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Abstract

Fourier Analysis in Number Fields

by Akshaa Vatwani

In this thesis we give an exposition of John Tate’s doctoral dissertation titled ‘Fourier

Analysis in Number Fields and Hecke’s Zeta-Functions’. In this dissertation, Tate

proved the analytic continuation and functional equation for Hecke’s ζ-function over

a number field k using what is now known as harmonic analysis over adéles. In his

work he first examines the local ζ-function and then uses adéles and idéles to include

in a symmetric way all the completions of the field into a single structure, so as to

examine the global ζ-function.

We explain required prerequisites and expand upon ideas used in Tate’s thesis to

give a comprehensive view of Tate’s work.
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4.2 Adèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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Chapter 1

Introduction

1.1 Some Background

Early in the 20th century, Hecke gave an analytic continuation and a simple functional

equation for the Dedekind ζ -function over the whole plane. He soon realised that

his method would work for a ζ-function formed with a new type of ideal character.

He finally proved that these ‘Hecke’ ζ-functions satisfy the same type of functional

equation as the Dedekind ζ-function. Hecke’s proof used methods only up to a level of

mostly elementary complex analysis , but involved long and drawn out computations.

Matchett, a student of Artin’s, made an attempt before Tate to use idèles and adèles

to redefine classical ζ-functions and interpret Hecke characters. But for proving the

functional equation, she followed the method of Hecke.

Tate provided a more elegant proof of the functional equation of the Hecke L-series

by using Fourier analysis on the adèles and idèles and employing a reformulation of

the Grössencharakter in terms of a character on the idèles. Tate’s work can be viewed

as a reformulation of Hecke’s work. Even though what was done by Tate was not new

and he was not the first to work on adèles and idèles, he was one of the first to do

what is now called harmonic analysis over the adèles and idèles. Tate’s work presently

is understood as the GL(1) case of automorphic forms. The techniques used in Tate’s

thesis have had far reaching consequences. Harmonic analysis is now an important

area of number theory. The mathematics in Tate’s thesis is a foundation stone today

for understanding many more advanced concepts in mathematics. One such example

is the Langland’s program - a web of conjectures linking together many areas of

mathematics. Thus though Tate’s result was not new, his novel way of exploring

1



2 CHAPTER 1. INTRODUCTION

the problem has opened doors to many other areas of mathematics today and is one

of the reasons why Tate’s thesis is considered an invaluable contribution to number

theory.

1.2 Locally compact groups and unitary charac-

ters

A topological group is a group G together with a topology such that the group

operation and the inversion map given as,

G×G → G

(g, h) 7→ gh

and

G → G

g 7→ g−1,

are continuous maps on G×G (with product topology ) and G respectively.

In a similar manner, topological field is a field k together with a topology such

that addition and multiplication are continuous functions on k × k.

By a neighbourhood, we shall mean a set with an interior, that is a set that

contains an open set inside it. Topological groups have many interesting properties.

We will state and prove one such property which is of concern to us.

Proposition 1.2.1. Every neighbourhood U of the identity contains a neighbourhood

V of the identity such that V V (= {xy : x, y ∈ V }) ⊆ U .

Proof. We can assume that U is open. The continuous map φ : U × U → G defined

by the group operation is continuous, so φ−1(U) must be an open set inside U × U
containing (e, e), where e is the identity of G. By definition of product topology, there

exist sets V1 and V2 such that (e, e) ∈ V1 × V2 ⊆ U × U . Putting V = V1 ∩ V2 proves

the proposition.

Another interesting property is that in a topological group, the concepts of con-

vergent sequence and Cauchy sequence make sense in a very straightforward way.
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Definition 1.2.2. A sequence {gn}n∈Z+ of elements of G is said to converge to g if

given any open neighbourhood U of the identity e, we can find an integer N such that

gng
−1 ∈ U for all n ≥ N

Definition 1.2.3. A sequence {gn}n∈Z+ of elements of G is said to be Cauchy if

given any open neighbourhood U of the identity e, we can find an integer N such that

gng
−1
m ∈ U for all n,m ≥ N .

Let us now look at a particular type of topological group.

Definition 1.2.4. A topological group G that is both Hausdorff and locally compact

(every point admits a compact neighbourhood) is called a locally compact group.

Proposition 1.2.5. (proposition 1.6, §1.1, [9] ) Let G be a Hausdorff topological

group. Then a subgroup H of G that is locally compact (in the subspace topology) is

moreover closed.

Proof. Let K be a compact neighbourhood of the identity e in H. Since H is Haus-

dorff, K must be closed in H. Hence there exists a closed neighbourhood U of e in

G such that K = U ∩ H. U ∩ H must be closed since U ∩ H is compact in H, and

there by in G as well. By proposition 1.2.1, there exists a neighbourhood V of e in

G such that V V ⊆ U . We need to show that H ⊆ H. As H is a subgroup of G,

every neighbourhood of x−1 must intersect H, if x ∈ H. In particular we have some

element y contained in V x−1 ∩H. If we can prove that yx lies in H, then y ∈ H will

imply that x must also lie in H.

Let us now prove that yx ∈ U ∩H. As U ∩H is closed, it is enough to show that

every neighbourhood W of yx intersects U ∩H. Now y−1W ∩xV is a neighbourhood

of x and x lies in H, hence there exists an element z ∈ y−1W ∩ xV ∩ H giving us:

yz ∈ W ∩ H, y ∈ V x−1 and z ∈ xV . This means that yz ∈ V x−1xV = V V ⊆ U .

Therefore W ∩ (U ∩H) is non empty, proving the result.

When we talk of an isomorphism or homomorphism between two topological

groups, then we not only want the map to respect algebraic structure but also topo-

logical structure. An isomorphism between topological groups is understood to be an

algebraic isomorphism which is bi-continuous. When dealing with homomorphisms,

we talk about continuous homomorphisms. One important class of continuous homo-

morphisms is the class of continuous homomorphisms from G to the multiplicative
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group S1 (or C×). Such maps are called unitary characters (or characters). The word

unitary obviously arises because these maps take elements of G to elements of abso-

lute value 1. The set of unitary characters of a group G is denoted by Ĝ. It forms a

multiplicative group and is also called the Pontryagin dual of G. We define a topology

on Ĝ as follows. Let B be a compact subset of G, and let U be a neighbourhood in

S1. Then we define the subset W (B,U) of Ĝ by

W (B,U) = {χ ∈ Ĝ : χ(B) ⊆ U}

These sets act as a sub-base to determine a topology on Ĝ known as the compact

open topology. Since we are dealing with continuous functions, this topology is the

same as the topology of compact convergence i.e. a sequence fn of functions converges

to the function f in this topology if and only if for each compact subspace B of G,

the sequence of restricted functions fn|B converges uniformly to f|B. Using this, one

can prove that Ĝ is in fact a topological group with respect to the compact open

topology.

In order to examine dual groups in more detail, we define some key subsets of S1.

Definition 1.2.6. Consider the map φ : x 7→ e2πix from the reals to S1. For ε real

and contained in (0, 1], we define N(ε) ⊆ S1 as the image of the symmetric open set

(−ε/3, ε/3) under φ.

We are now in a position to prove the following important results.

Theorem 1.2.7. (proposition 3.2(iv), §3.1, [9] ) If G is compact, then Ĝ is discrete.

Proof. Given any non-trivial unitary character χ of G, χ(G) is a subgroup of S1. It

cannot be contained in any set of the form N(ε), ε ∈ (0, 1], because such a set is never

closed under multiplication and inversion. As G is compact, W (G,N(ε)) is an open

set of the character group, but it cannot contain any unitary character other than

the trivial character. Thus the singleton set {χtriv} is open in the group of unitary

characters, proving that the Ĝ is discrete.

Theorem 1.2.8. (proposition 3.2(iii), §3.1, [9] ) If G is discrete, then Ĝ is compact.

Proof. If G is discrete, then any homomorphism taking G into S1 is continuous and

thereby a unitary character, giving Ĝ = Hom(G,S1). Also, the compact open topol-

ogy on Ĝ reduces to the topology of pointwise convergence because the compact sets
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in the discrete group G are precisely the finite sets. However, with respect to this

topology, Hom(G,S1) is a closed subset of the space of all maps from G to S1, which

itself is compact. Thus Ĝ is a closed subset of a compact space, which means that it

is compact.

1.3 Fourier transform and Pontryagin Duality

For a topological space, the sets contained in the σ-algebra generated by the open

sets of that space are called Borel sets. A positive measure defined on the Borel sets

of a locally compact Hausdorff space X is called a Borel measure. Let µ be a Borel

measure on a locally compact Hausdorff space X. Let E denote a general Borel set.

Then µ is said to be outer regular on E if

µ(E) = inf{µ(U) : E ⊆ U,U open}.

µ is said to be inner regular on E if

µ(E) = sup{µ(B) : B ⊆ E,B compact}.

A Borel measure that is finite on compact sets, outer regular on Borel sets and

inner regular on open sets is called a Radon measure. A non-zero Radon measure

µ that is both left and right translation invariant is called a Haar measure. This

means µ(xE) = µ(E) = µ(Ex), for all x ∈ X and all Borel sets E of X. We have

the following fundamental theorem which we will accept and use without giving the

proof.

Theorem 1.3.1. (theorem 1.8, §1.2, [9] ) Let G be a locally compact group. Then G

admits a Haar measure. This measure is unique up to multiplication by a scalar.

In order to define the Fourier transform and state the Fourier inversion formula,

we must first introduce functions of a certain type.

Definition 1.3.2. (definition, pg.92, §3.2, [9] ) Let G be a locally compact topological

group. Then a Haar measurable function φ : G→ C in L∞(G) is said to be of positive

type if for any f ∈ Cc(G) the following inequality holds:∫ ∫
φ(s−1t)f(s)dsf(t)dt ≥ 0.
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As f has compact support K and the Haar measure is finite on compact sets, the

the above integral is bounded by ‖φ‖∞(sup|f |.µ(K))2.

Definition 1.3.3. (definition, pg.102, §3.3, [9] ) Let f ∈ L1(G). We define f̂ : Ĝ→
C, the Fourier transform of f , by the formula

f̂(χ) =

∫
G

f(y)χ(y)dy

for χ ∈ Ĝ.

Let V (G) be defined as the complex span of functions of positive type. Let

B1(G) = V (G) ∩ L1(G). Then we can define the Fourier inversion formula as fol-

lows.

Theorem 1.3.4. (theorem 3.9, §3.3, [9] ) There exists a Haar measure dχ on Ĝ such

that for all f ∈ V 1(G),

f(y) =

∫
Ĝ

f̂(χ)χ(y)dχ.

The measure dχ of this theorem is a measure on Ĝ which corresponds to the

measure dy on G and is called the dual measure of dy.

Just as we took the dual of G, one can again consider the dual of Ĝ denoted by
ˆ̂
G. Then we have the map

α : G→ ˆ̂
G,

where α(y)(χ) = χ(y). Thus α(y) is a character of Ĝ.

Theorem 1.3.5. (theorem 3.2,§3.4, [9] ) G and Ĝ are mutually dual, with the map

α : G→ ˆ̂
G as an isomorphism of topological groups.

Proof. We sketch briefly the main steps of the proof. The first step is to show that

the map α is injective, that is, Ĝ separates points in G. For this it is sufficient to

show that for an z 6= e in G, there exists a unitary character χ such that χ(z) 6= 1.

Then if we define Lzf(x) = f(zx), we get f̂ = ˆLzf, for all f ∈ L1(G). Using the

inversion formula gives f = Lzf for all f ∈ B1(G). As G is Hausdorff, we can find

an open neighbourhood U of the identity such that U ∩ (zU) is an empty set. by an

application of Urysohn’s lemma ( see [7]) , there exists a non-zero continuous function

of positive type with support contained in U . But due to disjointness of U and zU , it

is impossible that Lzf = f for such a function f . This proves that there is indeed a
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unitary character of the required type and α is injective. Next, one defines a topology

on the double dual of G as follows. Let K̂ be a compact neighborhood of the identity

character in Ĝ and V be an open neighborhood of the identity in S1. Consider sets

of the form

W (K̂, V ) = {φ ∈ ˆ̂
G : φ(K̂) ⊆ V }.

Such subsets and their translates constitute a subbasis for the topology on
ˆ̂
G. We

can consider those elements of W (K̂, V ) which arise from the elements of G through

the map α. They are given by

W (K̂, V ) ∩ α(G).

From this we construct a subset of G given by

WG(K̂, V ) = {y ∈ G : α(y)(χ) ∈ V for all χ ∈ K̂}.

This construction gives us the identity

α(WG(K̂, V )) = W (K̂, V ) ∩ α(G).

This shows that α is a homeomorphism onto its image. The final step is to prove

that the image of α is closed and moreover dense in the double dual of G. To show

that it is closed, first note that a locally compact and dense subset of a Hausdorff

space must be open. Now α(G) is locally compact as it is the homeomorphic image

of the locally compact group G, and is dense in its closure in the double dual. Hence

it is an open subgroup of its closure. But since every open subgroup of a topological

group is also closed, α(G) is closed in the dual of Ĝ. Now if α(G) is not dense in the

dual of Ĝ, then it is a proper closed subgroup and there exists a non-zero function

φ̂ ∈ L1(Ĝ) which vanishes on α(G). For χ0 ∈ ˆ̂
G,

φ̂(χ̂0) =

∫
φ(χ)χ̂0(χ−1)dχ.

Since φ̂ vanishes on α(G),
∫
φ(χ)χ(y−1)dχ = 0, for all y ∈ G. This means that φ = 0

almost everywhere and hence φ̂ = 0. This is a contradiction as φ̂ was taken to be

non-zero. This shows that the map is onto and completes the proof.
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1.4 Fields and valuations

Let kp denote the completion of an algebraic number field at a place p. A place is

an equivalence class of valuations on the field. Ostrowski’s well known theorem tells

us that if p is archimedean then kp is either R or C. Then we are left with the case

p discrete, which gives us kp p-adic. In this case kp = (π) contains a ring of integers

Op having a single prime ideal p, this is the set of all non-units of Op and hence the

maximal ideal. The field Op/p is finite, having say Np elements. We have

Lemma 1.4.1. (lemma, §2.7, [2] ) The ring of integers Op can be written as precisely

the set of

α =
∞∑
j=0

ajπ
j,

where the aj run independently through some set Σ of representatives of Op/p in Op.

Theorem 1.4.2. (theorem, §2.7, [2] ) For p discrete, Op is compact with respect to

the topology arising from the absolute value.

Proof. Let Oλ, λ ∈ Λ ba a family of open sets covering Op. To show compactness,

we need a finite subcover. Suppose there is no finite subcover. As Σ is the set of

representatives of Op/p, Op is the union of the finitely many cosets a+ p = a+ πOp,

with a ∈ Σ. As there is no finite subcover by assumption, there exists some a0 ∈ Σ

such that a0+πOp is not covered by finitely many of the Oλ. Repeat this argument for

a0 +πOp in place of Op. We get that there is some a1 such that a0 + a1π+π2Op does

not have a finite subcover. Continuing this process, we get α = a0 + aπ + a2π
2 + . . ..

Then α ∈ Oλ0 for some λ0 ∈ Σ. As Oλ0 is open, we have α + πJOp ⊆ Oλ0 for some

J. this gives us a contradiction, thereby proving the theorem.

There are infinitely many equivalent valuations belonging to the place p, out of

which we choose to work with the following:

|α| = ordinary absolute value if kp is real

|α| = square of ordinary absolute value if kp is complex

|α| = (Np)−ν , where ν is the valuation (ordinal number) of α for kp p-adic.

With the topology associated with this absolute value metric, kp is a complete

topological field.
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For each of these cases, the field kp is locally compact. This will be evident if we

prove the following stronger statement.

Theorem 1.4.3. A subset B of Kp is relatively compact if and only if it is bounded

in absolute value.

Proof. This statement is trivial for the case kp real or complex, as it is just the Heine-

Borel theorem for these cases. We prove it for the case p discrete. Let B ⊆ kp

be bounded in absolute value. Then there is a large enough integer d such that

all elements of B have absolute value less than (Np)d and are hence contained in

the set π−dOp. As Op is compact by the previous theorem and multiplication is

a homeomorphism for the topological field kp, π
−dOp is also compact. B is thus

contained in a compact set and must be relatively compact. Conversely, if B is

relatively compact, then its closure B is compact. Consider the absolute value map

taking kp to the reals. As this map is continuous, the image of kp under the absolute

value map must be compact, hence bounded in R.
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Chapter 2

The Local Field kp

In this chapter, we examine the local field kp which is the completion of the algebraic

number field k at a place p. There are two aspects of this field that we take into

account - the additive aspect and the multiplicative aspect. For both, we try to give

a definite form to the characters of the field and construct a convenient measure on

the field. This chapter lays the foundation for the proof of the main theorem in the

local case.

2.1 The unitary characters of k+
p

Let k+
p denote the additive group of the field kp, with ξ denoting a general element

of k+
p . Let us assume that k+

p has a non-trivial unitary character χ (we will see that

this is always true). Then for η ∈ k+
p , we define the translate of χ by the formula

Lηχ(ξ) = χ(ηξ).

Theorem 2.1.1. (lemma 2.2.1, §2.2, [13] ) The translates of χ are precisely the

unitary characters of k+
p . More precisely the following map is an isomorphism of

topological groups.

φ : k+
p −→ k̂+

p

η 7−→ Lηχ

Proof. We prove the result by individually proving each of the following assertions:

11
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(i) Lηχ is a unitary character of k+
p .

Lηχ : ξ 7−→ ηξ 7−→ χ(ηξ)

is continuous as it is a composition of multiplication by η and the unitary character

χ - both of which are continuous maps.

Lηχ(ξ1 + ξ2) = χ(ηξ1 + ηξ2)) = χ(ηξ1)χ(ηξ2) = Lηχ(ηξ1)Lηχ(ηξ2),

shows that Lηχ is a homomorphism.

(ii)φ is a homomorphism

Coming to the map φ, we have

Lη1+η2χ(ξ) = χ(η1ξ + η2ξ) = χ(η1ξ)χ(η2ξ) = Lηχ(η1ξ)Lηχ(η2ξ).

This gives us φ(η1 + η2) = φ(η1)φ(η2), proving that φ is a homomorphism from the

additive group k+
p to the multiplicative group k̂+

p .

(iii)φ is injective

If η is contained in the kernel of φ then Lηχ must be the trivial unitary character.

This means that

χ(ηξ) = 1, for all ξ ∈ k+
p .

However as multiplication by non-zero η is an automorphism of k+
p and χ was assumed

to be a non-trivial unitary character, η must be zero if it is contained in the kernel

of φ. φ is thus an algebraic isomorphism onto a subgroup of k̂+
p

(iv)φ is bicontinuous

As the domain and range of φ are both topological groups, it is enough to consider

continuity of φ at zero. Consider a sequence of elements ηi in the topological group k+
p ,

converging to zero. We must prove that the images Lηiχ of the ηi under φ converge

to the trivial unitary character χtriv in the character group. Recalling our notation

for open sets of a character group (section 1.1), mathematically this translates into

proving that given an open neighbourhood W (B,U) of χtriv in the character group,

there exists an integer N such that Lηiχ ∈ W (B,U) for i ≥ N , that is,

χ(ηiB) ⊆ U for i ≥ N.
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As χ is continuous, χ−1(U) is an open neighbourhood of zero and contains the open

ball around zero Bδ(0) for some δ ∈ R, where

Bδ(0) = {x ∈ k+
p : |x| < δ}.

Since B is compact, all its elements are bounded in absolute value by some integer M .

Choosing N such that |ηi| < δ/M for i ≥ N , we now find that for i ≥ N , elements

of ηiB are bounded in absolute value by δ and hence ηiB ⊆ Bδ(0) ⊆ χ−1(U). This

gives us

χ(ηiB) ⊆ U, for i ≥ N

as required.

To prove the continuity of the inverse function of φ, it suffices to prove continuity

at χtriv. Accordingly, if {Lηiχ} is a sequence converging to χtriv in Im(φ), then

we must show that the sequence {ηi} converges to zero in k+
p . Convergence of the

sequence {Lηiχ} to χtriv implies that given an open neighbourhood of W (B,U) of

χtriv, there exists an integer N such that Lηiχ ∈ W (B,U) for i ≥ N . In other words,

there exists N ∈ Z such that χ(ηiB) ⊆ U for i ≥ N. (2.1.1)

The above statement holds for any compact set B in k+
p and any open neighbourhood

U of 1 in S1. In order to prove our result, we consider a particular type of compact

set: BM = {x ∈ k+
p : |x| ≤M}, and note that

ηiBM = {x ∈ k+
p : |x| ≤ |ηi|M}.

Next we select the set U conveniently by first choosing ξ ∈ k+
p such that χ(ξ) 6= 1

and then choosing an open neighbourhood U of 1 in S1 such that χ(ξ) /∈ U . This is

possible, as can easily be seen geometrically.

As χ(ξ) /∈ U by choice and the statement 2.1 holds for the sets BM and U chosen

as above, we see that there exists N such that ξ /∈ ηiBM for i ≥ N . As ηiBM consists

of precisely all those elements of k+
p which are bounded in absolute value by |ηi|M ,

we see that there exists N such that

|ξ| > |ηi|M for i ≥ N
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Thus there exists an integer N such that |ηi| < |ξ|/M for all i ≥ N and this entire

argument holds for M arbitrarily large. Hence {ηi} must converge to zero.

(v)Im(φ) = k̂+
p

From the assertions proved so far, it is evident that φ is a topological as well as

algebraic isomorphism of the locally compact group k+
p onto a subgroup of the char-

acter group. In particular, as Im(φ) is a locally compact subgroup of the Hausdorff

topological group k̂+
p , we can use proposition 1.2.5 to conclude that Im(φ) is closed in

the character group. If Im(φ) were a proper closed subgroup of the character group

then there exists non-zero ξ ∈ k+
p such that the image of ξ is trivial under all unitary

characters contained in Im(φ). This means that

χ(ηξ) = 1 for all η ∈ k+
p .

Since multiplication by non-zero ξ is an automorphism of k+
p , this implies that χ is

trivial on k+
p . This is a contradiction. Hence Im(φ) must be the whole of the character

group.

This proves that φ is indeed an isomorphism between the topological group k+
p

and its character group.

At the core of the above result is the assumption that k+
p has a non-trivial unitary

character χ. We construct a special non-trivial unitary character to show that this

assumption is valid.

Definition 2.1.2. The field kp lies above the completion of Q at some place p, let us

denote this completion by R. R is thus defined to be simply the field of real numbers

if p is archimedean and the field of p-adic numbers if p is discrete.

We define a non-trivial continuous additive map λ of R into the group R (mod 1)

for each case.

For the case p archimedean, R = R, we define

λ(x) = −x (mod 1).

It can be easily seen that this map is non-trivial continuous and additive .

For the case p discrete, R = Qp, we define λ using the following steps:

Step 1 Choose ν ∈ Z such that pνx ∈ Zp
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Step 2 Choose n ∈ Z such that n ≡ pνx (mod pνZp)

Now put λ(x) = n/pν (mod 1).

Lemma 2.1.3. The map λ defined above for the case p discrete is a well defined map

from Qp to the group of real numbers modulo 1.

Proof. The element x of Qp can be written as p−k(a0 + a1p+ a2p
2 + · · · ) for a unique

integer k. For pνx to be integral, we choose ν ≥ k. Then

pνx = pν−k(a0 + a1p+ a2p
2 + . . .).

Choosing n congruent to pνx modulo pνZp means that

n ∈ a0p
ν−k + a1p

ν−k+1 + . . .+ ak−1p
ν−1 + pνZp.

Then the value taken by n/pν is independent of ν, namely

n/pν ∈ a0 + a1p+ a2p
2 + . . .+ ak−1p

k−1

pk
+ Z.

Thus n/pν is uniquely defined modulo 1, proving the required result.

Lemma 2.1.4. (lemma 2.2.2, §2.2, [13] ) The map λ described above for the case p

discrete is a non-trivial continuous additive map of Qp into the group R (mod 1) as

required.

Proof. To show that the map λ thus constructed satisfies the required conditions, we

first show that λ is in fact determined by just the following two properties:

Property i. λ(x) is a rational number with only a power of p in the denominator

Property ii. λ(x)− x ∈ Zp.

To do this, we first use i. to write λ(x) as n/pν , for some integers n and ν. Then from

ii., we get n
pν
−x ∈ Zp, that is, n−pνx ∈ pνZp. This means that pνx = n− (n−pν) is

integral and n ≡ pνx (mod pν) as stated in our initial definition of the map λ. Thus

the properties i. and ii. are sufficient to determine λ and the value that satisfies i.

and ii. is precisely the value given to λ(x) by our initial definition.

From ii. we have λ(x) = 0⇔ x ∈ Zp; easily showing that λ is not a trivial map, in

particular it is non-trivial on all elements outside Zp. It is an additive map because

putting λ(x+ y) = λ(x) + λ(y) satisfies the above properties for x+ y. Namely:
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i. λ(x) + λ(y) is a rational number with only a power of p in the denominator as

both λ(x) and λ(y) are themselves of the form n/pν .

ii. λ(x) + λ(y)− (x+ y) = (λ(x)− x) + (λ(y)− y) ∈ Zp.

Convergence of a sequence makes sense in Qp under the absolute value derived from

the p-adic valuation. For continuity of λ we must prove that if {xn} is a sequence

converging to x in Qp then the sequence λ(xn) converges to λ(x) in the group of

reals modulo 1. This means that (xn − x) → 0 must imply λ(xn − x) → 0. Thus it

is sufficient to prove continuity at zero. Let {yn} be a sequence of p-adic numbers

converging to zero in Qp. If yn converges to 0, then so does |yn| and νp(yn) diverges to

∞, where νp denotes the p-adic valuation. Thus there exists an integer N such that

νp(yn) ≥ 0 for all n ≥ N . That is, yn ∈ Zp for all n ≥ N . As y ∈ Zp ⇔ λ(y) = 0, we

have λ(yn) = 0 for all n ≥ N . This proves that λ(yn)→ 0 for yn → 0.

Now that we have a non-trivial continuous additive map on R into R (mod 1),

we get a non-trivial unitary character on k+
p by manipulating λ using the trace map

Tr from the field k+
p onto R. Define Λ(ξ) = λ(Trξ). Using the fact that Tr is also a

non-trivial additive map, we see that

χ : k+
p → C

ξ 7→ e2πiΛ(ξ)

is our much needed non-trivial unitary character on k+
p . We now have a definite form

for each unitary character of k+
p as follows:

Theorem 2.1.5. (theorem 2.2.1, §2.2, [13] ) k+
p is naturally its own character group

under the identification of k+
p with k̂+

p given by η ←→ Lηχ, where Lηχ : ξ 7→ e2πiΛ(ηξ).

Let us use the term character to denote a continuous homomorphism into the

multiplicative group C∗ - not necessarily into S1 as is in the case of a unitary character.

We now compute characters of some common groups.

Characters of (R+, ·) :

Using the commonly used isomorphism z 7→ ez between the the additive group R and

the multiplicative group R+, the problem comes down to finding the characters of

(R,+). Let c̃ be a character of (R,+) into C∗. Then the map c(z) = c̃(z)/|c̃(z)| is a

unitary character of R+ and we can use theorem 2.1.1 to determine c. If we let the
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non-trivial unitary character χ of theorem 2.1.1 be given by χ : z 7→ eiz for (R,+),

then the unitary character c has the form c(z) = Lyχ(z) = eizy for some y ∈ R. Now

letting x = loge(|c̃(z)|)/z (note that x is a well defined real number), we have

c̃(z) = |c̃(z)| · c(z) = ezx · eizy = ezs,

where s is the complex number x + iy. Thus the characters of (R,+) have the form

z 7→ ezs, s ∈ C. Shifting from R to R+ via the isomorphism ψ tells us that the

characters of (R+, ·) have the form ez 7→ ezs, that is, t 7→ ts, s ∈ C. Thus characters

of the multiplicative group R+ are just maps raising to a complex power!

Characters of (Z,+) :

The additive group Z is generated by the element 1. If we know the value of c̃(1) for

a character c̃ then c̃(m) = c̃(1 + . . .+ 1) = (c̃(1))m for any m ∈ Z. Each character is

uniquely determined by its value on 1 and this value can range over the whole of C∗.
The characters of Z thus have the form m 7→ zm, z ∈ C∗.

Using the same argument, one sees that the unitary characters of Z have the form

m 7→ zm, z ∈ S1. The character group of Z is thus S1. This serves as a good example

to point out that theorem 2.1.1 does not apply to (Z,+) because the proof of the

theorem relies on the fact that multiplication by any non-zero element of k+
p is an

automorphism of k+
p , or equivalently that any non-zero element is invertible.

Unitary characters of (S1, ·) :

The map σ : x 7→ e2πix from the reals to S1 shows that S1 is isomorphic to the

quotient group R/Z.

Let us represent elements of S1 by e2πix with x ∈ R. This is equivalent to repre-

senting elements of S1 by the cosets x+Z with x ∈ R. If c̄ denotes a unitary character

of S1, then define a map c on R by c(x) = c̄(e2πix). It can be easily checked that this

map is a continuous homomorphism of R into S1 and hence a unitary character of

the additive group R. Moreover, for any integer m,

c(x+m) = c̄(e2πi(x+m)) = c̄(e2πix) = c(x)

This means that c restricted to Z is trivial. Conversely, any unitary character on

R which is trivial on Z gives us a well defined unitary character on S1 given by

c̄(e2πix) := c(x). Thus the unitary characters of S1 correspond precisely to the unitary

characters of R which are trivial over Z.
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As computed earlier, the unitary characters of R are given by c : x 7→ eixy, y ∈ R
or equivalently by c : x 7→ e2πixy, y ∈ R. For c to be trivial over Z, it is necessary and

sufficient that c(1) = 1, which in turn is equivalent to e2πiy = 1, that is, y ∈ Z. Thus

the unitary characters of S1 have the form

c̄(e2πix) := c(x) = e2πixy, y ∈ Z,

or more simply put

c̄ : t 7→ ty, y ∈ Z.

In the preceding example we showed that the character group of Z is S1. This example

shows that the character group of S1 is in turn given by Z !

Coming back to our field k+
p with unitary characters given by Lηχ, η ∈ k+

p , we

conclude this section with a result that will be used later. Before that we define in

simple terms what is called the different of the field kp.

Definition 2.1.6. Let Op denote the ring of integers of kp, that is Op = {x ∈ kp :

|x| ≤ 1}. For R as given in definition 2.1.2, let OR denote its ring of integers. We

define the following operations

O−1
p = {x ∈ kp : xOp ⊆ Op}
O ∗

p = {x ∈ kp : Tr(xOp) ⊆ OR}.

Then the different of kp is defined to be d = (O∗p)−1.

Lemma 2.1.7. (lemma 2.2.3, §2.2, [13] ) For the case p discrete, the unitary character

Lηχ : ξ 7→ e2πiΛ(ηξ) corresponding to η is trivial on Op if and only if η ∈ d−1.

Proof. Notice that for the case p discrete, the field R is simply Qp and the ring of

integers OR is given by the p-adic integers Zp. The map Lηχ : ξ 7→ e2πiΛ(ηξ) is trivial

on Op if and only if Λ(ηξ) = λ(Tr(ηξ)) = 0 for all ξ ∈ Op. This is equivalent to the

condition Tr(ηOp) ⊆ Zp, which is true if and only if η ∈ O∗p = d−1.

2.2 Measure on k+
p

As k+
p is a locally compact abelian group, there exists a Haar measure µ on it which

is unique up to scalar multiplication.
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Lemma 2.2.1. (lemma 2.2.4, §2.2, [13] ) Consider a non-zero element α and a

measurable set M of k+
p . If we define µ1(M) = µ(αM), then µ1 is also a Haar

measure.

Proof. The multiplication map ξ 7→ αξ is an algebraic automorphism of k+
p because

it is a homomorphism with ξ 7→ α−1ξ as the inverse map. Moreover, as kp is a

topological group, it is also bi-continuous. It is thus a topological as well as algebraic

automorphism of k+
p . If we have a compact measurable set M of k+

p , then the image

αM under the multiplication map is also compact and the finiteness of µ(αM) implies

the finiteness of µ1(M).

If we have an open measurable set M of k+
p , then αM is also open and inner

regularity of the Haar measure µ on open sets states that

µ(αM) = sup{µ(K ′) : K ′ ⊆ αM,K ′ compact}.

As the multiplication map is a topological automorphism, given a compact subset K

of M , the translate αK is a compact subset of αM . Such translates thus constitute

a subset of the compact subsets of αM . Conversely, for every compact subset K ′ of

αM , the set K given by α−1K ′ is a compact subset of M . Thus any compact subset

of αM is an α- translate of some compact subset of M . This proves that the compact

subsets of a translate of M are precisely the translates of the compact subsets of M .

This gives

µ(αM) = sup{µ(αK) : K ⊆M,K compact}
i.e. µ1(M) = sup{µ1(K) : K ⊆M,K compact},

proving inner regularity of µ1 on open sets. Similarly one can derive outer regularity

of µ1 on Borel sets from the corresponding property for µ, thereby ensuring that all

the topological properties of a Haar measure are satisfied by µ1. To verify transla-

tion invariance, we use the additivity of the multiplication map and the translation

invariance of µ to get:

µ1(M + ξ) = µ(αM + αξ) = µ(αM) = µ1(M),

for any ξ ∈ k+
p . µ1 satisfies the defining properties and is thus indeed a Haar measure

on k+
p .
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Lemma 2.2.2. (lemma 2.2.5, §2.2, [13] ) µ(αM) = |α|µ(M).

Proof. As µ1 and µ both are Haar measures on k+
p , µ1 must be a scalar multiple of µ.

Denoting this scalar as ϕ(α) since it may be dependent on α, we have µ1 = ϕ(α)µ.

In particular we observe that ϕ(α) is independent of the set M taken and that

µ1(M) = ϕ(α)µ(M) holds for any measurable set M of k+
p . Consequently M can

be chosen in a way that makes ϕ(α) easy to compute. Depending on p, we have three

possibilities for k+
p :

k+
p real:

Let us choose M as the set [0, 1]. Then αM = [0, α] where α is a non-zero real

number. The Haar measure µ on R is upto a scalar just the Lebesgue measure. As

the length and hence Lebesgue measure of the interval [0, α] is |α| times that of the

interval [0, 1], we see that µ(αM) = |α|µ(M). This gives ϕ(α) = |α|.
k+
p complex:

The Haar measure µ on C is upto a scalar just the ordinary Lebesgue measure on the

plane. If we takeM to be the square in the plane having vertices as (0, 0), (0, i), (1, i), (1, 0)

then αM is the square with vertices (0, 0), (0, αi), (α, αi), (α, 0). It is easy to see that

the scaling factor is now the square of the scaling factor in the real case. However

by our convention, the absolute value in C is taken to be the square of the ordinary

absolute value, ensuring that the result holds for the complex case.

k+
p p-adic:

Consider the ring of integers Op of k+
p . This is an open hence Borel set and is thus

measurable. It is also compact which means that µ(Op) is finite.

We first consider the case α ∈ Op, so that αOp ⊆ Op . Let m ∈ Z be the valuation

of α, then α can be written as πmu, where π is an element of valuation 1 and u ∈ O×p .

Then

αOp = πmuOp = πmOp = pm,

where p is the unique prime ideal of Op. As αOp is a subring of Op, we can consider

the quotient ring Op/αOp. The cardinality of this quotient ring is the number of

cosets of αOp in Op. Each coset is simply a translation of αOp having the same

measure as αOp because of translation invariance of the Haar measure. Thus each

coset can effectively be thought of as a copy of αOp and the number of cosets gives

us the number of copies of αOp required to cover Op. This number is simply

|Op/αOp| = |Op/p
m| = (Np)m = |α|−1.
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Thus we need |α|−1 copies of αOp to cover Op, that is, µ(Op) = |α|−1µ(αOp). This

gives the required result.

If α /∈ Op then α−1 must be contained in Op and the previous argument that was

used for α ∈ Op can now be used for α−1 instead. Moreover now Op is a subring of

the ring αOp. We note that there is a one-one correspondence between cosets of Op

in αOp and cosets of α−1Op in Op given by

Op + αξ ↔ α−1Op + ξ,

where ξ denotes the general element of Op. Using this correspondence of cosets and

the the previous argument for α−1 ∈ Op gives

|αOp/Op| = |Op/α
−1Op| = |α|.

Hence µ(αOp) = |α|µ(Op) as needed.

We have thus recorded for a general Haar measure how the measure of a set

changes under the multiplication map. For the purpose of integration, our result can

be written as

dµ(αξ) = |α|dµ(ξ).

Let us now try to select a fixed Haar measure on k+
p . We start with a Haar measure

dµ0 on k+
p . Let its dual measure on the character group be given by dχ0. As the map

φ of theorem 2.1.1 is an isomorphism of topological groups, the dual measure dχ0 on

the character group corresponds to a measure dµ1 on k+
p as follows∫

M

dµ1 :=

∫
φ(M)

dχ0.

Through an argument similar to that used to prove lemma 2.2.1, one can show that

dµ1 is a Haar measure on k+
p and must hence be a scalar multiple of the measure dµ0,

say dµ1 = λdµ0. How can we ensure that the measure dµ1 corresponding to the dual

measure is the same as the original measure dµ0?

For this purpose, let us now divert to the question of how the dual measure dχ

changes on replacing a Haar measure dµ by a scalar multiple dµ′ = cdµ. For a function

f ∈ B1(k+
p ), the Fourier transform can be taken with respect to either measure. Let

us denote the Fourier transform of f with respect to the measure dµ as f̂ and that
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with respect to the measure dµ′ as f̃ . Then with respect to dµ, the Fourier transform

and the Fourier inversion formula give us

f̂(χ) =

∫
f(y)χ̄(y)dµ(y)

f(y) =

∫
f̂(χ)χ(y)dχ(χ)

Denoting the dual measure of dµ′ as dχ′, we have,

f̃(χ) =

∫
f(y)χ̄(y)dµ′(y) = c

∫
f(y)χ̄(y)dµ(y) = cf̂(χ)

f(y) =

∫
f̃(χ)χ(y)dχ′(χ) = c

∫
f̂(χ)χ(y)dχ′(χ)

Equating the expressions for f(y) obtained for both measures gives us∫
f̂(χ)χ(y)dχ(χ) = c

∫
f̂(χ)χ(y)dχ′(χ)

which means that dχ′ = 1/c · dχ. Take our fixed Haar measure to be
√
λ. We have

k+
p −→ k̂+

p −→ k+
p

dµ0 7−→ dχ0 7−→ λdµ0

√
λdµ0 7−→

1√
λ
dχ0 7−→

λdµ0√
λ

Thus we have a measure that is its own dual when the character group of k+
p is

identified with k+
p and it is this measure that we choose as a fixed Haar measure for

k+
p henceforth. This measure is given as follows for the following cases :

ordinary Lebesgue measure on R if k+
p is real

twice the ordinary Lebesgue measure in the plane if k+
p is complex

the measure that gives Op the measure (Nd)−1/2 if k+
p is p-adic.

From theorem 2.1.4, a general character of k+
p has the form ξ 7→ e2πiΛ(ηξ) and can

be identified with the element η of k+
p . Using this along with the self-dual measure

defined above on k+
p , the inverse Fourier transform has the form of an integral on k+

p

rather than on its character group. If the self dual measure is denoted as dµ, then
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writing dµ(ξ) as dξ for convenience, the Fourier transform and the inversion formula

on k+
p are then given by

f̂(η) =

∫
f(ξ)e−2πiΛ(ηξ)dξ (2.2.1)

f(ξ) =

∫
f̂(η)e2πiΛ(ηξ)dη (2.2.2)

=

∫
f̂(η)e−2πiΛ(η(−ξ))dη =

ˆ̂
f(−ξ).

2.3 The characters of k×p

Let k×p denote the multiplicative group of kp and α denote a general element of this

group. Consider the continuous homomorphism | · | : α 7→ |α| from k×p onto the

multiplicative group R+ or NpZ according to whether p is archimedean or discrete.

The kernel of this map is given by O×p = {α ∈ k×p : |α| = 1}. As O×p is closed as well

as bounded in absolute value, it is compact. For p discrete, the image set NpZ has

discrete topology. Then O×p is open as it is the inverse image of the set {1} which is

open in NpZ.

Consider a character c of k×p which is trivial on O×p . If two elements α1 and α2 of

k×p have the same absolute value, then α1α
−1
2 ∈ O×p gives us c(α1) = c(α2). The value

c(α) thus depends solely on the absolute value of α and this simplifies the form taken

by c to some extent. Hence it makes sense to examine such special characters - also

termed as unramified characters - before moving on to a general character of k×p .

Lemma 2.3.1. (lemma 2.3.1, §2.3, [13] ) The unramified characters of k×p are of

the form c(α) = |α|s, s ∈ C. For p archimedean, s is determined by the character c

whereas for p discrete, s is determined modulo 2πi/logNp.

Proof. Let c be an unramified character of k×p . As seen from the above discussion, c(α)

depends only on the absolute value of α. The set of all absolute values of elements in

k×p is called the value group of k×p . Define the following function on the value group:

d(|α|) := c(α). The map d is a homomorphism because

d(|α1||α2|) = d(|α1α2|) = c(α1α2) = c(α1)c(α2) = d(|α1|)d(|α2|).

Also c(α) = (d ◦ | · |)(α) tells us that d is continuous. Thus d is a character on
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the value group of k×p which is given by (R+, ·) or (NpZ, ·) according to whether p is

archimedean or discrete.

For the case p archimedean, d is a character of (R+, ·). From the computation

of characters of (R+, ·) following theorem 2.1.4, d(|α|) involves simply raising to a

complex exponent and has the form |α| 7→ |α|s, s ∈ C. Hence c(α) = d(|α|) =

|α|s, s ∈ C. It is evident that distinct complex numbers s1 and s2 will give distinct

characters and thus s is determined by the character c.

For the case p discrete, we have the following isomorphism between the value

group and the additive group of integers:

β : (NpZ, ·) → (Z,+)

Npm 7→ m

From the computation following theorem 2.1.4, we know that the characters of Z
have the form m 7→ zm, z ∈ C∗. The complex number z can be written as r · eiθ

with r, θ ∈ R. The non-zero real numbers r and eθ can be written as Npx and Npy

for some real numbers x and y respectively (this can be done by using the logarithm

map appropriately). This gives

z = r · eiθ = Npx · Npiy = Nps,

where s = x + iy ∈ C. The character of (NpZ, ·) corresponding to the character

m 7→ zm of Z is hence given by Npm 7→ (Nps)m and all characters of (NpZ, ·) are

precisely of this form as a consequence of the isomorphism β. As Npm represents the

absolute value of some element α ∈ k×p for p discrete, a general character d of the

value group is simply given by |α| 7→ |α|s with s ∈ C. This gives the required form for

c(α). We note that if distinct complex numbers s1 and s2 give the same character, the

corresponding characters must agree on Np (the multiplicative generator of the value

group). This gives Nps1 = Nps2 , that is, Nps1−s2 = 1. Writing Np as exp(logeNp)

gives us

e(s1−s2)logNp = 1.

Thus (s1 − s2)logNp ≡ 0 (mod 2πi), giving

s1 ≡ s2 (mod 2πi/logNp).
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As each of these steps is reversible, we see that s is determined modulo 2πi/logNp.

We have shown that every unramified character of k×p is of the form α 7→ |α|s with

s ∈ C. It is easy to see that every such map is indeed an unramified character. Thus

the unramified characters of k×p are precisely of the required form.

Using this result, we attempt to give a definite form to a general character of k×p .

For this we first try to write a general element of k×p in terms of its ‘restriction’ on

O×p . Let us do this separately for the cases p archimedean and discrete.

For p archimedean, a given element element α of k×p can be written uniquely as

α̃ρ, with α̃ ∈ O×p and ρ a positive real number. This can be done by taking ρ = |α|
and α̃ = α/|α|. To show that this representation is unique, let α̃1ρ1 = α̃2ρ2. As α̃1

and α̃2 have absolute value 1 and ρ1 and ρ2 are positive real numbers, taking absolute

values on both sides gives us ρ1 = ρ2. This in turn gives α̃1 = α̃2 and thus the

representation is unique.

For p discrete we first fix an element π of valuation 1. Then we will see that

any element α can be written uniquely as α̃ρ, with α̃ ∈ O×p and ρ a power of π. If

the absolute value of α is given by Np−m, then απ−m has absolute value 1. Taking

α̃ = απ−m and ρ = πm gives us α = α̃ρ, with α̃ and ρ as required. If α̃1ρ1 = α̃2ρ2,

then since α̃1 and α̃2 are units in O×p , taking absolute values gives us |ρ1| = |ρ2|. As

ρ1 and ρ2 are simply powers of π, both must be the same power of π, that is, ρ1 = ρ2.

This gives α̃1 = α̃2, proving that this representation for α is unique.

Consider the map α 7→ α̃. In the archimedean case, this map is given by α 7→ α/|α|
and is easily seen to be a homomorphism. For the discrete case this map looks like

α 7→ απ−νp(α), where νp(α) denotes the valuation of α. This is a homomorphism

because

α̃1α2 = α1α2π
−νp(α1α2) = α1π

−νp(α1)α2π
−νp(α2) = α̃1α̃2.

Theorem 2.3.2. (theorem 2.3.1, §2.3, [13] ) If α̃ is as defined above, the characters of

k×p are precisely the maps of the form c(α) = c̃(α̃)|α|s, where c̃ is a unitary character

of O×p . While s is determined as in lemma 2.3.1, c̃ is uniquely determined by the

character c.

Proof. Let c be a character of k×p . Define c̃ to be the restriction of c to O×p . It

can be seen that c̃ is a character of O×p and consequently the image of the compact

multiplicative group O×p under c̃ must be a compact subgroup K of (C∗, ·). If we now

take the absolute value map on K then the image of this absolute value map must
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be a compact subgroup of (R+, ·). However the only compact - or even bounded -

subgroup of the multiplicative group R+ is {1}. This can be verified by including an

element other than 1 and trying to close the set under inversion and multiplication.

Hence the image K of O×p under c̃ must be a subgroup of S1. This proves in general

that a character on a compact group is in fact a unitary character and in particular

that c̃ is a unitary character of O×p !

For an element α of k×p , we have α = α̃ρ from the discussion preceding this

theorem. Let us now consider the map

c/c̃ : α 7→ c(α)/c̃(α̃).

This map is well defined because α̃ is uniquely defined for each α and is continuous

as it is the quotient of two continuous maps and the denominator does not vanish. It

can be readily checked that it is also a homomorphism. If u ∈ O×p , then ũ = u, which

gives c/c̃ : u 7→ 1 for all u ∈ O×p . The map c/c̃ thus is an unramified character on k×p

and must be of the form α 7→ |α|s, s ∈ C according to lemma 2.3.1. Hence

c(α) = c̃(α̃)|α|s,

where s ∈ C and c̃ is a unitary character of O×p . For the converse, is easy to see that

every map of this form is indeed a character of k×p . As c̃ is simply the restriction of c

to O×p , it is uniquely determined by the character c.

This tells us that a character c(α) of k×p is upto a factor of |α|s simply a unitary

character c̃(α̃) of O×p . This simplifies the determination of characters of k×p to some

extent. For this purpose, we define some terms.

As a character c of k×p has the form c(α) = c̃(α)|α|s according to the above theo-

rem, we see that |c(α)| = |α|σ, where σ = Re(s). As s is either uniquely determined by

c or is uniquely determined modulo 2πi/ logNp, we see that Re(s) is always uniquely

determined by the character c. We call σ the exponent of c.

2.4 Equivalence classes of characters of k×p

We define two characters to be equivalent if they agree on O×p or equivalently if

their quotient is an unramified character. Then an equivalence class C of characters
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consists of all characters of the form c̃(α)|α|s, where c̃ is a unitary character of O×p and

is fixed for this class, whereas s varies over the complex numbers. Each equivalence

class is thus represented by a unitary character of O×p . Let us now determine for

different cases, the unitary characters of O×p and subsequently the equivalence classes

of characters.

Case 1. kp real:

For the real field, the ring of integers is simply the ring of ordinary integers. Integers

which are units are 1 and −1, hence O×p = {1,−1}. Let c̃ denote a unitary character

of {1,−1}. Since c̃(−1)2 = c̃(1), the image of −1 must be a square root of unity.

Hence the unitary characters of O×p can be written as:

c̃(α̃) = α̃n, n = 0, 1.

Thus, there are two equivalence classes. In the equivalence class corresponding to the

trivial map, the characters have the form

c(α) = α̃0|α|s = |α|s.

As α̃ = α/|α| in this case, the characters in the other equivalence class look like

c(α) = α̃1|α|s = (α/|α|)|α|s = ±|α|s,

where there is a plus sign if the non zero real variable α is positive and a minus sign

otherwise. In summary, the two equivalence classes of characters can be denoted as

||s and ±||s.

Case 2. kp complex:

For the complex field, O×p is S1- the set of elements of absolute value 1. The com-

putation following theorem 2.1.4 tells us that the unitary characters of S1 are given

by

c̃(α̃) = α̃n, n ∈ Z.

Let us denote these unitary characters by cn where n is an integer and cn : α̃ 7→ α̃n.

If we denote a general element α of C× as reiθ with r > 0, then α̃ = α/|α| = eiθ,

giving cn : eiθ 7→ einθ. As absolute value in C was chosen to be the square of the

usual absolute value, the characters of the equivalence class represented by cn have
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the form

c(α) = cn(α̃)|α|s = einθr2s.

For convenience, the equivalence classes can be denoted by cn||s.
Case 3. kp p-adic:

Let us first discuss sets of the type Nn = 1 + pn, with n > 0. A typical element of Nn

has the form 1 + aπn, where π is a fixed element of valuation 1 and a is any element

in the ring of integers.

As the p-adic absolute value satisfies the property |a+b|p = max{|a|p, |b|p}, if |a|p 6=
|b|p, we have |1 + aπn|p = 1, that is, Nn is a subset of O×p . The identity

1 = (1 + x)(1− x+ x2 − x3 + . . .)

implies that the inverse in O×p of 1 + aπn is given by the p-adic element 1 − aπn +

(aπn)2 − (aπn)3 + · · · , which is contained in Nn. There is another way to realize

this. We see that an element x of the field is contained in 1 + pn if and only if

|x − 1| ≤ Np−n. Now let x be an element of Nn. Then using the fact that x has

absolute value 1,

|x−1 − 1| = |x||x−1 − 1| = |1− x| ≤ Np−n,

which gives x−1 ∈ Nn. We have shown that Nn is closed under taking inverses. It can

be checked that Nn is also closed under multiplication and is thus a subgroup of O×p .

As 1 + pn is precisely the set {x : |x − 1|p < Np−n+1}, we see that Nn is thus

an ‘open ball’ around 1. By definition, given any open set containing 1, we can find

some n > 0 such that Nn is contained in that open set.

In summary, the subgroups Nn of O×p form a fundamental system of neighbour-

hoods of 1.

Coming back to the question of determining unitary characters of O×p , let c̃ denote

such a unitary character. Choose an open neighbourhood U of 1 in S1 which contains

no subgroups of S1 other than the trivial subgroup. One example of such an open

neighbourhood is the arc running from i to −i in the clockwise direction on the

unit circle, excluding both endpoints. The inverse image of U under c̃ will be an

open set containing 1 and hence we can find some n0 > 0 such that Nn0 ⊆ c̃−1(U).

Thus the image under c̃ of the subgroup Nn0 of O×p is a subgroup of U and must be

the trivial subgroup. c̃ is thus trivial on Nn0 and must be trivial on all the nested
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neighbourhoods Nn, n > n0. The point to note is that for any unitary character c̃ , we

have c̃(1 +pn) = 1 for sufficiently large n. Selecting minimal such non-negative n and

calling the ideal f = pn the conductor of c̃, we can interpret c̃ as a unitary character

of the quotient group O×p /1 + f. The advantage of this interpretation is that as

this quotient group is finite, each unitary character of O×p can now be described by

only a finite table of values. The equivalence classes of characters of the field are

represented by the unitary characters of O×p . This is the best we can say because we

cannot give any definite form to the unitary characters of O×p for this case. Every

different unitary character of O×p gives rise to a different equivalence class. Instead

of dealing with unitary characters of O×p , we will prefer to deal with characters of k×p

by extending a unitary character c̃ of O×p to a character c of k×p by fixing an element

π of valuation 1 and giving it the value 1 under c̃. Then for any element α = α̃πν of

k×p , c is defined to be

c(α) = c̃(α̃)c̃(πν) = c̃(α̃).

Thus the equivalence classes of characters are now represented by such characters of

k×p itself! We give such a character c the subscript n if the corresponding ‘restriction’

c̃ has conductor pn. Then the classes of characters are represented by the characters

cn and can be denoted as cn||s.

This completes our description of the characters of k×p in terms of the unitary

characters of O×p and our subsequent elaboration of the unitary characters of O×p for

different cases.

2.5 Measure on k×p

Let Cc(k×p ) denote the space of continuous functions on k×p which vanish outside

a compact set. Recall that there is a one to one correspondence between Radon

measures on k×p and non-trivial functionals on Cc(k×p ), given by:

d1α←→ Φ(g) =

∫
k×p

g(α)d1α,
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where g(α) ∈ Cc(k×p ). We have already constructed a measure dξ on k+
p in section

2.2. We now use this measure to define on Cc(k×p ) the following functional:

Φ(g) =

∫
k+−{0}

g(ξ)|ξ|−1dξ.

This expression makes sense because g(ξ)|ξ|−1 ∈ Cc(k+ − {0}) for g(α) contained in

Cc(k×p ). This functional on Cc(k×p ) corresponds to some Radon measure d1α on k×p

in the sense that Φ(g) =
∫
k×p
g(α)d1α. In order to prove that this Radon measure is

translation invariant and hence a Haar measure, we must show that for any element

β of k×p , d1(αβ) = d1(α). For this purpose, let us first fix β ∈ k×p and define h(α) =

g(αβ−1). Then,

Φ(h) =

∫
k+p −{0}

g(ξβ−1)|ξ|−1dξ =

∫
(k+p −{0})β−1

g(ξ)|ξβ|−1d(ξβ)

=

∫
k+p −{0}

g(ξ)|ξ|−1dξ,

giving Φ(g) = Φ(h). The last step depends on the fact that multiplication by β−1 is

an automorphism of k+ − {0} and that d(ξβ) = |β|dξ, as stated in lemma 2.2.2. As

Φ(g) = Φ(h), we must have∫
k×p

g(α)d1α =

∫
k×p

h(α)d1α =

∫
k×p

g(αβ−1)d1α =

∫
k×p

g(α)d1(αβ).

This gives d1(α) = d1(αβ) for any β ∈ k×p and thereby shows that the Radon measure

d1α corresponding to the functional Φ(g) is translation invariant and hence a Haar

measure on k×p .

We have now constructed the required Haar measure but we cannot yet determine

whether a function is integrable, because the integral
∫
g(α)d1α does not yet make

sense for functions other than those contained in Cc(k×p ). Hence, define a function

g(α) on k×p to be integrable with respect to the measure d1α if and only if the function

g(ξ)|ξ|−1 on k+−{0} is integrable with respect to the additive measure dξ. Moreover,

the correspondence g(α)↔ g(ξ)|ξ|−1 is a one to one correspondence between Cc(k×p )

and Cc(k+
p − {0}) and we can view the integrable functions as limits of functions
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contained in Cc(k×p ) and Cc(k+
p − {0}) respectively. This gives us∫

k×p

g(α)d1α =

∫
k+p −{0}

g(ξ)|ξ|−1dξ,

for g(α) ∈ L1(k×p ) and g(ξ)|ξ|−1 ∈ L1(k+
p − {0}). The concept of integrability of a

function on k×p now has meaning with respect to the measure d1α and we can also

determine a well defined value for the corresponding integral of the function. Our

construction of a multiplicative measure on k×p is thereby complete and is given in

terms of the additive measure by d1α = dα/|α|.

Recall that in the additive case (section 2.2), the self dual measure we obtained

for the p-adic case gave Op the measure (Nd)−1/2. Emulating the additive measure,

we will normalize the multiplicative measure so that O×p has the measure (Nd)−1/2.

The ‘volume’ of O×p under the measure d1α is given by∫
O×p

d1α =

∫
O×p

dξ/|ξ|p =

∫
O×p

dξ

Thus the multiplicative measure of O×p is same as its additive measure because el-

ements of O×p have absolute value 1. From the isomorphism between the quotient

groups O×p /1 + p and (Op/p)×, we see that the number of cosets of 1 + p in O×p is

Np−1. This means that O×p is a disjoint union of Np−1 additive translates of 1 +p

and hence its measure is Np− 1 times the measure of 1 + p. Similarly, the measure

of Op is Np times the measure of the ideal p. Using these facts, we have∫
O×p

dξ = Np− 1

∫
1+p

dξ = Np− 1

∫
p

dξ

=
Np− 1

Np

∫
O
dξ =

Np− 1

Np
(Nd)−1/2

Definition 2.5.1. Let dα denote the additive measure defined at the end of section

2.2. We define our normalized multiplicative measure d′α as

d′α = d1α = dα/|α|,
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for the case p archimedean and

d′α =
Np

Np− 1
d1α =

Np

Np− 1

dα

|α|
,

if p is discrete.



Chapter 3

The local ζ-function

The results so far have given some insight into the structure of local fields. Let us

now deal with the crux of the theory of this thesis for the local case. We define

the ζ-function for the field kp and state its functional equation. All the results of

the previous chapter fall seamlessly into place to develop an involved proof of the

functional equation and analytic continuation of the ζ-function. This is an important

part of the theory as local results serve as a model and motivate the theory in the

large in many ways.

3.1 The functional equation

Let f(ξ) denote a complex valued function on k+
p and let f(α) be its restriction to

k×p . We consider the class zp of all the functions which satisfy both the conditions:

i. f(ξ) and f̂(ξ) (the Fourier transform of f) are continuous and belong to L1(k+
p )

ii. f(α)|α|σp and f̂(α)|α|σp ∈ L1(k×p ) for σ > 0.

The first condition ensures that the Fourier inversion formula holds for the func-

tions f and f̂ .

The ζ-function of kp can be thought of as a generalisation of the Fourier transform,

in which we have characters instead of unitary characters in the formula.

Definition 3.1.1. (definition 2.4.1, §2.4, [13] ) For each f ∈ zp, we have a function

of characters c, defined for all characters of exponent σ greater than 0, given by

ζ(f, c) =

∫
f(α)c(α)d′α.

33
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This is called the ζ-function of kp.

Recall that an equivalence class C of characters consists of all characters of the

form c̃(α)|α|s, where c̃ is a fixed representative of the class and s varies over the

complex numbers. Because of the complex parameter s varying over the whole of C,

each equivalence class can be viewed as a Riemann surface (one dimensional complex

manifold). As we have seen in theorem 2.3.2, s is determined by c for archimedean

p while for discrete p, it is determined mod 2πi/ logNp. This means that for the

archimedean case, each equivalence class will be isomorphic to the complex plane.

For the discrete case, the equivalence class has the form of a cylinder in the complex

plane, as points that differ by an integral multiple of 2πi/ logNp are identified. With

this interpretation of each equivalence class as a surface, the set of all characters

appears to be a collection of Riemann surfaces. Hence it makes sense to discuss local

properties such as regularity or singularities of a function of characters. Analytic

continuation of such a function also makes sense if it is carried out on each surface

separately.

In particular we are concerned with such properties for the ζ-function. As this

depends on the interpretation of characters as a collection of Riemann surfaces, the

values taken by the exponents of the characters play an important role in the results

that follow. Let us first examine the regularity of the ζ-function.

Lemma 3.1.2. (lemma 2.4.1, §2.4, [13] ) The ζ-function is regular in the domain of

all characters of exponent greater than 0

Proof. Consider the integral
∫
f(α)c(α)|α|sd′α as a function of the complex variable

s. Then at s = 0, this function gives us the local ζ-function ζ(f, c). Let σ denote the

exponent of c. We have∫
|(f(α)c(α)|α|s)|d′α =

∫
|f(α)|α|σ+Re(s)|d′α,

which is finite for s close enough to zero, due to condition ii. stated at the beginning

of this section. Thus for s near zero, the function
∫
f(α)c(α)|α|sd′α is absolutely

convergent and its derivative can in fact be obtained by differentiating under the

integral sign. That is, for s near zero, the derivative of the above function is given by∫
f(α)c(α)|α|s log |α|d′α.
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This means that
∫
f(α)c(α)|α|sd′α is an analytic function of s for s near zero. Putting

s = 0 gives us the required result.

Lemma 3.1.3. (lemma 2.4.2, §2.4, [13] ) For any functions f, g ∈ z and characters

c with exponent contained in the open interval (0, 1), we have

ζ(f, c)ζ(ĝ, ĉ) = ζ(f̂ , ĉ)ζ(g, c),

where ĉ(α) = |α|c−1(α).

Proof. First note that if the exponent of c is given by s, then the exponent of ĉ(α) is

given by 1− s. Thus for exponent of c in the range (0, 1), the exponent of ĉ also lies

in the same open interval and all the ζ functions in the statement of the theorem are

well defined. Using absolute convergence of the integrals, we have

ζ(f, c)ζ(ĝ, ĉ) =

∫
f(α)c(α)d′α ·

∫
ĝ(β)c−1(β)|β|d′β

=

∫ ∫
f(α)ĝ(β)c(αβ−1)|β|d′α d′β

The double integral is taken over the direct product k×p ×k×p . Using the automorphism

(α, β) → (α, αβ) of k×p × k×p and invariance of the measure term d′α d′β under this

automorphism, we obtain∫∫
f(α)ĝ(αβ)c(β−1)|αβ|d′α d′β.

Fubini’s theorem gives us∫ (∫
f(α)ĝ(αβ)|α|d′α

)
c(β−1)|β|d′β. (3.1.1)

Consider now the inner integral, as the rest of the expression is independent of the

functions f and g. Up to the normalisation factor, this integral can be written as∫
f(α)ĝ(αβ)|α|d1α. Moving from the multiplicative measure to additive measure

using |α|d1α = dξ, we get
∫
f(ξ)ĝ(ξβ)dξ. Using equation 2.2.1 to write ĝ(ξβ) as an

integral over k+
p and then using Fubini’s theorem, we obtain∫∫

f(ξ)g(η)e−2πiΛ(ξβη)dξdη,
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which is obviously symmetric in f and g. The inner integral of equation 3.1.1 is thus

symmetric in f and g, which means that the same is true for our initial expression

ζ(f, c)ζ(ĝ, ĉ).

The above result is crucial for establishing analytic continuity and functional equa-

tion for the local ζ-function, as we shall see. The ζ-function was defined for characters

of exponent greater than 0. Let us fix an equivalence class C of characters and for

this class, define an explicit function fC ∈ z. Then the quotient

ζ(fC , c)/ζ(f̂C , ĉ)

is well defined for all characters in C which have exponents in the range (0, 1). From

lemma 3.1.2 one can see that using any other function of z instead of fC will give the

same quotient. This facilitates choosing of a function fC which will make computation

of this quotient easier. We conclude that this quotient is independent of the function

fC used to compute it and is thus simply a function ρ of the characters c in C having

exponents in the range (0, 1). We have

ρ(c) = ζ(fC , c)/ζ(f̂C , ĉ).

The function ρ(c) thus defined will turn out to be a meromorphic function of the

parameter s. As the entire equivalence class C is described by the parameter s, we

have an analytic continuation of ρ(c) over all of C. The entire argument holds for

any equivalence class C and so in effect we get a function ρ(c) which makes sense for

all characters. From lemma 3.1.2, we see that for any function f ∈ z,

ζ(f, c)ζ(f̂C , ĉ) = ζ(f̂ , ĉ)ζ(fC , c),

hence

ζ(f, c) = ρ(c)ζ(f̂ , ĉ).

This leads us to the Main Theorem of the local theory, whose proof now only depends

on the following steps for each equivalence class C of characters: choice of a suitable

function fC , computation of ρ(c) using that function and analytic continuity of the

function ρ(c) thus computed.

Theorem 3.1.4. (Main theorem : local case) (theorem 2.4.1, §2.4, [13] ) The ζ-
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function has an analytic continuation to the domain of all characters, given by the

functional equation

ζ(f, c) = ρ(c)ζ(f̂ , ĉ).

Before we proceed to a rigorous proof of this theorem in the next section, we prove

some properties of ρ(c) that follow from the functional equation and will be useful.

Lemma 3.1.5. (lemma 2.4.3, §2.4, [13] ) Let c̄ denote the function which takes α to

the complex conjugate of c(α). The function ρ satisfies the following properties:

i. ρ(ĉ) = c(−1)
ρ(c)

ii. ρ(c̄) = c(−1)ρ(c).

Proof. Let us first check some simple facts which will arise when we start to prove

the two properties stated above.

(i) ˆ̄f(η) =
¯̂
f(−η): Using equation 2.2.1,

ˆ̄f(η) =

∫
f̄(ξ)e−2πiΛ(ξη)dξ =

∫
f̄(ξ)e2πiΛ(ξη)dξ =

¯̂
f(−η)

(ii)¯̂c(α) = ˆ̄c(α) : Using the definition of ĉ, we have

¯̂c(α) = |α|c(α−1) = |α|c̄(α−1) = ˆ̄c

(iii)¯̂c(−α) = ¯̂c(α)/c(−1) :

The complex conjugate of c(−1) is in fact its inverse because c̄(−1)c(−1) = |c(−1)|2 =

|c(−1)2| = 1. We have

¯̂c(−α) = |α|c((−α)−1) = |α|c̄(−α−1)

= |α|c̄(−1)c̄(α−1) = ˆ̄c/c(−1).

In order to prove the first property, we apply the functional equation twice to get

ζ(f, c) = ρ(c)ζ(f̂ , ĉ) = ρ(c)ρ(ĉ)ζ(
ˆ̂
f, ˆ̂c). In order to simplify the term ζ(

ˆ̂
f, ˆ̂c), let us first

note that
ˆ̂
f(ξ) = f(−ξ) (see equation 2.2.2) and ˆ̂c(α) = |α|ĉ(α−1) = |α||α−1|c(α) =

c(α). Then,

ζ(
ˆ̂
f, ˆ̂c) =

∫
f(−α)c(α)d′α = c(−1)

∫
f(α)c(α)d′α = c(−1)ζ(f, c).
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This gives ρ(ĉ)ρ(c) = 1/c(−1) = c(−1) as needed.

For the second property, we apply the functional equation to ζ(f̄ , c̄) and use the

facts we stated in the beginning of the proof.

ζ(f̄ , c̄) = ρ(c̄)ζ( ˆ̄f, ˆ̄c) = ρ(c̄)

∫
¯̂
f(−α)¯̂c(α)d′α

= ρ(c̄)c(−1)

∫
¯̂
f(α)¯̂c(α)d′α = ρ(c̄)c(−1)ζ(f̂ , ĉ)

On the other hand when ζ(f̄ , c̄) is written as an integral using the definition of the

ζ-function, we find that

ζ(f̄ , c̄) = ζ(f, c) = ρ(c)ζ(f̂ , ĉ).

Comparing the two expressions obtained for ζ(f̄ , c̄) gives us the required result.

3.2 Proof of the Main theorem for the local case

As observed earlier, the proof of theorem 3.1.4 is now only a matter of computing ρ(c)

on each surface C using a convenient function fC chosen for the equivalence class C.

Though the function ρ(c) so constructed is defined for only a certain set of characters

in C, we will see that it can be analytically continued to the entire surface C, thereby

resulting in the analytic continuation and functional equation for the ζ-function. The

proof is divided into three parts, for the cases kp real, complex and p-adic respecively.

3.2.1 kp Real

Let us try to first understand the preliminary facts. There are two aspects of the

field kp - additive and multiplicative. If the field is real then ξ ∈ R+ is a real variable

while α ∈ R× is a non-zero real variable. As R (see definition 2.1.2) is the real field,

the trace map Tr from k+
p to R is just the identity map, giving us

Λ(ξ) = −(Trξ) = −ξ.

The absolute value in the field in this case is just the ordinary absolute value on the

reals, the additive measure dξ is the ordinary Lebesgue measure (as given at the end
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of section 2.2) and the multiplicative measure is d′α = dα/|α| (as given in definition

2.5.1).

The functions fC and the Fourier Transforms

As stated under Case 1. of section 2.4, there are two equivalence classes of characters

given by ||s and ±||s respectively. We choose the functions

f(ξ) = e−πξ
2

and f±(ξ) = ξe−πξ
2

,

for the first and the second class respectively. One can check that these functions

indeed belong to the class of functions given by zp. A fundamental factor while

choosing a suitable function for an equivalence class is not only easy computation of

ζ(f, c), but also a ‘nice’ expression for the fourier transform, which may be in terms

of the original function! This provides some kind of symmetry and makes it easy to

compute ζ(f̂ , ĉ) and hence the quotient ρ(c).

The fourier transforms for this case are computed below:

f̂(ξ) =

∫ ∞
−∞

f(η)e−2πiΛ(ξη)dη =

∫ ∞
−∞

e−πη
2+2πiξηdη = e−πξ

2

∫ ∞
−∞

e−π(η−iξ)2dη

Using Cauchy’s integral theorem to make the substitution η → η + iξ, we find that

the above expression is equal to

e−πξ
2

∫ ∞
−∞

e−πη
2

dη = 2e−πξ
2

∫ ∞
0

e−πη
2

dη.

Putting πη2 = t and noting that dη is just the usual lebesgue measure, we get

e−πξ
2

√
π

∫ ∞
0

e−t t−1/2dt, that is,
e−πξ

2

√
π

Γ(1/2).

As Γ(1/2) =
√
π, we get f̂(ξ) = f(ξ). Let us now compute the Fourier transform for

the other function.

f̂±(ξ) =

∫ ∞
−∞

f±(η)e−2πiΛ(ξη)dη =

∫ ∞
−∞

ηe−πη
2+2πiξηdη.

To evaluate the above integral, one observes that the indefinite integral
∫
ηe−πη

2+2πiξηdη
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is a function of ξ that is obtained upon differentiating with respect to ξ, the function

1

2πi

∫
e−πη

2+2πiξηdη,

which is equal to e−πξ
2

(from the computation of f̂(ξ) done prior to this). This gives∫
ηe−πη

2+2πiξηdη = iξe−πξ
2

.

Hence f̂±(ξ) = if±(ξ).

The ζ-functions

Let us first deal with the class of characters denoted by ||s. The function chosen in

this case for computation is f .

ζ(f, ||s) =

∫
f(α)|α|sd′α =

∫ ∞
−∞

e−πα
2 |α|s dα

|α|
= 2

∫ ∞
0

e−πα
2

αs−1dα.

Putting πα2 = t gives

π−s/2
∫ ∞

0

e−tt
s
2
−1dt = ζ(f, c) = π−

s
2 Γ
(s

2

)
.

As f̂(α) = f(α) and |̂α|
s

= |α||α|−s, we have

ζ(f̂ , |̂|
s
) = ζ(f, ||1−s) = π−

1−s
2 Γ

(
1− s

2

)
.

Coming now to the equivalence class denoted by ±||s and the corresponding function

f± chosen for this case,

ζ(f±,±||s) =

∫
f±(α)± |α|sd′α

=

∫ 0

−∞
αe−πα

2

(−1)|α|s dα
|α|

+

∫ ∞
0

αe−πα
2|α|s dα

|α|

=

∫ 0

−∞
αe−πα

2

(−1)|α|s dα

(−1)α
+

∫ ∞
0

αe−πα
2|α|sdα

α

= 2

∫ ∞
0

e−πα
2|α|sdα = 2

∫ ∞
0

e−πα
2

αsdα
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This last integral can be obtained by replacing s by s + 1 in the computations done

for ζ(f, ||s) above. This gives

ζ(f±,±||s) = π−
s+1
2 Γ

(
s+ 1

2

)
.

In a similar way one can compute that

ζ(f̂±,±|̂|
s
) = ζ(if±,±||1−s) = iπ−

(1−s)+1
2 Γ

(
(1− s) + 1

2

)
.

Expressions for ρ(c)

Taking quotients of the appropriate expressions above, the required function ρ(c) for

each equivalence class of characters is obtained as follows

ρ(||s) =
π−

s
2 Γ
(
s
2

)
π−

1−s
2 Γ

(
1−s

2

) = 21−sπ−s cos
(πs

2

)
Γ(s).

and

ρ(±||s) = i
π−

s+1
2 Γ

(
s+1

2

)
π−

(1−s)+1
2 Γ

(
(1−s)+1

2

) = −i21−sπ−s sin
(πs

2

)
Γ(s).

3.2.2 kp Complex

Now ξ ∈ C+ is a complex variable, which we will denote by x + iy, while α ∈ C×

is a non-zero complex variable which will be denoted by reiθ with r > 0. As R (see

definition 2.1.2) is again the real field, the trace map Tr from k+
p to R is given by

Tr(ξ) = (x+ iy) + (x− iy) = 2x, giving us Λ(ξ) = −(Trξ) = −2Reξ = −2x.

The absolute value in the field in this case is the square of the ordinary absolute

value on the complex numbers, the additive measure dξ = 2dxdy is twice the ordinary

Lebesgue measure (as given at the end of section 2.2) and the multiplicative measure

is d′α = dα/|α| (as given in definition 2.5.1). The ordinary Lebesgue measure on the

complex numbers can also be written as (rdθ)dr if one considers polar co-ordinates

instead of cartesian co-ordinates. Hence the multiplicative measure has the form

d′α =
dα

|α|
=

2rdrdθ

r2
=

2

r
drdθ.

The functions fC and the Fourier Transforms
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As discussed in Case 2. of section 2.4, the equivalence classes are denoted as cn||s,
with n ∈ Z and the characters of the nth class have the form c(reiθ) = einθr2s. We

put

fn(ξ) =

{
(x− iy)|n|e−2π(x2+y2), n ≥ 0

(x+ iy)|n|e−2π(x2+y2), n ≤ 0

We claim that the fourier transform is given by f̂n(ξ) = i|n|f−n(ξ) for all n. For n = 0,

this claim simply says that f0 is its own fourier transform. We prove this first. Let

η = u+ iv and ξ = x+ iy. Then

Λ(ηξ) = −2Re((u+ iv)(x+ iy)) = −2(ux− vy).

We have

f̂0(ξ) =

∫
f0(η)e−2πiΛ(ξη)dη =

∫
e−2π(u2+v2)e4πi(ux−vy)dudv

= 2

∫ ∞
−∞

e−2πu2+4πixudu

∫ ∞
−∞

e−2πv2−4πiyvdv

= 2e−2πx2e−2πy2
∫ ∞
−∞

e−2π(u−ix)2du

∫ ∞
−∞

e−2π(v+iy)2dv

Using Cauchy’s theorem, we can replace the variables as follows: u → u + ix and

v → v − iy. This gives

2e−2πx2e−2πy2
∫ ∞
−∞

e−2πu2du

∫ ∞
−∞

e−2πv2dv.

Let us evaluate the first integral:∫ ∞
−∞

e−2πu2du = 2

∫ ∞
0

e−2πu2du =
1√
2π

∫
e−tt−1/2dt,

putting t = 2πu2. This gives Γ(1/2)/
√

2π, which equals 1/
√

2. The value of the

second integral is also 1/
√

2 by symmetry, giving us

f̂0(ξ) = 2e−2πx2e−2πy2 · 1√
2
· 1√

2
= e−2π(x2+y2) = f0(ξ).
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If the claim is true for some n ≥ 0, then this establishes that for that n,∫
fn(η)e−2πiΛ(ξη)dη = inf−n(ξ),

or in other words∫ ∞
−∞

∫ ∞
−∞

(u− iv)ne−2π(u2+v2)+4πi(ux−vy)2dudv = in(x+ iy)ne−2π(x2+y2). (3.2.1)

Consider the operator

D =
1

4πi

(
∂

∂x
+ i

∂

∂x

)
.

As zn is analytic and satisfies the Cauchy-Riemann equations, it can be seen that

D((u+ iv)n) is zero. Hence applying the operator D to equation 3.2.1 gives us∫ ∞
−∞

∫ ∞
−∞

(u− iv)n+1e−2π(u2+v2)+4πi(ux−vy)2dudv = in+1(x+ iy)n+1e−2π(x2+y2),

that is, ∫
fn+1(η)e−2πiΛ(ξη)dη = in+1f−(n+1)(ξ).

Thus the claim for n + 1 is true if it is true for n. This completes the proof by

induction for n ≥ 0. In order to prove the claim for n < 0, we first write the claim

for −n. Applying the fourier transform on both sides and using equation 2.2.2 gives

us

i|n|f̂n(ξ) = f−n(−ξ) = (−x− (−iy))|n|e−2π(x2+y2) = (−1)|n|f−n(ξ),

which proves the claim for n < 0 as well.

The ζ-functions

For computing the ζ-function, let us work with the co-ordinates r and θ. Denoting

α = x + iy as reiθ, gives us (x − iy) = re−iθ. For n ≥ 0, (x − iy)|n| = r|n|e−i|n|θ =

r|n|e−inθ, whereas for n < 0, (x + iy)|n| = r|n|ei|n|θ = r|n|e−inθ. Thus for all n, fn is

defined to be the function r|n|e−inθe−2πr2 . As discussed in the preceding paragraphs,

the characters corresponding to the class denoted by cn||s have the form einθr2s. We
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have,

ζ(fn, cn||s) =

∫
fn(α)cn(α)|α|sd′α =

∫ ∞
0

∫ 2π

0

r2(s−1)+|n|e−2πr22rdrdθ

= 2π

∫ ∞
0

(r2)s−1+
|n|
2 e−2πr2d(r2) = (2π)(1−s)+ |n|

2 Γ

(
s+
|n|
2

)
.

Using the formula for f̂ in terms of f and the fact that ĉn||s = c−n||1−s, we can

compute in a similar way that

ζ(f̂ , ĉn||s) = i|n|(2π)s+
|n|
2 Γ

(
1− s+

|n|
2

)
.

Expression for ρ(c)

We get

ρ(cn||s) = (−i)|n|
(2π)1−sΓ

(
s+ |n|

2

)
(2π)sΓ

(
1− s+ |n|

2

) .

3.2.3 kp p-adic

We review some facts. We know that ξ is a p-adic variable while α is a non-zero p-adic

variable and can be written as α̃πν with π a fixed element of valuation 1 and ν an

integer. As R (see definition 2.1.2) is now the field Qp, Λ(ξ) = −λ(Trξ), where λ is

the map defined preceding lemma 2.1.3. The absolute value in the field in this case for

an element of valuation ν is given by |α|p = (Np)−ν . The additive measure dξ is such

that Op gets measure (Nd)−1/2, as given at the end of section 2.2. The multiplicative

(normalized) measure is as given in definition 2.5.1 for the discrete case.

The functions fC and the Fourier Transforms

As described in case 3 of section 2.4, the equivalence classes are denoted as cn||s,with

n ≥ 0, where cn is a character which has conductor pn, or rather whose restriction to

O×p has conductor pn.

We put

fn(ξ) =

{
e2πiΛ(ξ), for ξ ∈ d−1

p p−n

0, for ξ /∈ d−1
p p−n
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As the support of fn is contained in d−1
p p−n, we have

f̂n(ξ) =

∫
fn(η)e−2πΛ(ξη)dη =

∫
d−1
p p−n

e−2πΛ((ξ−1)η)dη.

This is the integral of the additive character η 7→ e−2πΛ((ξ−1)η) over the compact

subgroup d−1
p p−n of k+

p . This character is trivial over this subgroup if and only if

Λ((ξ − 1)d−1
p p−n) = 0, that is, λ((ξ − 1)d−1

p p−n) = 0. This means

Tr((ξ − 1)d−1
p p−n) ⊆ Zp.

By arguing in a similar fashion as was done in lemma 2.1.7, we get (ξ−1)d−1
p p−n ⊆ d−1,

that is, (ξ − 1)p−n ⊆ Op. This is equivalent to the condition that (ξ − 1) ∈ pnOp or

ξ ≡ 1 (mod pn) . Thus the integral gives us the measure of d−1
p p−n if ξ ≡ 1 (mod pn).

Else the value of the integral is zero as the additive character is non trivial on the

above mentioned subgroup.

To compute the measure of d−1
p p−n with respect to the additive measure dξ, notice

that

d(d−1
p p−nOp) = |d−1

p ||p−n|d(Op) = (Nd)(Np)n(Nd)−1/2 = (Nd)1/2(Np)n.

We thus have the following formula for the fourier transform:

f̂n(ξ) =

{
(Nd)1/2(Np)n, for ξ ≡ 1 (mod pn)

0, otherwise

The ζ-functions

We know that the prime ideals occurring in the factorisation of d are the prime ideals

of O that are ramified over Q. As for k p-adic, p is the only prime ideal of O, we

have d = pd for some integer d. Then d−1 is given by p−d. Let us denote by Aν the

set of all elements of valuation ν or equivalently of absolute value |(Np)−ν |. Then if

we fix an element π of valuation 1, then Aν is in fact the set given by πνO×, that is,

it is a multiplicative translate of O×. Therefore, under the multiplicative measure,

aν has the same measure as O×, which is, (Nd)−1/2.

We first treat the case n = 0. The character c0 is simply the trivial character and
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f0 is the characteristic function of d−1. We have

ζ(f0, ||s) =

∫
p−d
|α|sd′α =

∞∑
ν=−d

∫
Aν

|α|sd′α =
∞∑

ν=−d

(Np)−νs
∫
Aν

d′α

=

(
∞∑

ν=−d

(Np)−νs

)
(Nd)−1/2 =

(Np)ds

1− (Np)−s
(Nd)−1/2 =

(Nd)s−
1
2

1− (Np)−s
.

As f̂0 is (Nd)1/2 times the characteristic function of O, we repeat the steps used to

compute ζ(f0, ||s), to get

ζ(f̂0, ||s) = ζ(f̂0, ||1−s) = (Nd)1/2

∫
O
|α|1−sd′α = ζ(f̂0, ||s) =

1

1− (Np)s−1
.

Now let us discuss the case n > 0. In this case,

ζ(fn, cn||s) =

∫
d−1p−n

e2πiΛ(α)cn(α)|α|sd′α

=
∞∑

ν=−d−n

(
Np−νs

∫
Aν

e2πiΛ(α)cn(α)d′α

)
(3.2.2)

Let us look at the terms of this sum corresponding to ν ≥ −d. In this case, Aν

consists of terms of valuation ν and must be contained in d−1 = p−d, since ν ≥ −d.

Since α ∈ Aν ⊆ d−1, we have Tr(α) ∈ Zp. This leads to Λ(α) = 0. The integral∫
Aν

e2πiΛ(α)cn(α)d′α =

∫
Aν

cn(α)d′α =

∫
πνO×

cn(α)d′α

=

∫
O×

cn(απν)d′α =

∫
O×

cn(α)d′α = 0,

since cn has conductor pn with n > 0 and so cannot be trivial on O×.

Now other than the first term (corresponding to ν = −d−n), we are left with the

terms corresponding to −d − n < ν < −d. This inequality makes sense for ν ∈ Z if

and only if n > 1. We have already seen that breaking up the elements into sets of

the form Aν , on each of which the absolute value remains constant, is of great help.

A further tactic is to break Aν itself into disjoint sets, on each of which the function

Λ is now constant! We take such sets to be of the form

α0 + d−1 = α0 + p−d = α0(1 + p−d−ν).
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On each such set, Λ has the value Λ(α0) as Λ(d−1) = 0. The integral∫
Aν

e2πiΛ(α)cn(α)d′α

now looks like the sum of integrals on these sets. On each such set, the integral takes

the form∫
α0+d−1

e2πiΛ(α)cn(α)d′α = e2πiΛ(α0)

∫
α0+d−1

cn(α)d′α =

∫
α0(1+p−d−ν)

cn(α)d′α

=

∫
1+p−d−ν

cn(αα0)d′α = cn(α0)

∫
1+p−d−ν

cn(α)d′α.

Now as −d − n < ν implies n > −d − ν, and the conductor of cn is pn, cn must be

non trivial on 1 + p−d−ν . As 1 + p−d−ν is a subgroup of k×, the above integral is zero.

Thus the sum of all such integrals is also zero, that is for −d− n < ν < −d,∫
Aν

e2πiΛ(α)cn(α)d′α = 0.

In summary, except the first term corresponding to ν = −d − n, all the terms of

equation 3.2.2 vanish. Hence

ζ(fn, cn||s) = Np(d+n)s

∫
A−d−n

e2πiΛ(α)cn(α)d′α.

In order to simplify this expression, we first observe that A−d−n is the set of all

elements of valuation −d− n and can be written as A−d−n = O×π−d−n. We continue

our strategy of dissecting elements into smaller sets and now we try to find smaller

sets in A−d−n on which Λ and cn are both constant. If we choose {ε} to be a set of

representatives of the quotient group O×/(1 + pn), then O× can be written as the

disjoint union
⋃
ε ε(1 + pn). Then

A−d−n =
⋃
ε

ε(1 + pn)π−d−n =
⋃
ε

(επ−d−n + εp−d)
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As ε ∈ O×, it is a unit and hence εp−d = p−d = d−1. This gives

A−d−n =
⋃
ε

επ−d−n(1 + pn) (3.2.3)

=
⋃
ε

(επ−d−n + d−1) (3.2.4)

Consider such a set corresponding to some ε. Referring to equation 3.2.3, we see that

as cn is trivial on (1 + pn), the constant value taken by cn on this set is cn(επ−d−n) =

cn(ε). Referring to equation 3.2.4, we see that Λ takes the fixed value Λ(επ−d−n) on

this set.

Therefore, we get

ζ(fn, cn||s) = (Np)(d+n)s

(∑
ε

cn(ε)e2πiΛ(ε/πd+n)

)∫
1+pn

d′α

The Fourier transform f̂n is (Nd)1/2(Np)n times the characteristic function of the

set 1 + pn. On this set cn is trivial as its conductor is pn and absolute value is trivial

as this set is contained in O×. Hence ĉn||s = c−1
n ||1−s is trivial on this set. We have

ζ(f̂n, ĉn||s) = (Nd)1/2(Np)n
∫

1+pn
d′α,

which is a constant.

Expressions for ρ(c)

ρ(||s) = (Nd)s−
1
2

1− (Np)s−1

1− (Np)−s
,

whereas for a non trivial character c,

ρ(c||s) = (N (df))s−
1
2

[
(N f)−1/2

∑
ε

c(ε)e2πiΛ(ε/πorddf)

]
,

where f is the conductor of c.{ε} is a set of representatives of cosets of 1 + f in O×

and is a fixed set for each equivalence class of characeters. The expression in square

brackets is called as a root-number.

This completes the proof of the Main theorem for the local case.



Chapter 4

Adelès and Idèles

Adèles and idèles are beautiful structures which arise from a single concept called the

restricted direct product. As the name suggests, this is a modification of the usual

direct product. In this chapter we explain this concept of restricted direct product

in the abstract sense. Then we define adèles and idèles using this and examine their

properties.

4.1 The abstract restricted direct product

Let J = {ν} be a given set of indices and let J∞ be a fixed finite subset of J . Now

suppose that for each index ν we are given a locally compact group Gν . For indices

ν /∈ J∞ we are also given a compact open (hence closed) subgroup Hν of Gν .

Definition 4.1.1. (definition, pg. 180, §5.1, [9] ) The restricted direct product of Gν

with respect to Hν is defined as the set

′∏
ν∈J

Gν = {(xν) : xν ∈ Gν with xv ∈ Hν for all but finitely many ν}.

Let G denote the above restricted direct product. If the group operation on G is

defined componentwise then G is a subgroup of the ordinary direct product
∏
Gν .

The ordinary direct product however also has a topological structure which makes

it into a topological group. To define a topology on G, we define a neighbourhood

sub-base around identity consisting of sets of the form
∏
Nν where Nν is an open

neighbourhood of 1 in Gν with Nν = Hν for all but finitely many ν.

49
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Theorem 4.1.2. (proposition 5.1.(i)., §5.1, [9] ) G is a locally compact group.

Proof. For a given finite set of indices S containing J∞, consider the subgroup GS of

G given by

GS =
∏
ν∈S

Gν ×
∏
ν /∈S

Hν

Then every element of G is contained in GS for some such finite set S. This shows

that G can be written as the union of all such subgroups. When the topology of G

is restricted to GS, we get the product topology on GS. This gives an easier way to

visualise the topology on G. As GS is the product of a finite family of locally compact

groups Gν with a family of compact groups Hν , GS is locally compact in the product

topology. As each x ∈ G is contained in GS for some S, the group G is also locally

compact under the given topology.

To see that G along with the corresponding topology is a topological group, we

consider a sequence of elements (xν)n converging to the element (xν) in G. We know

that (xν) ∈ GS for some finite set of indices S containing J∞. Consider the open

neighbourhood of (xν) in GS (and therefore in G) given by

U =
∏
ν∈S

Nν ×
∏
ν /∈S

Hν .

By definition of convergence, there exists some integer N such that for all n > N ,

(xν)n ∈ U ⊆ GS. After a point, all terms of the sequence lie in GS and thus the

convergence in G can be regarded as a convergence in GS on which the induced

topology is the product topology. This leads to group multiplication and inversion

being continuous operations.

We can embed Gν in G as follows:

Gν → G

x 7→ (. . . , 1, 1, x, 1, 1, . . .).

Under this embedding, Gν is a closed subgroup of G.

Lemma 4.1.3. (proposition 5.1.(ii)., §5.1, [9] ) A subset K of G is compact if and

only if K ⊆
∏
Kν where Kν is a compact subset of Gν for all ν, and Kν = Hν for

almost all ν. Moreover, if K is a compact neighbourhood then we have equality instead

of containment of K
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Proof. Since subsets of the form GS cover G and are clearly open in the topology

defined, a finite number of GS must cover the compact set K. But a finite union of

GS is obviously contained in a single subset of the form GS0 for some index S0. If we

project K ⊆ GS0 into the group Gν corresponding to each index ν, the continuous

projection map gives us a compact subset K ′ν of Gnu for each index. Moreover, for

all but finitely many indices, K ′ν is a subset of Hν . Thus K ⊆
∏
K ′ν ⊆

∏
Kν where

the sets Kν are as required by the theorem.

Conversely, it can be seen that any set of the above form is a compact subset of

some GS and hence of G. Moreover if K is a compact neighbourhood then it contains

some open set of the form Nν with Nν = Hν for almost all ν. Combined with the

containment of K in
∏
Kν shown above, this gives the required result.

A character of G can be written in terms of characters of the components Gν and

conversely, characters of Gν define a unique character of G. This is made more precise

in the following theorem.

Theorem 4.1.4. (lemmas 5.2, 5.3, §5.1, [9] ) Let χ ∈ Ĝ. Then χ is trivial on all

but finitely many Hν. Hence we can write χ in terms of its component functions

χν = χ|Gν as

χ(y) =
∏

χν(yν)

and this product is well defined. Conversely, given χν ∈ Ĝν with χ|Hν = 1 for all but

finitely many ν, we get a character of G given by

χ(y) =
∏

χν(yν).

Proof. Let χ ∈ Ĝ. It is geometrically obvious that we can choose an open neighbour-

hood U of 1 in C× such that U contains no subgroups other than the trivial group.

As χ is continuous, χ−1(U) is open and hence we can find an open neighbourhood

N =
∏
Nν of the identity such that χ(N) ⊆ U , with Nν = Hν for all ν outside some

finite set of indices S. For any index ν0 /∈ S, consider the subgroup of N given by

Hν0 = {(. . . , 1, x, 1, . . .) : x ∈ Hν0}.

Then χ(Hν0) is a subgroup of U and hence is trivial. This holds for any Hν with

ν /∈ S. Thus χ is trivial on all but finitely many Hν and the product formula follows.
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In order to prove the converse statement, let S be a finite set of indices such that

χ|Hν = 1 for all ν /∈ S. It is obvious that the finite product
∏
χν(yν) is well defined

and is a homomorphism of G into C×. To prove continuity, it is enough to show that

given an open neighbourhood U of 1 in C, one can find an open neighbourhood N of

the identity in G such that χ(N) ⊆ U.

To show this, one chooses an open neighbourhood V such that V (m) ⊆ U. This is

possible as C× is a topological group. For each ν ∈ S, there is a neighbourhood Nν

of the identity in Gν such that χν(Nν) ⊆ V. Then the set∏
ν∈S

Nν ×
∏
ν /∈S

Hν

is an open neighbourhood of the identity in G that satisfies χ(N) ⊆ U.

This theorem paves the way for writing the group of characters Ĝ in terms of

the groups Ĝν . We define H∗ν to be the subgroup of Ĝν consisting of the characters

that when restricted to Hν give the trivial map. The compactness of Hν implies that

W (Hν , U) is an open set of Ĝν in the compact open topology. If U is chosen to be

an open neighbourhood of 1 in C∗ that contains no subgroups other than the trivial

group then the open set W (Hν , U) consists of precisely those characters of Ĝν which

are trivial on Hν . Thus H∗ν is open in Ĝν . To show that H∗ν is compact, we identify

the characters in H∗ν with the character group of Gν/Hν in the obvious manner. This

gives an isomorphism of the topological groups H∗ν and (Gν/Hν )̂. Since Hν is open

in Gν , (Gν/Hν) is discrete and hence (Gν/Hν )̂ is compact.

ThusH∗ν is a compact open subgroup of Ĝν and taking the restricted direct product

of the Ĝν with respect to the H∗ν makes sense.

Theorem 4.1.5. (theorem 5.4, §5.1, [9] ) Let G be the restricted direct product of

the Gν with respect to the Hν . Then we have the following isomorphism of topological

groups

Ĝ ∼=
∏

′Ĝν

where the restricted direct product of the Gν is taken with respect to the subgroups H∗ν .

Proof. Theorem 4.1.4 already establishes that this is indeed an algebraic isomorphism.

It remains to show bicontinuity of the map φ taking the tuple (χν) to the product of
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the components of this tuple, given by
∏
χν .

φ :
∏

′Ĝν −→ Ĝ

(χν) 7−→
∏

χν .

To prove that phi is continuous at the trivial character, let U be a neighbourhood

of 1 in C× and let K be a compact neighbourhood of the identity of G. Then by

lemma 4.1.3, K =
∏
Kν where Kν is a compact neighbourhood of the identity of Gν

and Kν = Hν for almost all ν. Let a character χ of G lie in the open neighbourhood

W (K,U) of the trivial character. Look at the projections of χ given by χν , they are

trivial on Gν for all but finitely many ν. Say that they are non trivial for a set S of

m number of indices. As C× is a topological group, we can find some open set V in

U such that the set

V (m) = {x1x2 . . . xm : xi ∈ V, 1 ≤ i ≤ m}

is contained in U (see proposition 1.2.1). Take

N =
∏
ν∈S

W (Kν , V )×
∏
ν /∈S

H∗ν .

This is an open set in the restricted product topology. It follows thatN ⊆ φ−1(W (K,U)),

showing that φ is continuous!

On the other hand any neighbourhood of the identity of the restricted product

looks like N =
∏
W (Kν , U) and the open set W (

∏
Kν , U) of G is contained in its

image under φ. This means that φ is an open map. Thus φ is bicontinuous and the

result is proved.

Just as the group of characters on the restricted direct product G can be charac-

terised in terms of the character groups of the individual groups Gν , so can the Haar

measure on G be constructed by the Haar measures on Gν .

Theorem 4.1.6. (proposition 5.5, §5.1, [9] ) Let G denote the restricted direct product

as above. Let dgν denote the corresponding Haar measure on Gν normalized so that∫
Hν

dgν = 1
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for all but finitely many ν. Then there is a unique Haar measure dg on G such that

for each finite set of indices S containing J∞, the restriction dgS, of dg to

GS =
∏
ν∈S

Gν ×
∏
ν /∈S

Hν

is the product measure.

Proof. Choose a finite set of indices S containing J∞. Define a measure dgS by taking

the product of the measures dgν . The measure dgS is simply a product measure on

GS and it can be checked that it is indeed a Haar measure on GS. One notes that

the condition ∫
Hν

dgν = 1

for all but finitely many ν is of critical importance here for making sense of what

might otherwise have been a diverging infinite product of measures. In general, a

Haar measure on a group is defined uniquely once we specify how it behaves on any

open subgroup. Hence this construction of the measure dgS on the open subgroup GS

of G defines a unique measure on G. But is this measure independent of S? We want

it to be independent as we have not specified in the theorem any way of choosing

the set S. If we start with a different set of indices S ′ and construct the measure as

above, then we find that the measures given by S and S ′ agree on GS∪S′ . As both

measures agree on an open subgroup of G, they agree on G as well. The measure so

constructed is thus independent of the choice of the set S.

Now that we have defined measure in terms of the component measure, let us

examine how integration can be done on the restricted direct product.

Lemma 4.1.7. (lemma 3.3.2, §3.3, [13] ) Given for each ν, a continuous function

fν ∈ L1(Gν) such that fν(gν) = 1 on Hν for almost all ν, we define f(g) =
∏

ν fν(gν).

Then f is continuous on G. Also, if S is a set of indices outside which fν is trivial

on Hν and
∫
Hν
dgν = 1, then∫

GS

f(g)dg =
∏
ν∈S

[∫
Gν

fν(gν)dgν

]
.
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Proof. Consider the restriction of f to GS =
∏

ν∈S Gν ×
∏

ν /∈S Hν ,

f|GS =
∏
ν∈S

f(gν).

This is a finite product of continuous functions, so f is continuous on GS. This is

true for any set of indices S satisfying the conditions of the theorem. Consider an

element g in G and an open set U in C containing the image f(g) of this element. As

g belongs to GS for some S and is continuous on this GS, there is an open set N of

g in GS such that f(N) ⊆ U . As GS is open in G, N is an open neighbourhood of g

in G and is contained in f−1(U). This shows that f is continuous on G.

For the second part, note that

∫
GS

f(g)dg =

∫
GS

f(g)dgS =

∫
GS

(∏
ν∈S

f(gν)dgν

)(∏
ν /∈S

f(gν)dgν

)

=
∏
ν∈S

∫
Gν

f(gν)dgν
∏
ν /∈S

∫
Hν

f(gν)dgν =
∏
ν∈S

(∫
Gν

f(gν)dgν

)
.

Theorem 4.1.8. (theorem 3.3.1, §3.3, [13] ) If fν(gν) and f(g) are the functions of

the preceding lemma and moreover

∏
ν

(∫
Gν

|fν(gν)|dgν
)
<∞,

then f(g) ∈ L1(G) and ∫
G

f(g)dg =
∏
ν

(∫
Gν

fν(gν)dgν

)
.

Proof. We have ∫
G

|f(g)|dg = lim
S

∫
GS

|f(g)|dg.

Now for any set S of indices outside which fν is trivial on Hν and
∫
Hν
dgν = 1, using
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lemma 4.1.7, we have
∫
GS
f(g)dg =

∏
ν∈S

[∫
Gν
fν(gν)dgν

]
. Hence

lim
S

(∫
GS

f(g)dg

)
= lim

S

(∏
ν∈S

[∫
Gν

fν(gν)dgν

])
.

This limit exists and is equal to
∏

ν

(∫
Gν
|fν(gν)|dgν

)
since

∏
ν

(∫
Gν
|fν(gν)|dgν

)
<∞.

This gives ∫
G

|f(g)|dg =
∏
ν

(∫
Gν

|fν(gν)|dgν
)

and thereby f ∈ L1(G).

For the second part we notice that

∏
ν

(∫
Gν

fν(gν)dgν

)
≤
∏
ν

(∫
Gν

|fν(gν)|dgν
)
<∞.

Thus all the steps of the first part can be repeated with |f | and |fν | replaced by f

and fν respectively, to get∫
G

f(g)dg =
∏
ν

(∫
Gν

fν(gν)dgν

)
.

We now know how characters, measure and integration appear in a restricted

direct product with respect to the corresponding properties of the component groups.

We now make some similar observations about Fourier transform in a restricted direct

product.

A typical element of Ĝ is denoted by the character c whose components are given

by cν . That is c is the tuple (· · · , cν , · · · ). Let the dual measure of dgν in Ĝν be

denoted as dcν . For the time being, we let the function fν(gν) be the characteristic

function of Hν . This is an integrable function and so we can take its Fourier transform:

f̂ν(cν) =

∫
Gν

fν(gν)c̄ν(gν)dgν =

∫
Hν

c̄ν(gν)dgν .

Therefore,

f̂ν(cν) =

{
0, if cν is non trivial over Hν∫
Hν
dgν , if cν is non trivial over Hν
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The Fourier transform f̂ν(cν) is in fact
∫
Hν
dgν times the characteristic function of

H∗ν . Now applying the Fourier inversion formula,

fν(gν) =

∫
Ĝν

f̂ν(cν)cν(gν)dcν =

∫
Hν

dgν

∫
H∗ν

cν(gν)dcν .

As this equation holds for all gν ∈ Gν , let us take gν to be an element of Hν . Then

fν(gν) = 1 as f is the characteristic function of Hν and cν(gν) = 1 since cν ∈ H∗ν .

This gives (∫
Hν

dgν

)(∫
H∗ν

dcν

)
= 1.

hence
∫
H∗ν
dcν = 1 for all but finitely many ν.

Lemma 4.1.9. (lemma 3.3.3, §3.3, [13] ) If fν(gν) ∈ B1(Gν) for all ν and fν(gν) is

the characteristic function of Hν for all but finitely many ν, then f(g) has Fourier

transform f̂(c) =
∏

ν f̂ν(cν) and f(g) ∈ B1(G).

Proof. Let S be a set of indices such that fν(gν) is the characteristic function of Hν

for all ν /∈ S. Using the facts fν(gν) ∈ L1(Gν) for all ν, Hν has finite measure for all

ν and Hν has measure 1 for all but finitely many ν,

∏
ν

(∫
Gν

|fν(gν)c̄ν(gν)|dgν
)

=
∏
ν

(∫
Gν

|fν(gν)|dgν
)

=
∏
ν∈S

(∫
Gν

|fν(gν)|dgν
)∏
ν /∈S

(∫
Hν

dgν

)
< ∞.

This means that the conditions of theorem 4.1.8 are satisfied and we can use it to get

f̂(c) =

∫
G

f(g)c̄(g)dg =
∏
ν

(∫
Gν

fν(gν)c̄ν(gν)dgν

)
=
∏
ν

f̂ν(cν).

For the second part of the result, we use the facts f̂ν(cν) ∈ L1(Ĝν) for all ν, H∗ν

has finite measure for all ν and H∗ν has measure 1 for all but finitely many ν. We also

know that f̂ν is the characteristic function of H∗ν for all ν outside some finite set S.

This gives∫
Ĝ

|f̂(c)|dc =
∏
ν

(∫
Ĝν

|f̂ν(cν)|dcν
)

=
∏
ν∈S

(∫
Ĝν

|f̂ν(cν)|dcν
)∏
ν /∈S

(∫
H∗ν

dcν

)
<∞.
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This gives f̂ ∈ L1(Ĝ) as required.

Applying the above lemma to the group Ĝ with measure dc, we obtain the inversion

formula

f(g) =

∫
f̂(c)c(g)dc,

from the component wise inversion formulas. This proves that the measure dc is in

fact the dual of the measure dg, that is, the product measure obtained from the duals

of the component measures is the dual of the original measure!

4.2 Adèles

We let k denote a finite algebraic field and kp denote the completion of k at the place

p.

Definition 4.2.1. (definition 4.1.1, §4.1, [13] ) The additive group Ak of adèles is

defined as the restricted direct product over all the places p, of the additive groups k+
p

with respect to the subgroups Op.

We denote a general adèle by the tuple x = (. . . , xp, . . .).

Theorem 4.2.2. Ak is its own character group.

Proof. From theorem 4.1.5, we know that since Ak is the restricted direct product of

k+
p with respect to Op, Âk must be the restricted direct product of k̂+

p with respect to

O∗p . A typical character of Âk looks like a tuple of the component-wise local characters

ξp 7→ e2πiΛ(ξη). Identifying k̂p with kp via the identification

xp 7→ e2πiΛp(xpηp) ↔ ηp,

we see that due to lemma 2.1.7, this gives us an identification between O∗p and d−1
p .

Thus Âk is in fact the restricted direct product of k+
p with respect to d−1

p , with a

typical element given by η = (. . . , ηp, . . .). However, due to the classical result that

only finitely many primes get ramified, we have dp = Op for all but finitely many p.

This is equivalent to saying that any element of Âk has the form η = (. . . , ηp, . . .),

with ηp ∈ Op for all but finitely many p. We introduce the notation Λ =
∑

p Λp(xp)

along with component wise multiplication

ηx = (. . . , ηpxp, . . .).



4.2. ADÈLES 59

Thus Âk = Ak, with a general element η = (. . . , ηp, . . .) being identified with the

character

x = (. . . , xp, . . .) 7→
∏
p

exp(2πiΛp(ηpξp)) = exp

(
2πi
∑
p

Λ(ηpξp)

)
.

As per the discussion of the previous section, we give the group of adèles the

measure dx which is the product of the component-wise measures dxp on the groups

k+
p . As these local measures are self dual, so is the measure dx on Ak. This gives us

the following formulae for the Fourier transform and the inverse Fourier transform :

f̂(η) =

∫
f(x)e−2πiΛ(ηx)dx (4.2.1)

f(x) =

∫
f̂(η)e2πiΛ(ηx)dη (4.2.2)

We see that the theory for adèles has quite a few similarities with the previously

discussed theory for the additive group k+
p . As a step in this direction we have the

following lemma.

Lemma 4.2.3. (lemma 4.1.1, §4.1, [13] ) The map φa : x 7→ ax is an automorphism

of the group of adèles if and only if a ∈ Ak satisfies the conditions ap 6= 0 for all p

and |ap|p = 1 for all but finitely many p.

Proof. On each component p, the map is given by the homomorphism xp 7→ apxp.

As kp is a topological field, this multiplication map is continuous. Assume that this

map is an automorphism. Then it must be surjective, so in particular we must have

b ∈ Ak such that φa(b) = 1, that is, apbp = 1 for all p. For such an adèle b to exist,

we must have ap 6= 0 for all p. Also as (. . . , bp, . . .) = (. . . , a−1
p , . . .) is an element of

Ak, we must have a−1
p ∈ Op for all but finitely many p, which gives, |ap|p = 1 for all

but finitely many p.

Conversely if the above two conditions are met, then taking b = (. . . , a−1
p , . . .), the

map φb is the inverse map for the continuous homomorphism φa and is a map of the

same form. This shows that φa is an automorphism.

We shall see that the elements of Ak that satisfy the conditions of the above

theorem are precisely those that we will define as idèles in the next section. For
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the sake of convenience, we call them as idèles in this section as well, even though

we have not defined this term precisely yet. With this result in hand, we can now

examine how the measure of a set in Ak changes under multiplicative translation by

an idèle, just as we saw how the measure of a set in k+
p changes under multiplicative

translation by an element of k×p . The following result is one of many which show that

idèles are just the multiplicative analogue of adèles!

Lemma 4.2.4. (lemma 4.1.2, §4.1, [13] ) For an idèle a,

d(ax) = |a|dx,

where |a| =
∏

p |ap|p.

Proof. As multiplication by an idèle is an automorphism of Ak, it is obvious that the

measure d0x = d(ax) is a Haar measure on Ak and must differ from dx by a contant

factor. To find this constant factor, we can choose any convenient set and compare

the two measures for that set. Let N =
∏
Np be a compact neighbourhood of 0 in

Ak. Then using theorem 4.1.8,∫
aN

dx =
∏
p

∫
apNp

dxp.

From lemma 2.2.2, measure of apNp is |ap|p times the measure of Np. This gives

∏
p

(
|ap|p

∫
Np

dxp

)
,

which is equal to
∏

p |ap|p
∫
N
dx.

We imbed the field k in Ak by identifying the element ξ of k with the adèle

(. . . , ξ, . . .). Then k is a subgroup of Ak and we have the following approximation

theorem. If we denote the set of infinite (archimedean) places of k by S∞, then we

have the subgroup AS∞ of Ak given by

AS∞ =
∏
p∈S∞

k+
p ×

∏
p/∈S∞

Op.

AS∞ consists of all adèle elements whose components at finite (discrete) places have

absolute value less than or equal to one. Henceforth we denote this open subgroup of
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Ak as A∞.

Theorem 4.2.5. (theorem 5.8, §5.2, [9] ) (The Approximation Theorem)

Ak = k + A∞.

Proof. Consider any element x = (. . . , xp, . . .) ∈ Ak. We must prove that there exists

ξ = (. . . , ξ, . . .) ∈ k such that xp − ξ ∈ Op for all discrete places p.

There are only finitely many places p such that xp /∈ Op. Let the discrete primes p

such that xp /∈ Op be given by S = {p1, p2, . . . , pr} for some integer r. Then for each

such component xp, there exists some power of πp ( πp is a fixed element of valuation

1 ), which when multiplied by xp gives an element of Op. Doing this for all the places

in S, we can find an element m of k such that p1, p2, . . . , pr are the only primes in the

factorisation of the ideal m and multiplication by m makes xp integral for p ∈ S. For

discrete primes which are not in S, mxp is anyway integral because m is an element

of k while xp is integral.

In other words, there exists m ∈ k such that

mxp ∈ Op,

for all discrete places p.

Now choose λ ∈ O through Chinese Remainder Theorem in the ring of integers

O of the field k as follows: Solve for i = 1, 2, . . . , r, the system of equations

mxpi ≡ λ (mod pnii Opi), (4.2.3)

where ni are large integers. Take ξ = λ/m. We must show that this ξ works. As λ is

chosen according to the system of equations given by 4.2.3,

xpi − ξ =
mxpi − λ

m
∈ pnii Opi

m
.

Notice that we did not specify any value for the variables ni appearing in 4.2.3. except

for saying that they are large integers. In practice, we just need to choose ni to be

atleast the power of pi occuring in the factorisation of the ideal m. This gives us

xpi − ξ ∈ Opi .
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For the discrete primes not occurring in S, m is as good as a unit since none of

these primes occur in the factorisation of the ideal m. For such primes, as m ∈ k and

xp is already integral, so is mxp. As λ was chosen in the ring of integers O, we get

mxp − λ ∈ Op and hence

xp − ξ =
mxp − λ

m
∈ Op

m
= Op.

This proves that for the ξ chosen, xp − ξ ∈ Op for all discrete primes

Corollary 4.2.6. For the case K = Q, we have

AQ = Q + (R×
∏

p prime

Zp).

We denote the infinite part of Ak as A∞. This is the cartesian product of the

archimedean completions of k, that is A∞ =
∏

p∈S∞ k
+
p . Moreover, for any x ∈ Ak,

we denote by x∞ the projection of x on A∞, that is , x∞ = (. . . , xp, . . .)p∈S∞ . If a

generating equation for k over Q has r1 real roots and r2 pairs of conjugate complex

roots, then A is a vector space over R of dimension n = r1 + 2r2.

Lemma 4.2.7. (lemma 4.1.4, §4.1, [13] ) If {ω1, ω2, . . . , ωn} is a minimal basis for

the ring of integers O of k over the rational integers, then {ω∞1 , ω∞2 , . . . , ω∞n } is a

basis for the vector space A∞ over the reals. Let

D∞ = {x∞ =

η∑
v=1

xvω
∞
v : 0 ≤ xv < 1}.

If d = (det(ω
(j)
i ))2 denotes the absolute discriminant of k, then the parallelotope D∞

has volume
√
|d| if measured in the measure dx∞ =

∏
p∈S∞ dxp.

Proof. Consider the projection ξ 7→ ξ∞ = (. . . , ξ, . . .)p∈S∞ . This is just the classical

embedding of a number field into n-space. According to the classical theorem (see [5]

), d = (det(ω
(j)
i ))2 is non-zero, ω1, ω2, . . . , ωn are linearly independent and D∞ has

volume given by 2−r2
√
|d| in case the standard measure is used. However we have

used a measure which is twice the ordinary measure in the complex plane and A∞can

be thought of as a product of r1 real lines and r2 complex planes. With our chosen

measure, there is thus an additional factor of 2r2 and we find that the volume of the

fundamental parallelotope is simply
√
|d|.
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Definition 4.2.8. (definition 4.1.2, §4.1, [13] ) We define the additive fundamental

domain D to be the set of all x such that x ∈ A∞ and x∞ ∈ D∞. We can write D as

D∞ ×
∏

p/∈S∞ Op.

Theorem 4.2.9. (theorem 4.1.3(1), §4.1, [13] ) D is indeed an additive fundamental

domain because any adèle x is congruent to one and only one element of D modulo

the field elements, that is, we have the disjoint union

A =
⋃
ξ∈k

(ξ +D).

Proof. We must show that an element x of Ak can be brought from the adèles to a

unique element of the fundamental domain D via the field elements. We break this

transition from Ak to D into two steps:

Ak → A∞ → D.

The Approximation theorem (theorem 4.2.5) tells us that given x ∈ A, there exists a

field element ξ1 such that x+ ξ1 ∈ A∞.

Let us examine this transition in more detail before moving on to the second. In

particular this means that xp + ξ1 ∈ Op for all discrete places p. If there exists some

other field element ξ2 such that x + ξ2 ∈ A∞, then ξ1 − ξ2 ∈ A∞. In particular this

means that the field element ξ1 − ξ2 belongs to Op for all discrete places p and hence

must be integral. Thus if there are two field elements taking the adèle x into A∞,

then they must be congruent modulo O.

We now turn our attention to the transition from A∞ to D. As {ω∞1 , ω∞2 , . . . , ω∞n }
is a basis for A∞ over the reals, an element y of A∞ = A∞×

∏
p/∈S∞ Op can be uniquely

written as

y =

(
n∑
v=1

xvω
∞
v

)
×
∏
p/∈S∞

Op,

with xv ∈ R. We choose mv = [xv] where [·] is the step function giving the greatest

integer less than or equal to xv. Take γ =
∑n

v=1mvωv. This is an element of O as

{ω1, ω2, . . . , ωn} is a minimal basis for the ring of integers O of k over the rational

integers. Now consider y−γ. For all p /∈ S∞, we have (y−γ)p ∈ Op. Thus y−γ ∈ A∞.
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Moreover

(y − γ)∞ =
n∑
v=1

xvω
∞
v −

n∑
v=1

mvω
∞
v =

n∑
v=1

tvω
∞
v ,

with tv real and between 0 and 1. This means (y − γ)∞ ∈ D∞. But these properties

of y − γ are precisely those stated in definition 4.2.8. This gives y − γ ∈ D and

completes our transition from A−∞ to D

In this construction of γ itself, γ is a uniquely defined element of O. Hence we

have the following steps taking an adèle x to an element of D.

x
ξ−→ x+ ξ

γ−→ x+ ξ − γ

As ξ is a field element that is unique modulo O and γ is a unique element of O, the

step from an adèle to an element of D is carried out through the element κ = (ξ− γ)

which is unique modulo O. We want to show that given adèle x is congruent to one

and only one element of D modulo the field elements. Suppose that for a given adèle

x, there exist field elements κ1 and κ2 such that x can be taken to two elements of D:

x+ κ1 = d1 ∈ D
x+ κ2 = d2 ∈ D.

As the step from an adèle to an element of D is unique modulo O, we have ξ1−ξ2 ∈ O.

This gives d1 − d2 ∈ O, making it possible to write d1 − d2 as
∑n

v=1 lvωv with lv ∈ Z.

Taking the infinite part gives

(d1 − d2)∞ =
n∑
v=1

lvω
∞
v with lv ∈ Z. (4.2.4)

As d1 − d2 ∈ D means that (d1 − d2)∞ ∈ D∞, we have

(d1 − d2)∞ =
n∑
v=1

xvω
∞
v with xv ∈ R and 0 ≤ xv < 1. (4.2.5)

As (d1−d2)∞ must have a unique expression in terms of the ω∞v , we combine equations

4.2.4 and 4.2.5 to obtain xv = mv = 0 for all v, giving d1 = d2

Theorem 4.2.10. (theorem 4.1.3(2), §4.1, [13] ) D has measure 1.
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Proof. As D = D∞ ×
∏

p/∈S∞ Op,∫
D

dx =

∫
D∞

dx∞
∏
p/∈S∞

(∫
Op

dxp

)
=
√
|d|
∏
p/∈S∞

(Npdp)
−1/2.

The discriminant d is the norm of the different of k, which is in turn the product of

the local differents dp. This gives |d| =
∏

p∈S∞(Npdp) and completes the proof.

Let us pause and examine what the last two results mean in a heuristic sense. The

disjoint union of theorem 4.2.9 means that the field elements act as a set of lattice

points for the group of adèles. D is the fundamental parallelotope formed by these

lattice points, D is the set whose translated copies make up the ‘volume’ of the space

of adèles. Compare this to the real plane which has points with integer co-ordinates

as lattice points and the unit square as the fundamental parallelotope. From this

perspective, it is important and expected that the volume of the fundamental lattice

should be non zero. This fact is confirmed by theorem 4.2.10. This brings us to one

of the most important results for adèles, establishing all the more its similarity to the

real plane with integer lattice points.

Theorem 4.2.11. (corollary 4.1.1, §4.1, [13] ) k is a discrete subgroup of Ak. D is

relatively compact and the factor group Ak/k is compact.

Proof. We will make use of the fact that as given in lemma 4.2.7, A∞ is a vector space

over the reals. This means that for most purposes A∞ is as good as Rn and we can

assert that

N∞ :=

{(
n∑
v=1

xvω
∞
v

)
: −1

2
< xv <

1

2
, xv ∈ R

}
is an open subset of A∞. This means that the set

N :=


(

n∑
v=1

xvω
∞
v

)
×
∏
p/∈S∞

Op : −1

2
< xv <

1

2
, xv ∈ R


is an open subset of A∞ ×

∏
p/∈S∞ Op, that is, A∞. As A∞ is in turn open in Ak, N

is thus an open subset of the adèles, containing zero.

Now consider N ∩k. If a field element ξ is contained in N , then it must contained

inside Op for every discrete prime p and hence must be an element of O. Using the



66 CHAPTER 4. ADELÈS AND IDÈLES

minimal basis for O over Z given in lemma 4.2.7, we have ξ =
∑n

v=1 mvωv, with mv

as integers. This gives

ξ∞ =
n∑
v=1

mvω
∞
v .

As ξ ∈ N , ξ∞ must be contained in N∞, which means that we must have for each

integer mv, −1
2
< mv <

1
2
. This is impossible unless every mv is zero, that is, zero is

the only field element contained in N . Given any field element ξ0 of k, we can find

an open subset of the adèles, namely N + ξ0, so that

(N + ξ0) ∩ k = {ξ0}.

This proves that k is discrete in the group of adèles.

In order to prove that D is relatively compact, note that

D = D∞ ×
∏
p/∈S∞

Op ⊆ D∞ ×
∏
p/∈S∞

Op,

where D∞ denotes the closure of D∞ in A∞. Viewing A∞ as a vector space over

R as in lemma 4.2.7, we see that D∞ ⊆ A∞ ∼= Rn can be regarded as a closed an

bounded set in n-space and must be compact. As Op is compact for each place p, the

set D∞ ×
∏

p/∈S∞ Op containing D is compact, thereby proving that D is relatively

compact.

It now remains to prove that the factor group Ak/k is compact. We know that set

theoretically, the factor group Ak/k is the same as the set D. There is an identification

map between these two sets, obtained through the steps discussed in the proof of

theorem 4.2.9. From these steps it can be seen that the identification map is in fact

continuous. We can extend this identification map so that we get a map φ from the

closure of D to the closure of the factor group. As k is a discrete subgroup of the

adèle group, the factor group is in fact closed. This gives the surjective, continuous

map

φ : D −→ Ak/k.

As D is relatively compact, D is compact and so is its image under the continous

map φ. This proves that Ak/k is compact.

We now prove some results for the additive map Λ on the adèles.
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Lemma 4.2.12. (lemma 4.1.5, §4.1, [13] ) Λ(ξ) = 0 for all ξ ∈ k

Proof. By definition, Λ(ξ) =
∑

p Λp(ξ). If the prime p lies above the rational prime

p, then Λp(ξ) = λp(Tr
kp
Qp(ξ)). We have

Λ(ξ) =
∑
p

λp(Tr
kp
Qp(ξ)) =

∑
p

λp

∑
p|p

Tr
kp
Qp(ξ)


As the trace TrkQ is given by the sum of the local traces Tr

kp
Qp , we get

Λ(ξ) =
∑
p

λp(Tr
k
Q(ξ)).

As TrkQ(ξ) is a rational number and Λ is a map into the reals modulo 1, it is sufficient

to prove that
∑

p λp(x) ≡ 0 (mod 1) for x a rational number.

Let us fix a rational prime q. We know that the domain of λp is the completion

of Q at the p-th place. Then
∑

p λp(x) can be written as

∑
p

λp(x) =

( ∑
p 6=q,p∞

λp(x)

)
+ λq(x) + λp∞(x), (4.2.6)

where p∞ denotes the archimedean completion of the field Q. From the construction

of λ above lemma 2.1.3, λp(x) has only a power of p in the denominator if p is a discrete

prime. Hence if p 6= q, λp(x) has a non negative power of q in its factorisation and

in particular, all the terms in parenthesis in equation 4.2.6 are q-adic integers. From

the same construction, we also know that λp∞(x) = −x. Moreover from property ii

stated in the proof of lemma 2.1.4, we see that λq(x) − x is a q-adic integer. This

means that the second and third term of equation 4.2.6 add to give a q-adic integer.

In other words,
∑

p λp(x) can be written as a sum of q-adic integers and is thus

itself a q-adic integer. This argument can be repeated for any rational prime q, which

means that
∑

p λp(x) is an element of the reals modulo 1 that is integral with respect

to every rational prime. It follows that
∑

p λp(x) ≡ 0 (mod 1).

Theorem 4.2.13. (theorem 4.1.4, §4.1, [13] ) Let k∗ denote the set of all unitary

characters of the adèle group which are trivial on k. Then k∗ = k

Proof. We must prove that for the self dual group Ak, the unitary character corre-

sponding to the adèle element x is trivial on k if and only if x ∈ k. More succintly,
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we must prove that

Λ(xξ) = 0 for all ξ ∈ k ⇐⇒ x ∈ k.

As k∗ is the unitary character group of the compact quotient group Ak/k, it must

be discrete. Lemma 4.2.12 shows that at least k ⊆ k∗ is true. Consider the quotient

k∗/k. This being a discrete subgroup of the compact group Ak/k, k∗/k must be a

finite group. With the action of k on k∗ defined as

ξχ(x) = χ(ξx),

where ξ ∈ k, χ ∈ k∗ and x an adèle, k∗ is a vector space over k. As k is not a finite

field, the index of k in k∗ cannot be finite unless it is 1. This gives k∗ = k.

4.3 Idèles

In the last section we introduced the term idèles but did not offer a precise definition.

We now do so.

Definition 4.3.1. (definition 4.3.1, §4.3, [13] ) The multiplicative group Ik of idèles

is the restricted direct product of the groups k×p with respect to the subgroups O×p .

Let us denote a general element of the idèle group as a = (. . . , ap, . . .). We shall

construct a map from the idèles to the ideal group of the field k, which will play

an important role in our understanding of the structure of the idèle group. We can

associate with each idèle a, an ideal φ(a), given by

φ(a) =
∏
p/∈S∞

pνp(ap).

The map a 7→ φ(a) is a continuous homomorphism onto the discrete group of ideals

of k. Let us inspect the kernel of this map. The idèle a maps to the identity O of

the ideal group if and only if νp(ap) = 0 for all p /∈ S∞. Equivalently, ap ∈ O×p for all

discrete primes. Thus the kernel of φ is simply the subgroup IS∞ of I, given by

Is∞ =
∏
p∈S∞

k×p ×
∏
p/∈S∞

O×p .

The notion of an idèle not only encompasses the information obtained from the notion
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of an ideal, but we also obtain information about the components at the archimedean

primes as well as at discrete primes where the component is a unit. Thus for a field

k, idèles can be thought of as a refined version of ideals; a version which includes

information that is otherwise hidden when we represent an element a as the ideal

φ(a)! This also explains to some extent the name ‘idèle’, which is a contraction of

the words ‘ideal’ and ‘element’ !

Now that we have defined the map φ, what can we say about the image of k×

under this map? For this we first imbed k in Ik in the obvious manner: identify

α ∈ k× with the idèle (. . . , α, . . .). Then φ(α) =
∏

p/∈S∞ pνp(α) gives us

φ(α) = αO.

It can be seen that the image of k× under this map is precisely the set of all principal

ideals of the field.

Let us now review the characters and measure corresponding to the idèle group.

A general character c(a) on the idèle group has the form c(a) =
∏

p cp(ap), where cp is

a character on k×p and cp is trivial on O×p for all but finitely many p. The measure da

on the idèles is chosen to be d′a =
∏

p d
′ap, where d′ap is the multiplicative measure

defined in section 2.5 on k×p .

Theorem 4.3.2. (Product formula) (theorem 4.3.1, §4.3, [13] ) |α| = 1 for α ∈ k×p .

Proof. From theorem 4.2.9, the adèle group can be written as the disjoint union

Ak =
⋃
ξ∈k(−ξ +D). Using this let us write αD as

αD = Ak ∩ αD =
⋃
ξ∈k

((−ξ +D) ∩ αD) . (4.3.1)

As theorem 4.2.9 gives Ak =
⋃
ξ∈k(D + ξ), we must have

αAk =
⋃
ξ∈k

(αD + αξ).

As αk = k ( since α ∈ k×), and αAk = Ak (using α ∈ Ik and lemma 4.2.3), we obtain

Ak =
⋃
ξ∈k

(αD + ξ).
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Again let us write D as

D = D ∩ Ak =
⋃
ξ∈k

(D ∩ (αD + ξ)) . (4.3.2)

Consider now the ‘piece’ D ∩ (αD + ξ) of D and the ‘piece’ (−ξ + D) ∩ αD of αD.

We have the correspondence:

D ∩ (αD + ξ) ←→ (−ξ +D) ∩ αD
x ←→ x− ξ

As the correspondence between the two sets involves just an additive operation, both

sets have the same measure with respect to the additive Haar measure dx on the

adèles! As each of the sets D and αD is made up of a disjoint number of such

congruent pieces, they must have the same volume. As lemma 4.2.4 implies that

measure of αD is |α| times the measure of D, we must have |α| = 1.

Let us now consider the continuous homomorphism a 7→ |a| =
∏

p |ap|p of the

idèles into the multiplicative group of positive reals. We call the kernel of this map

as the group of norm one idèles and denote it by Jk. This is a closed subgroup of the

idèle group and contains k, as can be seen from the product formula. Let us denote a

typical element of Jk by b. This subgroup of the idèles helps us to give a convenient

description of the idèles.

In section 2.3 we showed that every element α of k×p can be written uniquely as

α̃ρ, with α ∈ O×p and ρ a positive real or a power of π (a fixed element of valuation 1),

according to whether p is achimedean or discrete respectively. We attempt to imitate

this strategy for the idèles. First fix an archimedean prime p0. A general element a

of the idèle group can be written as

a = (. . . , ap, . . .) =

(
. . . , ap, . . . ,

ap0
|a|
, . . .

)
· (. . . , 1, |a|︸︷︷︸

p0th place

, 1, . . .).

The first term has absolute value 1 and is thus an element of Jk. Let us denote it as b.

The second term can be denoted by just |a|, it is in effect just a way of representing

the absolute value of the idèle a. Let T be the subgroup of all idèles for which the p0th

component is a positive real and all the other components are 1. Then each element
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of T is uniquely determined by its absolute value. That is, if the absolute value of

the element is t then it is either given by (t, 1, 1, . . .) or (
√
t, 1, 1, . . .) according to

whether the place p0 is real or complex (we have written the p0th component first).

Thus t 7→ |t| is an isomorphism of T with R+, ·).
Representing elements of T by just absolute values, we have : an idèle a can be

uniquely written in the form a = |a|b, with |a| ∈ T and b ∈ Jk. It is apparent that

I is the direct product T × Jk. As T is isomorphic to the multiplicative group of

positive reals, we choose the measure on T to be in accordance with section 2.5, that

is, d′t = dt/|t| = dt/t, where dt is the ordinary Lebesgue measure. We do not have

any explicit way to select a measure db on Jk, but as measures d′a and d′t on Ik and

T are known, it is enough to require that d′a = d′t.db.

Expressing the idèles in this manner makes integration more convenient because∫
Ik

f(a)da =

∫∫
f(tb)db

dt

t

=

∫ ∞
0

[∫
Jk

f(tb)db

]
dt

t
=

∫
Jk

[∫ ∞
0

f(tb)
dt

t

]
db.

Let JS∞ := Jk ∩ IS∞ . Let S ′∞ be the set of all archimedean primes other than the

prime p0. Consider the continuous homomorphism

l(b) : b 7→ (. . . , log |bp|p, . . .)p∈S ,

of JS∞ onto the additive Euclidean r-space, where r = r1 + r2 − 1. A point to

note is that the map leaves out the place p0. With this place included, one has the

constraint
∏

p |bp|p = 1 because b is a norm one idèle. As b ∈ JS∞ means that |bp|p = 1

for p /∈ S∞, we get ∏
p∈S∞

|bp|p =
∏
p∈S′∞

|bp|p.|bp0 |p0 = 1.

As the map excludes the p0th component, whose value can be adjusted as needed,

the components in the set S ′∞ are free to take any values. This explains surjectivity.

k× ∩ JS∞ is the group of all elements ε ∈ k× which are units at all finite primes

and hence units of the ring O. The units ξ for which l(ξ) = 0 are the roots of unity

in k and form a finite cyclic group. As the images l(ε) form a lattice of the highest

dimension in the Euclidean r-space, the group of units ε, modulo the group of roots

of unity ξ, is a free abelian group on r generators. Let {εi}, 1 ≤ i ≤ r, be a basis for
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the group of units modulo roots of unity. Then the vectors l(εi) are a basis for the

r-space over the real numbers. For any b ∈ JS∞ , we may write l(b) uniquely as as

l(b) =
∑r

v=1 xvl(εv), with xv ∈ R.

Definition 4.3.3. We define P to be the fundamental parallelotope spanned by the

vectors l(εi) in the r-space, that is,

P =

{
r∑

v=1

xvl(εv) : 0 ≤ xv < 1

}

We define Q to be the usual unit cube in r-space, that is,

Q =
{

(. . . , xp, . . .)p∈S′∞ : 0 ≤ xp < 1
}
.

Lemma 4.3.4. (lemma 4.3.1, §4.3, [13] ) Let l−1(P ) denote the set of all b ∈ JS∞

such that l(b) ∈ P . Then ∫
l−1(P )

db =
2r1(2π)r2√
|d|

R,

where R = ± det(log |εi|p), with 1 ≤ i ≤ r and p ∈ S ′∞.

Proof. Using the fact that l is a homomorphism and the expression for the volume of

the fundamental parallelotope over the unit cube,

measure of l−1(P )

measure of l−1(Q)
=

measure of P

measure of Q
= ± det(log |εi|p) = R.

l−1(Q) consists of all b ∈ Js∞ such that l(b) ∈ Q, that is 1 ≤ |b|p < e, for p ∈ S ′∞.

Let Q∗ be the corresponding set in IS∞ consisting of all a ∈ IS∞ with 1 ≤ |a|p < e for

p ∈ S∞. Then

∫
Q∗
da =

∫
J

[∫
tb∈Q∗

dt

t

]
db =

∫
l−1(Q)

[∫ e|b|−1
p0

|b|−1
p0

dt

t

]
db,

since a = tb ∈ Q∗ ⇔ b ∈ l−1(Q) and 1 ≤ |tbp0 |p0 < e. As the integral within square

brackets gives the value 1, we see that
∫
Q∗
da is the same as

∫
l−1(Q)

db.

Let Q∗p denote the set of all ap ∈ k×p such that 1 ≤ |a|p < e for p ∈ S∞. Then
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Q∗ =
∏

p∈S∞ Q
∗
p ×

∏
p/∈S∞ O

×
p .∫

Q∗
da =

∏
p∈S∞

∫
Q∗p

dap
∏
p/∈S∞

∫
O×p

dap =
2r1(2π)r2√
|d|

,

since for the r1 places where p is real,∫
Q∗
da =

∫ −1

−e

dx

|x|
+

∫ e

1

dx

|x|
= 2

∫ e

1

dx

x
= 2,

for the r2 places where p is complex,∫
Q∗
da =

∫ 2π

0

∫ √e
1

2drdθ

r
= 2π,

and finally for p discrete,

∏
p/∈S∞

∫
O×p

dap =
∏
p/∈S∞

(Npdp)
−1/2 =

1√
|d|
.

In the previous section we defined an additive fundamental domain for the adèles

modulo the field elements. We now define a multiplicative fundamental domain E,

not for the idèles but for the norm one idèles modulo k×.

Definition 4.3.5. (definition 4.3.2, §4.3, [13] ) Let h be the class number of k and se-

lect norm one idèles b(1), . . . , b(h) such that the corresponding ideals φ(b(1)), . . . , φ(b(h))

represent the different ideal classes (this can be done as only the finite components

play a role in the map φ and the infinite components can be adjusted to give absolute

value 1 for the idèle). Let w be the number of roots of unity in k. Let E0 be the subset

of all b ∈ l−1(P ) such that 0 ≤ arg bp0 <
2π
w

. Then the multiplicative fundamental

domain E, for J mod k× is defined to be

E = E0b
(1) ∪ E0b

(2) ∪ . . . ∪ E0b
(h).

Theorem 4.3.6. (theorem 4.3.2(1), §4.3, [13] ) We have the disjoint union Jk =⋃
α αE.
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Proof. We perform a series of steps that will take an element b of Jk into βE for

some β ∈ k×. First consider φ(b), this is an ideal of the field and must belong to

a unique ideal class represented by, say, φ(b(h)). Then φ(b/b(i)) must be a principal

ideal, say, αO. Then φ(b/(b(i)α)) = O, implying that b/(b(i)α) must be contained

in the kernel of φ, that is IS∞ . As b ∈ Jk, b
(i) ∈ JS∞ and α ∈ k×, we must have

b/(b(i)α) ∈ IS∞∪k = JS∞ , giving

l

(
b

b(i)α

)
=

r∑
v=1

xvl(εv),

with xv ∈ R. If [xv] denotes the step function, then b′ := b/(b(i)α
∏
ε

[xv ]
v ) has under

l the image
∑r

v=1(xv − [xv])l(εv) ∈ P . Thus b′ ∈ l−1(P ). We are still not in E0,

as the p0 component of b′ may have any argument. We take ζ a root of unity with

the closest argument to that of b′p0 and smaller than it. Then b′/ζ ∈ E0. Putting

β = αζ
∏r

v=1 ε
[xv ]
v , we get b ∈ βb(i)E0, with β ∈ k×.

Theorem 4.3.7. (corollary 4.3.1, §4.3, [13] ) k× is a discrete subgroup of Jk and

J/k× is compact.

Proof. Let us compute the measure of E. As E is made up of h number of copies

of E0, measure of E is h times the measure of E0. From the definition of E0 in

definition 4.3.5, we find that the measure of E0 is 1/w times the measure of l−1(P ),

whose measure is known from lemma 4.3.4. This gives measure of E to be

=
h

w
measure of l−1(P ) =

2r1(2π)r2hR√
|d|w

.

As measure of E is non-zero, it has an interior, proving that k× is discrete in Jk. As

E is also relatively compact, J/k× is compact.



Chapter 5

Towards the Main Theorem

With all the groundwork behind us, we now attempt to prove the main result of this

thesis. We start with a number theoretic version of the Riemann Roch theorem and

builds toward the main result. We define the ζ-function for the field k and prove the

analytic continuation for this function. In doing so we see that the elegant functional

equation for the ζ-function is simply a consequence of the analytic continuation!

5.1 Riemann-Roch Theorem

Let φ(x) be a continuous, periodic function over the adèles. By periodic, we mean

that φ(x) = φ(x + ξ) for all ξ ∈ k. Let Φ be the function represented by φ over the

quotient group Ak/k, that is,

Φ(x+ k) := φ(x).

The function Φ is then continuous over this quotient group. It is continuous with

compact support and is hence contained in Cc(Ak/k).

Definition 5.1.1. We define the following functional on Cc(Ak/k):

I(Φ) =

∫
D

φ(x)dx,

where D is the additive fundamental domain of definition 4.2.8.

As D is relatively compact, this integral is bounded. I(Φ) is thus a bounded

functional on Cc(Ak/k) and must correspond to a Radon measure dv on Ak/k in the

75
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sense that

I(Φ) =

∫
Ak/k

Φ(v)dv.

Here v is actually a coset, say x+ k, of Ak/k.

Is the measure dv translation independent? Consider the coset v′ = x′ + k in

Ak/k. Let Φ′(v) = Φ(v + v′). Then

I(Φ′) =

∫
Ak/k

Φ(v + v′)dv =

∫
Ak/k

Φ(v)d(v − v′).

In order to prove translation independence of dv,we must prove that I(Φ) = I(Φ′).

From definition 5.1.1,

I(Φ′) =

∫
D

φ(x+ x′)dx. (5.1.1)

For a given set S and element b, S−b denotes the set of elements {a−b : a ∈ S}. One

can check that the steps used in the proof of theorem 4.2.9 will take an element x−x′

of Ak − x′ to an element of D− x′ in a unique manner, that is, x− x′ is congruent to

one and only one element of D − x′ modulo the field elements. That is,

Ak − x′ =
⋃
ξ∈k

(D − x′ + ξ), (5.1.2)

where the union is disjoint. As Ak − x′ is nothing but Ak, we have the disjoint union

Ak =
⋃
ξ∈k

(D − x′ + ξ).

Writing D as D ∩ Ak gives us the disjoint union

D = D ∩ Ak =
⋃
ξ∈k

(D ∩ (D − x′ + ξ)) .

Hence

I(Φ′) =

∫
D

φ(x+ x′)dx =
∑
ξ∈k

∫
D∩(D−x′+ξ)

φ(x+ x′)dx.

Using the identity

x ∈ D ∩ (D − x′ + ξ)⇔ (x+ x′) ∈ D + x′ ∩D + ξ,
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the latter integral can be written as∫
D∩(D−x′+ξ)

φ(x+ x′)dx =

∫
D+x′∩D+ξ

φ(x)d(x− x′) =

∫
D+x′∩D+ξ

φ(x)dx.

Now using x ∈ (D + x′ ∩ D + ξ) ⇔ (x + ξ) ∈ ((D + x′ − ξ) ∩ D) along with the

periodicity of φ and translation invariance of dx, we see that∫
D+x′∩D+ξ

φ(x)dx =

∫
(D+x′−ξ)∩D

φ(x+ ξ)d(x+ ξ) =

∫
(D+x′−ξ)∩D

φ(x)dx.

This gives

I(Φ′) =
∑
ξ∈k

∫
(D+x′−ξ)∩D

φ(x)dx =

∫
⋃
ξ(D+x′−ξ)∩D

φ(x)dx =

∫
⋃
ξ(D+x′−ξ)∩D

φ(x)dx

Using the same reasoning as for equation 5.1.1, we have

Ak = Ak + x′ =
⋃
ξ

D + x′ − ξ,

giving ∫
⋃
ξ(D+x′−ξ)∩D

φ(x)dx =

∫
Ak∩D

φ(x)dx =

∫
D

φ(x)dx = I(Φ)

Thus I(Φ′) = I(Φ), proving that the Radon measure dv is translation invariant and

hence a Haar measure.

As the volume of D is 1 by theorem 4.2.10, we have∫
Ak/k

dv = I(1) =

∫
D

dx = 1.

Let us summarize in the following lemma:

Lemma 5.1.2. (theorem 4.2.1, §4.2, [13] ) For a continuous periodic function φ on

the adèles,
∫
D
φ(x)dx is equal to the integral of the corresponding function Φ over

Ak/k with respect to that Haar measure which gives Ak/k the measure 1.

Under the identification of Âk with Ak, the subgroup k∗ of the group of unitary
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characters on the adèles gets identified with the field k. The subgroup k∗ is simply the

set of unitary characters on the adèles which vanish on k. Hence k∗ is precisely the

unitary character group of the quotient Ak/k. Thus, under the identification between

the adèle group and its group of unitary characters, the unitary character group of

Ak/k gets identified with k. One sees that the following notational substitutions are

legitimate. We replace:

an element (coset) v = x+ k of Ak/k by the element x of A,

the integral over Ak/k with respect to dv by the integral over D with respect to dx,

continuous functions Φ on Ak/k by periodic continuous functions φ on the adèles,

unitary characters of Ak/k by unitary characters of the adèles corresponding to

elements ξ of k

This gives us the following expressions for the Fourier transform and the inversion

formula for Φ.

Lemma 5.1.3. (lemma 4.2.2, §4.2, [13] )

φ̂(ξ) =

∫
D

φ(x)e−2πiΛ(ξx)dx.

If
∑

ξ∈k |φ̂(ξ)| <∞, then

φ(x) =
∑
ξ∈k

φ̂(ξ)e2πiΛ(ξx).

Proof. The first part of the lemma is evident from the discussion preceding the lemma.

The latter part is a statement of the inversion formula. As there is an identifica-

tion between the unitary character group of Ak/k and the field k, the condition∑
ξ∈k |φ̂(ξ)| < ∞ simply means that the function Φ̂ is contained in L1((Ak/k)ˆ), en-

suring that the inversion formula holds. The expression

φ(x) =
∑
ξ∈k

φ̂(ξ)e2πiΛ(ξx)

is a reformulation of the inversion formula in terms of the notational substitutions

discussed prior to the lemma.
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Lemma 5.1.4. (lemma 4.2.3, §4.2, [13] ) Let f(x) be continuous and contained in

L1(Ak),
∑

η∈k f(x + η) uniformly convergent for x ∈ D (as k is not ordered, by

convergence we mean absolute convergence). Then for φ(x) =
∑

η∈k f(x + η), we

have

φ̂(ξ) = f̂(ξ).

Proof. As φ(x) is a periodic, continuous function on the adèles, we can use the ex-

pression for the Fourier transform, mentioned in lemma 5.1.3. Even though φ is

technically a function on the adèles, for our purpose it behaves like a function on

Ak/k via Φ.

The function f on the other hand is treated solely as a function on the adèles and

satisfies the equation 4.2.1 for its Fourier transform.

φ̂(ξ) =

∫
D

φ(x)e−2πiΛ(ξx)dx =

∫
D

(∑
η∈k

f(x+ η)e−2πiΛ(ξx)

)
dx

=
∑
η∈k

∫
D

f(x+ η)e−2πiΛ(ξx)dx =
∑
η∈k

∫
η+D

f(x)e−2πiΛ(ξx−ξη)dx

=
∑
η∈k

∫
η+D

f(x)e−2πiΛ(ξx)dx =

∫
⋃
η(η+D)

f(x)e−2πiΛ(ξx)dx

=

∫
Ak
f(x)e−2πiΛ(ξx)dx = f̂(ξ).

Note that we have used the fact that the integrand is uniformly convergent on D

and that D has finite measure (theorem 4.2.10), to interchange the summation and

integral signs. We have used lemma 4.2.12 to obtain Λ(ξη) = 0 as well as theorem

4.2.9 to obtain
⋃
η∈k(η +D) = Ak.

Combining lemmas 5.1.3 and 5.1.4, one obtains the Poisson Formula.

Lemma 5.1.5. (Poisson Formula) (lemma 4.2.4, §4.2, [13] ) If f(x) satisfies the

conditions:

i. f(x) continuous and contained in L1(Ak),

ii.
∑

ξ∈k f(x+ ξ) uniformly convergent for x ∈ D,

iii.
∑

ξ∈k |f̂(ξ)| convergent,
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then ∑
ξ∈k

f̂(ξ) =
∑
ξ∈k

f(ξ).

Proof. Since we want to apply the lemmas 5.1.3 and 5.1.4, let us check whether

the hypotheses of these lemmas are satisfied by our conditions on f . The hy-

potheses of lemma 5.1.4 are satisfied by the first two conditions on f . Putting

φ(x) =
∑

ξ∈k f(x + ξ), it is easy to see that φ is continuous and periodic. As lemma

5.1.4 states that φ̂(ξ) = f̂(ξ), the third condition ensures that
∑

ξ∈k |φ̂(ξ)| <∞. Thus

all the hypotheses of lemma 5.1.3 are also satisfied and now we can apply both these

lemmas.

Putting x = 0 in the inversion formula of lemma 5.1.3 gives us

φ(0) =
∑
ξ∈k

φ̂(ξ).

As φ̂(ξ) = f̂(ξ) by lemma 5.1.4 and φ(0) =
∑

ξ∈k f(ξ), we obtain∑
ξ∈k

f(ξ) =
∑
ξ∈k

f̂(ξ).

Replacing x by ax where a is an idèle gives us a result which may be regarded as

the number theoretic analogue of the Riemann-Roch theorem.

Theorem 5.1.6. (Riemann-Roch Theorem) (theorem 4.2.1, §4.2, [13] ) If f(x) sat-

isfies the conditions:

i. f(x) continuous and contained in L1(Ak),

ii.
∑

ξ∈k f(a(x + ξ)) convergent for all idèles a and adèles x, and uniformly con-

vergent for x ∈ D,

iii.
∑

ξ∈k |f̂(aξ)| convergent for all idèles a,

then
1

|a|
∑
ξ∈k

f̂(ξ/a) =
∑
ξ∈k

f(aξ).
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Proof. Consider the function g(x) = f(ax). We want to show that this function

satisfies all the conditions of the previous lemma and hence satisfies the Poisson

Formula. As multiplication by an idèle is a continuous map, and f(x) is continuous,

the function g(x) is also continuous. Moreover,∫
Ak
g(x)dx =

∫
Ak
f(ax)dx =

∫
a(Ak)

f(x)d(x/a)

=

∫
a(Ak)

f(x)
dx

|a|
(using lemma 4.2.4)

=
1

|a|

∫
Ak
f(x)dx (using lemma 4.2.3).

This shows that since f(x) ∈ L1(Ak), the same is true for g(x). Thus, g(x) satisfies

condition i. of lemma 5.1.5.

As ∑
ξ∈k

g(x+ ξ) =
∑
ξ∈k

f(a(x+ ξ)),

which is uniformly convergent for all x ∈ D as per the hypothesis, g(x) satisfies the

condition ii. of lemma 5.1.5.

Let us now compute the Fourier transform of g in terms of that for f using

reasoning similar to that used to prove that g(x) ∈ L1(Ak).

ĝ(x) =

∫
Ak
f(aη)e−2πiΛ(xη)dη =

1

|a|

∫
a(Ak)

f(η)e−2πiΛ(xη/a)dη

=
1

|a|

∫
Ak
f(η)e−2πiΛ(xη/a)dη =

1

|a|
f̂(x/a).

Hence, ∑
ξ∈k

|ĝ(ξ)| = 1

|a|
∑
ξ∈k

|f̂(ξ/a)|,

which is convergent for all idèles a, as stated in the hypothesis. Thus g(x) satisfies

condition iii. of lemma 5.1.5 as well.

Now applying the Poisson Formula to g(x), we get∑
ξ∈k

ĝ(ξ) =
∑
ξ∈k

g(ξ),
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which gives,
1

|a|
∑
ξ∈k

f̂(ξ/a) =
∑
ξ∈k

f(aξ).

5.2 The functional equation of the ζ-function

Let us first examine the characters of Ik. We shall be interested only in those charac-

ters which are trivial on k×. Each such character c can be thought of as a character

c̄ on Ik/k
× with c̄(ak×) := c(a). As Jk/k

× ⊆ Ik/k
× is a compact subgroup, c̄ re-

stricted to Jk/k
× is in fact a unitary character, hence, |c(b)| = |c̄(bk×)| = 1 for all

b ∈ Jk. If a character c of Ik is trivial on the norm one idèles, then c(a) depends only

the absolute value of a and is thus a character of the value group (R+, ·), given by

|a| 7→ |a|s, s ∈ C. Any character of the idèles thus looks like a unitary character of

Jk times |a|s, with s ∈ C This discussion is analogous to the one for the characters of

k×p (section 2.3). Another similar concept is that of the exponent of a character. We

have |c(a)| = |a|σ for some real number σ, called the exponent of c. There is also the

notion of equivalence: two characters are said to be equivalent if they agree on Jk.

Then an equivalence class consists of characters of the form c(a) = c0(a)|a|s, where

c0(a) is a fixed representative of the class whiles varies over C. Then each equivalence

class can be viewed as a Riemann surface.

Let us now define the ζ-function for the field k. Let f(x) denote a complex valued

function on the adèles, let f(a) be its restriction to the idèles. We denote by z, the

class of all functions satisfying the following conditions:

i. f(x) and f̂(x) (the Fourier transform of f) are continuous and belong to L1(Ak)

ii.
∑

ξ∈k f(a(x+ξ)) and
∑

ξ∈k f̂(a(x+ξ)) are convergent for each idèle a and adèle

x, this convergence is uniform in the pair (a, x) for x ∈ D and a ranging over

any fixed compact subset of Ik.

iii. f(a)|a|σ and f̂(a)|a|σ ∈ L1(Ik) for σ > 1.

The first condition ensures that the Fourier inversion formula holds. Because of the

first two conditions, the Riemann-Roch theorem is valid for functions of z.
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Definition 5.2.1. (definition 4.4.1,§4.4, [13] ) For each f ∈ z, we have a function of

characters c, defined for all characters of exponent σ greater than 1, given by

ζ(f, c) =

∫
f(a)c(a)d′a.

This is called the ζ-function of k.

If we repeat the argument of lemma 3.1.2, we see that the ζ-function is regular in

the domain of all characters of exponent greater than 1. We seek analytic continuation

of the ζ-function to the domain of all characters. This brings us to the Main Theorem

of this thesis, but before stating it, we digress to two lemmas which we will use to

prove the Main Theorem.

For c with σ > 1, define ζt(f, c) as
∫
Jk
f(tb)c(tb)db. Then,

ζ(f, c) =

∫
f(a)c(a)d′a =

∫ ∞
0

[∫
Jk

f(tb)c(tb)db

]
dt

t
=

∫ ∞
0

ζt(f, c)
dt

t
.

As ζt(f, c) is convergent for some c and |c(tb)| = |tb|σ = tσ is constant for b ∈ Jk,

ζt(f, c) is absolutely convergent for c of any exponent, for almost all t. Hence the

statement of the following lemma makes sense.

Lemma 5.2.2. (lemma A, §4.4, [13] ) For all characters c, we have

ζt(f, c) + f(0)

∫
E

c(tb)db = ζ1/t(f̂ , ĉ) + f̂(0)

∫
E

ĉ

(
1

t
b

)
db.

Proof.

ζt(f, c) + f(0)

∫
E

c(tb)db =

∫
Jk

f(tb)c(tb)db+

∫
E

f(0)c(tb)db.

As Jk =
⋃
α∈k× E, and the expression is uniformly convergent, we get that the above

expression is equal to

∑
ξ∈k

∫
ξE

f(ξtb)c(tb)db =

∫
E

(∑
ξ∈k

f(ξtb)

)
c(tb)db

The Riemann-Roch theorem (theorem 5.1.6) gives us

∫
E

(∑
ξ∈k

f̂(ξ/(tb))

)
c(tb)/|tb|db
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We can write c(tb)/|tb| = c1/tb|1/tb| = ĉ(1/tb). Using the transformation b 7→ 1/b and

db 7→ db gives ∫
E

(∑
ξ∈k

f̂(ξb/t)

)
ĉ(b/t)db.

Evaluating the right hand side of the equation in the theorem using the steps prior

to the use of the Riemann-Roch theorem brings us to exactly this expression. This

completes the proof.

Lemma 5.2.3. (lemma B, §4.4, [13] )

∫
E

c(tb)db =

{
κts if c(a) = |a|s, that is, c(tb) = ts

0 if c(a) = c(tb) is non trivial on J

Here κ = volume of E computed in theorem 4.3.7. Similarly,

∫
E

ĉ(b/t)db =

{
κts−1 = κ(1

t
)1−s if c(a) = |a|s, that is, c(tb) = ts

0 if c(a) = c(tb) is non trivial on J

Proof. Denoting a character over Ik as c and an element of Ik as a = tb. Let c0 be

the restriction of c to Jk, that is, c0(tb) := c(b). We see that c/c0 is a character of the

value group and is hence given by (c/c0)(tb) = |tb|s = ts. Thus c(tb) = c0(b)ts. Then

the integral in question is simply ts
∫
E
c0(b)db. As E is the fundamental domain for

Jk mod k×, we can construct a character c̄ on Jk/k
× from the character c0 on E as

follows: c̄(bk×) := c0(b). Then taking the integral of the character c0(b) over E is like

taking the integral over the cosets bk× of Jk/k
×, of the character c̄(bk×). As c̄ is in

fact a unitary character on the compact group Jk/k
×, we know that the integral is κts

if c̄ is trivial on Jk/k
× and zero otherwise. But c̄(bk×) trivial on Jk/k

× is equivalent

to c0(b) being trivial on Jk, which is equivalent to saying that c(tb) = c0(b)ts is trivial

on J or that c(tb) = ts. This proves the first result. For the second part, using the

transformation b 7→ 1/b, db 7→ db,∫
E

ĉ(b/t)db = |b/t|
∫
E

c(t/b)db = |1/t|
∫
E

c(tb)db.

Using the result for the first part gives us the required result.

We are now ready to prove the Main Theorem.
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Theorem 5.2.4. (Main Theorem) (theorem 4.4.1, §4.4, [13] ) The ζ-function can

be analytically continued to the domain of all characters. This extended function is

single-valued and regular, except at c(a) = 1 and c(a) = |a|, where it has simple poles

with residues −κf(0) and κf(0) respectively, where κ is the volume of E, computed

in theorem 4.3.7. The functional equation is given by

ζ(f, c) = ζ(f̂ , ĉ),

where ĉ(a) = |a|c−1(a).

Proof. From the discussion prior to lemma 5.2.2,we have for c with σ > 1,

ζ(f, c) =

∫ ∞
0

ζt(f, c)dt/t =

∫ 1

0

ζt(f, c)dt/t+

∫ ∞
1

ζt(f, c)dt/t.

Let us first consider the integral,∫ 1

0

ζt(f, c)dt/t =

∫
|a|≥1

f(a)c(a)d′a.

Is this integrable? ∫
|a|≥1

|f(a)c(a)|d′a =

∫
|a|≥1

|f(a)||a|σd′a,

where σ is the exponent of c. If σ > 1 then by condition iii. for the class of functions

z, the integral on the right hand side of the above equation is finite. On the other

hand, if σ ≤ 1, then this integral is bounded by the integral with σ > 1 and is thereby

finite. The problem arises when we try to deal with the other integral. We tackle this

by using the lemmas 5.2.2 and 5.2.3 to change the limits 0 to 1 over the integral sign

to the more manageable limits 1 to ∞:

∫ 1

0

ζt(f, c)dt/t =

∫ 1

0

ζ1/t(f̂ , ĉ)dt/t+

[∫ 1

0

κf̂(0)

(
1

t

)1−s

dt/t−
∫ 1

0

κf(0)tsdt/t

]
,

where the expression in the square brackets is to be included if and only if c(a) = |a|s

(see lemma 5.2.3). If c(a) = |a|s, then exponent of c greater than 1 means that

Re(s) > 1. This confirms that the integrals in the square brackets make sense.

To evaluate
∫ 1

0
ζ1/t(f̂ , ĉ)dt/t, consider the transformation t 7→ 1/t. Then d(1/t) =
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−1/t2dt means that under this transformation, dt/t 7→ td(1/t) = −dt/t. Hence∫ 1

0
ζ1/t(f̂ , ĉ)dt/t =

∫ 1

∞ ζt(f̂ , ĉ)(−dt/t) =
∫∞

1
ζt(f̂ , ĉ)dt/t. We also evaluate the integrals

in square brackets. This gives

∫ 1

0

ζt(f, c)dt/t =

∫ ∞
1

ζt(f̂ , ĉ)dt/t+

[
κf̂(0)

s− 1
− κf(0)

s

]
.

Putting the pieces together, we have

ζ(f, c) =

∫ ∞
1

ζt(f, c)
dt

t
+

∫ ∞
1

ζt(f̂ , ĉ)
dt

t
+

[
κf̂(0)

s− 1
− κf(0)

s

]
.

All the terms on the right make sense as the integrals are analytic for all c. This is

thus the analytic continuation of ζ(f, c) to the domain of all characters. c(a) = 1

gives s = 0 in the square bracket and is thus a simple pole with residue −κf(0).

c(a) = |a| gives s = 1 and is likewise a simple pole with residue κf̂(0). Noting that

the exponent of c is s, that of ĉ is 1− s and computing in terms of exponent instead

of s, the analytic continuation can be written as

ζ(f, c) =

∫ ∞
1

ζt(f, c)
dt

t
+

∫ ∞
1

ζt(f̂ , ĉ)
dt

t
+

[
− κf̂(0)

exponent(ĉ)
− κf(0)

exponent(c)

]
. (5.2.1)

This formulation makes it clear that replacing (f, c) by (f̂ , ĉ) merely interchanges the

terms within the square bracket. Since c(−1) = 1 as c is trivial on k×,

ζt(
ˆ̂
f, ˆ̂c)

dt

t
=

∫
Jk

ˆ̂
f(tb)ˆ̂c(tb)db =

∫
Jk

f(−tb)c(−tb)db =

∫
Jk

f(−tb)c(tb)db

Using b 7→ −b and db 7→ db, we find that this is the same as ζt(f, c). Thus if

we replace (f, c) by (f̂ , ĉ) in equation 5.2.1, the terms outside the square bracket

get interchanged and so do the terms inside the square bracket, leaving the whole

expression unchanged! This gives the functional equation ζ(f, c) = ζ(f̂ , ĉ).
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