,X . Since U1 is an affine variety, we get from proposition 3.2(c) that

dimU1 = dimOP,U1 = dimOP,X . From the exercise 1.10 we know that if {Ui}
forms an open cover of a irreducible noetherian space, then Ui ∩ X 6= ∅ implies

that dimUi = dimX. Therefore dimOP,X = dimX.

Exercise 3.0.42 (The Local Ring of a Subvariety). Let Y ⊂ X be a subvariety. Let

OY,X be the set of equivalence classes (U, f) where U ⊂ X is open, U ∩ Y 6= ∅,
and f is a regular function on U . We say (U, f) is equivalent to (V, g), if f = g

on U ∩ V Show that OY,X is a local ring with residue field K(Y ) and dimension

= dimX − dimY . It is the local ring of Y on X. Note if Y = P is a point we get

OP , and if Y = X we get K(X). Note also that if Y is not a point, then K(Y ) is

not algebraically closed, so in this way we get local rings whose residue fields are not

algebraically closed.

Solution:

Let mY denote the ideal {(U, f) ∈ OY,X | f(x) = 0∀x ∈ U ∩ Y }. We prove that

any element of OY,X not in mY is a unit which proves that OY,X is a local ring with

maximal ideal mY . Suppose (U, f) 6∈ mY . Then f 6= 0 on U ∩ Y . Therefore

∃P ∈ Y ∩ U such that f(P ) 6= 0. Since f is regular on U , there exists a

neighbourhood V of P in U such that f = f1
f2

on V . Let g = f2
f1

. Consider

(g, V )(f, U) = (fg, V ∩ U) = (Id, V ∩ U). Therefore (f, U) is a unit in OY,X .

We now claim that OY,X/mY
∼= K(Y ). Consider an element (U, f) ∈ OY,X .

Therefore f is a regular function on U . Therefore f is regular on U ∩ Y which is an

open subset of Y . We define a map ϕ : OY,X −→ K(Y ) by ϕ(U, f) = (U ∩ Y, f).

It can be checked that this ring homomorphism. Now consider an element in K(Y ).

It is an equivalence class of the form (V, f) where V is a non empty open subset of

Y and f is a regular function on V and where two pairs (V1, f1) and (V2, f2) are

identified if f1 = f2 on V1 ∩ V2. Since f is regular on V for any point P ∈ V , we
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can find a open neighbourhood V0, open in V , of P such that f = h/g on V0. Since

P ∈ V ∩ D(g), we have that V ∩ D(g) 6= ∅. Also, (V, f) = (V ∩ D(g), f). Also,

D(g) ∩ Y 6= ∅ and (D(g) ∩ Y, h/g) = (V, f). Therefore we have that

ϕ(D(g), h/g) = (D(g) ∩ Y, h/g) = (V, f) proving that ϕ is surjective.

Consider any element (U, f) ∈ mY . Then ϕ(U, f) = (U ∩ Y, f) = 0. Therefore

mY ⊂ ker ϕ. Since mY is a maximal ideal, we get that mY = ker ϕ. Therefore

K(Y ) ∼= OY,X/mY and hence K(Y ) is the residue field of OY,X .

Suppose X is a projective variety. Let {Xi} be the open cover of X by affine open

subsets where Xi = Ui ∩ X and Ui is as defined before proposition 2.2. Then

{Y ∩ Xi} is a cover of Y by affine open subsets. Also, Y ∩ Xi = Y ∩ Ui. Let

Y ∩ Xi be denoted by Yi. Now Yi 6= ∅ implies that Xi 6= ∅. Also, by definition of

the local ring OY,X we know that OY,X ∼= OYi, Xi . Also, from the solution to the

exercise 2.6 we know that dimX = dimXi and dimY = dimYi. Therefore it is

enough if we prove that dimension of OY,X is equal to dimX − dimY in the case

when X is a affine variety.

Let us assume that X is an affine variety. For this we make the claim that

OY,X ∼= A(X)I where I is the prime ideal of regular functions on X vanishing on

Y . Any element of A(X)I is of the form f/g where g is a polynomial which does

not vanish on Y . Let U = D(g). Then U ∩ Y 6= ∅. Define ϕ : A(X)I −→ OY,X
by sending the f/g to the equivalence class (U, f/g). Suppose f1/g1 and f2/g2 are

two elements of A(X)I such that (f1/g1, U1) = (f2/g2, U2) where U1 = D(g1) and

U2 = D(g2). Then f1/g1 = f2/g2 on U1 ∩ U2. Now X \ (U1 ∩ U2) is a closed set

and hence is of the form Z(h1, . . . , hl) for some polynomials hi. Therefore for any

i = 1, . . . , l we have hi (f1g2 − f2g1) = 0. Since Y ∩ (U1 ∩ U2) 6= ∅, hi 6∈ I for

any i = 1, . . . , l. Therefore f1/g1 = f2/g2 in A(X)I . Therefore the map is

injective.

Consider any element (U, f) where f is a regular function on U . Then for any point

P ∈ U , there exists a neighbourhood V ⊂ U containing P such that f = f1/g1 on

V and g 6≡ 0 on V . Since g1(P ) 6= 0, we have that g 6∈ I. We claim that (U, f) is

the image of f1/g1. But we know that the image of f1/g1 is (U0, f1/g1) where

U0 = D(g1). Therefore it is enough to prove that f = f1/g1 on U ∩ U0. But we

can take V = U0 ∩ U which proves the claim. Therefore dimOY,X = ht(I). Recall

that A(X)/I = A(Y ). Then it follows that dimOY,X = ht (I) =
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dimA(X) − dimA(Y ) = dimX − dimY .

Exercise 3.0.43 (Projection from a point). Let Pn be a hyperplane in Pn+1 and let

P ∈ Pn+1 − Pn. Define a mapping ϕ : Pn+1 − {P} −→ Pn by ϕ(Q) = the

intersection of the unique line containing P and Q with Pn.

(a) Show that ϕ is a morphism.

(b) Let Y ⊂ P3 be the twisted cubic curve which is the image of the 3−uple embedding

of P1. If t, u are the homogeneous coordinates of P1, we say that Y is the curve

given parametrically by (x, y, z, w) = (t3, t2u, tu2, u3). Let P = (0, 0, 1, 0),

and let P2 be the hyperplane z = 0. Show that the projection of Y from P is the

cuspidal cubic curve and find its equation in the plane.

Solution:

(a) We are given that Pn is a hyperplane in Pn+1 and P ∈ Pn+1 r Pn. Suppose

the coordinates of Pn+1 are given by x0, . . . , xn. By a linear change of

coordinates, we may assume that Pn is given by xn = 0 and that

P = (0 : 0 : . . . : 1). Suppose Q ∈ Pn+1 r {P} is given by (z0 : . . . : zn).

Then ϕ(Q) = (z0 : . . . : zn− 1). We now prove that the map ϕ is continuous.

Any closed subset of Pn is of the form Z(a) for some ideal a = (f1, . . . , fr) of

k[x0, . . . , xn]. We claim that ϕ−1(Z(a)) = b where b is the ideal of

k[x0, . . . , xn+1] generated by the elements f1, . . . , fr when considered as

polynomials of k[x0, . . . , xn+1]. Suppose T = (t0 : . . . : tn+1) ∈ Z(b). Then

for each i = 1, . . . , r, fi(T ) = 0 i.e, f(t0, . . . , tn) = 0. Therefore ϕ(T ) ∈ Z(a)

which implies that T ∈ ϕ−1(Z(a)). Conversely, assume that

T = (t0 : . . . : tn+1) ∈ ϕ−1(Z(a)). Let S = ϕ(T ). Then S = (t0 : . . . : tn)

and S ∈ Z(a). Therefore for each i = 1, . . . , r, we have fi(S) = 0 and

therefore T ∈ Z(b).

To prove that ϕ is a morphism consider any open subset U of Pn and a regular

function f : U −→ k. Let P ∈ U be any point. Then there exists an open

neighbourhood of W ⊂ U of P such that f =
f1

f2

where f1, f2 ∈ k[x0, . . . , xn].

We have
f1

f2

◦ ϕ =
f1

f2

where f1, f2 are considered as polynomials in

k[x0, . . . , xn+1]. Therefore for any point ϕ−1(P ) ∈ ϕ−1(U), there exists a
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neighbourhood ϕ−1(W ) such that f ◦ ϕ =
f1

f2

for some polynomials

f1, f2 ∈ k[x0, . . . , xn+1]. Therefore f ◦ ϕ : ϕ−1(U) −→ k is a regular function

and therefore ϕ is a morphism.

(b) The map ϕ : P3 r P :−→ P2 where P = (0, 0, 1, 0) is given by

(x : y : z : w) 7→ (x : y : w). If Y is the twisted cubic curve, parametrized by

(x : y : z : w) = (t3 : t2u : tu2 : u3), then the projection of Y from P is

parametrized by (x : y : z) = (t3 : t2u : u3). Let Z denote the projection of Y

from P . Then clearly Z ⊂ Z(y3 − x2w). Now consider any point

Q = (x : y : w) ∈ Z(y3 − x2w). When x = 0, the point Q = (0 : 0 : w) for

arbitrary values of w. Consider the case when x 6= 0. We can assume that

x = 1. Therefore the point is of the form (1 : y : y3) for arbitrary values of y.

Put y = u
t
. Then (1 : y : y3) = (t3 : t2u : u3). In the case when t = 0, this is

equal to the point (0 : 0 : w). Therefore we have that Z ⊂ Z(y3 − x2w).

Therefore projection from P is equal to Z(y3 − x2w) which is the twisted cubic

curve.

Exercise 3.0.44 (Product of Affine Varieties). Let X ⊂ An and Y ⊂ Am be affine

varieties.

(a) Show that X × Y ⊂ An+m with its induced topology is irreducible.

(b) Show that A(X × Y ) ∼= A(X) ⊗k A(Y ).

(c) Show that X × Y is a product in the category of varieties, i.e., show (i) the

projections p1 : X × Y −→ X and p2 : X × Y −→ Y are morphisms, and (ii)

given a variety Z, and the morphisms ϕ1 : Z −→ X, ϕ2 : Z −→ Y , there is a

unique morphism ϕ : Z −→ X × Y such that pi ◦ ϕ = ϕi for i = 1, 2.

(d) Show that dimX × Y = dimX + dimY .

Solution:

(a) Suppose X × Y is the union of two closed sets Z1 ∪ Z2. Let

Xi = {x ∈ X | x × Y ⊂ Zi}, i = 1, 2. We claim that X = X1 ∪ X2. It is

clear that X1 ∪ X2 ⊂ X. Conversely, consider a point x ∈ X. Then

(x × Y ) ∩ Zi is a closed subset of X × Y because it is the intersection of two
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closed subsets Zi and x × Y . Also, it is clear that x × Y =

((x × Y ) ∩ Z1) ∪ ((x × Y ) ∩ Z2). Since Y is irreducible and x × Y is the

homeomorphic image of Y , x × Y is irreducible. Therefore

x × Y = (x × Y ) ∩ Zi for either i = 1, 2. Therefore x × Y ⊂ Zi for either

i = 1, 2. Therefore x ∈ X1 ∪ X2. Hence X = X1 ∪ X2.

We now prove that Xi are closed subsets of X. Let Ui = X ⊂ Xi and

Vi = X × Y ⊂ Zi. We now claim that P (Vi) = Ui. Since Vi is open subset of

X × Y and since P is an open map, this proves that Ui is an open subset of X

and hence that Xi is an closed subset of X. Consider the case when i = 1.

Consider a point a ∈ P (V1). Therefore there exists a point b ∈ Y such that

a × b ∈ V1. Suppose that a ∈ X1. Then a × Y ⊂ Z1 which implies that

a × b ∈ Z1 which is a contradiction. Therefore a 6∈ X1 and hence P (V1) ⊂ U1.

Conversely let a ∈ U1. Since a 6∈ X1, we have that a × Y 6⊂ Z1. Therefore

there exists a point b ∈ Y such that a × b 6∈ Z1. Therefore a × b ∈ V1 and

hence a ∈ P (V1). This proves that P (V1) = U1. Similarly we can prove that

P (V2) = U2.

Since X is irreducible X = Xi for either i = 1, 2. Therefore X × Y = Zi for

either i = 1, 2 and hence X × Y is irreducible.

(b) To prove that A(X × Y ) ∼= A(X) ⊗k A(Y ), we first define a map

F : A(X) × A(Y ) −→ A(X × Y ) given by sending the ordered pair (f, g) to

the element f × g ∈ A(X × Y ) where f × g is the defined by

f × g(x, y) = f(x)g(y). Clearly this map is a bilinear map and hence by the

universal property of tensor product there exists a unique homomorphism

F̃ : A(X) ⊗k A(Y ) −→ A(X × Y ) given by f ⊗ g 7→ f × g.

Now A(X × Y ) is generated as a k-algebra by the elements {xi}ni=1 and

{yj}mj=1 where xi = XimodI(X × Y ) and yj = YjmodI(X × Y ) where Xi

and Yj are the coordinate functions of An and Am respectively. Clearly

F̃ (xi × 1) = xi for i = 1, . . . , n and F̃ (1 × yj) yj for j = 1, . . . , m. Therefore

the map F̃ is surjective.

To prove that F̃ is injective consider an element f ⊗ g ∈ A(X) ⊗ A(Y ) such
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that F̃ (f ⊗ g) = 0. Therefore f × g = 0. Therefore f(x)g(y) = 0 for all

x ∈ X and y ∈ Y . Therefore either f = 0 or g = 0. Therefore f ⊗ g = 0.

(c) From lemma 3.6, we get that the projection maps are morphisms. Suppose ϕ, φ

are two morphism from Z to X × Y such that pi ◦ ϕ = ϕi and pi ◦ φ = ϕi for

i = 1, 2. Since for any z ∈ Z, pi(ϕ(z)) = pi(φ(z)) for i = 1, 2, we get that

ϕ = φ. Therefore if such a map exists, it is unique.

Define a map ϕ = ϕ1 × ϕ2 : Z −→ X × Y by ϕ(z) = (ϕ1(z), ϕ2(z)). This

map clearly satisfies the property pi ◦ ϕ = ϕi. Since X is a affine variety, we

know from Lemma 3.6 that there exist n regular functions f1, . . . , fn ∈ A(X)

such that ϕ1 = (f1, . . . , fn). Similarly there exist m regular functions

g1, . . . , gm ∈ A(Y ) such that ϕ2 = (g1, . . . , gm). Therefore

ϕ = (f1, . . . , fn, g1, . . . , gm) and hence is a morphism.

(d) We have that A(X × Y ) = A(X) ⊗k A(Y ). Therefore we have to prove that

dimA(X) ⊗k A(Y ) = dimA(X) + dimA(Y ). Let dimA(X) = r and

dimA(Y ) = s. We know that A(X) and A(Y ) are finitely generated k-algebras.

Suppose A(X) is generated by x1, x2, . . . , xm over k as an algebra such that

x1, . . . , xr are algebraically independent. Similarly assume that A(Y ) is

generated by y1, . . . , yn over k as an algebra such that y1, . . . , ys are

algebraically independent.

We claim that A(X) ⊗ A(Y ) is generated by x1 ⊗ 1, . . . , xm ⊗ 1

1 ⊗ y1, . . . , 1 ⊗ yn over k as an algebra. We know that A(X) ⊗ A(Y ) is

generated by elements of the form a ⊗ b as a k-module (i.e, k-vector space)

where a ∈ A(X) and b ∈ A(Y ). But a ⊗ b = (a ⊗ 1)(1 ⊗ b). We know that

a ⊗ 1 is given by a polynomial in xi ⊗ 1 and 1 ⊗ b is given by a polynomial in

1 ⊗ yj. Therefore a ⊗ b is given by a polynomial in xi ⊗ 1 and 1 ⊗ yj.

Therefore A(X) ⊗k A(Y ) is generated by

x1 ⊗ 1, . . . , xm ⊗ 1, 1 ⊗ y1, . . . , 1 ⊗ yn as a k-algebra.

We now claim that x1 ⊗ 1, . . . , xr ⊗ 1, 1 ⊗ y1, . . . , 1 ⊗ ys are algebraically

independent.

Suppose
∑
aα1...αrβ1...βs (x1 ⊗ 1)α1 . . . (xr ⊗ 1)αr(1 ⊗ y1)

β1 . . . (1 ⊗ ys)
βs = 0

for some aα1...αrβ1...βs ∈ k. Then for any point (u1, . . . , um) ∈ X we have that
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∑
aα1...αrβ1...βs (uα1

1 . . . uαrr )(1 ⊗ yβ1
1 . . . yβss ) = 0. We know that in the tensor

product of k-algebras, 1 ⊗ y = 0 if and only if y = 0. We use this fact along

with the fact that the yi are algebraically independent to conclude that in the

above summation each of the coefficients ai(u1, . . . , um), which is a polynomial

in ui with coefficients from among the aα1...αrβ1 ... βs , is 0. But this is true for

each (u1, . . . , um) ∈ X. Hence each of the polynomials ai(x1, . . . , xm) = 0.

We now use the fact that xi are algebraically independent to conclude that each

of the aα1 ... αr β1 ... βs = 0. Therefore we get that

x1 ⊗ 1, . . . , xr ⊗ 1, 1 ⊗ y1, . . . , 1 ⊗ ys, are algebraically independent. This

proves that the dimX × Y ≥ dimX + dimY .

Suppose after some relabelling of the xi we get that x1 ⊗ 1, . . . , xt ⊗ 1,

1 ⊗ y1, . . . 1 ⊗ ys are algebraically independent for some t < r. We claim that

this implies that x1, . . . , xt are algebraically independent which is not true since

the dimension of A(X) is r > t. Suppose x1, . . . , xt are algebraically

dependent. Then there exist {aα1 ... αt} not all zero, such that∑
aα1 ... αt x

α1
1 . . . xαtt = 0. Therefore 1 ⊗

∑
aα1 ... α2 x

α1
1 . . . xαtt = 0 which

implies that
∑
aα1 ... αt(1 ⊗ x1)

α1 . . . (1 ⊗ xt)
αt = 0. But this implies that

x1 ⊗ 1, . . . , xt ⊗ 1, 1 ⊗ y1, . . . 1 ⊗ ys are algebraically dependent. Therefore

x1 ⊗ 1, . . . , xt ⊗ 1, 1 ⊗ y1, . . . 1 ⊗ ys are algebraically dependent for any

t < r.

Similarly if we suppose that after some relabelling of the yj that

x1 ⊗ 1, . . . , xr ⊗ 1, 1 ⊗ y1, . . . 1 ⊗ yu are algebraically independent for some

u < s. Then by an argument similar to above we get a contradiction. Therefore

x1 ⊗ 1, . . . , xr ⊗ 1, 1 ⊗ y1, . . . 1 ⊗ ys is the smallest algebraically independent

subset from x1 ⊗ 1, . . . , xm ⊗ 1, 1 ⊗ y1, . . . 1 ⊗ yn. This proves that

dimX × Y = dimX + dimY .

Exercise 3.0.45 (Product of Quasi-projective Varieties). Use the Segre embedding

to identify Pn × Pm with its image and hence give it the structure of a projective

variety. Now for any two quasi-projective varieties X ⊂ Pn and Y ⊂ Pm, consider

X × Y ⊂ Pn × Pm.

(a) Show that X × Y is a quasi-projective variety.

(b) If X and Y are both projective, show that X × Y is projective.
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(c) Show that X × Y is a product in the category of varieties.

Solution:

We first prove (b) and then use the proof to give a proof of (a).

(b) It is clear that X × Y = (X × Pm) ∩ (Pn × Y ). We now claim that X × Pm

and Pn × Y are closed subsets of Pn × Pm which will prove that X × Y is a closed

subset of Pn × Pm. Let X = Z(a) and Y = Z(b). Let the homogeneous

coordinates of PN be {zij | i = 0, . . . n ; j = 0, . . . m}. Suppose a = 〈f1, . . . , fr〉
for some homogeneous polynomials fl ∈ k[x0, . . . , m]. For each l = 1, . . . , r and

j = 0, . . . , m, define flj = fl(z0j, z1j, . . . znj) ∈ k[{zij}]. For each j = 0, . . . m

define aj ⊂ k[{zij}] to be the ideal 〈f1j, . . . , frj〉.

We claim that X × Pm =
⋂m
j=0Z(aj) and hence is a closed subset of Pn × Pm.

Let ϕ : Pn × Pm −→ PN be the Segre embedding. Consider a point

ϕ(a, b) ∈ X × Pm. Then a ∈ X and ϕ(a, b) = (a0b0, a0b1, . . . , aibj, . . . , anbm) in

the lexicographic order. Suppose bj 6= 0. To illustrate the point we consider the

case when i = 0. Then ϕ(a × b) = (a0, a0b1/b0, . . . , ai, . . . , an, . . . , anbm/b0).

Therefore ϕ(a, b) ∈ Z(a0). Also when b0 = 0, it is very clear that ϕ(a, b) ∈ Z(a0).

Therefore ϕ(a, b) ∈
⋂m
j=0Z(aj) and hence X × Pm ⊂

⋂m
j=0Z(aj).

Conversely let ϕ(a, b) ∈
⋂m
j=0Z(aj). Suppose bj 6= 0. Since ϕ(a, b) ∈ Z(aj), for

each l = 1, . . . , r, flj(ϕ(a, b)) = 0. But flj(ϕ(a, b)) = fl(a0bj, a1bj, . . . , anbj) =

bjfl(a0, . . . , an) since fl are homogeneous polynomials. Since bj 6= 0, we get that

fl(a0, . . . , an) = 0 for each l = 1, . . . , r. Therefore a ∈ Z(a) = X and hence

ϕ(a, b) ∈ X × Pm proving that X × Pm =
⋂m
j=0Z(aj). We can similarly prove

that Pn × Y is a closed subset of Pn × Pm.

(a) Suppose X is an open subset of the projective variety X0 and Y is an open

subset of the projective variety Y0. Let X0 \ X = C and Y0 \ Y = D. Since D is a

closed subset of Y0, we know that D is of the form D0 ∩ Y0 for some closed subset

D0 of Pm. Now, X0 × D = (X0 × Y0) ∩ (X0 × D). We know from part (a) that

X0 × D is a closed subset of Pn × Pm and therefore X0 × D is a closed subset of

X0 × Y0. We can similarly prove that C × Y0 is a closed subset of X0 × Y0.

We now claim that X0 × Y0 = (X × Y ) ∪ (X0 × D) ∪ (C × Y0). It is clear that

(X × Y ) ∪ (X0 × D) ∪ (C × Y0) ⊂ X0 × Y0. Conversely, suppose that

ϕ(a, b) ∈ X0 × Y0. If a ∈ X and b ∈ Y , then ϕ(a, b) ∈ X × Y . If b ∈ Y0 \ Y ,
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then ϕ(a, b) ∈ X0 × D and if a ∈ X0 \ X, then ϕ(a, b) ∈ C × Y0. Therefore

ϕ(a, b) ∈ (X × Y ) ∪ (X0 × D) ∪ (C × Y0). This proves the claim.

We now claim that (X0 × D) ∪ (C × Y0) ∪ (X × Y ) = ∅. Suppose

ϕ(a, b) ∈ (X0 × D) ∪ (C × Y0) ∪ (X × Y ). Since ϕ(a, b) ∈ X × Y , we have that

a ∈ X and b ∈ Y . Now ϕ(a, b) also belongs to (X0 × D) ∪ (C × Y0). Consider

the case when ϕ(a, b) ∈ X0 × D. Therefore b ∈ D and we get a contradiction.

Similarly if ϕ(a, b) ∈ C × Y0, we get a contradiction. This proves the claim.

Now, X × Y = (X0 × Y0) \ (X0 × D ∪ C × Y0). Since X0 × D ∪ C × Y0 is a

closed subset of X0 × Y0, we get that X × Y is an open subset of X0 × Y0 and

hence is a quasi-projective variety.

(c) Let the Segre embedding of Pn × Pm in PN where N = nm + n + m be

denoted by σ. Let a = (a0, a1, . . . , an) ∈ X and b = (b0, . . . , bm) ∈ Y be any two

points. We may assume that a0 6= 0 and b0 6= 0. Consider the point

σ(a × b) = (a0b0, a0b1, . . . , anbm) ∈ X × Y . Let P1 : X × Y −→ X be the map

defined by (a0b0, a0b1, . . . , anbm) 7→ (a0b0, a1b0, . . . anb0) and P2 : X × Y −→ Y

be the map defined by (a0b0, a0b1, . . . , anbm) 7→ (a0b0, a0b1, . . . a0bm). Since these

maps are defined by polynomials locally they are morphisms. These maps are the

projection maps.

Let ϕ1 : Z −→ X and ϕ2 : Z −→ Y be any two morphisms. Define a map

F : Z −→ X × Y by z 7→ (a0b0, a0b1, . . . , anbm) where

ϕ1(z) = (a0, . . . , an) = a and ϕ2(z) = (b0, b1, . . . , bm) = b. We claim that this

map is morphism. It is enough to prove that this map is locally defined by quotients

of polynomial functions. We know that for any point a ∈ X and b ∈ Y we have

affine open neighbourhoods U ⊂ X and Y ⊂ Y containing a and b respectively

such that the product of affine varieties U × V is isomorphic to σ(U × V ). Let

W = ϕ−1
1 (U) ∩ ϕ−1

2 (V ) ⊂ Z. Then the restriction of ϕ1 to W , ϕ1|W : W −→ U

is a morphism where U is an affine variety. Therefore ϕ1|W is defined by polynomial

functions. Similarly the restriction of ϕ2 to W , ϕ2|W : W −→ V is defined by

polynomial functions. Now, the restriction of F to W , F |W : W −→ U × V is

given by z 7→ σ0(ϕ
′
1(z), ϕ

′
2(z)) where σ0 = σ|U ×V , ϕ

′
1 = ϕ1|W and ϕ

′
2 = ϕ2|W .

Since σ0, ϕ1|W and ϕ2|W are morphisms of affine varieties and hence are given by

polynomial functions and hence F |W is given by polynomial functions. Hence we

have that F is given by polynomial functions locally and hence F is a morphism.
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Also, P1 ◦ F = ϕ1 and P2 ◦ F = ϕ2. Hence X × Y is a product in the category of

varieties.

Exercise 3.0.46 (Normal Variety). A variety X is said too be Normal at a point

P ∈ X if OP is integrally closed. X is normal if it is normal at every point.

(a) Show that every conic in P2 is normal.

(b) Show that the quadric surfaces Q1, Q2 given by Q1 : xy = zw; Q2 ; xy = z2 are

normal.

(c) Show that the cuspidal cubic y2 = x3 in A2 is not normal.

(d) If Y is affine, then Y is normal if and only if A(Y ) is integrally closed.

(e) Let Y be an affine variety. Show that there exists a normal affine variety Ỹ and

a morphism π : Ỹ −→ Y with the property that whenever Z is a normal variety

and ϕ : Z −→ Y is a dominant morphism (i.e., ϕ(Z) is dense in Y ), then

there is a unique morphism θ : Z −→ Ỹ such that ϕ = π ◦ θ. Ỹ is called the

normalization of Y .

Solution:

(a) From Exercise 3.1 we know that every conic C in P2 is isomorphic to P1 and

hence S(C) ∼= k[x, y]. If we consider any point P ∈ C then from Theorem 3.4 we

know that OP ∼= k[x, y](mP ). But from the proof of the same theorem we know that

k[x, y](mP )
∼= k[x]m′P

where m
′
P is the ideal of A(Yi) = k[x] corresponding to P and

Yi is the affine open subset of P1 containing P . But k[x]m′P
is a discrete valuation

ring and hence is integrally closed. This proves that OP is integrally closed for

P ∈ C and hence any conic C in P2 is normal.

We first prove (d) and then apply it to prove (c).

(d) From theorem 3.2 we know that for any point P ∈ Y ⊂ An, OP ∼= A(Y )mP

where mP ⊂ A(Y ) is the ideal of functions vanishing at P . Also, there is a 1-1

correspondence between ideals of A(Y ) and points of Y . Suppose Y is a normal

variety, i.e., Y is normal at every point P ∈ Y . Then OP = A(Y )mP is integrally

closed for each maximal ideal mP of Y . But we know that an integral domain R is
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integrally closed if and only if RM is integrally closed for each maximal ideal M of

R. Therefore Y is normal if and only if A(Y ) is integrally closed.

(c) In the view of the above, to prove that Y is not normal it is enough to prove

that A(Y ) is not integrally closed. When Y = Z(y2 − x3) ⊂ A2,

A(Y ) = k[x, y]/(y2 − x3). Let k(Y ) denote the field of fractions of A(Y ). Consider

the element t = y/x ∈ k(Y ). Clearly t2 = x in A(Y ). Therefore t is an integral

element of k(Y ). But t ∈ A(Y ). Therefore A(Y ) is not integrally closed and hence

Y is not normal.

(e) Let A(Y ) denote the coordinate ring of Y and let k(Y ) denote the field of

fractions of A(Y ). Let A denote the integral closure of A(Y ) in k(Y ). Then we

know that A is an integrally closed. We claim that A = A(X) for some affine

variety X. To prove this it is enough to rove that A is a finitely generated k-algebra

with no nilpotent elements. Since Y is a variety, I(Y ) is a prime ideal and hence

the nilradical of A(Y ) is the zero ideal From theorem 3.9 A, we know that A is

finitely generated as an A(Y ) module and hence the nilradical of A is the zero ideal.

Therefore A has no nilpotent elements. Also, from theorem 3.9 A, A is a finitely

generated k-algebra. Therefore A = A(X) for some affine variety X. Also, since A

is integrally closed we have that X is a normal variety. We claim that X satisfies

the property stated in the exercise.

We know that when ϕ : Z −→ Y is any morphism of affine varieties, then the

induced homomorphism of the affine algebras ϕ̃ : A(Y ) −→ A(Z) is injective if and

only if ϕ(Z) is a dense subset of Y . Therefore, in the view of theorem 3.5, the

property of the variety Ỹ stated in the exercise is the same as saying this: There

exists a homomorphism fπ : A(Y ) −→ A(Ỹ ) with the property that whenever

A(Z) is a integrally closed ring and fϕ : A(Ỹ ) −→ A(Z) is an injective

homomorphism, then there exists a unique homomorphism fθ : A(Y ) −→ A(Z)

such that fϕ ◦ fπ = fθ. Let fπ be the inclusion map. Since fϕ is an injective

morphism, we have that the homomorphic image of A(Y ) is isomorphic to A(Ỹ ).

Let B = fϕ(A(Y )). Then B ⊂ A(Z) where A(Z) is integrally closed. Therefore

A(Z) ⊂ B̃, where B̃ represents the algebraic closure of B. But B̃ is isomorphic to

A(Ỹ ). Let fθ be the homomorphism. Then we have that fθ ◦ fπ = fϕ.
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Exercise 3.0.47 (Projectively Normal Varieties). A projective variety Y ⊂ Pn is

projectively normal (with respect to the given embedding) if its homogeneous coordinate

ring S(Y ) is integrally closed. If Y is projectively normal, then Y is normal.

Solution:

We want to prove that OP is normal for any point P ∈ Y . We know that

S(Y ) = k[X0, . . . , Xn]/I(Y ) has a graded structure. Let S(Y ) = ⊕
∑∞

i=0 Si

where S0 = k. Also, S(Y ) is a finitely generated as an algebra over k by x0, . . . , xn

where xi ≡ Ximod I(Y ). Let mP be the ideal generated by the set of homogeneous

polynomials f ∈ S(Y ) such that f(P ) = 0. Let T be the set of homogeneous

elements of S(Y ) not in mP . Then T−1S(Y ) has graded structure. Let

T−1S(Y ) = ⊕
∑∞

i=−∞ Ri. Using the notation fixed before Theorem 3.4 we denote

R0 by S(Y )(mP ). Then from Theorem 3.4 we know that OP = S(Y )mP . Now, mP is

a prime ideal of S(Y ) such that mP ( (x0, . . . , xn). Therefore there exists an i

such that xi 6∈ mP . Without loss of generality, we may assume that x0 6∈ mP . Let

U be the multiplicatively closed subset {1, x0, x
2
0, . . .}. Then clearly U−1S(Y ) has a

graded structure. Let the U−1S(Y ) = ⊕
∑∞

i=−∞ R
′
i. Then clearly

U−1S(Y ) = R
′
0[x0, x

−1
0 ].

We now make two claims.

Claim 1: x0 is transcendental over R
′
0 which implies that U−1S is the Laurent

polynomial ring over R
′
0.

Claim 2: R0 is a localization of R
′
0.

Suppose we prove these two claims. Then the proof proceeds as follows. Since S(Y )

is integrally closed, U−1S(Y ) is integrally closed. But U−1S(Y ) = R
′
0[x0, x

−1
0 ].

Therefore R
′
0 is integrally closed. Since R0 is a localization of R

′
0 we get that R0 is

integrally closed.

To prove the first claim: Suppose x0 is the root of a polynomial with coefficients in

R
′
0. Suppose

fn

xdn0
xn0 +

fn−1

x
dn−1

0

xn−1
0 + . . . +

f0

xd00

= 0 ∈ U−1S(Y ) where fi are

homogeneous polynomials of degree di in S(Y ). Let d = max {dn, dn−1, . . . , d0}.

Then
fnx

n+d−dn
0 + fn−1x

n−1+d−dn
0 . . . + f0x

d−d0
0

xd0
= 0 in U−1S(Y ). Therefore

∃ r ≥ 0 such that xr0(fnx
n+d−dn
0 + fn−1x

n−1+d−dn
0 . . . + f0x

d−d0
0 ) = 0 in S(Y ). Now,

xr0 = 0 =⇒ x0 = 0 =⇒ X0 ∈ I(Y ). But we know that I(Y ) ⊂ MP where MP is

the contraction of the ideal mP in S(Y ). This implies that X0 ∈ MP =⇒ x0 ∈ mP
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which is a contradiction. Therefore we have that

fnx
n+d−dn
0 + fn−1x

n−1+d−dn
0 . . . + f0x

d−d0
0 = 0. But fn−ix

n−i+d−dn
0 is a homogeneous

polynomial of degree n − i + d. Therefore each fn−ix
n−i+d−dn
0 = 0. But x0 6= 0.

Therefore fn− i = 0. Therefore x0 is transcendental over R
′
0.

To prove the second claim: Let f/g be an element in R0. Then f, g are

homogeneous polynomials in S(Y ) of the same degree such that g 6∈ mP . Consider

the ideal Q0 of R
′
0 generated by the elements of the form h

xdeg h0

where h ∈ mP . Then

clearly Q0 is a prime ideal of R
′
0. Define a map ϕ : R0 −→ R

′
0Q0

by f/g 7→ f
xα0
/ g
xα0

where α = deg f = deg g. It can be checked that this map is a ring

homomorphism. Also, it can be checked that this map is surjective. Suppose

ϕ(f1/g1) = ϕ(f2/g2). This implies that there exists an element g3/x
α3
0 6∈ Q0 such

that g3
x
α3
0

(
f1
x
α1
0

g2
x
α2
0
− f2

x
α2
0

g1
x
α1
0

)
= 0. This implies that g3f1g2− g3f2g1

x
α1 +α2 +α3
0

= 0. This implies

that g3(f1g2 − g1f2) = 0. Now, since g3/x
α3
0 6∈ Q0, we have that g3 6= 0. This

implies that f1g2 − g1f2 = 0 which in turn implies that f1/g1 = f2/g2 proving that

the map is injective. Therefore ϕ is an isomorphism and hence that R0 is

localization of R
′
0.

Exercise 3.0.48 (Automorphism of An). Let ϕ : An −→ An be a morphism of

An to An given by n polynomials f1, . . . , fn of n variables x1, . . . , xn. Let Jϕ =

det |∂fi/∂xj| be the Jacobian polynomial of ϕ.

If ϕ is an isomorphism (in which case we call ϕ an automorphism of An) show that

Jϕ is a non-zero constant polynomial. The converse of (a) is an unsolved problem,

even for n = 2.

Solution:

Let φ : An −→ An be the inverse morphism of the morphism ϕ. Suppose φ is given

by the polynomials g1, . . . , gn of n variables. Let Jφ denote the Jacobian

polynomial of φ and let Jϕ ◦φ denote the Jacobian polynomial of ϕ ◦ φ. But we

know that ϕ ◦ φ = Id where Id denotes the identity morphism which is given by

the polynomials x1, . . . , xn and hence JId = 1. But Jϕ ◦φ(X) = Jϕ(φ(X))Jφ(X).

Therefore Jϕ is a unit in k[x1, . . . , xn] and hence Jϕ is a non-zero constant

polynomial.
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Exercise 3.0.49 (Group Varieties). A group variety consists of a variety Y together

with the morphism µ : Y × Y −→ Y , such that the set of points of Y with the

operation given by µ is a group, and such that the inverse map y 7→ y−1 is also a

morphism of Y −→ Y .

(a) The additive group Ga is given by the variety A1 and the morphism µ : A2 −→
A1 defined by µ(a, b) = a + b. Show that it is a group variety.

(b) The multiplicative group Gm is given by the variety A1 − {(0)} and the morphism

µ(a, b) ab. Show that it is a group variety.

(c) If G is a group variety, and X is any variety, show that the set Hom(X, G) has

a natural group structure.

(d) For any variety X, show that Hom(X, Ga) is isomorphic to O(X) as a group

under addition.

(e) For any variety X, show that Hom(X, Gm) is isomorphic to the group of units

in O(X), under multiplication.

Solution:

(a) Clearly, the operation given by µ is an associative binary operation. Also, for

any a ∈ A1, −a ∈ A1 is the inverse of a under the operation defined by µ. The

element 0 ∈ A1 is the identity element. Therefore Ga is a group. The inverse

map x 7→ −x is a morphism of A1 → A1 from lemma 3.6. Therefore Ga is a

group variety.

(b) Let X = A1 r {(0)}. Then we can check that operation defined by µ makes X

into group. Consider the inverse map x 7→ 1
x
. Then clearly this map is a

morphism of X and hence Gm is a group variety.

(c) Let ϕ1 and ϕ2 be any two morphism from X to G. Define the operation ∗ on

Hom(X, G) by ϕ1 ∗ ϕ2(x) = ϕ1(x)ϕx where the multiplication on the right is

in G. We have that ϕ−1(x) = ϕ(x)−1. Since in G, the inverse map is a

morphism, the map ψ defined by ψ(x) = ϕ(x)−1 is a morphism. The

associativity property of this operation follows from the associativity property

in the group variety G. Therefore Hom (X, G) has a natural group structure.
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(d) Consider any element f ∈ Hom(X, Ga). Then f is a morphism from X to

Ga = A1 = k. Therefore f is a regular function on X and hence an element of

O(X). This defines a bijection between O(X) and Hom(X, Ga). Let this

bijection be called F . For any two elements ϕ1, ϕ2 ∈ Hom(X, Ga), we have

ϕ1 + ϕ2(x) = ϕ1(x) + ϕ2(x). Therefore F (ϕ1 + ϕ2) = F (ϕ1) + F (ϕ2) and

hence F is a group isomorphism.

(e) We know that Gm = A1 \ {(0)} = D(t). Therefore we know from Lemma 3E

that O(Gm) = k[t][1
t
] = k(t). Therefore there is a bijection µ between the set

Hom(k(t), O(X)) and the set O(X)∗. We claim that this bijection is a group

homomorphism. Suppose h1 : k(t) −→ O(X)∗ and h2 : k(t) −→ O(X)∗ be

two k-algebra homomorphisms. Then µ(h1) = h1(t) ∈ O(X)∗ and

µ(h2) = h2(t) ∈ O(X)∗. We have that h1h2 : k(t) −→ O(X)∗ is the k-algebra

homomorphism defined by h1h2(t) = h1(t)h2(t) ∈ O(X)∗. Therefore

µ(h1h2) = h1h2(t) = h1(t)h2(t) and hence µ is a group homomorphism. Since

it is a bijection we get that Hom(k(t), O(X)) is isomorphic to O(X)∗.

We know from Proposition 3.5 that there exists a bijection

β : Hom(k(t), O(X)) −→ Hom(X, Gm). We know from the proof of the same

proposition that if h : k(t) −→ O(X) is k-algebra homomorphism then β(h) is

the morphism ϕh : X −→ Gm given by P 7→ h(t)(P ). If h
′

: k(t)O(X) is

another k-algebra homomorphism, then hh
′

is the k-algebra homomorphism

given by t 7→ h(t)h
′
(t). Then β(hh

′
) = ϕhh′ which is given by

P 7→ h(t)h
′
(t)(P )h(t)(P )h

′
(t)(P ). Therefore β is a bijective group

homomorphism and hence is an isomorphism. Therefore we get that

Hom(X, Gm) ∼= Hom(k(t), O(X)) ∼= O(X)∗.
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Rational Maps

Exercise 4.0.50. If f and g are regular functions on open subsets U and V of a

variety X, and if f = g on U ∩ V , show that the function which is f on U and g

on V is a regular function on U ∪ V . Conclude that if f is a rational function on

X, then there is a largest open subset U of X on which f is represented by a regular

function. We say that f is defined at the points of U .

Solution:

Let F be the function which is equal to f on U and g on V . Consider any point

P ∈ U ∪ V . Then either P ∈ U or P ∈ V . Without loss of generality we may

assume that P ∈ U . Since f is regular on U , there exists an open neighbourhood

W of P such that f = f1/f2 on W . Also, W ⊂ U is open in the variety X because

U is open in X. Therefore for any point P ∈ U ∪ V , there exists an open

neighbourhood W ⊂ X of P such that f = f1/f2 on W . Therefore the function F

is regular on all points P ∈ U ∩ V and hence is regular on U ∪ V .

Any rational function on X is an equivalence class (U, f) where f is a regular

function on U . Let F = {(Ui, fi)}i∈ I be the family of all pairs that occur in the

equivalence class of (U, f). This implies that for any two i, j ∈ I, fi = fj on

Ui = Uj. Let V =
⋃
i∈ I Ui and let F be the function on V which is equal to fi on

Ui. Then F is regular on V . Let U0 be any open subset such that f is represented

as a regular function f0 on U0. Then (U0, f0) ∈ F and hence U0 ⊂ V . Therefore V

is the largest subset on which the rational function f is represented as a regular

function.

67
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Exercise 4.0.51. Same problem for rational maps. If ϕ is a rational map of X to

Y , show that there is a largest open set on which ϕ is represented by a morphism. We

say that the rational map is defined on the points of that open set.

Solution:

Let X and Y be any two varieties. Let U and V be any two non-empty open

subsets of X. Let ϕU be a morphism of U to Y and let ϕV be a morphism of V to

Y . Suppose that ϕU = ϕV on U ∩ V . Let F be the function which is equal to ϕU

on U and ϕV on V . Then we claim that F is a morphism of U ∪ V to Y . Clearly F

is a continuous map. Let W be any open subset of Y and let f : W −→ k be any

regular function. We have to prove that f ◦ F : F−1(W ) −→ k is a regular

function. Now, F−1(W ) = ϕ−1
U (W ) ∪ ϕ−1

V (W ). Consider any P ∈ F−1(W ). Then

either P ∈ ϕ−1
U (W ) or P ∈ ϕ−1

V (W ). We may assume that P ∈ ϕ−1
U (W ). Since ϕU

is regular, there exists an open subset U0 ⊂ ϕ−1
U (W ) containing P such that f ◦ ϕU

is of the form f1/f2 on U0. But F = ϕU on U0. Also, U0 is an open subset of

ϕ−1
U (W ) which is an open subset of F−1(W ). Therefore U0 is an open subset of

F−1(W ). Therefore for any point P ∈ F−1(W ) we have an open subset U0

containing P such that f ◦ F is of the form f1/f2 on U0. Therefore

f ◦ F : F−1(W ) −→ k is a regular function which proves that F is a morphism.

Any rational map ϕ : X −→ Y is an equivalence class of pairs (U, ϕU) where U is

a non empty open subset of X and ϕU is a morphism of U to Y . Let

F = {(Ui, ϕUi)} be the family of all pairs that occur in the equivalence class of

(U, ϕU). This implies that for any i, j ∈ I, ϕUi = ϕUj on Ui ∩ Uj. Let

V =
⋃
i∈ I Ui and let F be the function which is equal to ϕUi on Ui. Then F is a

morphism on V . Let U0 be any open subset such that ϕ is represented by a

morphism ϕU0 on U0. Then (U0, ϕU0) ∈ F and hence U0 ⊂ V . Therefore V is the

largest open subset on which ϕ is represented as a morphism.

Exercise 4.0.52. (a) Let f be a rational map on P2 given by f = x1/x0. Find the

set of points where f is defined and the corresponding regular function.

(b) Now think of this function as a rational map from P2 to A1. Embed A1 in P1,

and let ϕ : P2 −→ P1 be the resulting rational map. Find the set of points where

ϕ is defined, and describe the corresponding morphism.
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Solution:

(a) The rational map f = x1/x0 on P2 can be represented by the equivalence class

(Ux0 , x1/x0) where Ux0 represents the open set Z(x0)
c. We claim that f is

defined at U0. Suppose (Ux0 , x1/x0) = (V, g) and that V 6⊂ Ux0 . Let

P = (a0, a1, a2) ∈ V \ Ux0 . There exists a neighbourhood W of P such that g

has the form g1/g2 on W where g1 and g2 are homogeneous polynomials of same

degree. Also, since g2(P ) 6= 0, x0 - g2. Also, g1/g2 = x1/x0 on W ∩ Ux0 . We

can homeomorphically identify Ux0 with A2 and consider W ∩ Ux0 as an open

subset of A2. Let this open subset be denoted by W0. Therefore we have that

g1(1, x1, x2) = x1g2(1, x1, x2) on W0 ⊂ A2. This implies that

W0 ⊂ Z (g1(1, x1, x2) − x1g2(1, x1, x2)) = Z. If Z 6= A2, then Zc is a non

empty subset of A2 which is disjoint from W0. But any two non empty open

subsets of A2 intersect. This implies that

Z = Z (g1(1, x1, x2) − x1g2(1, x1, x2)) = A2. Hence

g1(1, x1, x2) = x1g2(1, x1, x2) on A2. This implies that degree of

g1(1, x1, x2) = (degree of g2(1, x1, x2) + 1). Now, since x0 - g2, the degree of

g2(1, x1, x2) is the same as the degree of g2(x0, x1, x2) which in turn is the

same as the degree of g1. Now, degree of g1(x0, x1, x2) is greater than or equal

to the degree of g1(1, x1, x2). But degree of g1(1, x1, x2) is strictly greater than

the degree of g2(x0, x1, x2). But this gives a contradiction to the fact that

degree of g1(x0, x1, x2) = degree of g2(x0, x1, x2). Hence V ⊂ Ux0 and hence

the rational map is defined on Ux0 .

(b) Let U0 denote the open subset Z(x0)
c of P2. Let ϕ0 : U0 −→ P1 be the

morphism given by (x0, x1, x2) 7→ (1, x1/x0). Let U1 denote the open subset

Z(x1)
c of P2. Let ϕ1 : U1 −→ P1 be the morphism given by

(x0, x1, x2) 7→ (x0/x1, 1). Then ϕ0 = ϕ1 on U0 ∩ U1. Therefore

(U0, ϕ0) = (U1, ϕ1) and the given rational map can be represented by the

equivalence class (U0, ϕ0) = (U1, ϕ1). Clearly, the rational map is defined at

the points of the open set U = U0 ∪ U1 and is represented by the morphism

ϕ : U −→ P1 given by (x0, x1, x2) 7→ (1, x1/x0) when x0 6= 0 and by

(x0, x1, x2) 7→ (x0/x1, 1) when x1 6= 0. But U = P2 \ {P} where P is the

point (0, 0, 1).

We now claim that the morphism ϕ cannot be extended to the point P . Assume
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the contrary. Therefore there exists a neighbourhood W of P and a morphism

µ : W −→ P1 such that µ = ϕ on W ∩ U . Therefore

µ(x0, x1, x1) = (1, x1/x0) when x0 6= 0 and µ(x0, x1, x2) = (x0/x1, 1) when

x1 6= 0. Let W0 = W ∩ U0. We can identify U0 by A2 and thus consider W0 as

an open subset of A2. Let W
′
0 = W0 ∪ {P}. Consider the restriction of µ to

W
′
0. It is a morphism and hence the map F = π2 ◦ µ : W

′
0 −→ k is a regular

map, where π2 is the projection on the second coordinate. Therefore there exists

a neighbourhood V ⊂ W
′
0 of P where F has the form f1/f2 for some

homogeneous polynomials f1, f2 of the same degree. But on V \ {P},
F = x1/x0. But V \ {P} is an open subset of W

′
0 \ {P} = W0 which is an

open subset of A2. Therefore f1(1, x1, x2) = x1f2(1, x1, x2) on the open subset

V \ {P}. Using the same arguments as in part (a),

f1(1, x1, x2) = x1f2(1, x1, x2) on the whole of A2. Since f2(0, 0, 1) 6= 0, we

have that x0 - f2(x0, x1, x2) and hence the degree of f2(1, x1, x2) = degree of

f2(x0, x1, x2). Let d1 denote the degree of fi(x0, x1, x2) for i = 1, 2. Therefore

we have that the degree of f1(1, x1, x2) = 1 + d2. But d1 ≥ degree of

f1(1, x1, x2) = 1 + d2 > d2 which implies that d1 > d2 which is a

contradiction since d1 = d2. Therefore the morphism ϕ cannot be extended to

the point P .

Exercise 4.0.53. A variety Y is rational if it is birationally equivalent to Pn for

some n (or equivalently by (4.5), if K(Y ) is a pure transcendental extension of k).

(a) Any cubic in P2 is a rational curve.

(b) The cuspidal cubic y2 − x3 is a rational curve.

(c) Let Y be the nodal curve y2z = x2(x + z) in P2. Show that the projection ϕ from

the point P = (0, 0, 1) to the line z = 0 induces a birational map from Y to P1.

Thus Y is a rational curve.

Solution:

(a) From exercise 3.1 (c), we know that any conic in P2 is isomorphic to P1 and

hence is birationally isomorphic to P1. Therefore any conic in P2 is a rational.

(b) Let Y = Z(y2 − x3). Consider the morphism ϕ : A1 −→ Y given by

t 7→ (t2, t3). Let U = A1 \ {0}. Then U is open in A1 which is open in P1. Let
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Y
′

= Y \ {(0, 0)}. Then Y ′ is an open subset of Y . Now the map

ϕ
′

: U −→ Y
′

given by t 7→ (t2, t3) is a morphism. Also, the map

φ : Y
′ −→ U given by (x, y) 7→ y/x is an inverse morphism to ϕ. Hence the

open subsets U ⊂ P1 and Y
′ ⊂ Y are isomorphic and hence Y is birationally

equivalent to P1 and hence is rational.

(c) Let Y = Z(y2z − x3 x2z) ⊂ P2. Let P = (0, 0, 1) and let P1 ⊂ P2 be given

by z = 0. Then the projection ϕ : P2 \ {P} −→ P1 is given by

(x, y, z) 7→ (x, y). Let ϕ again denote the restriction of this morphism to

Y \ {P}. Let µ : P1 −→ Y \ {P} be the map defined by

(x, y) 7→ (x, y, x3

y2−x2 ). This map is well defined because if y2 = x2 in Y , then

y3 = 0 which implies that y = 0 and hence x = 0. Also, since µ is defined by

quotients of polynomials it is a morphism. It is also clear that µ is the inverse

morphism to ϕ. Hence the open subset Y \ {P} is isomorphic to P1 and hence

Y is birationally equivalent to P1. Therefore Y is a rational curve.

Exercise 4.0.54. Show that the quadric surface Q : xy = zw in P3 is birational to

P2, but not isomorphic to P2.

Solution:

Let W = Q ∩ Uw where Uw denotes the open subset Z(w)c. Therefore W is an

open subset of Q. We define a morphism ϕ : W −→ A2 by

(w, x, y, z) 7→ (x/w, z/w). We define a morphism µ : A2 −→ W by

(x, y) 7→ (1, x, y, xy). Clearly ϕ and µ are inverses of each other and thus W is

isomorphic to A2 which is an open subset of P2. Therefore P2 and Q are birationally

equivalent.

If Q were isomorphic to P2, then Q would be homeomorphic to P2. We know from

exercise 2.15, that Q contains a family of lines {Lt} with the property that if

Lt 6= Lu, then Lt ∩ Lu = ∅. But we have proved in exercise 3.7 that any two

curves in P2 have a non-empty intersection. Therefore Q is not homeomorphic (and

hence not isomorphic) to P2.

Exercise 4.0.55 (Plane Cremona Transformations). A birational map of P2 into itself

is called a plane Cremona transformation. We give an example called the Quadratic

Transformation. It is a rational map ϕ : P2 −→ P2 given by (a0, a1, a2) 7→
(a1a2, a0a2, a0a1) when no two of a0, a1, a2 are 0.
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(a) Show that ϕ is birational and is its own inverse.

(b) Find open sets U, V ⊂ P2 such that ϕ : U −→ V is an isomorphism.

(c) Find the open sets where ϕ and ϕ−1 are defined, describe the corresponding mor-

phisms.

Solution:

(a) Let U be the open neighbourhood where no two of a0, a1, a2 are 0. Let

ϕ : U −→ P2 be the morphism defined by (a0, a1, a2) 7→ (a1a2, a0a2, a0a1).

We claim that the rational map defined by the equivalence class (U, ϕ) is its

own inverse. Consider the composition (U, ϕ) ◦ (U, ϕ). It is given by the

equivalence class (ϕ−1(U), ϕ ◦ ϕ).

We have that U = P2 \ {A, B, C} where

A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1). Therefore ϕ−1(U) will be equal to

P2 \ (ϕ−1(A) ∪ ϕ−1(B) ∪ ϕ−1(C)). We now claim that ϕ−1(A) = Z(x0).

Clearly for any point P = (0, t, u) ∈ Z(x0), ϕ(P ) = (1, 0, 0). Therefore

Z(x0) ⊂ ϕ−1(A). Now, suppose (a0, a1, a2) ∈ ϕ−1(A). Therefore

ϕ(a0, a1, a2) = (a1a2, a0a2, a0a1) = (1, 0, 0). Hence a0a2 = 0 and a0a1 = 0.

But since a1a2 = 1, we have that a1, a2 6= 0. Therefore a0 = 0 and hence

(a0, a1, a2) ∈ Z(x0). Similarly we can prove that ϕ−1(B) = Z(x1) and

ϕ−1(C) = Z(x2). Therefore ϕ−1(U) = P2 \ Z(x0x1x2). Let this open subset

be denoted by V . Then it can be easily checked that ϕ ◦ ϕ = Id on V .

Therefore (U, ϕ) is birational and is its own inverse.

(b) From the proof of the corollary 4.5, we know that ϕ gives an isomorphism of the

open subset ϕ−1(ϕ−1(U)) to itself. Now, ϕ−1(ϕ−1(U)) = ϕ−1(V ) where V is as

in part (a). We claim that ϕ−1(V ) = V . Clearly, V ⊂ U which implies that

ϕ−1(V ) ⊂ ϕ−1(U) = V . Consider any (a0, a1, a2) ∈ V . Now,

ϕ(a0, a1, a2) = (a1a2, a0a2, a0a1). Since a0, a1, a2 6= 0, ϕ(a0, a1, a2) ∈ V .

This proves that ϕ−1(V ) = V . Hence ϕ induces an isomorphism of the open

subset V to itself.

(c) It is clear from the definition of the rational map ϕ that it is defined at all the

points of the open subset P2 \ {A, B, C} where A = (1, 0, 0), B = (0, 1, 0)

and C = (0, 0, 1). Let this open subset be denoted by U . We now claim that
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the morphism ϕ : U −→ P2 defined by (a0, a1, a2) 7→ (a1a2, a0a2, a0a1)

cannot be extended to any of the points A, B, C.

Suppose that ϕ can be extended to the point A. Then there exists an open

subset W of A and a morphism µ : W −→ P2 such that ϕ = µ on W ∩ U . Let

W1 = W ∩ U1 where U1 = Z(x1)
c. Since U1 can be identified with A2, we can

consider W1 as an open subset of A2. Clearly A 6∈ W1. Let W
′
1 = W1 ∪ {A}.

Consider the restriction of the map µ to W
′
1. It is a morphism and hence the

map F = π ◦ µ : W
′
1 −→ k is a regular map where π represents the projection

onto the first coordinate. Therefore there exists a neighbourhood V ⊂ W
′
1 of A

where F has the form f1/f2 for some homogeneous polynomials f1, f2 of same

degree. But on V \ {A}, we know that F has the form x1x2. Now V \ {A} is

an open subset of W
′
1 \ {A} = W1 which is an open subset of A2. Therefore

f1(x0, 1, x2) = x2f2(x0, 1, x2) on the open subset V \ {A}. Using the same

argument as in 4.3 (a), we get that f1(x0, 1, x2) = x2f2(x0, 1, x2) on the whole

of A2. Let fi = fi(x0, 1, x2) for i = 1, 2. Therefore deg(f1) = deg(f2) + 1.

Since f2(1, 0, 0) 6= 0, we have that x1 - f2 and hence deg(f2) = deg(f2).

Therefore we have that deg(f1) = deg(f2) + 1. Since deg(f1) ≤ deg(f1), we

get that 1 + deg(f2) ≤ deg(f1) which implies that deg(f2) < deg(f1) which is

a contradiction. Therefore the morphism ϕ cannot be extended to the point A.

Using similar arguments we can prove that ϕ cannot be extended to any of the

points A, B or C. Therefore U is the largest open set on which the rational

map ϕ can be expressed as a morphism.

Exercise 4.0.56. Let X and Y be two varieties. Suppose there are points P ∈ X and

Q ∈ Y such that the local rings OP,X and OQ,Y are isomorphic as k-algebras. Then

show that there are open sets P ∈ U ⊂ X and Q ∈ V ⊂ Y and an isomorphism of

U to V which sends P to Q.

Solution:

Let X
′

and Y
′

be any affine open sets in X and Y respectively such that P ∈ X
′

and Q ∈ Y
′
. Then we know that OP,X ∼= OP,X′ and OQ,Y ∼= OQ,Y ′ . Also, if we

get an isomorphism of U and V such that ϕ(P ) = Q where U ⊂ X
′

and V ⊂ Y
′

are open neighbourhoods of P, Q respectively, then we are done with the problem.

So we may assume that X and Y are affine varieties.
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From theorem 3.2 we know that OP,X ∼= A(X)mP and OQ,Y ∼= A(Y )mQ . Therefore

we have inclusions A(X) ↪→ OP,X and A(Y ) ↪→ OQ,Y . Let θ : OQ,Y −→ OP,X be

the isomorphism. Suppose A(Y ) is generated by y1, y2, . . . ym as a k-algebra. Then

θ(yi) ∈ OP,X for i = 1, . . . m. Therefore for each i = 1, . . . , m, we have

θ(yi) = (Ui, fi) where Ui is an open subset of X and fi ; Ui −→ k is a regular

function. Let U =
⋂m
i=1 Ui. Then θ(yi) is a regular function on U for each

i = 1, . . . , m. Therefore θ defines a homomorphism from A(Y ) to O(U) = A(U)

and hence from Proposition 3.5 we have a morphism ϕ : U −→ Y .

Let mP ⊂ A(U) be the ideal corresponding to the point P . We claim that

θ−1(mP ) = mϕ(P ). Suppose f ∈ θ−1(mP ). Then f = θ−1(g) for some g ∈ mP .

Therefore θ(f) = f ◦ ϕ = g. Since g(P ) = 0, we have that f(ϕ(P )) = 0.

Therefore f ∈ mϕ(P ). Conversely let f ∈ mϕ(P ). Therefore f(ϕ(P )) = 0 which

implies that f ◦ ϕ(P ) = 0. Therefore f ◦ ϕ ∈ mP . But f ◦ ϕ = θ(f). Therefore

θ(f) ∈ mP and hence f ∈ θ−1(mP ). This proves the claim.

Let m
′
P be the unique maximal ideal of OP,X and let m

′
Q be the unique maximal

ideal of OQ,Y . Since θ is an isomorphism of OP,X and OQ,Y , we have

θ−1(m
′
P ) = m

′
Q. Since OP,X ∼= A(X)mP , we know that m

′
P = mPOP,X and

similarly m
′
Q = mQOQ,Y . Therefore θ−1(mP ) ⊂ mQ. But we have proved that

θ−1(mP ) = mϕ(P ). Therefore mQ = mϕ(P ). From theorem 3.2 we know that there is

a 1-1 correspondence between the points of Y and the maximal ideals of A(Y ).

Therefore we get that ϕ(P ) = Q.

Let η = θ−1. Then using the same arguments as above we get a morphism

µ : V −→ X such that µ(Q) = P where V is an open subset containing Q. Now,

ϕ∗ = θ and µ∗ = η. Hence (ϕ ◦ µ)∗ = µ∗ ◦ ϕ∗ = Id where Id is the identity

homomorphism of the ring OQ,Y . Therefore ϕ ◦ µ = Id on µ−1(U) where Id is the

identity morphism of the open subset µ−1(U). Similarly we get that µ ◦ ϕ = Id on

ϕ−1(V ) where Id is the identity morphism of the set ϕ−1(V ). Now restricting the

open sets as in the proof of corollary 4.5, we get that an isomorphism of open

subsets of P and Q which maps P to Q.

Exercise 4.0.57. Let Y be the cuspidal cubic curve y2 − x3 in A2. Blow up the

point (0, 0), let E be the exceptional curve, and let Ỹ be the strict transform of Y .

Show that E meets Ỹ in one point, and that Ỹ ∼= A1. In this case the morphism

ϕ : Ỹ −→ Y is bijective and bicontinuous, but it is not an isomorphism.
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Solution:

Let t, u be the homogeneous coordinates for P1. Let X denote the blowing-up of A2

at O. It is defined by the equation xu = ty inside A2 × P1. The total inverse image

of Y in X is obtained by considering the equations y2 = x3 and xu = ty in

A2 × P1. We know that P1 is covered by two open sets t 6= 0 and u 6= 0. When

t 6= 0, we set t = 1 and then obtain the equations y2 = x3 and xu = ty which

gives the the reducible equation x3 = x2u2. The first irreducible component of this

is given by x = 0, y = 0 and u arbitrary. This corresponds to the exceptional curve

E. The other irreducible component is given x = u3, y = u3. This is Ỹ . Clearly Ỹ

meets E only in one point which is P = (0, 0) × (1, u) ∈ A1 × P1. Clearly the

map φ : Ỹ −→ A1 defined by (u2, u3) × (1, u) 7→ u is a morphism. Also, the map

µ : A1 −→ Ỹ given by u 7→ (u2, u3) × (1, u) is the inverse morphism to φ.

Therefore A1 is isomorphic to Ỹ .

Since ϕ induces an isomorphism of Ỹ \ ϕ−1(O) to Y \ O, we know that ϕ is a

bijective bicontinuous map of these two sets. Now since ϕ−1(O) ∩ Ỹ is the singleton

set, ϕ is a bijective map from Y to Ỹ . Also, since ϕ−1(O) = P , the inverse image of

the closed subset {O} is the closed set {P}. Hence the map ϕ is bicontinuous.
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Chapter 5

Nonsingular Varieties

Exercise 5.0.58 (Multiplicities). Let Y ⊂ A2 be the curve defined by the equation

f(x, y) = 0. Let P = (a, b) be a point of A2. Make a linear change of coordinates so

that P becomes the point (0, 0). Then write f as a sum f = f0 + . . . , + fd where fi

is a homogeneous polynomial of degree i in x and y. Then we define the multiplicity of

P on Y , denoted by µP (Y ), to be the least r such that fr 6= 0. The linear factors of fr

are called the tangent directions at P . Show that µP (Y ) = 1 ⇔ P is a nonsingular

point of Y

Solution:

We know from Theorem 5.1 that a variety Y ⊂ An is non singular at a point

P ∈ Y if and only if the local ring OP, Y is a regular local ring. A linear change of

coordinates will change OP, Y only upto an isomorphism. Therefore the

nonsingularity property of a point on a variety remains unchanged under a linear

change of coordinates. Then after a linear change of coordinates such that

P = (0, 0) we know that f has the form f0 + f1 + . . . + fd where fi is a

homogeneous polynomial of degree i in x and y. Since P = (0, 0) ∈ Y , we know

that f0 = 0 and since µP (Y ) = 1 we have that f1 6= 0. Suppose the linear term is

αx + βy. Then both α and β cant be zero simultaneously. Now, ∂f/∂x(P ) = α

and ∂f/∂y(P ) = β and hence both are not simultaneously zero and hence P is non

singular.

To prove the converse also we make a linear change of coordinates such that

P = (0, 0). Suppose now that f = f1 + . . . + fd. Suppose the linear term is

αx + βy. Then ∂f/∂x(P ) = α and ∂f/∂y(P ) = β. Since f is non singular at P ,

both α and β cant be simultaneously zero and hence f1 6= 0. Therefore µP (Y ) = 1.

77
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Exercise 5.0.59. For every degree d > 0 and every p = 0 or a prime number, give

the equation of a non singular curve of degree d in P2 over a field k of characteristic

p.

Solution:

For characteristic 0 we consider the curve Y given by f = xd + + yd + zd. Then

∂f/∂x = dxd−1, ∂f/∂y = dyd−1 and ∂f/∂z = dzd−1. Hence the Jacobian of this

curve at any point P ∈ P2 is a non zero row matrix. Now we know from Exercise

5.8 we know that this implies that Y is a non singular curve at every point of P2

and hence is a non singular curve. Also, when the field has a positive characteristic

p such that p does not divide d, then f still satisfies the Jacobian condition and

hence is a non singular curve.

When the positive characteristic p is such that p divides d, then we can consider the

curve Y given by f = xyd−1 + yzd−1 + zxd−1. Then ∂f/∂x = (d− 1)zxd−2 + yd−1,

∂f/∂y = (d− 1)xyd−2 + zd−1 and ∂f/∂z = (d− 1)yzd−2 + xd−1. We can check for

the solutions in each of the affine open subsets of P2, {x 6= 0}, {y 6= 0} and

{z 6= 0}. For example to check for a solution in {x 6= 0}, we put x = 1. Then it

can be checked that the three equations have no solution in this affine open subset.

Similarly it can be checked that there are no solutions in each of the other two affine

open subsets. Hence the Jacobian of Y at any point P ∈ P2 is a non zero row

matrix. Therefore, from Exercise 5.8, we get that Y is a non singular curve.

Exercise 5.0.60 (Blowing Up Curve Singularities).

(a) Let Y be the cusp x6 + y6 = xy or the node y2 + x4 + y4 − x3. Show that the

curve Ỹ obtained by blowing up Y at (0, 0) is non singular.

(b) We define a node(also called ordinary double point) to be a point of multiplicity 2

of a plane curve with distinct tangent directions. If P is a node on a plane curve

Y , show that ϕ−1(P ) consists of two distinct non singular points on the blown up

curve Ỹ . We say that ‘blowing up P resolves the singularity at P ’.

(c) Let P ∈ Y be the tacnode of x2 = x4 + y4. If ϕ : Ỹ −→ Y be the blowing up

at P , show that ϕ−1(P ) is a node. Using (b) we can see that a tacnode can be

resolved using two successive blowings-up.
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(d) Let Y be the plane curve y3 = x5 which has a ‘higher order cusp’ at O. Show

that O is a triple point; that blowing up O gives rise to a double point and that

one further blowing up resolves the singularity.

Solution:

(a) We first consider the cusp x6 + y6 = xy. We know that Ỹ − ϕ−1(O) is

isomorphic to Y − O where ϕ is the blowing up map of A2 at O. It can be

checked that all the points of Y − O are non singular and thus all the points of

Ỹ − ϕ−1(O) are non singular. Therefore we need to only check the singularity

of the points on Ỹ ∩ ϕ−1(O).

Let the homogeneous coordinates of P1 be t, u. Let X denote the blowing up of

A2 at the origin. We get the total inverse image of Y in X by considering the

equations xu = ty and x6 + y6 = xy. We first consider the affine open subset

Ut of P1 given by t 6= 0. To determine Ỹ ∩ Ut, we set t = 1 and then obtain

the equations xu = y and x6 + y6 = xy which gives the equation

x2(x4 + x4u6 − u) = 0. The first irreducible component of this is given by

x = 0, y = 0 and u arbitrary. This corresponds to ϕ−1(O) ∩ Ut.

The second irreducible component x4 + x4u2 − u = 0 along with the equation

y = xu defines Ỹ ∩ Ut. Now Ỹ ∩ Ut meets ϕ−1(O) ∩ Ut in the point (0, 0, 0).

Now the Jacobian matrix of Ỹ ∩ Ut at the point (0, 0, 0) is

[
0 −1 0

0 0 1

]
which clearly has rank 2. Now, since Ỹ is birationally equivalent to Y we get,

from Theorem 3.2 and Corollary 4.5, that the dimension of Ỹ is the same as the

dimension of Y which is equal to 1. Hence the dimension of Ỹ ∩ Ut is also 1.

Therefore we get that Ỹ ∩ Ut is non singular at the point O.

We now consider the affine open subset Uu of P2 given by u 6= 0. For this we

set u = 1. Then we get the equation y2(t6y4 + y4 − t) = 0. The first

irreducible component of this, given by x = 0, y = 0 and t arbitrary is

ϕ−1(O) ∩ Uu. The second irreducible component t6y4 + y4 − t = 0 along with

x = ty defines Ỹ ∩ Uu. Now, Ỹ ∩ Uu meets ϕ−1(O) ∩ Uu in the point (0, 0, 0).

Now the Jacobian matrix of Ỹ ∩ Uu at the point (0, 0, 0) is

[
0 −1 0

0 0 1

]
which clearly has rank 2. Using the arguments same as above we get that the
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dimension of Ỹ ∩ Uu is 1 and hence that Ỹ ∩ Uu is non singular at the point O.

Therefore we get that Ỹ is a non singular variety.

We now consider the cusp Z defined by y2 + x4 + y4 − x3 = 0. Let the

homogeneous coordinates of P1 be t, u. Let X be as before. Then the total

inverse image of Z in X is obtained by considering the equations

y2 + x4 + y4 − x3 = 0 and xu = ty. We know that each point of Z − O is

non singular. Hence, as noted above, we need to only check the singularity of

the points on Z̃ ∩ ϕ−1(O). We first consider the affine open subset Ut of P1

given by t 6= 0. To determine Z̃ ∩ Ut, we set t = 1 and then obtain the

equations y = xu and y2 + x4 + y4 − x3 = 0 which gives us the equation

x2(u2 + x2 + x2u4 − x) = 0. The first irreducible component of this is given

by x = 0, y = 0 and u arbitrary. This corresponds to ϕ−1(O) ∩ Ut.

The second irreducible component u2 + x2 + x2u4 − x = 0 along with the

equation y = xu corresponds to Z̃ ∩ Ut. Now, Z̃ ∩ Ut meets ϕ−1(O) ∩ Ut in

the point (0, 0, 0). The Jacobian of Z̃ ∩ Ut at the point (0, 0, 0) is[
0 −1 0

0 0 1

]
which clearly has rank 2. Using arguments similar to the ones

used in the case of cusp we get that the dimension of Z̃ ∩ Ut is 1 and hence

that Z̃ ∩ Ut is non singular at the point (0, 0, 0).

We can easily check that (Z̃ ∩ ϕ−1(O)) ∩ Uu ∅. Hence the Z̃ ∩ ϕ−1(O) is non

singular. Therefore we get that Z̃ is a non singular variety.

(b) By a linear change of coordinates we can assume that the node is P = (0, 0).

Let Y be defined by the equation f = f1 + f2 + . . . + fd. Since µP (Y ) = 2

we have that f1 = 0. Also since there are two distinct tangent directions, we

have that f2 = (α1x + β1y)(α2x + β2y) such that α1/α2 6= β1/β2. We can

write f as f2 + g(x, y) where g(x, y) has only terms of degree 3 or more. By

another change of coordinates we can assume that f2 = xy.

We let the homogeneous coordinates of P2 be t, u. Then the total inverse image

of Y in the blow up of A2 at the origin, X, is given by xu = ty and f(x, y) = 0.

We first consider the affine open subset given by t 6= 0. We set t = 1 to get the

equation xu = y. Substituting in f , we get that f = x2u + g(x, xu). Since

g(x, xu) has terms of degree 3 or more, we can write g(x, xu) as x3h(x, xu) for

some polynomial h. Therefore f = x2(u + xh(x, xu)). Now, Ỹ ∩ Ut is given
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by u + xh(x, xu) = 0 and y = xu and it meets ϕ−1(P ) at the point (0, 0, 0).

This point corresponds to the point (0, 0, 1, 0) in A2 × P1. The Jacobian

matrix of this variety at any point Q = (a, b, c) is given by −b −a 1

1 + b
∂h

∂u
(Q) b

∂h

∂x
(Q) + h(Q) 0

. Therefore at the point (0, 0, 0) the

Jacobian matrix is

[
0 0 1

1 0 0

]
which clearly has rank 2. Since the dimension of

Ỹ ∩ Ut is 1 we get that Ỹ ∩ Ut is non singular at the point P .

We now consider the affine open subset Uu of P2 given by u 6= 0. We set u = 1

in the equations to obtain the equation x = ty. Substituting in f(x, y) we get

ty2 + g(ty, y) = 0. Since the degree of g(x, y) is ≥ 3, we can write g(x, y) as

y3h(ty, t) for some polynomial h. Hence f = y2(t + yh(ty, y)). Now Ỹ ∩ Uu is

given by t + yh(ty, y) = 0 and x = ty and meets ϕ−1(P ) in (0, 0, 0). This

point is the point (0, 0, 0, 1) in A2 × P1. It can be checked that the Jacobian

matrix of this variety is

[
0 0 1

1 0 0

]
which clearly has rank 2. Since the

dimension of Ỹ ∩ Uu is 1 we get that Ỹ ∩ Uu is non singular at the point P .

Therefore we get that ϕ−1(P ) ∩ Ỹ = {(0, 0, 0, 1), (0, 0, 1, 0)} both of which

are non singular points.

(c) Let the homogeneous coordinates of P1 be t, u. Then the total inverse image of

Y in the blow up of A2 at the origin is given by xu = ty and x2 = x4 + y4. We

first consider the affine piece given by t 6= 0 by putting t = 1. We then get the

equations xu = y and x2 = x4 + y4 from which we obtain the equation

x2 − x4 − x4u4 = 0. This has two irreducible components, x = 0 and

x2 + x2u4 − 1 = 0. The first component corresponds to the exceptional curve,

E = ψ−1(P ) ∩ Ut where ψ : X −→ A2 is the blowing up of A2 at the origin.

The second component corresponds to Ỹ ∩ Ut. We can check that

Ỹ ∩ Ut ∩ E = ∅.

We now consider the second affine subset Uu given by u 6= 0 by setting u = 1.

We then get the equations ty = x and x2 = x4 + y4 from which we get the

equation t2y2 − t4y4 − y4. This has two irreducible components y = 0 and

t2 − t4y2 − y2 = 0. The first component corresponds to the exceptional curve,

E = ψ−1(P ) ∩ Uu where ψ : X −→ A2 is the blowing up of A2 at the origin.
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The second component corresponds to Ỹ ∩ Uu. This intersects E at the point

(0, 0, 0). The lowest degree terms of t2 − t4y2 − y2 = 0 are

t2 − y2 = (t + y)(t − y) and hence ϕ−1(P ) ∩ Uu is a node.

(d) Let Y be the variety defined by y3 − x5 = 0. Then clearly the origin is a triple

point of Y . Let the homogeneous coordinates of P1 be u, t. The total inverse

image of Y in the blow up of origin at origin is given by the equations xu = ty

and y3 − x5 = 0. We first consider the affine piece Uu given by u 6= 0 by

setting u = 1. Then we get equations x = yt and y3 − x5 = 0 from which we

obtain the equation y5t5 − y3 = 0. This has two irreducible components y = 0

and y2t5 − 1 = 0. The first component corresponds to the exceptional curve

E = ψ−1(P ) ∩ Ut where ψ is the blowing up of A2 at the origin. The second

component corresponds to Ỹ ∩ Uu. We can check that Ỹ ∩ Uu ∩ E = ∅.
Therefore this component of Ỹ has no singularity.

We consider the affine piece Ut given by t 6= 0 by setting t = 1. Then we get

the equations y = xu and y3 − x5 = 0 from which we obtain the equation

x3u3 − x5 = 0. This has two irreducible components x = 0 and u3 − x2 = 0.

The first component corresponds to the exceptional curve E = ψ−1(P ) ∩ Ut

where ψ is the blowing up of A2 at the origin. The second component

corresponds to Ỹ ∩ Ut. This is the cuspidal cubic curve with a double point at

the origin.

Let us denote this cuspidal cubic curve by Z. We now blow up Z at the point

(0, 0). Let the homogeneous coordinate of P1 be w, v. Then the inverse image

of Z in the blow up of A2 at the origin is given by the equations xw = uv and

u3 − x2 = 0. We first consider the affine piece Uw given by w 6= 0 by setting

w = 1. We then get the equations x = uv and u3 − x2 = 0 from which we get

the equation u3 − u2v2 = 0. This has two irreducible components u = 0 and

u − v2 = 0. The first component corresponds to E = ϕ−1(P ) ∩ Uw where ϕ is

the blow up of A2 at the origin. The second component corresponds to Z̃ ∩ Uw.

This meets E at the point (0, 0, 0) and it can be checked that Z̃ ∩ Uw is non

singular at this point.

We now consider the affine piece Uv given by v 6= 0 by setting v = 1. We then

get the equations xw = u and u3 − x2 = 0 from which we get the equation

x3w3 − x2 = 0. This has two irreducible components x = 0 and xw3 − 1 = 0.
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The first component corresponds to E = ϕ−1(P ) ∩ Uv and the second

component corresponds to Z̃ ∩ Uv. We can check that Z̃ ∩ Uw ∩ E = ∅.

Therefore we cusp at the point P obtained by blowing up Y is resolved by a

subsequent blowing up.
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Chapter 6

Varieties and Submanifolds

6.1 Introduction

Complex analysis deals with holomorphic functions which are defined on open subsets

of the euclidean topology on Cn. This leads to the notion of holomorphic submanifolds

of Cn (and Pn(C)) which are loosely speaking subsets of Cn (and Pn(C)) which are

locally given by holomorphic functions.

On the other hand we have defined on C and P2(C) a topology called the Zariski

topology in which the closed subsets are the set of common zeroes of polynomials

functions. The closed subsets in the Zariski topology are called algebraic varieties.

These may or may not be reducible.

In this essay we state and prove two basic yet remarkable theorems which bring

out the relationship between these two kinds of subspaces of P2(C), namely the alge-

braic varieties and the analytical submanifolds thus connecting the algebro-geometric

notions over abstract fields with the ideas coming from complex manifolds.

6.2 Closed Submanifolds of Cn

In this section we define a closed holomorphic submanifold of Cn. We begin by

defining a few preliminaries.

Definition 6.2.1 (Holomorphic Function). A map f : U −→ C from an open

subset U ⊂ Cn to C is said to be holomorphic (or complex analytic) if for any point

P = (a1, . . . , an) ∈ U there exists an neighbourhood of P in which f can be expressed

85
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as a convergent power series in the n complex variables x1 − a1, . . . , xn − an.

A map f : U −→ Cm which is given by (f1, . . . , fm) is said to be holomorphic

if each of the fi : U −→ C is holomorphic.

Definition 6.2.2 (Holomorphic Isomorphism). Let U ⊂ Cn and V ⊂ Cm be open

subsets. A map f : U −→ V is called a holomorphic isomorphism if it is a topological

homeomorphism such that f and the inverse map g : V −→ U are holomorphic when

regarded as maps from U −→ Cm and V −→ Cn respectively.

It can be checked that when U ⊂ Cn is non empty and when there is a holomor-

phic isomorphism f : U −→ V fro some V ⊂ Cm, then m = n.

Definition 6.2.3 (Holomorphic coordinate chart). The tuple (U, u1, . . . , un) where

U ⊂ Cn is non empty and open and each of the ui : U −→ C is holomorphic,

is called a holomorphic coordinate chart if the resulting map u : U −→ Cn is a

holomorphic isomorphism of U onto an open subset V ⊂ Cn.

We now define a special kind of holomorphic coordinate chart which will be used

in the definition of a closed submanifold of Cn.

Definition 6.2.4 (Cubical coordinate chart(polydisk)). Let (U, u1, . . . , un) be a

holomorphic coordinate chart such that the map u : U −→ Cn is a holomorphic

isomorphism of U onto an open subset V ⊂ Cn.

If V is of the form {(b1, . . . , bn) ∈ Cn | |bi| < a} fro some a > 0, then the

holomorphic coordinate chart is called a cubical coordinate chart.

The point P ∈ U for which ui(P ) = 0 for all i = 1, . . . , n is called the centre

of the cubical coordinate chart.

Definition 6.2.5 (Locally closed holomorphic submanifold of Cn). A non empty

locally closed subset X ∈ Cn is called a locally closed submanifold of Cn if each

P ∈ X is the centre of a cubical coordinate chart (U, u1, . . . , un) such that

X ∩ U = {Q | ui(Q) = 0 for all d+ 1 ≤ i ≤ n} where d ≤ n is a positive integer.

The positive integer d is called the dimension of the locally closed submanifold.

When X is an empty it vacuously satisfies the criteria of being a locally closed

submanifold and therefore we adopt the convention of giving it dimension −∞.

If a locally closed submanifold X of Cn is closed in an open subset V of Cn, we

call it a closed submanifold of V .
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6.3 Implicit Function Theorem

In this section we state the implicit function theorem which serves to connect an-

alytical geometry and algebraic geometry specifically by showing that non singular

algebraic varieties are closed holomorphic submanifolds. We illustrate this use of the

theorem in the later sections after defining the concept of non-singularity.

Theorem 6.3.1 (Implicit Function Theorem). Let x1, . . . , xm be the linear coordi-

nates on Cm and let y1, . . . , yn be the linear coordinates on Cn. Therefore we get

on Cm+n the linear coordinates x1, . . . , xm, y1, . . . , yn. Let U ⊂ Cm+n be an open

neighbourhood of the origin 0 ∈ Cm+n. Let f = (f1, . . . , fn) : U −→ Cn be a

holomorphic map such that f(0) = 0. If the n × n matrix(
∂fi
∂yj

)
1≤i,j≤n

is invertible at the point 0 ∈ Cm+n, then there exists open neighbourhoods Va ⊂ Cm

and Wb ⊂ Cn which are given |xi| < a and |yj| < b for some positive real numbers a, b

and a holomorphic function g = (g1, . . . , gn) = Va −→ Wb such that Va × Vb ⊂ U

and

f−1(0) ∩ (Va × Wb) = {(x, g(x))|x ∈ Va}.

Proof. See Proposition 1.1.11, Chapter 1, p 11 of [2]

This theorem tells us that under suitable conditions the level set of a holomorphic

map is locally the graph of a holomorphic function.

Now, if f : U −→ Cn be a holomorphic map where U ⊂ Cq is an open subset.

Suppose for each P ∈ U with f(P ) = 0, the rank of the n × q matrix(
∂fi
∂xj

(P )

)
1≤i≤n, 1≤j≤q

is n. If f−1(0) is non empty, we get from the Implicit Function Theorem that it is a

closed holomorphic submanifold of U of dimension q − n.
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6.4 Non-singular varieties

In this section we define the concept of a non-singular algebraic variety of Cn and

then use implicit function theorem to connect it to the concept of a holomorphic

submanifold of Cn.

Definition 6.4.1 (Non-singular affine variety). Let Y = Z(f1, . . . , ft) ⊂ Cn be an

algebraic variety. Then Y is said to be non-singular at a point P ∈ Y if the rank of

the matrix

(
∂fi
∂xj

(P )

)
is n − r where r is the dimension of Y .

The variety Y is said to be non-singular if it is non-singular at every point of Y .

Similarly we can define the concept of a non singular algebraic subset of Pn.

Definition 6.4.2 (Non singular projective variety). Let Y ⊂ Pn be the set Z(f1, . . . , ft)

where fi are homogeneous polynomials in k[x0, xn]. Let P ∈ Y be the point with the

homogeneous coordinates (a0, . . . , an). The Y is said to be non-singular at the point

P if the rank of the matrix

(
∂fi
∂xj

(P )

)
is n − r where r is the dimension of Y .

The matrix

(
∂fi
∂xj

(P )

)
is called the Jacobian matrix of Y . If Y = Z(f1, . . . ft) =

Z(g1, . . . , gs), then it can be shown that the rank of the matrix

(
∂fi
∂xj

(P )

)
is the

same as the rank of the matrix

(
∂gi
∂xj

(P )

)
for any P ∈ Y . Therefore the notion of

non-singularity of a variety is independent of the set of generators of the variety. This

criteria for non-singularity is called the Jacobian criteria.

We recall a few definitions from algebraic geometry here which will aid us in giving

an equivalent condition for son singularity.

Let Y ⊂ Cn be an algebraic variety.

Definition 6.4.3 (Regular Functions on Cn). A function f : Y −→ C is said to

be regular at a point P ∈ Y if there is an open neighbourhood U ⊂ Y with P ∈ U

and two polynomials g, h ∈ k[x1, . . . , xn] such that h is no where zero on U and

f = g/h on U .

We say that f is regular on Y if it is regular at every point on Y .

Definition 6.4.4 (Regular functions on Pn). A function f : Y −→ C is said to be

regular at a point P ∈ Y if there is an open neighbourhood U ⊂ Y with P ∈ U and
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two homogeneous polynomials g, h ∈ k[xo, . . . , xn] of the same degree such that h is

no where zero on U and f = g/h on U .

We say that f is regular on Y if it is regular at every point of Y .

Definition 6.4.5 (Local ring of a point on a variety). Suppose Y is an algebraic

subset of Cn (or Pn) and suppose P ∈ Y is a point. Then the set of all pairs (U, f)

where U is an open subset of Y containing P and f is a regular function on U with

the equivalent condition that (U, f) = (V, g) if f = g on U ∩ V is a ring. This ring

is called the local ring of P on Y and is denoted by OP, Y .

The local ring OP, Y is basically the ring of germs of regular functions near P . It

can be checked that it is a local ring and the set of germs of regular functions which

vanish at P is its the maximal ideal. We denote this maximal ideal by mP .

We now define the algebraic notion of a regular local ring.

Definition 6.4.6 (Regular Local Ring). A noetherian local ring (A, m) with residue

field k is called regular local if dimkm/m
2 = dimA.

We now state a theorem which gives an equivalent condition for non singularity

in terms of the local ring.

Theorem 6.4.7. Let Y ⊂ Cn be an algebraic set. Let P ∈ Y be a point. Then Y

is non-singular at P if and only if the local ring OP, Y is a regular local ring.

Proof. See Theorem 5.1, Chapter I, p 32 of [1]

We next state a theorem which tells us that most of the points of an algebraic

variety Y are non-singular.

Theorem 6.4.8. Let Y be a variety. Then the set SingY of singular points of Y is

proper closed subset of Y .

Proof. See Theorem 5.3, Chapter I, p 33 of [1]

We now use the implicit function theorem to show that non-singular algebraic va-

rieties are closed holomorphic submanifolds. Suppose now that the Y ⊂ Cn is an irre-

ducible non singular algebraic set of dimension r. Suppose that Y = Z(f1, . . . , fn).

Since Y is non-singular, at every point P of Y the rank of the matrix

(
∂fi
∂xj

(P )

)
is n − r. Then from the implicit function theorem we know that Y is a closed

submanifold of dimension r in Cn.
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6.5 Chow’s Theorem

We now state and prove a theorem which serves to show an important connection

between algebraic geometry and analytical geometry by showing that the local prop-

erty of being analytic in Pn is equivalent to the global property of being algebraic. In

this essay we concentrate on the special case of n = 2. This result allows us to apply

many analytical methods to algebraic geometry.

Theorem 6.5.1. Any 1-dimensional holomorphic closed submanifold of P2
C is a non-

singular irreducible algebraic curve in P2
C.

Proof. If M is a straight line, then there is nothing to prove, so assume that M is not

a straight line. Note that P2 has an affine open cover by three copies of C2, each the

complement of one axis. Therefore, M ∩ C2 will be a non-empty closed submanifold

for each of these C2. We first assume that M ∩ C2is connected (this assumption is

necessarily satisfied as we will show later).

Therefore, we now begin by considering a 1-dimensional holomorphic closed con-

nected submanifold M0 ⊂ C2.

By definition of a submanifold, around any Q ∈ M0 there is a rectangular open

neighbourhood (polydisk) W such that M0∩W is the graph of a holomorphic function

y = g(x) or graph of a holomorphic function x = h(y).

Let P ∈ C2 be such that P 6∈ M0. Suppose that the line PQ is tangent to M0 at

Q. Then around Q we can choose new local coordinates (u, v) which form a polydisk

U such that u and v are first degree polynomials in x and y, and for any line L passing

through P and intersecting U , the set L ∩ U is given by v = constant. Hence locally

(by shrinking U if necessary) there will be a holomorphic function f(u) such that

M0 ∩ U is the graph v = f(u). Suppose that Q is the point (u, v) = (a, b).

Let T = {Q ∈M0|PQ is tangent to M0 at Q}. We will show that T is closed and

discrete. First we will show that T is discrete, that is, each point of T is isolated. The

condition that Q = (a, b) is a point in T is that df
du

(a) = 0. Since f is holomorphic,

we have that df
du

is holomorphic. Therefore if df
du

(a) = 0, then either a is an isolated

zero of df
du

or df
du
≡ 0 in a neighbourhood of a. If former is the case then we are

done. Suppose df
du
≡ 0 in a neighbourhood of a. Then f is a constant function. Since

f(a) = b, we have that f(u) = b. Let L be the line whose intersection with U is given

by v = b. Hence L ∩ U ⊂ M0. Let L be given by ax + by + c = 0 where x, y are

the cartesian coordinates on C2. Then ax + by + c is a holomorphic function on M0
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which vanishes in the open set M0 ∩ U , so vanishes on all of M0 as M0 is connected,

so L ⊂ M0, which means P ∈ M0, a contradiction. This completes the proof that T

is discrete. The set T is closed in M for if T has a limit point in M not in T then it is

a limit point of zeros of df/du, so df/du is identically zero in a neighbourhood of the

point on M . Then the above argument will show again that P ∈M0, a contradiction.

Let M ⊂ P2
C be a closed holomorphic submanifold of dimension 1. Let the ho-

mogeneous coordinates of P2 be X, Y, Z. Since P2
C is compact, we have that M is

compact. We can write P2
C as C2 ∪ C2 ∪ C2 and then we get that M ∩ C2 is a closed

submanifold of dimension 1 in C2. We will first assume that M ∩ C2 is connected.

Let P ∈ P2
C be such that P 6∈M and let T = {Q ∈M |PQ is tangent to M at Q}.

Since each T ∩C2 is discrete and closed, we have that T is discrete and closed. Hence

T is finite by compactness of M .

Let T = {Q1, . . . , Qd}. Let L be a line in P2 such that P 6∈ L. Let π : M −→ L

be the projection from the point P . We can choose linear coordinates on P2 such

that P = (0, 1, 0) and the line L is given by Y = 0 and (1, 0, 0) 6∈ π(T ). Therefore

(1, 0, 0), (0, 0, 1) ∈ L. Also, the projection is now given by π(a, b, c) = (a, c).

Let UZ ⊂ P2 be the affine open subset given by Z 6= 0. Then the affine coordinates

of UZ are x = X/Z and y = Y/Z. Now, the lines through P will be given by x = t

where t ∈ C and the projection from P will be given by π(x, y) = x. LetMZ = M∩UZ .

Now, for any point (a, b) ∈MZ , there exists a holomorphic function h and a positive

real number r such that y = h(x) in an open disc D of radius r around a, i.e.,

D = {x ∈ C | |x− a| < r}.
Let a 6∈ π(T ) ⊂ L. Suppose there are exactly m points in M over x = a, given by

y = b1, . . . , bm. Now, for each (a, bi), there exists a holomorphic function hi and a pos-

itive real number ri such that y = hi(x) in an open disc Di of radius r around a. Now,

Γh1(D1) ∪ . . . ∪ Γhm(Dm) is open in MZ . Therefore MZ \ (Γh1(D1) ∪ . . . ∪ Γhm(Dm))

is closed in MZ and hence compact in MZ (since MZ is compact).

Let MZ \(Γh1(D1) ∪ . . . ∪ Γhm(Dm)) be denoted by N . Therefore π(N) is compact

and hence closed. We know that a 6∈ π(N). Therefore there exists a small neighbour-

hood U of a such that U ∩ π(N) = ∅. Therefore π−1(U) ⊂ Γh1(D1) ∪ . . . ∪ Γhm(Dm).

Therefore for any a ∈ U , any point of π−1(a) will be of the form (a, hi(a)) for some

i = 1, . . . ,m. Therefore π−1(a) consists of at most m points. Also, we can choose

U so small that π−1(U) ∩ Γhi(Di) ∩ Γhj(Dj) = ∅. Therefore for any a ∈ U , π−1(a)

consists of exactly m points. Therefore the cardinality of the fibre of π : MZ −→ L
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is locally constant on L− π(T ). But L− π(T ) = P1− finite set = S2− finite set and

therefore is connected. Therefore the cardinality of the fibre on L−π(T ) is constant,

say m.

Around a small enough disk with center at any a ∈ L − π(T ), we therefore

have well defined holomorphic functions s1(x), s2(x), . . . , sm(x), which are elementary

symmetric functions of the hi(x), that is,

ym − s1(x)ym−1 + . . .+ (−1)msm(x) =
m∏
i=1

(y − hi(x))

As the ordering of the hi does not matter in the definition of si, these are well defined

functions on L − π(T ). Let F (x, y) = ym − s1(x)ym−1 + . . . + (−1)msm(x), which is

a polynomial in y with coefficients which are holomorphic functions on L− π(T ).

We will next examine the behaviour of the si(x) at points of π(T ) and at x =

∞. Consider a point a ∈ π(T ), and let D − {a} be a punctured disk around a

which does not contain any other point of π(T ). For any x ∈ D − {a}, there are m

values of y which satisfy F (x, y) = 0. We claim that all these m values are bounded

by a constant c, that is, |y| ≤ c. For if not, there exists a sequence an → a in

D − {a}, and for each an a root bn of F (an, y) = 0, such that |bn| → ∞. In P2,

we have (an, bn, 1) = (an/bn, 1, 1/bn), and these points have P = (0, 1, 0) as their

limit in P2. This contradicts the assumption that P 6∈ M . Therefore each of the m

locally defined functions hj is bounded by c in any small disk in D − {a}, so their

elementary symmetric combinations si(x) are bounded around each point a of π(T ),

so by Riemann removable singularity theorem, the si extend to entire functions on L.

We next examine the behaviour of si at the point x = ∞ on the line L. By the

choice of coordinates we have that the point x = ∞ is the point Q = (1, 0, 0) ∈ P2.

Also, we have that (1, 0, 0) 6∈ π(T ). Consider the affine open set UX of P2 given by

X 6= 0. Let the affine coordinates on UZ be denoted by u = Y
X

and w = Z
X

. Therefore

u = y
x

and w = 1
x
. Now, the line joining (0, 1, 0) and (1, 0, 0) is given by w = Z

X
= 0.

Each of the m points in the fibre over Q is of the form (u,w) = (ci, 0). Let the

local description of the manifold around (ci, 0) be given by the holomorphic function

u = gi(w). Using the same argument as was used in the affine open neighbourhood

UZ , we get that gi is bounded in a neighbourhood of w = 0 because it take the values

in a neighbourhood of ci. Let c = max{|gi(0)|}. If we substitute u = y
x
, we get that

y = xgi(w). Therefore |y| ∼ c|x| as x→∞ (w → 0). But y = hi(x). Therefore each
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hi(x) ∼ c|x| as x → ∞. Therefore we have that si(x) ∼ xic
′

as x → ∞ for some

constant c
′
.

We know that if s(x) is an entire function on C and if there exists a constant c

and an integer r ≥ 0 such that |s(x)| < c|x|r, then s(x) ∈ C[x]. Therefore we get that

each of the si(x) are polynomials in x. In particular, F (x, y) = ym − s1(x)ym−1 +

. . .+ (−1)msm(x) ∈ C[x, y]. Therefore we get that MZ = M ∩UZ = Z(F (x, y)) is the

affine variety defined by F (x, y).

Let F̃ (X, Y, Z) be the homogenization of F with respect to Z. Then we have that

M ⊂ Z(F̃ ). We can factor the highest power of Z out of F̃ and therefore assume

that Z does not divide F̃ . Then we get that M = Z(F̃ ) ⊂ P2.

If M ∩ C2 were disconnected, by the above proof each connected component will

give rise to a projective curve. But by Bezout’s theorem, these curves will intersect. A

point of intersection of two irreducible components will be singular, which contradicts

the assumption that M is a holomorphic submanifold of P2. Hence there is no loss

of generality in our earlier assumption that M ∩ C2 is connected. In particular, the

above argument shows that F̃ (X, Y, Z) is irreducible.

This completes the proof of the theorem.

We now state and prove a theorem which shows that any zariski closed subset in

P2 is connected in the euclidean topology.

Theorem 6.5.2. If F (X, Y, Z) ∈ C[X, Y, Z] is a homogeneous polynomial, then the

corresponding locus Z(F (X, Y, Z)) is connected in P2
C in the euclidean topology.

Proof. Let Z(F (X, Y, Z)) be denoted by V . We begin by proving that there are no

isolated points on V . Consider any point P = (a0, a1, a2) ∈ V . Suppose a2 6= 0.

We now consider the affine open subset UZ of P2 given by Z 6= 0. Let x = X
Z

and

y = y
Z

. Let the point (a0/a2, a1/a2) ∈ C2 be denoted by P itself. Let a0/a2 = a and

a1/a2 = b. Let the dehomogenization of F (X, Y, Z) be denoted by f(x, y). Therefore

we have that f(a, b) = 0.

Let ε be so chosen that in the open disc D = {y ∈ C | |y − b| < ε} there exists

only one root b of f(a, y). Suppose this root occurs with a multiplicity r. Then

we have that 1
2πi

∫
|y−b|=ε

fy(a,y)

f(a,y)
dy = r where fy(a, y) = ∂f

∂y
(a, y). Now, we know that

1
2πi

∫
|y−b|=ε

fy(x,y)

f(x,y)
dy is a continuous function of x. But this integral can take only

positive integral values. Therefore in a small neighbourhood |x− a| < δ, we get that
1

2πi

∫
|y−b|=ε

fy(x,y)

f(x,y)
dy = r. Therefore we get that for any x in the δ neighbourhood of
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a, there exists a root y of f(x, y) = 0. Hence the point (a, b) is not isolated. We now

state and prove a lemma which is a special case of the theorem but will be used in

the proof of the theorem.

Lemma 6.5.3. Suppose f(x, y) ∈ C[x, y] is irreducible then Z(f) ⊂ C2 is connected.

Proof. By a linear change of coordinates (Noether normalization), we can assume

that f(x, y) = yn + a1(x)yn−1 + . . . + an(x) where ai(x) ∈ C[x] are polynomials. Let

T be the set of points (x, y) where f = 0 and ∂f
∂y

= 0. We claim that the set T is

finite. First we recall some facts about discriminants.

If f, g ∈ A[y] are two polynomials with coefficients in a ring A, their resultant

Resy(f, g) ∈ A is an element of A. If φ : A → B is a ring homomorphism, and if

φ : A[y] → B[y] again denotes the induced homomorphism, then φ(Resy(f, g)) =

Resy(φ(f), φ(g)), as the resultant is universally given as the determinant of a certain

matrix in the coefficients of f and g. The discriminant of f ∈ A[y] is the element

Dy(f) ∈ A defined by Dy(f) = Resy(f, df/dy). A monic polynomial f(y) ∈ A[y],

where A is a UFD, has repeated factors in its unique factorization into irreducibles

in A[y] if and only if Dy(f) = 0 ∈ A.

Applying the above to the ring A = C[x] which is a UFD, we get A[y] = C[x, y].

For f(x, y) ∈ C[x, y] as above, we get Dy(f(x, y)) ∈ C[x]. Putting x = a defines a

homomorphism φ : C[x] → C, and C is also a UFD. By the above, (Dy(f))(a) =

Dy(f(a, y)) ∈ C. So the polynomial f and ∂f
∂y

have a common zero at x = a, if and

only if Dy(f) vanishes at x = a. Since f is irreducible, the discriminant polynomial

Dy(f) is not the zero polynomial and hence has finitely many roots. Therefore there

are only finitely many points a where f(a, y) and ∂f
∂y

(a, y) have a common zero. Also,

as f is monic in y of degree n, at each zero a of Dy(f), f(a, y) is a non zero polynomial

having at most n roots. Therefore T is a finite set. Let T = {Q1, . . . , Qd}.
Let the line y = 0 be denoted by L and let π : C2 −→ L be the projection onto

this line given by π(x, y) = x. As the roots of Dy(f) are contained in π(T ), for

any a ∈ L − π(T ) there exist exactly n distinct points (a, bi) of Z(f) which lie over

a. By implicit function theorem, there exists in a small disk U in L − π(T ) with

center a holomorphic functions hi(x) such that hi(a) = bi and f(x, hi(x)) = 0, that

is, π−1(U)∩Z(f) is the disjoint union of the graphs of hi. Let W = Z(f)−π−1π(T ),

and let p = π|W : W → L− π(T ) be the projection. The above shows that the open

disk U around a is evenly covered, and p : W → L − π(T ) is therefore a covering
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projection of degree n.

Note that by the definition of the hi(x), we have f(x, y) =
∏

i(y − hi(x)) for all

x ∈ L− π(T ).

Suppose that Z(f) is not connected. Suppose Z(f) = M1 ∪M2 where M1 is a

connected component and M2 is its complement. The projections p : M1 → L−π(T )

and p : M2 → L − π(T ) are again covering projections. As L − π(T ) is connected,

these have constant degrees, say n1 and n2, so that n1 + n2 = n. Around each

a ∈ L − π(T ), the set of the n holomorphic functions hi gets partitioned into two

subsets: the set of n1 holomorphic functions h′j which correspond to points in M1 and

the set of remaining n2 holomorphic functions h′′2 which correspond to points in M2.

Thus, the products f ′(x, y) =
∏

j(y − h′j(x)) and f ′′(x, y) =
∏

k(y − h′′k(x)) are well

defined over x ∈ L− π(T ), and

f(x, y) = f ′(x, y)f ′′(x, y).

We now claim that f ′(x, y) and f ′′(x, y) are elements of C[x, y]. Note that f ′ is a

polynomial in y with coefficients s′i(x) which are elementary symmetric polynomials

in the h′j(x), and similarly, f ′′ is a polynomial in y with coefficients s′′i (x) which are

elementary symmetric polynomials in the h′′k(x). As the hi(x) are roots of f(x, y) =

yn + a1(x)yn−1 + . . .+ an(x), and as the coefficients ai(x) are polynomials, the hi(x)

are bounded around each point of π(T ) and have polynomial growth at x = ∞.

(This follows from the basic estimate that if yn + b1y
n−1 + . . . + bn ∈ C[y] is any

monic polynomial, then its roots are bounded by max{1,
∑

i |bi|}.) It follows that the

elementary symmetric polynomials s′i(x) and s′′i (x) are bounded around each point

of π(T ), and have polynomial growth at x = ∞. So by the Riemann removable

singularity theorem, these are entire functions.

Any entire function with polynomial growth at ∞ is itself a polynomial. Hence

the s′i and the s′′i are themselves elements of C[x]. So f ; (x, y) and f ′′(x, y) are in

C[x, y], and f = f ′f ′′. Thus we get a factorization of f(x, y) in C[x, y], contradicting

its irreducibility.

This shows that the assumption that V is not connected must be false. This proves

the lemma that an irreducible affine curve is connected in the euclidean topology on

C2.

We now return to the projective case.
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Suppose that the homogeneous polynomial F (X, Y, Z) is irreducible. Therefore,

f(x, y) = F (X
Z
, y
Z
, 1) is irreducible. Therefore we have that Z(F ) ∩ C2 is connected.

We have that Z(F ) ∩ Z(Z) is either finite or equal to Z(Z). If it is equal to Z(Z),

then since F is irreducible we get that F (X, Y, Z) = Z and hence Z(F ) is connected.

Otherwise Z(F ) ∩ Z(Z) is a finite set of points. We know that these points are not

isolated and hence Z(F ) is connected.

Now suppose F is not irreducible. Suppose F = F r1
1 F

r2
2 . . . F rs

s where each Fi is

irreducible. Then Z(F ) = Z(F1)∩ . . .∩Z(Fs). But we know that Z(Fi) is connected

for each i = 1, . . . , s. Also, for any i, j ∈ {1, . . . , s}, we know from Bezout’s Theorem

that Z(Fi) ∩ Z(Fj) 6= ∅. Therefore we get that Z(F ) is connected.

Corollary 6.5.4. If M ⊂ P2 is a one dimensional holomorphic submanifold, then M

is connected.

Proof. We know from Chow’s theorem that M is of the form Z(F ) for some ho-

mogeneous F ∈ C[X, Y, Z]. But from the above theorem we know that Z(F ) is

connected.
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