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Abstract
Equidistribution and related Ergodic methods in Number Theory

by Mohammed Zuhair. M. M

There has been a recent surge of interest in distributional problems related to number theory.

Equidistribution has been widely recognized as a ubiquitous phenomenon in the subject. Solutions

to equidistribution problems often involve techniques from several distinct areas of mathematics,

and as such is the meeting ground of number theory, analysis and ergodic theory.

In this thesis, we study several equidistribution problems and the techniques used for their

resolution. We also study some ergodic methods relevant to the subject.

In chapter 1, we introduce the notion of equidistribution and proceed to study equidistribution

modulo 1 through the Weyl criterion. The Weyl criterion is an important and effective tool in

proving equidistribution. We then give a generalized version of the Weyl criterion and use this to

look at the distribution of Farey fractions in [0, 1]. It is shown that the rate of their equidistribution

is intimately related to the distribution of zeros of the Riemann zeta function. The chapter ends

with the study of “randomness” in the map x 7→ x (mod p).

In chapter 2 we explore the Linnik’s problem - a classical problem regarding the distribution

of integral solutions to the equation x2 + y2 + z2 = n as n → ∞. We will see that the problem

is inextricably linked to bounds for the size of fourier coefficients of modular forms of half integral

weight. We also study the Linnik’s problem for squares, an easier version of the problem, using the

Shimura correspondence.

In chapter 3, we begin by establishing the equidistribution of (n2α) modulo 1 using ergodic theory.

We then study the dynamics of unimodular lattices under the action of the diagonal torus and prove

the isolation of periodic orbits. We then connect these results with the Littlewood conjecture and

Minkowski’s theorem on ideal classes.
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Chapter 1

Equidistribution in Number theory

1.1 Introduction

The notion of equidistribution is of fundamental importance to number theory. Many results in

number theory are best described as equidistribution of certain sequences in appropriate spaces.

Before illustrating this, we first make the much needed definition.

Definition 1.1. Let (X,B, µ) be a Borel probability space, where X is a topological space, B the

σ-algebra of Borel sets and µ a normalized probability measure on (X,B). A sequence of points (xn)

in X is said to be equidistributed with respect to µ if for every open set U , we have

lim
N→∞

#{n ≤ N : xn ∈ U}
N

−→ µ(U). (1.1)

The notion of equidistribution is a ubiquitous one in number theory. Several examples will be

provided, in the course of this dissertation, to illustrate this fact. We first begin with two important

examples:

Dirichlet’s theorem on arithmetic progressions: Let q be any positive integer. Our space of inter-

est is the set of units modulo q, i.e. (Z/qZ)×, with uniform probability measure. The famous prime

number number theorem of Dirichlet on arithmetic progressions is equivalent to the equidistribution

of the sequence of prime numbers mod q, on (Z/qZ)×.

Let L/K be a Galois extension of number fields with Galois group G. To every unramified prime

p of OK we can associate a conjugacy class in G, namely the Frobenius element of p. Our space of

interest X is the set of conjugacy classes in G with measure µ of a class proportional to its size. Now,

if we arrange the (unramified) primes in K with increasing order of their norm, the equidistribution

of the corresponding Frobenius elements in X with respect to µ amounts to the famous Chebotarev

density theorem.

1



2 CHAPTER 1. EQUIDISTRIBUTION IN NUMBER THEORY

1.2 Equidistribution mod 1 and the Weyl criterion

We say a sequence of real numbers (xn) is equidistributed modulo 1 if their fractional parts {xn}
is equidistributed in [0, 1) with respect to the lebesgue measure. Let α be a real number. We are

interested in the distribution of {nα}, the fractional part of nα, in [0, 1). One finds quickly that there

is a dichotomy depending on whether α is in Q or not. If α ∈ Q, then {nα} repeats periodically.

On the other hand if α is irrational, the points {nα} are all distinct. More over, by Kronecker’s

theorem, the points {nα} from a dense subset of [0, 1). What is more interesting, is that the points

{nα} equidistribute in [0, 1) with respect to the Lebesgue measure, a fact first proved by Weyl.

Originally, Weyl was interested in the the distribution modulo 1 of the sequence xn = f(n), where

f is a polynomial with real coefficients. In [26] Weyl introduced a criterion, now bearing his name,

which has since become a fundamental tool in establishing equidistribution results.

Before stating Weyl criterion we observe that [0, 1) can be identified with the unit circle T via

the natural identification t 7→ e2πit, which also identifies the the respective Lebesgue measures. This

has its advantages because T is a compact topological group. From now on we shall use e(x) to

denote exp(2πix). With the above identification, it is clear that a sequence of real numbers (xn) is

equidistributed mod 1 if and only if e(xn) is equidistributed on T.

Our first lemma, essentially a restatement of the equivalence between measure and integration,

is a step towards the Weyl criterion.

Lemma 1.2. Let (T, l) be the unit circle with the normalized Lebesgue measure on it. A sequence

(xn) is equidistributed in T with respect to l if and only if, for every continuous f : T→ R, we have

lim
N→∞

1

N

∑
n≤N

f(xn) −→
∫
T
fdl. (1.2)

Proof. (⇐) Suppose (xn) is a sequence that is equidistributed in T and let f be a continuous real

valued function on T. Let I1 ∪ · · · ∪ Im be a finite partition of T into intervals. Let U and L be

the upper and lower Riemann sum with respect to this partition. Now for any interval Ij in the

partition we have that

lim
N→∞

#{n ≤ N : xn ∈ Ij}/N → l(Ij).

It follows that

L ≤ lim
N→∞

1

N

∑
n≤N

f(xn) ≤ U.

Since this is true for any partition we conclude that limN→∞
1
N

∑
n≤N f(xn)→

∫
T fdl.

(⇒) Let I be an open set in T. It is enough to consider the case when I is an interval. It is easy

to construct a sequence of continuous functions fm and gm (using Urysohn’s lemma, say) such that

fm ≤ χI ≤ gm and limm→∞
∫ 1

0
gm dx = limm→∞

∫ 1

0
fm dx = l(I). It follows that

1

N

∑
n≤N

fm(xn) ≤ 1

N

∑
n≤N

χ(xn) ≤ 1

N

∑
n≤N

g(xn).
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Taking the limit N →∞, we obtain for any m,∫
I

fmdl ≤ lim
N→∞

1

N

∑
n≤N

χI(xn) ≤
∫
I

gmdl.

Now, by our choice fm and gm, as m→∞, we have that

lim
m→∞

∫
I

fmdl = l(I) = lim
m→∞

∫
I

gmdl.

It follows that limN→∞
∑
n≤N χI(xn)/N = l(I). But observe that,

1

N

∑
n≤N

χI(xn) =
#{n ≤ N : xn ∈ I}

N
. (1.3)

This completes the proof.

We remark that for a general space (X,B, µ) conditions (1.1) and (1.2) are not equivalent.

However under mild assumptions on the space X (normality, locally compactness etc), they are

equivalent. Since all spaces of our interest (smooth manifolds, homogeneous spaces for Lie groups

etc) satisfy these conditions, we shall take the analog of (1.2) as our definition of equidistribution.

More explicitly

Definition 1.3. Let X be a locally compact topological space and µ a Borel probability measure

on it. A sequence of points (xn) in X is said to be equidistributed with respect to µ if

lim
N→∞

1

N

∑
n≤N

f(xn) −→
∫
X

fdµ

for every f ∈ Cc(X) (recall Cc(X) is the space of compactly supported continuous functions on X).

The above definition is more useful than the former as it is easier to work with the space of

continuous functions than with open sets.

In order to state the Weyl criterion in a succinct manner we introduce the little-o notation from

analytic number theory. By the notation f(n) = o(g(n)) we mean that limn→∞ f(n)/g(n) = 0.

Theorem 1.4. (Weyl criterion) A sequence of real numbers (un) is equidistributed modulo 1 if and

only if for every h ∈ Z, h 6= 0, we have ∑
n≤x

e(hun) = o(x).

Proof. Suppose (un) is equidistributed modulo 1. Observe that, for all h 6= 0,

lim
N→∞

1

N

∑
n≤N

cos(2πhun) =

∫ 1

0

cos(2πhx)dx = 0,
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where the first equality is due to the previous lemma. A similar statement holds for sin(x). We

conclude that
∑
n≤x e(hun) = o(x).

(⇒) Conversely, suppose
∑
n≤x e(hun) = o(x) for every h 6= 0. Let f : [0, 1]→ R be a continuous

function. We know from basic Fourier theory that finite linear combination of trigonometric poly-

nomials are dense in C([0, 1]) in the uniform metric. That is, for any ε > 0, there exists a function

p(t) =
∑M
k=−M cke(kt) such that |f(t) − p(t)| < ε, for all t ∈ [0, 1]. From the given condition, it

follows that

lim
N→∞

1

N

∑
n≤N

p(un) = c0 =

∫ 1

0

p(t)dt.

Therefore, we have that

∣∣∣ 1

N

∑
n≤N

f(un)−
∫ 1

0

f(t)dt
∣∣∣ ≤∣∣∣ 1

N

∑
n≤N

f(un)− 1

N

∑
n≤N

p(un)
∣∣∣+
∣∣∣∫ 1

0

(p(t)− f(t))dt
∣∣∣+

∣∣∣ 1

N

∑
n≤N

p(un)−
∫ 1

0

p(t)dt
∣∣∣

≤ 2ε+
∣∣∣ 1

N

∑
n≤N

p(un)−
∫ 1

0

p(t)dt
∣∣∣

This implies∫ 1

0

f(t)dt− 2ε ≤ lim inf
N→∞

1

N

∑
n≤N

f(un) ≤ lim sup
N→∞

1

N

∑
n≤N

f(un) ≤
∫ 1

0

f(t)dt+ 2ε.

We deduce that

lim
N→∞

1

N

∑
n≤N

f(un) =

∫ 1

0

f(t)dt.

Corollary 1.5. If α ∈ R is irrational, then (nα) is equidistributed modulo 1.

Proof. Let h be a non-zero integer. Since α is irrational, it follows that e(hα) 6= 1.

∣∣∑
n≤x

e(hnα)
∣∣ = |e(hα)|

∣∣∣e(xhα)− 1

e(hα)− 1

∣∣∣ ≤ 2

|e(hα)− 1|
.

By Weyl criterion we obtain the required equidistribution result.

Weyl criterion makes establishing equidistribution results considerably easy. (The above equidis-

tribution result would have been a lot harder to prove directly). We illustrate this with yet another

example (based on [10]).

Theorem 1.6. For any increasing sequence of integers a1, a2, . . ., the sequence {anx : n ≥ 1} is

uniformly distributed mod 1 for almost all x ∈ R.
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Proof. Let h ∈ Z \ {0}. We have that∫ 1

0

∣∣ 1

N

∑
n≤N

e(hanx)
∣∣2dx =

1

N2

∑
m,n≤N

∫ 1

0

e(hx(am − an))dx =
1

N
.

Therefore, by replacing N by m2 and summing over m, we get∫ 1

0

∑
m≥1

∣∣ 1

m2

∑
n≤m2

e(hanx)
∣∣2dx =

∑
m≥1

1

m2
= π2/6.

If we call the above integrand as f , we have
∫ 1

0
f(x)dx <∞. Since f is non-negative, we must have

f(x) < ∞ for almost all x in [0, 1]. But note that f(x) = f(x + 1), so f(x) < ∞ for almost all x.

That is, we have ∑
m≥1

∣∣ 1

m2

∑
n≤m2

e(hanx)
∣∣2 <∞

for almost all x, and hence

lim
m→∞

∣∣ 1

m2

∑
n≤m2

e(hanx)
∣∣ = 0.

Now if m2 ≤ N < (m+ 1)2 then
∑
n≤N e(hanx) =

∑
n≤m2 e(hanx) +O(m), hence

1

N

∑
n≤N

e(hanx) =
m2

N

1

m2

∑
n≤m2

e(hanx) +O(
m

N
)

and the theorem follows.

Corollary 1.7. Almost all x ∈ R are normal.

Proof. Recall a real number α is normal to base b ∈ N if the sequence (bnα) is equidistributed

distributed mod 1. (That is, each sequence of digits appears, in the expansion of α to the base b,

about as often as in a random sequence). And α is normal if it is normal in every base b ≥ 2.

To see the proof of the corollary, take an = bn in the above theorem, by noting that the exceptional

set has measure zero, as it is the countable union of measure zero sets.

1.2.1 Weyl criterion in greater generality

If one looks carefully at the proof of Weyl criterion for equidistribution mod 1, it will become clear

that the crux of the proof has to do with the fact that the linear span of the set of functions

{e(nx) : n ∈ Z} is dense in the space of continuous functions on T. This idea can be used in many

other situations and an analogous Weyl criterion can be devised to prove equidistribution.

For concreteness, let us focus on the case of Compact metric spaces. Let X be a compact metric

space and let P(X) be the set Borel probability measures on X. Let C(X) be the space of continuous

functions on X endowed with the uniform norm (i.e. ‖f‖ = supx∈X |f(x)|).

Definition 1.8. A sequence of measures µn ∈ P(X) is said to be equidistributed with respect to
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µ ∈ P(X) if they converge to µ in the weak∗ topology, i.e. for every f ∈ C(X) we have

µn(f) =

∫
X

fdµn → µ(f) =

∫
X

fdµ as n→∞. (1.4)

When this is the case, we write µn → µ. (More about measures on compact metric spaces can

be read in section 3.1). The Weyl criterion generalizes as follows:

Weyl criterion. Let X be a compact metric space and let φn ∈ C(X) be a sequence of functions

with the property that their linear combination is dense in C(X). Then µn → µ if and only if

µn(φm)→ µ(φm) for all m ∈ N.

Proof. (⇒) Let f ∈ C(X). Given ε > 0 there exists g =
∑N
k=1 ckφk such that ‖f − g‖ < ε. (We

assume ck’s are non-zero). Write f − g = h. Then

|ν(h)| < ε for any ν ∈ P(X).

Now,

|µn(f)− µ(f)| = |µn(g + h)− µ(g + h)| = |µn(g) + µn(h)− µ(g) + µ(h)|

≤ |µn(g)− µ(g)|+ 2ε =
∣∣ N∑
k=1

ckµn(φk)−
N∑
k=1

ckµ(φk)
∣∣+ 2ε

Let c = max{|c1|, . . . , |cN |}. Now, for each k ∈ {1, 2, . . . , N} there exists an M(k) ∈ N such that

|µn(φk)− µ(φk)| < ε/cN for all n > M(k). Let M = max{M(1), . . . ,M(N)}. Then, for n > M we

have
N∑
k=1

|ck| |µn(φk)− µ(φk)| < ε

and therefore |µn(f)− µ(f)| < 3ε. Thus we have shown µn(f)→ µ(f) for every f ∈ C(X).

Let us look at some examples of spaces for which nice Weyl criterion exists. By the Weyl criterion,

as in the above form, there could be plenty of choices for the system of test functions φn; any set

that generates a dense subset of C(X) will do, for example any orthonormal basis for L2(X,µ). But

very often there is a natural choice. The Stone-Weierstrass theorem provides us with a tool to find

such a system of functions. We recall this theorem, which, we shall have the opportunity to invoke

later.

Stone-Weierstrass theorem. Let X be a compact metric space and let A ⊂ C(X) be a linear

subspace with the following properties:

• A is closed under multiplication.

• A contains the constant functions.

• A separates points in X.

Then A is dense in C(X).

Now, let us look again at the example of T. What is so special about the functions e(nx)? T
is a compact abelian Lie group and e(nx) are precisely the characters of irreducible representations
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(over C) of T. They form an orthonormal basis for L2(T, l), the space of square integrable functions

with respect to l.

More generally, let G be a compact Lie group. The famous Peter-Weyl theorem asserts that

matrix coefficients of irreducible representations ofG, form an orthonormal basis for L2(G). Similarly

for X = G#, the space of conjugacy classes of G, the characters of irreducible representations of G

form an orthonormal basis for L2(X, dg) where dg is the measure derived from the Haar measure on

G. Also, the integral of any non-trivial character over X is zero. If (un) is a sequence of points on

X, the Weyl criterion then reads: ∑
n≤x

Tr(ρ(un)) = o(x)

for all irreducible representations ρ of G.

Although we won’t have the occasion to work with general Lie groups, it is important to note that

the above choices of test functions provides a potent tool for establishing equidistribution results.

1.3 Equidistribution of rationals and the Riemann hypothe-

sis

Any rational number α can be uniquely represented as a fraction a/b in it lowest terms, that is, a

pair of integers a and b with b > 0 and the greatest common divisor (a, b) = 1. We define the height

of α by

H(α) = max{|a|, b}.

For each Q > 0, we can look at the rational numbers in [0, 1) of height at most Q. Let us denote

them by x1, . . . , xN , where the xi’s are arranged in the increasing order of their magnitude. As we

shall soon see, the distribution these numbers is of fundamental importance. But before that we

need a lemma.

Lemma 1.9. (Ramanujan sum)

q∑
a = 1

(a,q) = 1

e
(ah
q

)
=
∑
c|h
c|q

cµ
(q
c

)
,

where µ(n) is the Möbius function.

Proof. We have that
∑
d|n µ(d) = 0 for n > 1. Also the common factors of (a, q) are the common

factors of a and q. Therefore the required sum is

q∑
a=1

∑
d|a
d|q

µ(d)e
(ah
q

)
=
∑
d|q

µ(d)

q/d∑
b=1

e
( bh
q/d

)
,

where we have put a = bd. The sum over b is zero unless h is a multiple of q/d. Writing c = q/d,



8 CHAPTER 1. EQUIDISTRIBUTION IN NUMBER THEORY

we get the sum to be ∑
d|q
q/d|h

µ(d)
q

d
=
∑
c|h

∑
d

cd=q

cµ(d) =
∑
c|h
c|q

cµ
(q
c

)
.

Lemma 1.10. (Weyl sum for the rational numbers) Let Q be a positive integer and let x1, . . . , xN

be the rational numbers of height at most Q in [0, 1). Then

N =
Q2

2ζ(2)
+O(QloqQ),

and for each integer h
N∑
1

e(hxn) =
∑
d|h

dM(Q/d), (1.5)

where M(x) =
∑
n≤x µ(n) is the sum function of the Möbius function.

Proof. Put h = 0 in the previous lemma. We get,

N =

Q∑
q=1

∑
a=1

(a,q)=1

1 =

Q∑
q=1

∑
cd=q

cµ(d)

=

Q∑
q=1

∑
d|q

q

d
µ(d) =

∑
d≤Q

µ(d)

d

Q∑
q=1

q≡0(mod d)

q

=
∑
d≤Q

µ(d)

d

[
1

2

Q2

d
+O(Q)

]

=
Q2

2

∞∑
d=1

µ(d)

d2
+O

[
Q2

∞∑
d=Q+1

|µ(d)|
d2

+Q
∑
d≤Q

|µ(d)|
d

]
.

Now, it is easy to see that,

∞∑
d=Q+1

|µ(d)|
d2

=

∫ ∞
Q

dx

x2
+O(

1

Q2
) =

1

Q
+O(

1

Q2
),

and ∑
d≤Q

|µ(d)|
d
≤
∑
d≤Q

1

d
= logQ+O(1).

This completes the proof of the first assertion.
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For the second assertion, the sum can be rearranged to give

Q∑
q=1

q∑
a=1

(a,q)=1

e
(ah
q

)
=

Q∑
q=1

∑
d|h
d|q

dµ
( q
d

)

=
∑
d|h

d
∑
r≤Q/d

µ(r) =
∑
d|h

dM(Q/d).

We had previously defined the notion of equidistribution of a sequence of points in a space X.

Similarly one can define the notion of equidistribution for a sequence of finite subsets of X. Given

a finite subset E of X we define µE ∈ P(X) as

µE =
1

|E|
∑
x∈E

δx

where δx is the Dirac measure at x.

Definition 1.11. A sequence of finite subsets En ⊂ X, is said to be equidistributed with respect

to µ if µEn
→ µ as n→∞.

It is time to introduce yet another notation from analytic number theory. Let f be a complex

valued function on N and g a non-negative real valued function on N. By the notation f � g, we

mean that there is a c > 0 such that |f(n)| ≤ cg(n), for all n large enough.

Theorem 1.12. Let EQ be the set of rationals of height at most Q in [0, 1). Then, as Q→∞, EQ
is equidistributed in [0, 1) with respect to the Lebesgue measure.

Proof. Let x1, . . . , xN correspond to the complete set rationals in [0, 1) of height at most Q. Using

the trivial bound |M(x)| ≤ x in (1.5) we get, for non-zero h,

N∑
1

e(hxn)�
∑
d|h

Q� d(h)N1/2,

where d(h) is the number of divisors of h. That is (generalized) Weyl criterion holds true for each

non-zero h. The theorem follows.

We now prove a lemma on Dirichlet series which we shall have multiple occasions to use.

Lemma 1.13. Let f(s) =
∑
n≥1 ann

−s be a general Dirichlet series. Let A(x) =
∑
x≤n a(n).

Suppose A(x) = O(xα+ε) for every ε > 0. Then the Dirichlet series f(s) converges for any s with

Re s > α.

Proof. This follows directly from Abel’s partial summation formula

∑
n≤x

a(n)

ns
=
A(x)

xs
+ s

∫ x

1

A(u)

u1+s
du



10 CHAPTER 1. EQUIDISTRIBUTION IN NUMBER THEORY

by noting that if Re s > α, as x → ∞, the first term in the right side goes to zero by assumption,

and the integral above is (absolutely) convergent.

We now state an important theorem in the converse direction, which we shall use later.

Wiener-Ikehara theorem. Let f be a non-negative, non-decreasing real valued function on [1,∞)

and suppose that the Mellin transform

g(s) := s

∫ ∞
1

f(x)x−(s+1)dx

exists for Res > 1. Also, suppose that for some constant α, the function

g(s)− α

s− 1

has continuous extension to the closed half-plane Re s ≥ 1. Then

lim
x→∞

f(x)

x
= α.

Remark 1.14. Of special interest is the case when f(x) = A(x), the sum function of a sequence

of non-negative integers an. Suppose that the corresponding Dirichlet series φ(s) =
∑
n≥1 ann

−s

converges on the half-plane Re s > 1 and has analytic continuation except for a simple pole at s = 1

with residue α. First, note that φ(s) is precisely the Mellin transform of A(x). To see this, in the

Abel’s formula quoted above, take s = σ > 1. Then, all the terms involved are positive. Since the

series converge for any σ > 1, we must have that A(x)/xσ goes to zero as x→∞, for any σ > 1.

Now, we can apply the Wiener-Ikehara theorem to deduce that limx→∞A(x)/x = α. If φ(s) has

analytic continuation with a simple pole at s = b with residue α, we can shift s to s − b and can

apply the Wiener-Ikehara theorem to get

A(x) ∼ αxb

b
.

We now make some remarks pertinent to the title of this subsection. From the general theory of

Dirichlet series mentioned above we know that

M(x)� xθ+ε (1.6)

holds for all ε > 0 if and only if the Dirichlet series for 1/ζ(s) converges in the half plane Re(s) > θ,

that is when ζ(s) is non-zero in the region Re(s) > θ. Now, if (1.6) holds true for some θ ≥ 1/2

(θ < 1/2 is ruled out by the existence of zeros of ζ(s) on the critical line 1/2 + it), we see using (1.5)

that
N∑
1

e(hxn)�
∑
d|h

d(Q/d)θ+ε � f(h)Nθ/2+ε/2,

where f(h) =
∑
d|h d

1−θ−ε (a function polynomially bounded in h). Therefore, the extent to which

the rationals are equidistributed depends on the truth or falsity of the Riemann hypothesis. Quoting
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from [12], “...perhaps this is what the Riemann hypothesis really means”.

1.4 The map x 7→ x mod p

1Take a large prime. The function inverse modulo p in the interval [1, 2, . . . , p − 1] has certain

“randomness” which is of great importance in analytic number theory (see [11]), and is also ex-

ploited in cryptography. We shall explain what this “randomness” is using the notion of effective

equidistribution.

Let T2 = R2/Z2. Through out this section, x will mean the inverse of x mod p. Define

S(p) =
{(x

p
,
x

p

)
: x ∈ (Z/pZ)×

}
⊆ T2

and let

νp =
1

p− 1

∑
w∈S(p)

δw

be the uniform measure on S(p). Let λ be the normalized Lebesgue measure on T2. We shall prove

that

νp → λ as p→∞. (1.7)

The above limit is taken over primes p and the convergence is in the weak∗ topology.

The qualitative (1.7) is an immediate consequence of the following theorem

Theorem 1.15. Let f be a smooth function on T2, define S(f) by

S(f)2 = ‖f‖22 + ‖∂2f/∂x2‖22 + ‖∂2f/∂y2‖22.

Then there exists a κ > 0 such that for all f ∈ C∞(T2) one has

|νp(f)−
∫
fdλ| � p−κS(f). (1.8)

We shall prove theorem 1.15 with the exponent κ = 1/4.

Clearly, (1.8) is an effective version of (1.7), as any qualitative statement that can be deduced

from (1.7) can be made quantitative using (1.8). For example from (1.7), we can conclude that the

set S(p) intersects , the box [0.5, 0.51]× [0.7, 0.71] for p sufficiently large, whereas using (1.8) we can

compute how large p should be for this to happen.

We say a sequence of measures µn is effectively equidistributed with respect to an ambient measure

λ when an estimate of the type (1.8) holds true.

Kloosterman Sums. Since f is a smooth function on T2, write f in its Fourier series.

f(x, y) =
∑
n∈Z2

f̂(n)en(x, y), (1.9)

1Based on a lecture by Farrell Brumely, at the Summer School on Analytic Questions in Arith-
metic (AQUA), 2010.
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where if n = (n1, n2) we have put

en(x, y) = e(n1x+ n2y).

A direct computation using the above Fourier expansion will show that the Sobalev norm of f

as defined above can be written as

S(f)2 =
∑
n

(1 + (2π)2‖n‖4)|f̂(n)|2. (1.10)

As f is continuously differentiable, the series (1.9) is absolutely convergent. We may therefore

interchange the order of summation to obtain

νp(f) =
∑
n

f̂(n)ν̂p(n), (1.11)

where ν̂p(n) = νp(en), is the Fourier coefficient of νp at the harmonic en. More explicitly we have,

ν̂p(n) =

∫
en(w)dνp(w) = (p− 1)−1

∑
x∈(Z/pZ)×

e
(n1x+ n2x

p

)
.

The last sum is called the classical Kloosterman sum.

Note that f̂(0) =
∫
T2 fdλ and also that if n ∈ pZ2 then ν̂p(n) = 1. Therefore the series (1.11)

may be rewritten as

νp(f)−
∫
T2

fdλ =
∑

n6∈pZ2

f̂(n)ν̂p(n) + E(p), (1.12)

where

E(p) =
∑

n∈pZ2\{0}

f̂(n) =
∑

n∈pZ2\{0}

1

‖n‖2
‖n‖2f̂(n)

� p−2
(∑
n∈Z2

‖n‖4|f̂(n)|2
)1/2

≤ p−2S(f).

We have used the Cauchy-Schwartz inequality and (1.10) to arrive at the above result.

Now, as we shall see shortly , and as first demonstrated by Kloosterman in [15], if n 6∈ pZ2 then

ν̂p(n)� p−1/4 (1.13)

uniformly in n. Inserting this in (1.12), we get

|νp(f)−
∫
T2

fdλ| � p−1/4
∑
n∈Z2

|f̂(n)|+ p−2S(f).
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But
∑

n∈Z2 |f̂(n)| ≤ S(f) using the Cauchy-Swartz trick as above. Hence we have

|νp(f)−
∫
T2

fdλ| � p−1/4S(f).

Therefore theorem 1.15 follows from Kloosterman’s estimate (1.13).

Proof of Kloosterman bound (1.13)

Let n = (n1, n2), be such that n 6∈ pZ2. Put Kp(n) = (p − 1)ν̂p(n). If a is relatively prime to

p, then as x varies through residues modulo p, ax also varies through residues modulo p. Therefore

we have,

Kp(n1, n2) =

p−1∑
x=1

e(
n1ax+ n2ax

p
) = Kp(an1, an2).

Now, if p|n2 then p - n1, in which case Kp(n) = 0. Therefore we may assume p - n1, n2, so that

the sum

M4(p) =

p−1∑
r=0

p−1∑
s=0

|Kp(r, s)|4

contains p− 1 copies of |Kp(n1, n2)|4. Hence,

(p− 1)|Kp(n1, n2)|4 ≤M4(p). (1.14)

Now, we may expand |Kp(r, s)|4 as

p−1∑
m1=1

p−1∑
m2=1

p−1∑
m3=1

p−1∑
m4=1

e(
rA+ sB

p
),

where A = m1 +m2 −m3 −m4, B = m1 +m2 −m3 −m4.

On rearranging the order of summation, it follows that

M4(p) =
∑
mi

∑
r,s

e(
rA+ sB

p
) =

∑
mi

{
∑
r

e(
rA

p
)}{
∑
s

e(
sB

p
)}.

The innermost sums are easy to evaluate. In fact we have

p−1∑
r=0

e(
rA

p
) =

 0, p - A,

p, p | A,

and similarly for the sum over s. We therefore conclude that

M4(p) = p2.#{(m1,m2,m3,m4) : p | A,B}.

Let m1 + m2 = m3 + m4 (mod p) and m1 + m2 = m3 + m4 (mod p). Multiplying the two

equations we get m1m2 + m1m2 = m3m4 + m3m4 (mod p). Put α = m1m2 and β = m3m4.

We have α + α = β + β = c(mod p) (say), i.e. α and β both satisfy the quadratic equation

x2 − cx + 1 = 0(mod p). We conclude that α = β or α = β. Consider the case α = β. Then the
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equations m1 + m2 = m3 + m4 mod p and m1m2 = m3m4(mod p) holds true. Multiplying both,

we get, m1(m1m2 + 1) = m3(m3m4 + 1)(mod p). This implies that either m1 = m3(mod p) or

(m1m2 + 1) = (m3m4 + 1) = 0(mod p). The latter is equivalent to m1 +m2 = m3 +m4 = 0 mod p.

The case α = β can be treated similarly.

We have just shown that if p | A,B then either m3,m4 is a permutation of m1,m2 or m1 +m2 =

m3 +m4 = 0(mod p). Thus there are at most 3(p−1)2 available sets of values for (m1,m2,m3,m4).

It follows that

M4(p) ≤ 3p2(p− 1)2 < 3p3(p− 1).

We now deduce from (1.14) that

|Kp(n)| < 31/4p3/4 (n 6∈ pZ2).

The Kloosterman bound (1.13) follows.



Chapter 2

Linnik’s Problem

Let α = (x1, x2, x3) ∈ Z3 with |α|2 = x2
1 + x2

2 + x2
3. For n ∈ Z+ the set

Vn = {x = α/|α| : α ∈ Z3; |α|2 = n}

lies on the unit sphere S2. As was first observed by Legendre, Vn is non-empty if and only if

n 6= 4a(8b+7), for a, b integers, a non-negative. In [18] Linnik asked if the set Vn gets equidistributed

on S2 with respect to the Lebesgue measure dσ as n → ∞, subject to the condition that n ≡
1, 2, 3, 5, 6(mod 8). He was able to prove this using an “ergodic method”, under an additional

hypothesis on n that
(
n
p

)
= 1, for a small fixed prime p. Much later (in 1987) Iwaniec made a

breakthrough in the estimation of Fourier coefficients of modular forms of half-integral weight in

[13], which allowed this condition to be removed.

We shall see soon that modular forms enters the picture via the Weyl criterion.

What is a good choice for the system of test functions to apply Weyl criterion? One should be

looking for an orthonormal basis for L2(S2). We shall see that there is indeed a ‘natural’ choice for

such a basis. We begin by noting the following; if we let e(θ) = (x+ iy)/|x+ iy, then for m > 0

e(mθ) =
( x+ iy

|x+ iy|

)m
and

e(−mθ) =
( x− iy
|x− iy|

)m
.

Now (x+iy)m and (x−iy)m are homogeneous harmonic polynomials on R2. This example generalizes

nicely to R3 (in fact to Rn). Let H ⊂ C(S2) be the subspace of finite sum of homogeneous harmonic

polynomials in R3 restricted to S2. Clearly, H is multiplicatively closed and contains the constant

functions. Further, it can be shown that they separate points in S2. Therefore, by the Stone-

Weierstrass theorem H is dense in C(S2). Also, since they are eigen functions of the spherical

laplacian, their integral over S2 with respect to the Lebesgue measure σ is zero.

Let P be a homogeneous harmonic polynomial of degree l ≥ 1. From the preceding discussion, in

order to show a sequence of measures µn equidistribute to σ, it is sufficient to show that µn(P )→ 0

15
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as n → ∞ for every homogeneous harmonic polynomial P . Linnik’s problem asks if µVn → σ as

n→∞ through admissible values of n. By Weyl criterion it is sufficient to show

1

#Vn

∑
x∈Vn

P (x)→ 0 as n→∞

through admissible values. Equivalently, we require∑
α∈Z3

|α|2=n

P
( α
|α|

)
= o(r3(n)) (2.1)

where r3(n) = #{α ∈ Z3 : |α|2 = n} = |Vn|.
The above bound is established by noting that the left side of (2.1) is essentially the fourier

coefficient of a modular form. Define

θP (z) =
∑
α∈Z3

P (α)e(|α|z) =

∞∑
n=1

r(n, P )e(nz).

Shimura in [23] proves the following theorem (in a vastly more general form).

Theorem 2.1. The function θP (z) is a holomorphic cusp form of weight 3/2 + l for Γ0(4). Also

θP (z) = 0, for l odd.

Proof. See [23].

Note that

r(n, P ) =
∑
|α|2=n

P (α).

Since P is homogeneous of degree l, we have P (α/|α|) = |α|−lP (α), so that

r(n, P ) = nl/2
∑
|α|2=n

P
( α
|α|

)
. (2.2)

To prove (2.1), we will also need bounds on r3(n)(= |Vn|). It was Gauss (in [9]) who first

discovered some remarkable algebraic structure in the set Vd, when d is square free. In modern

language, he had proved that the ideal class group of the quadratic order Z[
√
−d] acts transitively

on the quotient SO3(Z)\Vd. (See [7] for the details, and for an exposition of Linnik’s original

approach in modern language). From this, Gauss was able to prove

r3(n) =
24h(d)

w(d)

(
1−

(d
2

))
, (2.3)

where d = disc(Q(
√
−n)), h(d) the class number of Q(

√
−n) and w(d) the number of roots of unity in

this field.
(
d
2

)
, of course, is the quadratic symbol. Now, it is a famous (alas non-effective!) theorem

of Siegel that h(d)�ε |d|1/2−ε. It follows that

r3(n)�ε n
1/2−ε. (2.4)
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Suppose we had a theorem of the following form: If f(z) =
∑
ane(nz) is a cusp form of half

integral weight k for Γ0(N) (where 4 | N), then there exists a δ > 0 such that for each n we have

|an| � nk/2−1/4−δ. (2.5)

Then with k = 3/2 + l, combining (2.2), (2.4) and (2.5), we would have

1

r3(n)

∑
|α|2=n

P (α/|α|) = Oε(n
−δ+ε) (2.6)

and Linnik’s conjecture would follow. In fact, Iwaniec [13] had proven precisely an estimate of type

(2.6) with δ = 1/28. We shall settle for a weaker estimate with δ = 1/222 (as given in [14]). We shall

see later that the bound (2.5), as stated, is false for general n. (One has to make an assumption like

n is square; but we shall ignore it for the time being and return to it later.)

The bound (2.5), may at first, seem out of the blue. But we shall, in due course, explain the

naturality in (asking for) it.

At this stage, rather than embarking on proving Iwaniec’s bound, we shall consider an ε-

modification of the Linnik’s problem which will (hopefully) shed some light on the original problem.

Our presentation is based on [4].

2.1 Rational points on the sphere

Let R be the set of rational points on the unit sphere, i.e. R = Q3 ∩ S2. Define the height h(x)

of a rational point x ∈ R as the least common denominator of its coordinates in reduced form. We

shall show that the rational points of height ≤ T become equidistributed on S2 with respect to σ as

T →∞.

For a function ρ on S2, define

A(T, ρ) =
∑
x∈R

h(x)≤T

ρ(x).

Thus A(T, 1) is the number of rational points on on S2 of height ≤ T .

Theorem 2.2. As T →∞, A(T, 1) ∼ 3
2κT

2, where κ = 1/12 − 1/32 + 1/52 − 1/72 + · · · ' 0.9159 is

the Catalan’s constant. For any continuous function ρ : S2 → C we have

A(T, ρ)/A(T, 1)→
∫
S2

ρ dσ as T →∞.

Proof. As before we may restrict our attention to homogeneous harmonic polynomials. Let P be a

such a polynomial of degree l ≥ 0 (if l = 0 then P is just the constant function 1). Define

a(n, P ) =
∑
x∈R
h(x)=n

P (x)
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and consider the Dirichlet series

φ(s, P ) =
∑
n≥1

a(n, P )n−s.

We shall soon see that this Dirichlet series has analytic continuation and a functional equation,

owing to the fact that a(n, P )’s are related to r(n, P )’s, which are Fourier coefficients of modular

forms. We now derive this relation. Put b(n, P ) = r(n, P )n−l/2, i.e. the sum in (2.2). Consider the

set of integral vectors

V = {(x1, x2, x3, y) ∈ Z4 : x2
1 + x2

2 + x2
3 = y2, y > 0 and gcd(x1, x2, x3, y) = 1}

and observe that the map

(x1, x2, x3, y)→ (x1/y, x2/y, x3/y)

gives a bijection from V onto R, where y is the height of the image of (x1, x2, x3, y). It follows that

b(n2, P ) =
∑
d|n

a(d, P )

which on Möbius inversion gives

a(n, P ) =
∑
d|n

b(d2, P )µ(n/d).

This is equivalent to the following identity of Dirichlet series

φ(s, P ) = ζ(s)−1
∑
n≥1

b(n2, P )n−s. (2.7)

For the first part of the theorem, put P = 1, and note that b(n2, 1) = r3(n2). By a classical result

of Hurwitz we have the following identity

∑
n≥1

b(n2, 1)n−s = 6(1− 21−s)
ζ(s)ζ(s− 1)

L(s, χ−4)

where χ−4(p) =
(−4
p

)
is the Kronecker symbol. This gives

φ(s, 1) = 6(1− 21−s)
ζ(s− 1)

L(s, χ−4)
, (2.8)

which is holomorphic for Re(s) > 1, except for a simple pole at s = 2 with residue 3/κ, where κ =

L(2, χ−4)−1. By applying the Wiener-Ikehara theorem (see remark 1.14) we derive the asymptotic

relation

A(T, 1) ∼ 3

2κ
T 2 as T →∞.
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To finish the proof of the theorem, by Weyl criterion, we need to show that

T−2A(T, P ) = T−2
∑
n≤T

a(n, P )→ 0 (2.9)

as T → ∞ for any P with degree l > 0. Furthermore, we may assume that l is even (as for odd l,

P (−x) = −P (x) and A(T, P ) = 0). The analog of Hurwitz’s result (2.8) for a general P is given

by the Shimura’s correspondence. In [23], Shimura introduced a family of correspondence between

modular forms of half-integral weight and modular forms of even integral weight. We state his

theorem and specialize it to our case.

Shimura Map. Let t be a positive square-free integer, and suppose f(z) =
∑∞
n=1 a(n)e(nz) ∈

Sk+1/2(Γ0(4N), ψ), where k is a positive integer. If the numbers A(n) are defined by∑
n≥1

A(n)n−s = L(s− k + 1, ψχk4χt)
∑
n≥1

a(tn2)n−s, (2.10)

where χt =
(
t
)

is the usual Kronecker symbol modulo t, then F (z) =
∑∞
n=1A(n)e(nz) ∈M2k(2N,ψ2).

Moreover, if k > 1 then F(z) is a cusp form.

We shall take t = 1, f(z) = θP (z) =
∑
n≥1 r(n, P )e(nz). In this case N = 1, ψ = 1 and k = l+1.

Since l is even, k is odd and χk4 = χ4.

A(n)’s are defined by ∑
n≥1

A(n)n−s = L(s− l, χ4)
∑
n≥1

r(n2, P )n−s.

Substituting b(n2, P )nl for r(n2, P ) and using (2.7), we get∑
n≥1

A(n)n−s = L(s− l, χ4)φ(s− l, P )ζ(s− l). (2.11)

Shimura’s theorem says, F (z) :=
∑
n≥1A(n)e(nz) is a cusp form of weight 2l + 2 for Γ0(2). If we

define the (normalized) L-function associated F by

L(s, F ) =
∑
n≥1

A(n)n−l−
1
2n−s, (2.12)

it is clear from (2.12) that

φ(s, P ) =
L(s− 1/2, F )

ζ(s)L(s, χ4)
. (2.13)

Now, by the famous Deligne bound (originally a conjecture by Ramanujan),

A(n)�ε n
l+ 1

2 +ε

for any ε > 0. It follows from lemma 1.13 that the Dirichlet series (2.12) converges absolutely for

Re(s) > 1, hence that for φ(s, P ) in (2.13) converges absolutely for Re(s) > 3/2. A consideration
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using Abel’s summation formula, similar to the one in remark 1.14, will imply that∑
n≤T

a(n, P )�ε T
3
2 +ε

for any ε > 0. This completes the proof, as we have proved (2.9).

2.2 Modular forms of half integral weight

Jacobi’s theta series

θ(z) =
∑
n∈Z

e(n2z),

has the following remarkable transformation property for any γ =
(
a b
c d

)
∈ Γ0(4):

θ(γz) =
( c
d

)
ε−1
d (cz + d)1/2θ(z),

where
(
c
d

)
is the extended Legendre symbol (see [16]) and εd is 1 or i depending on whether d is 1

or 3 mod 4. (As usual
√
z denotes the branch which is positive on R+). Define

j(γ, z) :=
( c
d

)
ε−1
d (cz + d)1/2.

Definition 2.3. Let 4|N and k be a 1/2 integer. A modular form f(z) of weight k for Γ0(N) is a

holomorphic function on H satisfying

(i) f(γz) = (j(γ, z))2kf(z) for γ ∈ Γ0(N)

(ii) f(z) is holomorphic at each cusp.

(See [16, Chapter 4] for the precise meaning of (ii).)

We are interested in finding ‘good’ bounds for Fourier coefficients of cusp forms of half integral

weight. Firstly, we derive what is called as the ‘trivial’ bound.

Proposition 2.4. Let f ∈ Sk(Γ) and with Fourier coefficients an, then

an = O(nk/2).

Proof. Since Im(γz) = Im(z)/|(cz + d)|2, F (z) = |f(z)|yk/2 is Γ invariant. Also, since f vanishes at

cusps, F (z) is bounded on H, i.e. |F (z)| < M (this condition on F is equivalent to f being a cusp

form, see [21]). Now, the coefficient an may be expressed as

an = e2πny

∫ 1

0

e(−nx)f(x+ iy)dx.

Hence |an| ≤Me2πnyy−k/2. Put y = 1/n to get the required result.

It is an important result in the theory of modular forms that, for any congruence subgroup Γ,

Mk(Γ)-modular forms of weight k, form a finite dimensional vector space over C. Furthermore,
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Sk(Γ)-the space of cusp forms of weight k, is a finite dimensional Hilbert space. For f, g ∈ Sk(Γ),

the inner product, called the Peterson inner product, is defined as

〈f, g〉 =

∫
Γ\H

f(z)g(z)yk
dxdy

y2
.

For any congruence subgroup Γ there is a canonical way to generate cusp forms of weight k. For

given cusp p of Γ, the idea is to average out the factor of automorphy over coset representatives of

Γp (the stabilizer of p in Γ). This is called the Poincare series at p. We shall be only considering

the case p =∞. More precisely, the m-th Poincare series of weight k at ∞ is defined by

Pm(z, k) =
∑

γ∈Γ∞\Γ

(j(γ, z))−2ke(mγz).

If we assume k > 2, then it can be shown that the above series converges absolutely. The importance

of Poincare series lies in the fact that Pm(z, k) ∈ Sk(Γ) (which we assume) and that

Proposition 2.5. The Pm(z, k),m ≥ 1 span the space of cusp forms Sk(Γ).

Proof. Let f ∈ Sk(Γ) then

〈Pm, f〉 =

∫
Γ\H

Pm(z)f(z)yk
dxdy

y2

=

∫
Γ\H

∑
γ∈Γ∞\Γ

j(γ, z))−2ke(mγz)f(z)yk
dxdy

y2

=

∫ ∞
0

∫ 1

0

e(mz)f(z)yk
dxdy

y2

=
am

(4πm)k−1
Γ(k − 1),

(2.14)

where f(z) =
∑∞
n=1 ane(nz) and Γ is the gamma function. It follows that if 〈Pm, F 〉 = 0 for all m,

then am = 0 for all m, i.e. f ≡ 0. Hence Pm’s span Sk(Γ).

From now on, we shall exclusively focus on Poincare series, as bounds on fourier coefficients of

Pm’s will imply similar bounds for general cusp forms. A computation will show that if we write

Pm(z, k) =
∑
n≥1

P̂m(n)e(nz)

then

P̂m(n) = 2
( n
m

)(k−1)/2

δm,n + 2πi−k
∑

c≡0(N)
c>0

Jk−1

(
4π
√
mn

c

)
K(m,n, c)

c

 (2.15)

where

Jk−1(z) =
∑
l≥0

(−1)l

l!Γ(l + k)

(z
2

)k−1+2l

(2.16)
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is the J-Bessel function and

K(m,n, c) =
∑

dmod c
(d,c)=1

( c
d

)2k

ε−2k
d e

(
md+ nd

c

)
(2.17)

is a Kloosterman sum closely related to the one we have met in section 1.2.

Let f1, . . . , fR be an orthonormal basis for Sk(N) (with respect to the Petersson inner product).

If we write fj =
∑
n≥1 f̂j(n)e(nz), then (2.14) gives

Pm(z, k) =

R∑
j=1

〈Pm, fj〉fj

=
Γ(k − 1)

(4πm)k−1

R∑
j=1

f̂ j(m)fj(z).

Hence

P̂m(n) =

R∑
j=1

〈Pm, fj〉f̂j(n) =
Γ(k − 1)

(4πm)k−1

R∑
j=1

f̂ j(m)f̂j(n).

Substituting for P̂m(n) from (2.15) and setting m = n we get

P̂n(n) =
Γ(k − 1)

(4πm)k−1

R∑
j=1

|f̂j(n)|2 = 1 + 2πi−k
∑

c≡0(N)

Jk−1

(
4πn

c

)
K(n, n, c)

c
. (2.18)

The above equation is called the Petersson Formula , and it will form the backbone for our estimates

of f̂j(n)’s. In order to do so, we must evaluate K(m,n, c) in a form in which we can see cancelation

in the sum in (2.18).

2.3 Salié sums

In the case of our interest (i.e. for Linnik’s problem) k = 3/2+ l, where l is even, so ε−2k
d = ε−3

d = εd

(recall εd takes 1 or i as its value). Substituting this in (2.17) gives

K(m,n, c) =
∑

dmod c
(d,c)=1

εd

( c
d

)
e

(
md+ nd

c

)
.

An interesting thing about this sum is that it can be evaluated in a simpler form. After using

Chinese remainder theorem and quadratic reciprocity we are led to the following

Lemma 2.6. If c = qr with (q, r) = 1 and 4|r then

Kk(m,n, c) = Kk−q+1(mq, nq, r)S(mr, nr, q),
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where for q odd S(m,n, q) is the Salié sum defined as

S(m,n, q) =
∑

xmod q

(
x

q

)
e

(
mx+ nx

q

)
.

Proof. Expand the RHS. Set d = xrr + yqq with x, y ranging over the residue classes modulo q

and r respectively. So d = x (mod q), d = y (mod r). Also d = xrr + yqq (mod c) (as can be directly

verified by multiplying d and d and using CRT). By the quadratic reciprocity we have

( c
d

)
= (−1)

y−1
2

q−1
2

(
r

y

)(
x

q

)
.

We also have εd = εy and (−1)(y−1)/2(q−1)/2 = εq−1
y . Combining all this,we get the LHS.

We now prove some properties satisfied by S(m,n, q).

Lemma 2.7. Let (m, q) = 1 = (n, q).

S(m,n, q) =

(
m

q

)
S(1,mn, q) (i)

S(1, n2, q) = εq
√
q
∑

x2≡1(q)

e

(
2xn

q

)
(ii)

Proof. (i) Since (m, q) = 1, do a change of variable by setting y = mx, (hence x = my, x = my).

We get

S(m,n, q) =
∑
y(q)

(
my

q

)
e

(
y +mny

q

)
=

(
m

q

)
S(1,mn, q)

as
(
m
q

)
=
(
m
q

)
.

(ii) The proof is via Gauss sum. Let

G(a, b; q) =
∑
x (q)

e
(ax2 + bx

q

)
.

It is a classical evaluation that

G(a, 0; q) = εq
√
q
(a
q

)
.

Set A =
∑
x2≡n2(q) e(2x/q). Since (n, q) = 1, it follows that we need to show

S(n2, 1; q) = εq
√
q A.
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Using the trivial fact that
∑
a(q) e(ay/q) = q or 0 depending on y ≡ 0(q) or not, we get that

A =
1

q

∑
x (q)

e
(2x

q

)∑
a (q)

e
(a(x2 − n2)

q

)
=

1

q

∑
a (q)

G(a, 2; q)e
(−an2

q

)

Claim : G(a, b; q) = 0 if (a, q) - b.
Proof : Let d = (a, q). Write a = a′d, q = q′d and x = x1 + q′x2. Then the sum over x(mod q)

splits as a double sum over x1(mod q′) and x2(mod d). Clearly, we have x2 ≡ x2
1(mod q′). With this

observation, we write

e
(ax2 + bx

q

)
= e
(a′x2

q′

)
e
(b(x1 + q′x2)

q

)
= e
(a′x2

1

q′

)
e
(bx1

q

)
e
(bx2

d

)
.

Now the sum
∑
x2(q) e

(
bx2

d

)
is zero, unless d | b. �

In the present case, since q is odd and b = 2, the above sum then is

A =
1

q

∑
(a,q)=1

G(a, 2; q)e
(−an2

q

)
.

But if (a, q) = 1 then ax2 + 2x = a((x+ a)2 − a2) = a(x+ a)2 − a. Therefore,

G(a, 2; q) = e
(−a
q

)
G(a, 0; q)

= e
(−a
q

)(a
q

)
εq
√
q,

so

A =
εq√
q

∑
a (q)

(a
q

)
e
(−an2 − a

q

)
.

From the definition of A, note that A = A (as A is obtained by changing x to −x and a to −a),

which when combined with the fact that εq = 1/εq gives that

εq
√
qA =

∑
a (q)

(a
q

)
e
(an2 + a

q

)
= S(n2, 1, q)

A word on notation. We shall use x to denote inverse of x with respect to some modulus

which shall be implicit, or sometimes clear from the context. If x appears in an expression with a

denominator y, then generally x is the inverse with respect to y.
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Corollary 2.8. Let q be odd and (a, q) = 1, we have

S(n, n, q) = εq
√
q
(n
q

) ∑
ab=q

(a,b)=1

e
(

2n
(a
b
− b

a

))
. (2.19)

Proof. Since S(n, n, q) =
(
n
q

)
S(n2, 1, q), it is enough, by lemma 2.7(ii) to show that

∑
x2=1(q)

e
(2xn

q

)
=

∑
ab=q

(a,b)=1

e
(

2n
(a
b
− b

a

))
.

Consider y = aa − bb. y mod b = 1 and y mod a = −1 . Hence y2 = 1 mod (ab)(by CRT).

Conversely it can be shown that every solution to y2 = 1(q) can be written in the form aa− bb for

some ab = q, (a, b) = 1.

Corollary 2.9. If q is odd and (n, q) = 1, the Salié sums S(n, n, q) satisfy the bound

|S(n, n, q)| ≤ τ(q)q1/2 (2.20)

where τ is the divisor function.

Proof. Clear from (2.19).

For any k, the Kloosterman sums (2.17) also satisfies the bound analogous to (2.20). This is a

consequence of the deep work of A. Weil on Riemann hypothesis for curves over finite fields.

Weil Bound on Kloosterman sums. The Kloosterman sums K(m,n, c) satisfy the bound

K(m,n, c) ≤ (m,n, c)1/2τ(c)c1/2. (2.21)

In particular if (n, c) = 1 we have

K(n, n, c)� c1/2+ε

So we have ∑
c>0

c−σ|K(n, n, c)| � nε

for any ε > 0, if σ > 3/2. Also the J-Bessel function satisfies the following bound for x > 0 [25]

Jk−1(x)� min
{
xk−1,

1√
x

}
≤ xν , if − 1/2 ≤ ν ≤ k − 1.

Choosing ν = 1/2 + δ with δ arbitrarily small, we get by putting these bounds in (2.18) that

P̂n(n)� n1/2+δ
∑
c>0

|K(n, n, c)|
c3/2+δ

� n1/2+δ+ε.

Since ε and δ are arbitrary, we conclude that P̂n(n) � n1/2+ε for any ε > 0. (We are abusing the

notation by using the same ε everywhere). It follows readily from (2.18) that f̂j(n) � nk/2−1/4+ε
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for any ε > 0, for j = 1, . . . , R (recall f1, . . . , fR is an orthonormal basis for Sk(N) ). Since the

Fourier coefficient of any f ∈ Sk(N) is a linear combination of Fourier coefficient of fj ’s we have

Proposition 2.10. Let k be half an odd integer and let f ∈ Sk(N), (4 | N), then the n-th Fourier

coefficient of f satisfies

an = O(nk/2−1/4+ε). (2.22)

We now make some important remarks. The bound (2.22) just falls short of (2.5), the bound

required to solve the Linnik’s problem. However, we note that (2.22) is essentially the best possible

bound for a general n. To see this, consider the theta series θ(z, ψ) =
∑
m∈Z ψ(m)e(m2z), where

ψ is a character (mod 4) with ψ(−1) = −1. It is a cusp form of weight 3/2 for Γ0(8). Clearly,

|am2 | = m and k/2− 1/4 = 1/2. Hence a bound of the type (2.5) is simply false in general. So how

do we proceed to settle Linnik’s problem now? The best way out is to assume that n’s are square

free. This is not a major restriction as we have already solved the Linnik’s problem for squares (this

is essentially the content of section 2.1). The case for a general n can be handled similarly (as we did

for squares) using the Shimura correspondence. Suppose an’s are Fourier coefficients of a modular

form of half integral weight k. Then from Shimura correspondence (2.10) we get (upon inversion)

that

a(tn2) = a(t)
∑
d|n

χ(d)µ(d)dk−3/2A
(n
d

)
,

where A(n)’s are Fourier coefficients of a modular form of even integral weight 2k − 1 (and χ some

character). By the Deligne bound, alluded to previously, we have

A(n)� nk−1+ε.

Hence

|a(tn2)| � |a(t)|
∑
d|n

dk−3/2
∣∣∣n
d

∣∣∣k−1+ε

= |a(t)|nk−1+ε
∑
d|n

d−1/2 � |a(t)|nk−1+ε.

So if at’s satisfied a bound of the form

a(t)� tk/2−1/4−δ+ε,

for all square free t (recall t’s in the Shimura map are square free) for some 0 < δ ≤ 1/4, we would

have

|a(tn2)| � (tn2)k/2−1/4−δ+ε.

With this insight, we shall restrict ourselves to the case of am’s where m is square free.

Notice that in proving proposition 2.10 we did not use any cancellation that might occur in the sum

in (2.18). As we shall see, improvement in (2.22) for square free n is obtained by exploiting this

cancellation.
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2.4 Iwaniec’s bound

Theorem 2.11. Let k ≥ 5/2, 4 | N and f ∈ Sk(N). Then for n square free the n-th Fourier

coefficient of f satisfies the bound

a(n)� n
k
2−

1
4−

1
222 τ(n)log(n), (2.23)

where the implied constant depends on f

We shall break the proof into several small steps. We first outline the strategy. We know that

if f ∈ Sk(N), then f ∈ Sk(qN) for any q. Also the Petersson norm of f with respect to Γ0(qN)

(denoted by ‖f‖2q) is related to ‖f‖2 by the relation

‖f‖2q = [Γ0(N) : Γ0(qN)]‖f‖ (2.24)

where the index is determined by

[Γ0(N) : Γ0(qN)] =
qN
∏
p|qN (1 + p−1)

N
∏
p|N (1 + p−1)

. (2.25)

If an is the n-th Fourier coefficient of f , then the n-th Fourier coefficient of normalized form fq =

f/‖f‖q (normalized with respect to Γ0(qN)) is given by

f̂(n) = a(n)/‖f‖q (2.26)

Take an orthonormal basis for Sk(qN) which contains fq. Using the positivity of Petersson formula

(2.18) and substituting for f̂(n) from (2.26) we get

Γ(k − 1) |a(n)|2

(4πn)k−1‖f‖2[Γ0(N) : Γ0(qN)]
≤ 1 + 2πi−k

∑
c≡ 0(qN)

c−1K(n, n, c)Jk−1

(
4πn

c

)
(2.27)

The main idea in the proof of Iwaniec is to sum the above inequalities by varying q through primes

in some interval of the form (P, 2P ), exploiting cancellations that occur in the right side due to

change in the arguments of the Kloosterman sums.

We now prove some lemmas which shall be used in the course of the proof. It is time to introduce

yet another notation from analytic number theory. For two real valued functions f and g, by the

notation f(x) ∼ g(x) we mean limx→∞ f(x)/g(x) = 1

Lemma 2.12. Let τ be the divisor function.∑
n≤x

τ(n) log n ∼ x(log x)2

∑
n≥x

τ(n) log n

n2
∼ 3(log x)2

x
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Proof. Recall that the sum of divisor function T (x) =
∑
n≤x τ(n) satisfies the bound T (x) = x log x+

O(x). Also, recall Abel’s partial summation formula

∑
y<n≤x

anf(n) = A(x)f(x)−A(y)f(y)−
∫ x

y

A(t)f ′(t)dt

where A is the sum function of an’s and f a continuously differentiable function on [0, 1]. Applying

this formula with f(t) = log t we get

∑
n≤x

τ(n) log n = T (x) log(x)−
∫ x

1

T (u)

u
du

= (x log x+O(x)) log x+

∫ x

1

(log u+O(1))du

= x(log x)2 +O(log x)

For the second statement, we use the above result and put f(t) = t−2 in Abel’s formula. We get

∑
n≥x

τ(n) log n

n2
=

(log x)2

x
+ 2

∫ ∞
x

(log u)2

u2
du+O

(
log x

x2
+

∫ ∞
x

log u

u2
du

)
.

After evaluating the integrals we get

∑
n≥x

τ(n) log n

n2
=

3(log x)2

x
+O

(
log x

x
.

)

Lemma 2.13. Let F : Z→ C be a periodic function with period m. Let F̂ be its fourier transform.

Then ∑
u≤X

F (u)� X|F̂ (0)|
m

+ ‖F̂‖∞ logm

Proof.

∑
u≤X

F (u) =
∑
u≤X

1

m

∑
r(modm)

F̂ (r)e
(ru
m

)
=
X

m
F̂ (0) +

∑
r(modm)
r 6=0

1

m
F̂ (r)

∑
u≤X

e
(ru
m

)

� X

m
|F̂ (0)|+ 1

m

∑
r(modm)
r 6=0

|F̂ (r)|
|1− e(r/m)|

� X

m
|F̂ (0)|+ ‖F̂‖∞

∑
1≤r≤m/2

1

r

� X|F̂ (0)|
m

+ ‖F̂‖∞ logm
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Corollary 2.14.

∑
u≤X

e

(
νu

m

)
� Xτ(m)(m, ν)

m
+m1/2(m, ν)1/2τ(m) logm. (2.28)

Proof. Take F (u) = e
(
νu
m

)
. It is a periodic function with period m/(m, ν). Its Fourier transform is

F̂ (r) =
∑

u(modm)

e

(
νu− ru
m

)
,

the classical Kloosterman sum. The corollary follows by using the Weil bound (2.21).

The above technique is called completing the sum and is often employed in analytic number

theory. Note that since the bound is linear in X, the estimate is also valid for intervals.

Lemma 2.15. (Polya-Vinogradov inequality.) Let χ be a primitive character modulo D, with

D square free and let r < D. Then, for any a,M,N with M < N∑
l≡a (mod r)
M≤n≤N

χ(l)� D1/2 logD (2.29)

Proof. Define the Gauss sum associated to χ by

g(χ) =

D∑
m=1

χ(m)e
(m
D

)
.

If (n,D) = 1, then

χ(n)g(χ) =

D∑
m=1

χ(m)χ(n)e
(m
D

)
=

D∑
h=1

χ(h)e

(
nh

D

)
, (2.30)

where we have put m ≡ nh (mod D). It is easy to show that if (n,D) > 1, then the right side of

(2.30) vanishes (by a simple change of variable, as in lemma 2.17.(ii) , and using the primitivity of

χ). Hence (2.30) holds true for any n. From this, we get

|χ(n)|2|g(χ)|2 =

D∑
h1=1

D∑
h2=1

χ(h1)χ(h2)e

(
n(h1 − h2)

D

)
.

Summing over n over a complete set of residues (modD), the left side gives φ(D)|g(χ)|2. While on
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the right side, the sum over the exponentials is zero unless h1 ≡ h2. So we get

φ(D)|g(χ)|2 = D
∑
h (D)

|χ(h)|2 = Dφ(D).

We deduce that

|g(χ)| = D1/2. (2.31)

Let (r,D) = d. Write D = dq. Since r < D, we have d < D, so q > 1. Also, since D is square

free, we have (d, q) = 1. Hence χ = χ1χ2, where χ1 and χ2 are primitive characters modulo d and q

respectively. Note that χ2 is non-trivial as q > 1. Also, d|r, so the congruence l ≡ a (mod r) implies

l ≡ a (mod d). Therefore, the factor χ1(a) comes out of the sum in (2.29) and what is left is a sum

over χ2(l). Further, (q, r) = 1, so we could have as well started by assuming (r,D) = 1, which we

do now.

Put l = a + kr. The condition M ≤ l ≤ N gives
⌈
M−a
r

⌉
≤ k ≤

⌊
N−a
r

⌋
. We denote these new

bounds by M ′ and N ′ respectively. Then, expressing χ(n) using (2.30), we get∑
l≡a (mod r)
M≤n≤N

χ(l) =
∑

M ′≤k≤N ′
χ(a+ kr)

=
1

g(χ)

D∑
h=1

χ(h)e

(
ah

D

) ∑
M ′≤k≤N ′

e

(
hkr

D

)
(2.32)

Now the inner sum is a GP which satisfies the trivial bound

|
∑

M ′≤k≤N ′
e

(
hkr

D

)
| ≤ 2∣∣1− e (hrD )∣∣ .

Note that, as r is relatively prime to D, hr will be a multiple of D only if h = D, in which case

there is no contribution to the sum (2. 32) as χ(h) = 0. Hence taking absolute values in (2.32) and

using (2.31), we get

D1/2

∣∣∣∣ ∑
l≡a (mod r)
M≤n≤N

χ(l)

∣∣∣∣ ≤ D−1∑
h=1

2∣∣1− e (hrD )∣∣ =

D−1∑
h=1

2∣∣1− e ( hD )∣∣ =

D−1∑
h=1

1

| sin(πh/D)|
. (2.33)

The first equality above is due to the fact that hr and h runs through the same set of residues

(mod D), as (r,D) = 1. We now estimate the last sum. For any convex function f(x) we have that

f(x) ≤ 1

δ

∫ x+δ/2

x−δ/2
f(t)dt.

Taking f(x) = (sinπx)−1, δ = 1/D we see that

D−1∑
h=1

1

sin(πh/D)
≤ D

D−1∑
h=1

∫ h
D + 1

2D

h
D−

1
2D

dt

sinπt
= D

∫ 1− 1
2D

1
2D

dt

sinπt
= 2D

∫ 1
2

1
2D

dt

sinπt
.



2.4. IWANIEC’S BOUND 31

Now sinπt > 2t for 0 < t < 1/2, so that

2D

∫ 1
2

1
2D

dt

sinπt
< 2D

∫ 1
2

1
2D

dt

2t
= D logD.

Substitute this back in (2.33) to complete the proof.

We now get on with the proof of Iwaniec’s bound. There will be four independent parameters

C,D, P and R whose values will be chosen at the end. We shall be taking q to a prime, in which

case the index in (2.25) is just p or p + 1. We average the inequality (2.27) over prime p - n in

the interval P < p < 2P , each such p being weighted by log p. We shall choose P later subject to

N(log n)2 < P ≤ n1/6. The resulting left side is estimated with help of the following

Proposition 2.16. ∑
P<p<2P

p-n

log p

p+ 1
∼ log 2

Proof. We may omit the restriction p - n without affecting the result. Define a function θ on N by,

θ(m) = logm if m is a prime and 0 otherwise. We are interested in the asymptotics of

∑
P<k<2P

θ(k)

k + 1

By the prime number theorem we have that∑
P<k<2P

θ(k) ∼ P.

A simple partial summation using the above gives the required result.

Therefore, the resulting left side is asymptotically µn1−k|a(n)|2, where µ is a positive constant

depending only on f . On the right hand side of our basic inequality we obtain a sum of Kloosterman

sums to moduli c ≡ 0(modN) weighted by

ω(c) =
∑

P<p<2P
p-n,p|c

log p.

We clearly have ω(c) ≤ log c if c > 0. The contribution from the constant term 1 on the right side

is ω(0) ∼ P (by the prime number theorem). Therefore we have

n1−k|a(n)|2 � P + |S| (2.34)

where S is the weighted sum of Kloosterman sums,

S =
∑

c≡0(modN)

ω(c)c−1K(n, n, c)Jk−1

(
4πn

c

)
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The Bessel function satisfies the bound

Jk−1

(
4πn

c

)
� min

{( c
n

)1/2

,
(n
c

)3/2
}
.

This along with Weil bound (2.21) implies that terms with c ≤ C contribute to S at most

S1 � n−1/2
∑
c≤C

(c, n)1/2τ(c) log c� Cn−1/2(τ(n) log n)2, (2.35)

where the last inequality is a consequence of

Proposition 2.17. If C = nα, then

S∗1 :=
∑
c≤C

(c, n)1/2τ(c) log c� C(τ(n) log n)2. (2.36)

Proof. The required sum is nothing but∑
c≤C

∑
d|n

(c,n)=d

d1/2τ(c) log c =
∑
d|n

d1/2
∑
c≤C

(c,n)=d

τ(c) log c.

But ∑
d|n

d1/2
∑
c≤C

(c,n)=d

τ(c) log c ≤
∑
d|n

d1/2
∑
c≤C
d|c

τ(c) log c

Writing c = kd, and using τ(kd) ≤ τ(k)τ(d), the last sum is∑
d|n

d1/2τ(d) log d
∑
k≤C/d

τ(k) log k

Estimating the inner sum using lemma 2.12 we get that

S∗1 ≤ C(logC)2
∑
d|n

τ(d)(log d)3

d1/2
� C(τ(n) log n)2.

For the last bound we have used the fact that C is a power of n and that τ(d)(log d)3 � d1/4(say),

and hence the sum over d is � τ(n)� (τ(n))2.

Similarly, using lemma 2.12, terms with c ≥ D contribute to S at most

S3 � n3/2
∑
c≥D

(c, n)3/2τ(c)c−2 log c� D−1n3/2(τ(n) log n)2. (2.37)

We shall later choose C = nα < n < D = nβ so that the above bound will be valid. In fact we shall
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choose α and β quite close to 1. We are then left with estimating the central term

S2 =
∑

C<c<D
c≡0(modN)

ω(c)c−1K(n, n, c)Jk−1

(
4πn

c

)
.

We set c = qr where q is the largest factor of c coprime with nN , so r has all its prime factors in

nN and is divisible by N . Therefore ω(c) = ω(q) and S2 splits into

S2 =
∑

r|(nN)∞

r≡0(modN)

r−1Tr (2.38)

where

Tr =
∑

C<qr<D
(q,nN)=1

ω(q)q−1K(n, n, qr)Jk−1

(
4πn

qr

)
.

We first estimate Tr as follows:

Tr � (n, r)1/2r1/2τ(r)
∑
q

τ(q)q−1/2 min

{(qr
n

)1/2

,

(
n

qr

)3/2
}

log q,

where we have used the fact that (q, r) = 1 and hence (n, qr) = (n, r), τ(qr) = τ(q)τ(r).

Proposition 2.18.

T ∗r :=
∑
q

τ(q)q−1/2 min

{(qr
n

)1/2

,

(
n

qr

)3/2
}

log q � r−1/2n1/2(log n)2. (2.39)

Proof.

T ∗r = r1/2n−1/2
∑
q<n/r

τ(q) log q + n3/2r−3/2
∑
q≥n/r

q−2τ(q) log q.

Applying lemma 2.12 we get the required result (recall that qr < D hence r < D; therefore we can

replace log r terms with log n terms).

We conclude that

Tr � τ(r)(n, r)1/2n1/2(log n)2.

We shall use this bound only for r sufficiently large, say r > R. Hence the contribution to S2 of

terms with r > R is bounded by∑
r>R

r−1Tr � R−1/2n1/2(log n)2
∑
r

τ(r)(n, r)1/2r1/2.

Recall that all primes factors of r are in nN . Hence the complete sum over r above is given by a

finite product over primes in nN which is estimated by O(τ(n)2). So, we get∑
r>R

r−1Tr � R−1/2n1/2(τ(n) log n)2. (2.40)
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It remains estimate Tr for r ≤ R. By lemma 2.6 the Kloosterman sum in Tr factors into

K(n, n, c) = K(nq, nq, r)S(nr, nr, q)

where qq = 1(mod r), rr = 1(mod q) and S(nr, nr, q) is the Salié sum. Since the Kloosterman sum

K(nq, nq, r) depends only on q(mod r), we can split the sum over q in Tr into residue classes mod r

to obtain

Tr ≤
∑∗

s(mod r)

|K(ns, ns, r)Trs| (2.41)

where

Trs =
∑

C<qr<D
q≡s(mod r),(q,nN)=1

ω(q)q−1S(nr, nr, q)Jk−1

(
4πn

qr

)
.

The Salié sum was evaluated in Corollary 2.8; we have

S(nr, nr, q) = εqq
1/2

(
nr

q

) ∑
ab=q

(a,b)=1

e

(
2nr

(
a

b
− b

a

))
.

If (a, b) = 1, then we clearly have aa + bb = 1(mod ab) (by CRT). From this we get the following

‘reciprocity formula’
a

b
+
b

a
≡ 1

ab
(mod 1)

From now on we shall assume (a, b) = 1 without explicit mention. Using the above reciprocity

formula we write

∑
ab=q

e

(
2nr

(
a

b
− b

a

))
= 2 Re

∑
ab=q
a<b

e

(
2n

b

ar
+ 2n

br

a
− 2n

abr

)
.

Recall r ≡ s(mod r) and N | r and 4 | N , so
(
r
q

)
=
(
r
s

)
. Using this, and inserting the above

expression into Trs we get

Trs = εs

(r
s

)(2r

n

)1/2

Re
∑

C<abr<D
a<b, ab≡s(mod r)

ω(ab)
( n
ab

)
e

(
2n

b

ar
+ 2n

br

a

)
j

(
2n

abr

)

where

j(x) = x1/2e(−x)Jk−1(2πx).

j(x) satisfies the estimates j(x)� x1/2, j(x)� 1 and j′(x)� 1. Using these estimates we remove

j(2n/abr) using partial summation in b to obtain

Trs � C−1(nr)1/2
∑
a<A

(a,nr)=1

∣∣∣ ∑
a<b<B

ab≡s(mod r)

ω(ab)
(n
b

)
e

(
2n(1 + rr)

b

ar

)∣∣∣



2.4. IWANIEC’S BOUND 35

where A = (D/r)1/2 and some B which depends on a such that C < arB < D. Since ω(ab) =

ω(a) + ω(b), the innermost sum splits into Va + ω(a)V ′(a), where

Va =
∑

a<b<B
ab≡s(mod r)

ω(b)
(n
b

)
e

(
2n(1 + rr)

b

ar

)
,

and V ′(a) is given by the same sum without the weight ω(b). Thus

Trs � C−1(nr)1/2
∑
a<A

(a,nr)=1

(|Va|+ ω(a)|V ′a|).

We now turn to estimating Va, the most non-trivial part of the proof. First, observe that if we put

b = pl, with P < p < 2P , (if there is no such prime then ω(b) = 0 by definition) the sum over b

splits into sum over p and l as follows

Va =
∑

P<p<2P

(log p)

(
n

p

) ∑
a/p<l<B/p
apl≡s(mod r)

(n
l

)
e

(
2n(1 + rr)

pl

ar

)
. (2.42)

Suppose a ≤ P . We now make the following observation: The character
(
n
l

)
is non-trivial on any

arithmetic progression to modulus ar because n is square free and larger than ar. Let us look at

the sum over l more closely. l is varying over some interval subject to the condition l ≡ aps(mod r).

If we further impose the condition that l ≡ λ(mod a), by Chinese remainder theorem (as (a, r) = 1)

we can split the sum over l into residue classes (mod ar) as follows

∑
λ(mod a)

∑
a/p<l<B/p
l≡aps(mod r)
l≡λ(mod a)

(n
l

)
e

(
2n(1 + rr)

pl

ar

)
=

∑
λ(mod a)

e

(
2n(1 + rr)

pl

ar

) ∑
a/p<l<B/p
l≡λ′(mod ar)

(n
l

)
.

Put L = B/P , then l < B/p < L. We now apply the Polya-Vinogradov estimate for character sums

(lemma 2.15) ∑
l<L

l≡λ(mod ar)

(n
l

)
� n1/2 log n

on the inner sum and the trivial estimate on the outer sum to get that in (2.42)
∑
l � an1/2 log n.

Substituting this back in (2.42) and performing the sum over P we get.

Va � aPn1/2 log n. (2.43)

If P < a < A we interchange the sums in Va to get

Va =
∑
l<L

(n
l

) ∑
P1<p<P2

apl≡s(mod r)

log p

(
n

p

)(
2n(1 + rr)

pl

ar

)
,



36 CHAPTER 2. LINNIK’S PROBLEM

where P1 = max(P, a/l) and P2 = min(2P,B/l). We now use Cauchy-Schwarz inequality in the

outer sum on l (in the form |
∑n
i=1 xi|2 ≤ n

∑n
i=1 |xi|2 ) to get

V 2
a ≤ L

∑
l<L

∣∣ ∑
P1<p<P2

apl≡s(mod r)

log p

(
n

p

)(
2n(1 + rr)

pl

ar

)∣∣2.
Squaring out and changing the order of summation back gives

V 2
a � L(logP )2

∑
P<p1≤p2<2P
p1≡p2(mod r)

∣∣ ∑
a/p2<l<B/p1
ap1l≡s(mod r)

e

(
2n(1 + rr)(p1 − p2)

p1p2l

ar

)∣∣. (2.44)

We have used the trivial bound log p < logP to take it out of the summation. As for the term

in the exponential, originally we have (p2 − p1). But (p2 − p1) ≡ (p1 − p2)p1p2 (mod a) (recall p|b
and hence p - a, thus we can talk of p1 and p2). Since p1 ≡ p2 (mod r) we also have (p2 − p1) ≡
(p1− p2)p1p2 (mod r), and hence (p2− p1) ≡ (p1− p2)p1p2 (mod ar) which justifies the replacement.

The contribution of the terms with p1 = p2 to the sum is O(L2(logP )2 P/ logP ) = O(L2P logP )

Suppose p1 6= p2. We now take a closer look at the inner sum in (2.44). Firstly, the congruence

condition in the sum that l ≡ aps(mod r) imposes no restriction on l(mod a) as a and r are relatively

prime. Also, r | (p1 − p2) and rr = 1(mod a) (recall it is 1 (mod q) and q = ab), so the argument

in the exponential is essentially 4np1−p2r
p1p2l
a . Therefore the sum over l is precisely an incomplete

sum of the form (2.28). Since (r, a) = 1 = (n, a), we have ( 4n(p1−p2)
r , a) = (p1 − p2, a). Applying

corollary 2.14 we deduce that the sum over l in (2.44) satisfies∑
l

� (p1 − p2, a)a−1L+ (p1 − p2, a)1/2a1/2τ(a) log a.

Summing over p1 6= p2, we get

V 2
a �

(
L2P + a−1L2P 2 + a1/2P 2

)
(τ(a) log n)2.

Since a > P the middle term can be ignored. After substituting L = B/P and taking square we

obtain

Va �
(
BP−1/2 + a1/4B1/2P 1/2

)
τ(a) log n. (2.45)

The same estimates hold for V ′a by similar arguments. We now use these estimates to bound Trs.

By (2.43), terms with a ≤ P contribute to Trs at most

C−1(nr)1/2Pn1/2 log n
∑
a≤P

a� C−1(nr)1/2P 3n1/2(log n)2. (2.46)

And, by using (2.45) terms with P < a < A contribute to Trs at most

C−1(nr)1/2
∑

P<a<A

(
BP−1/2 + a1/4B1/2P 1/2

)
τ(a) log n.
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Using the fact that B < D/ra and that A = (D/r)1/2, the above sum can be estimated using Abel’s

formula as we did in lemma 2.12. Combining the result with (2.46) we get

Trs � C−1(nr)1/2
(
n1/2P 3 +DP−1/2 +D7/8P 1/2

)
(log n)2.

We may drop the term n1/2P 3 in comparison to other terms, a step which can be justified after we

have chosen P and D. Inserting the rest into (2.41) and summing over s(mod r) using the trivial

estimate |K(ns, ns, r| ≤ r we deduce that

Tr � r5/2C−1
(
DP−1/2 +D7/8P 1/2

)
n1/2(log n)2.

Next summing over r ≤ R, we get∑
r≤R

r−1Tr � R2C−1
(
DP−1/2 +D7/8P 1/2

)
n1/2(log n)2

∑
r

r−1/2.

The sum over r can be estimated to be O(τ(n))2. We deduce∑
r≤R

r−1Tr � R2C−1
(
DP−1/2 +D7/8P 1/2

)
n1/2(τ(n) log n)2. (2.47)

Combining the bounds (2.47),(2.40),(2.37) and (2.35) we get that

S �
[
Cn−

1
2 +D−1n

3
2 +R−

1
2n

1
2 +R2C−1

(
DP−

1
2 +D

7
8P

1
2

)
n

1
2

]
(τ(n) log n)2.

We choose C = n
110
111 , D = n

112
111 , P = n

14
111 , R = n

2
111 to obtain the much sought out bound

S � n
1
2−

1
111 (τ(n) log n)2. (2.48)

Finally, substituting (2.48) into (2.34), we deduce theorem 2.

Remark 2.19. As mentioned before, Iwaniec in [13] proves the bound

a(n)� n
k
2−

1
4−

1
28 +ε

for all ε > 0, for square free n. It is believed that the analogue of Ramanujan’s conjecture holds for

the half-integral modular forms as well, i.e.

a(n)� n
k
2−

1
2 +ε,

for square free n. But this still remains a conjecture.
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Chapter 3

Ergodic methods in number theory

Ergodic methods have been successfully employed to solve a variety of problems in number theory,

especially problems involving diophantine approximations and equidistribution. Just as the study

of diophantine equations had opened up new vistas of mathematics over the course of centuries, the

study of diophantine inequalities, a subject still in its infancy, holds a similar promise.

As a case in point, we give the example of the Oppenheim conjecture. Let Q be an indefinite

quadratic form on Rn which is not a multiple of a rational form, for example x2 + y2 −
√

2z2.

Oppenheim conjectured in 1929 that if n ≥ 3, the set of vales taken by Q on Zn is dense in R. In

other words

Q(x) < ε is solvable, with x ∈ Zn for any ε > 0.

The conjecture was solved for large values of n using techniques from analytic number theory.

However, the case n = 3 remained open for a long time (it was known that if the conjecture is

true for a particular n then it is true for any larger n, hence the case n = 3 was of prime interest).

The conjecture was finally solved in 1987 by G. Margulis using deep techniques from the theory of

unipotent flows. More specifically, he considered the action of H = SO(Q) on SLn(R)/SLn(Z) and

showed that relatively compact orbits of H are necessarily compact. The Oppenheim conjecture

then followed as a consequence of a remarkable observation made by M. S. Raghunathan.

In this chapter we shall try to explore some aspects ergodic methods which have number theoretic

relevance, especially the dynamics of lattices under the action of the diagonal torus.

3.1 Measure rigidity and equidistribution

We saw in chapter 1 that the sequence (nα) is equidistributed modulo 1 when α is irrational. We

had also remarked that Weyl had proved a similar result for (p(n)) where p is a polynomial with at

least one irrational coefficient. The purpose of this section is to prove the equidistribution of (n2α)

mod 1, using ergodic theory. Such a proof was first given by Furstenberg, but we shall follow [8]

and [17] in our exposition.

39
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3.1.1 Measures on Compact Metric spaces

In this section we will recall some results from measure theory and functional analysis and use

these to establish certain results needed in the proof of equidistribution on (n2α). Through out this

section and the next, X will denote a compact metric space and B the Borel σ-algebra on X. Let

µ be a measure on (X,B). For a measurable function f : X → R, we shall use
∫
fdµ and µ(f)

interchangeably to denote the integral of f over whole of X.

A map T : X → X is said to be measurable if T−1A ∈ B for all A ∈ B, and is measure preserving

if it is measurable and if µ(T−1A) = µ(A) for all A ∈ B. If T is measure preserving we say µ is

T -invariant (to put the emphasis on µ when T is fixed). Let L1
µ denote the space of (equivalence

classes) of measurable functions f : X → R with
∫
|f |dµ <∞.

Proposition 3.1. A measure µ on X is T invariant if and only if∫
fdµ =

∫
f ◦ Tdµ (3.1)

for all f ∈ L1
µ.

Proof. If (3.1) holds, then for any A ∈ B, we have

µ(A) =

∫
χAdµ =

∫
χA ◦ Tdµ =

∫
χT−1Adµ = µ(T−1A).

Conversely suppose µ is T -invariant, then (3.1) holds for functions of the form χA with A ∈ B,

and hence for any simple function (a finite linear combination of characteristic functions). Let f

be a non-negative real valued function in L1
µ. Choose a sequence of functions simple functions (fn)

increasing to f . Then (fn ◦ T ) increases to f ◦ T . By the dominated convergence theorem we have∫
f ◦ Tdµ = lim

n→∞

∫
fn ◦ Tdµ = lim

n→∞

∫
fndµ =

∫
fdµ.

From now on, we shall restrict our attention to Borel probability measures on X. As in section

1.2, let P(X) be the space of Borel probability measures on X and let PT (X) denote the space of

T -invariant measures in P(X). As usual, C(X) denotes the space of continuous functions on X.

Recall the following important result:

Riesz representation theorem. There is a one-to-one correspondence between Borel probability

measures on X and positive linear functionals Λ : C(X) → R, with Λ(1) = 1. More specifically,

given such a Λ, there exists a unique µ ∈ P(X) such that

Λ(f) =

∫
fdµ.

(A functional Λ : C(X)→ R is positive if f ≥ 0⇒ Λ(f) ≥ 0.)
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An immediate corollary is that if µ1, µ2 ∈ P(X), then

µ1 = µ2 ⇐⇒
∫
fdµ1 =

∫
fdµ2, for all f ∈ C(X). (3.2)

Recall that the weak∗ topology on P(X) is the smallest topology on P(X) making each of the

maps µ 7→
∫
fdµ continuous for every f ∈ C(X)

Corollary 3.2. P(X) endowed with the weak∗ topology is compact.

Proof. The Riesz representation theorem enables us to identify P(X) as a subspace of C∗(X) en-

dowed the weak∗ topology. Under this identification P(X) is mapped into the unit sphere in C∗(X).

(as ‖Λ‖ = |Λ(1)| = |
∫
dµ| = 1). The Banach-Alaoglu theorem says that the closed unit ball in

C∗(X) is weak∗ compact. Being a closed subset of this, P(X) is compact.

Given any continuous map T : X → X, it induces a map T∗ : P(X)→ P(X) defined by

T∗(µ)(A) = µ(T−1A)

for any A ∈ B.

Proposition 3.3. Let f ≥ 0 be a measurable map and µ ∈ P(X). Then∫
fdT∗µ =

∫
f ◦ Tdµ. (3.3)

Proof. Clearly, (3.3) holds true for functions of the form χA for any A ∈ B, and hence for simple

functions. We now proceed as in proposition 3.1 by taking a sequence of simple functions (fn)

increasing to f . We then have

T∗(µ)(f) = lim
n→∞

T∗(µ)(fn) = lim
n→∞

µ(fn ◦ T ) = µ(f ◦ T ).

In particular, (3.3) holds for any continuous f . As a consequence we get that T∗ : P(X)→ P(X)

is a continuous map. To see this, suppose µn → µ. Then, for f ∈ C(X), T∗(µn)(f) = µn(f ◦ T )→
µ(f ◦ T ) = T∗(µ)(f), so T∗(µn)→ T∗(µ). Using these observations, we strengthen proposition 3.1.

Lemma 3.4. Let µ be measure in P(X). Then µ ∈ PT (X) if and only if
∫
fdµ =

∫
f ◦ Tdµ for all

f ∈ C(X).

Proof. (⇒) Indeed, by the previous proposition, T∗(µ)(f) = µ(f ◦ T ) = µ(f), for all f ∈ C(X).

We conclude from (3.2) that T∗(µ) = µ, i.e. µ ∈ PT (X). Of course, the other implication follows

directly from proposition 3.1.

The next theorem demonstrates that for continuous maps on X, we can always find invariant

measures.



42 CHAPTER 3. ERGODIC METHODS IN NUMBER THEORY

Theorem 3.5. Let T : X → X be a continuous map of a compact metric space and let (νn) be any

sequence in P(X). Then any weak∗ limit point of the sequence (µn) defined by µn = 1
n

∑n−1
k=0 T

k
∗ (νn)

is a member of PT (X).

Proof. First note that the sequence of measures (µn) will have a limit point in P(X) as P(X) is

weak∗ compact by corollary 3.2. Let µ be a limit point and let µnj → µ. For a continuous function

f , let ‖f‖∞ denote the supremum of f on X, which is finite as X is compact. By the definition of

T∗µn as in (3.2), we get

∣∣∫ f ◦ Tdµnj
−
∫
fdµnj

∣∣ =
1

nj

∣∣∫ nj−1∑
k=0

(f ◦ T k+1 − f ◦ T k)dνnj

∣∣
=

1

nj

∣∣∫ (f ◦ Tnj+1 − f)dνnj

∣∣
≤ 2

nj
‖f‖∞ −→ 0

as j →∞. It follows that
∫
f ◦ Tdµ =

∫
fdµ for all f ∈ C(X), so µ ∈ PT (X) by lemma 3.4.

3.1.2 Ergodicity and Unique ergodicity

Definition 3.6. A measure preserving transformation T : X → X on a probability space (X,B, µ)

is said to be ergodic if for any B ∈ B

T−1(B) = B =⇒ µ(B) = 0 or µ(B) = 1.

In words, a transformation is ergodic if there is no non-trivial way to divide the space into smaller

T -invariant ones.

Proposition 3.7. Let T : X → X be a measure preserving transformation on (X,B, µ). T is

ergodic if and only if, for any measurable function f : X → R

f ◦ T = f a.e =⇒ f is a constant a.e.

Proof. (⇒) Let B ∈ B be T -invariant, i.e. χB ◦ T = χT−1(B) = χB . We take f = χB and conclude

that χB is constant almost everywhere. It follows that µ(B) = 0 or 1.

(⇐) Conversely suppose T is ergodic. Let f : X → R be such that f ◦T = f almost everywhere.

We can redefine f on a measure zero set such that the new function, which we still call f , is invariant

under T . Define

Bt = {t ∈ R : f(x) > t}.

Since f is T -invariant, we have that T−1(Bt) = Bt. Thus, for any t, µ(Bt) = 0 or 1. Now, if f

were not constant almost everywhere, there would be some t0 such that 0 < µ(Bt0) < 1, which

contradicts our previous statement.

Example 3.8. The circle rotation Rα : T → T given by z 7→ ze(α) is ergodic with respect to the

Lebesgue measure l if and only if α is irrational.
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Proof. It is easy to construct non-trivial subsets invariant under Rα when α is rational. So, suppose

α is irrational. Then it follows from Dirichlet’s approximation theorem that Zα, considered in T,

is dense in T. Now, let B ⊆ T be invariant under Rα. By Lusin’s theorem, for any ε > 0 we can

choose a function f ∈ C(T) such that ‖f − χB‖1 < ε. By invariance of B we have

‖f ◦Rnα − f‖ < 2ε

for all n. Since f is continuous it follows that

‖f ◦Rt − f‖ < 2ε (3.4)

for all t ∈ R. Thus, since l is rotation invariant, we have

‖f −
∫
f(t)dt‖1 =

∫
|
∫

(f(x)− f(x+ t))dt|dx

≤
∫ ∫

‖f(x)− f(x+ t)|dxdt ≤ 2ε

by Fubini’s theorem and (3.4). We deduce that

‖χB − µ(B)‖1 ≤ ‖χB − f‖1 + ‖f −
∫
f(t)dt‖1 + ‖

∫
f(t)dt− µ(B)‖1 ≤ 4ε.

Since this holds true for any ε > 0, we conclude that χB is equal to µ(B) all most everywhere. But

this can only be true if µ(B) = 0 or µ(B) = 1. Therefore Rα is ergodic.

We now give a second proof using Fourier series. Let
∑
n∈Z ane(nx) be the Fourier expansion

of χB . Since χB is invariant under Rα, this expansion is invariant under the change of variable

x → x + α. From the uniqueness of Fourier series we get an = ane(nα). Since α is irrational this

can only be true if an = 0 for n 6= 0, i.e. χB is a constant almost everywhere. We conclude as in

the first proof that Rα is ergodic.

We now state a fundamental result in ergodic theory.

Birkhoff’s ergodic theorem. Let (X,B, µ) be a probability space and let T : X → X be an

ergodic measure preserving transformation. Then for any f ∈ L1(X,µ)

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
fdµ for almost every x ∈ X.

We shall not prove this result as it is not entirely in line with the spirit of our results; a proof

could be found in any standard book in ergodic theory or dynamical systems. Instead we shall

deduce some notable corollaries from it. Before that, we remark that
∫
fdµ is the space average of

f , and (limn→∞
∑n−1
k=0 f(T kx))/n can be thought of the time average of f along the T -trajectory

of x. The Birkhoff ergodic theorem then says that if T is ergodic, then the time average of f along

the trajectory of almost any point in X is a constant equal to the space average of f . In fact, this

interpretation is what originally prompted Boltzmann to introduce, albeit in an implicit way, the
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notion of ergodicity through his ‘Ergodic hypothesis’ on thermodynamical systems.

Corollary 3.9. Let (X,B, µ) be a Borel probability space. If T : X → X is an ergodic measure pre-

serving transformation, then for almost every x ∈ X the sequence of points (Tnx) is equidistributed

with respect to µ.

Proof. Let U be an open set. Note that

#{0 ≤ k < n : T kx ∈ U}
n

=
1

n

n−1∑
k=0

χU (T kx).

We apply the Birkhoff ergodic theorem to f = χU , which is in L1(X,µ) to get

1

n

n−1∑
k=0

χU (T kx) =

∫
X

χUdµ = µ(U).

Therefore (1.1) holds true for any open set U and the corollary follows.

Definition 3.10. Let T : X → X be a continuous µ-invariant transformation. We say a point

x ∈ X is generic (with respect to T and µ) if

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
fdµ,

for any f ∈ C(X).

Remark 3.11. Birkhoff’s ergodic theorem says that generic points with respect to an ergodic

transformation (T, µ) have full measure. Also, notice that by (3.2), if x ∈ X is generic with respect

to some µ ∈ PT (X), then it cannot be generic with respect to any other measure in PT (X).

Definition 3.12. Let X be a compact metric space. A transformation T : X → X is said to be

uniquely ergodic if there is exactly one T -invariant probability measure on X.

Remark 3.13. We now make an observation. Let X and T be as in the above definition and

let µ be the unique T -invariant measure. Since X is compact, for any f ∈ C(X), the limit

limn→∞ n−1
∑n−1
k=0 f(T kx) exists for any x ∈ X. Therefore we can define a measure νx on X as

follows

νx(f) =

∫
fdνx = lim

n→∞

1

n

n−1∑
k=0

f(T kx).

By construction νx(f ◦ T ) = νx(f), i.e. νx is T -invariant. So νx = µ for all x. In other words if T

is uniquely ergodic, then statement of the Birkhoff ergodic theorem is true for all x ∈ X. It follows,

as in corollary (3.3), that (T kx) is equidistributed for all x ∈ X.

Theorem 3.14. For a continuous map T : X → X on a compact metric space the following are

equivalent.
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(1) T is uniquely ergodic.

(2) For every f ∈ C(X),

Sn(f) =
1

n

n−1∑
k=0

f(T kx)→ Cf , (3.5)

where Cf is a constant independent of x.

(3) The convergence (3.5) holds for every f in a dense subset of C(X).

Proof. (1) ⇒ (2). Let µ be the unique invariant measure for T . We apply theorem 3.5 to the

constant sequence (δx). Since P(X) is compact and since µ is the only possible limit point, we

deduce that
1

n

n−1∑
k=0

δTkx −→ µ

in the weak∗ topology, so for any f ∈ C(X) we have

1

n

n−1∑
k=0

f(T kx) −→
∫
fdµ.

(2)⇒ (1). Let µ ∈ PT (X). (3.5), by the dominated convergence theorem, implies that

∫
fdµ =

∫
lim
n→∞

1

n

n−1∑
k=0

f(T kx)dµ = Cf

for all f ∈ C(X). It follows that Cf is the integral of f with respect to any measure in PT (X).

Hence by (3.2), PT (X) can contain only a single measure.

(3) ⇒ (1). Suppose µ, ν ∈ PT (x). Then, as in the the previous step we get∫
fdµ = Cf =

∫
fdν

for any f in a dense subset of C(X). In other words the functionals µ 7→
∫
fdµ and ν 7→

∫
fdν

agrees on a dense subset of C(X). From continuity, it follows that they agree on the whole of C(X),

hence µ = ν.

(2) ⇒ (3) is trivial.

Example 3.15. Let α ∈ R be irrational. Then the circle rotation Rα : T→ T is uniquely ergodic.

The unique invariant measure is the Lebesgue measure l.

Proof. We shall prove this using property (3) of theorem (3.14). We already know that l is invariant

Rα. Let f(t) = e(ht) for some h ∈ Z. We have

1

n

n−1∑
k=0

f(Rkα(t)) =
1

n

n−1∑
k=0

e(h(t+ kα)) =

 1 if h = 0

1
ne(ht)

e(nhα)− 1
e(hα)− 1

if h 6= 0
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The above equation clearly shows that

1

n

n−1∑
k=0

f(Rkα(t))→
∫
fdl =

 1 if h = 0

0 if h 6= 0.

By linearity, the above convergence holds true for any trigonometric polynomial, which are dense in

C(X) is be the Stone-Weierstrass theorem.

As a corollary, we obtain yet another proof of the equidistribution of (nα) mod 1, for α irrational.

3.1.3 Equidistribution of (n2α) mod 1

We now turn towards proving the equidistribution of (n2α). Let α ∈ R be irrational. We first define

a map T on T2 = R2/Z2 using α which we shall show to be uniquely ergodic with λ as the unique

invariant measure . Define T : T2 → T2 by

T (x, y) = (x+ α, y + 2x+ α).

A simple induction argument will give us that

Tn(x, y) = (x+ nα, y + 2nα+ n2α).

Now, if (T2, T ) were uniquely ergodic it would follow from remark 3.13 that all T orbits would

equidistribute in T2 with respect to λ. In particular the orbit of (0, 0) would be equidistributed.

Since Tn(0, 0) = (nα, n2α), this would imply that (n2α) is equidistributed modulo 1.

As a first step, we will prove that T is ergodic with respect to the Lebesgue measure λ on T2.

Clearly, T preserves the Lebesgue measure as it is a unimodular transformation ( 1 0
2 1 ) followed by a

translation.

Proposition 3.16. Lebesgue measure, λ, on T2 is ergodic under T

Proof. Let f ∈ L2(λ) be T -invariant. We expand f to a Fourier series

f(x, y) =
∑
m,n

f̂m,ne(mx+ ny).

By T -invariance, we have

f̂m,n = f̂m+2n,ne((m+ n)α). (3.6)

In particular |f̂m,n| = |f̂m+2n,n| (= |f̂m+2kn,n| for any k). By the Riemann-Lebesgue lemma,

f̂m,n → ∞ as (m,n) → ∞. Hence f̂m,n = 0 if n 6= 0 (by taking k → ∞). On the other hand if

n = 0, (3.6) gives f̂m,0 = e(mα)f̂m,0, from which we conclude f̂m,0 = 0 as α is irrational. It follows

that f is constant almost everywhere and that T is ergodic.

We now turn towards the proof of unique ergodicity.
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Theorem 3.17. Let g : T→ T be a continuous function, and Tg : T2 → T2 be the map

Tg(x, y) = (x+ α, y + g(x))

with α irrational. If the Lebesgue measure λ is Tg-ergodic then it is the only Tg-invariant probability

measure, i.e. (T2, Tg) is uniquely ergodic.

Proof. Let l denote the Lebesgue measure on T. Assume that Tg is ergodic with respect to λ = l× l.
Let

E = {(x, y) | (x, y) is generic w.r.tλ}.

As Tg is ergodic with respect to λ, we have that λ(E) = 1 (see remark 3.11). We claim that E is

invariant under the map (x, y) 7→ f(x, y + a). To see this, notice that (x, y) ∈ E means

1

k

n−1∑
k=0

f(T kg (x, y)) −→
∫
fdλ

for all f ∈ C(T2). Define fa to be the map (x, y) 7→ (x, y + a). It follows that

1

n

n−1∑
k=0

f(T kg (x, y + a)) =
1

n

n−1∑
n=0

fa(T kg (x, y))

−→
∫
fadλ =

∫
fdλ,

since l is invariant under rotations. So (x, y+a) ∈ E also. This means that E = E1×T for some set

E1 ⊆ T with µ(E1) = 1. Now, suppose ν is a Tg-invariant ergodic measure on T2. Write π : T2 → T
for the projection (x, y) → x. Then π∗ν is Rα invariant, so by unique ergodicity of Rα, π∗ν = l.

In particular, ν(E) = ν(E1 × T) = l(E1) = 1. By ergodicity of ν, ν-almost every point in T2 is

generic with respect to ν. Thus there must be a point (x, y) ∈ E generic with respect to ν. But we

have already seen (remark 3.11) that a point in X cannot be generic with respect to more than one

invariant probability measure. We conclude that ν = λ.

Corollary 3.18. If α is irrational then the sequence (n2α) is equidistributed modulo one.

Proof. Take g(x) = 2x+α, we have already proved that Tg = T is ergodic for the Lebesgue measure λ.

From the last theorem we conclude that Tg uniquely ergodic, therefore every T orbit equidistributes

with respect to λ. The orbit of (0, 0) is (nα, n2α). Projecting to the second coordinate gives the

required result.

Remark 3.19. The word measure rigidity has no precise meaning. It used to refer to the dearth of

invariant measures under specific situations as in theorem 3.17. Sometimes it provides a quick route

to equidistribution.
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3.2 Dynamics of Lattices and the Littlewood conjecture

For number theoretic applications, one of the most important and interesting space to study is the

space of lattices. By a lattice in Rn we mean a discrete subgroup of Rn whose R-span is the whole

of Rn. If L is a lattice in Rn, fixing a basis for L gives us an element A of GLn(R), and changing

the basis takes A to AM where M ∈ GLn(Z). Therefore, the space of lattices in Rn is naturally

identified with the quotient GLn(R)/GLn(Z). A lattice L is said be unimodular if vol(Rn/L) = 1,

which is the same as saying |A| = 1 where A is any matrix in GLN (R) representing L. So the space

of oriented unimodular lattices is naturally identified with SLn(R)/SLn(Z). We shall denote this

space by Xn. Two lattices L1 and L2 are said to be homothetic (or similar) if one is obtained by

scaling the other, i.e. L2 = λL1 where λ is a non-zero real number. And the space of lattices up to

homothety, denoted by Yn, is identified with PGLn(R)/PGLn(Z). The space Yn is essentially the

same as Xn (as can be seen by scaling a lattice to have covolume one), except that in Yn we do not

keep track of the orientation. Almost anything that can be said in the context of Xn can also be

said about Yn and vice versa. So, if necessary, we shall switch back and forth between these spaces.

From now on, we shall refer SLn(R) by G and SLn(Z) by Γ. The topology on Xn can be

described as follows: a sequence of lattices Li in Xn converges to L if and only if each Li has a basis

(b
(i)
1 , . . . , b

(i)
n ) converging, as i → ∞, to (b1, . . . , bn) - a basis for L. For n ≥ 2, the space Xn is not

compact, as can be seen by considering the sequence of lattices

Li = spanZ(i−1, i−1, . . . , in−1).

What makes the space Xn amenable to ergodic methods is the fact that there is a natural

probability measure on Xn which is invariant under the action of G. (See [1]). We denote it by µ.

Further the precise way in which Xn fails to be compact is described by the Mahler’s compactness

criterion. Before we get to this, let us introduce some notations. For x ∈ Rn let |x| denote the usual

Euclidean norm of x. Let L ∈ Rn be a unimodular lattice. We define |L| to be

|L| = min{|x| : x ∈ L, x 6= 0}.

Theorem 3.20. (Mahler) Let r > 0. Define Ωr = {L ∈ Xn : |L| ≥ r}. Then Ωr is compact.

Proof. Let L ∈ Ωr. Choose v1, v2, . . . , vn in the following way. v1 is the shortest non-zero vector in

L (if there are multiple such vectors choose any). Having chosen (v1, . . . , vi), vi+1 is the shortest

vector in L linearly independent from the previous ones. Thus

0 < r ≤ |v1| ≤ . . . ≤ |vn|. (3.7)

It is easy to show that the Z span of the set {v1, . . . , vn} has bounded index in L (a bound

independent of L). If we show that |vk| ≤ fk(r), for k = 1, . . . , n, then the theorem would follow.

For then, vi’s would vary in a compact set and span a lattice of bounded covolume (because of (3.7))

which is contained in L with bounded index.

We prove this by induction on k. By applying Minkowski’s convex body theorem with the closed
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ball of radius r, we see that we take f1(r) = cr, where c is a constant(depending only on n). For the

inductive case, let V be the subspace spanned by (v1, . . . , vk). This subspace determines a k-torus

Y = V/(V ∩ L) ⊂ X = Rn/L.

Clearly, Y contains an embedded k-ball of radius r/2, so the volume of Y is bounded below by in

terms of r. Also, by our hypothesis, Y has diameter at most fk(r).

Suppose |vk+1| � diam(Y ). Then X would contain an embedded product of Y with a large

(n− k) ball. This will lead to a contradiction as X has volume 1.

Corollary 3.21. (Mahler’s compactness criterion) Let E ⊂ Xn. Then E is compact if and only if

inf{|L| : L ∈ E} > 0.

Proof. From the previous theorem we have that
⋃
r Ωr, r > 0 is an increasing union of compact

sets in Xn which cover the whole of Xn (as r decreases to zero). So E is compact if and only it is

contained in some Ωr for some r > 0. This is precisely a restatement of what we want to prove.

There is a natural left action of G on Xn given by [X] 7→ [MX]. Now, let H be a closed subgroup

of G. Clearly µ is invariant for the action of H on Xn. As with the Oppenheim conjecture mentioned

in the introduction, very often, we are interested in knowing the properties of H-orbits (closedness,

cocompactness, compactness etc). Let A be the diagonal torus in G. That is

A = {diag (t1, . . . , tn), ti > 0, t1t2 · · · tn = 1}.

In this section we shall be chiefly concerned with the action of A on Xn. We now define the notion

of periodic orbits for A.

Definition 3.22. An A-orbit AxΓ is said to be periodic if it is compact.

More generally, for a closed subgroup H of G, an H-orbit is defined to be periodic if it carries a

finite H-invariant measure. When H is abelian this definition coincides with the above one.

We shall give a complete characterization of periodic A-orbits in this section.

3.2.1 Lattices arising from number fields

Let K be a number field of degree n over Q.

Definition 3.23. A lattice in K is the set of all integral linear combination of n Q-linearly inde-

pendent elements of K. In other words it is a Z-submodule of K of rank n.

Let M be a lattice and let µ1, . . . , µn be a Z-basis for M . We define the discriminant of M , de-

noted by disc(M), to be the discriminant of µ1, . . . , µn. (Recall discriminant of an n-tuple α1, . . . , αn

in K is the determinant of the matrix (Tr(αiαj)).) Different bases for M are obtained by a unimod-

ular transformation (i.e. an element of GLN (Z)) and they have the same discriminant, so there is

no ambiguity involved in the definition. Note that the discriminant of M is non-zero as µ1, . . . , µn

are linearly independent over Q.
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Two lattices M1 and M2 are said to be similar if there exists a non-zero α ∈ K such that

M1 = αM2. α ∈ K is called a coefficient of M if αM ⊆ M , i.e. for any ξ ∈ M,αξ ∈ M . It is

easily verified that the set of all coefficients of M form a ring. It is denoted by OM and called the

coefficient ring ring of M . We now prove that OM is itself a lattice. We only need to prove that it

has full rank. Let µ1, . . . , µn be a basis for M . It is also a Q-basis for K. Let α ∈ K be non-zero.

Write

αµi =
∑
j

aijµj

where aij ’s are in Q. Let c be the least common denominator of all the aij . Then for each i,

cαµi ∈ M , and hence cα ∈ OM . So if we start with a basis α1, . . . , αn for K, then we can find an

integer c such that each of cαi is in OM . It follows that OM has full rank and hence a lattice.

For any γ 6= 0 the condition αM ⊆ M is equivalent to the condition αγM ⊆ γM . This implies

that similar lattices have same coefficient ring, i.e. OM = OγM .

Notice that any element α of OM is actually an algebraic integer (as the condition αM ⊆ M

is equivalent to saying that α satisfies a monic polynomial with coefficients in Z). Hence OM is

actually an order in the ring of integers, OK , of K. If M ⊂ OM , then M is actually an ideal in OM .

On the other hand given any lattice M it is easy to find (using the least common denominator trick)

a non-zero integer b such that bM ⊂ OM . We summarize these results.

Theorem 3.24. The coefficient ring of any lattice in a number field K is an order in this field.

Coefficient rings of similar lattices coincide. Any lattice is similar to an ideal contained in its

coefficient ring.

Let O be an order in OK . Then O is the coefficient ring for some lattice in K (for example one

could take the lattice to be O itself). We are only interested in lattices up to similarity. We now

state a basic and fundamental result in algebraic number theory, proof of which could be found in

[2].

Theorem 3.25. Let O be any order in a number field K. Then there only finite many equivalence

class of similar modules with O as their coefficient ring.

From now on, we shall assume that K is a totally real field of degree n. (Recall: a totally

real field is a field all whose embeddings into C is actually into R). Let σ1, . . . , σn be the distinct

embeddings K into R. Recall the geometric embedding of θ : K ↪→ Rn given by

θ(x) = (σ1x, . . . , σnx). (3.8)

Proposition 3.26. Let M be a lattice in K. Then θ(M) is a lattice in Rn.

Proof. Let α1, . . . , αn be a Z-basis for M . It is enough to show that θ(α1), . . . , θ(αn) are linearly

independent over R. Consider the matrix, B, corresponding these n vectors, namely bij = σiαj .

(detB)2 is nothing but the discriminant of M and hence non-zero. The proposition follows.

The logarithmic embedding of K into Rn given by

Log(x) = (log |σ1x|, . . . , log |σnx|). (3.9)



3.2. DYNAMICS OF LATTICES AND THE LITTLEWOOD CONJECTURE 51

If η is a unit in OK , then Log(η) lies in the n− 1 dimensional subspace

a = {(x1, . . . , xn) : x1 + . . .+ xn = 0}.

The converse is true as well, as Log(x) being in a is equivalent to |NK
Q (x)| = 1.

Let O be an order in K and let O× be the group of units in O. We look at the restriction of the

map Log on O×. The Dirichlet unit theorem [2] states that image of O× under Log is a lattice in

a. In particular, the group of units, as an abelian group, has rank n− 1. We define the regulator of

O to be the volume of the quotient a/(LogO×). (As can easily be seen, this definition of regulator

is equivalent to the classical one). A unit η in O is said to be totally positive if σi(η) > 0 for all i.

Clearly, totally positive units in O, denoted by O×+ , form a group and the Dirichlet unit theorem

also holds for O×+ . That is Log(O×+) is a lattice in a. Our interest in totally positive units is partly

due to the fact that if η is such a unit then diag(θ(η)) ∈ A, the diagonal group.

Let M be a lattice in K with coefficient ring OM . If γ ∈ O×M , then γM ⊆ M and γ−1M ⊆ M

hence γM = M . So the units in O are precisely the elements α ∈ K which stabilize M , i.e.

αM = M . Given a lattice M in K, we shall use the notation LM to denote the unimodular lattice

in Rn defined by

LM = αθ(M), where α = |det θ(M)|−1/n. (3.10)

Lemma 3.27. The A-orbit of LM is compact in Xn.

Proof. Let O be the coefficient ring of M . We have from the previous discussion that M is stabilized

by each element in O×+ . Therefore, LM is stabilized by elements of A of the form diag(θ(γ)) where

γ ∈ O×+ . Let ALM
denote the stabilizer of LM under the action of A. There is a natural map

log : A → a (the inverse of exp : a → A) which takes ALM
to Log(O×+). But, by Dirichlet’s unit

theorem, a/Log(O×+) is compact (isomorphic to Tn−1). We conclude that A/ALM
is compact. As

ALM ' A/ALM
(the orbit stabilizer theorem), we deduce that ALM is compact.

We say that a lattice L in Rn arises from a number field if AL = ALM , where M is a lattice in

a totally real number field K/Q of degree n. Observe that if M1 = γM2 with γ ∈ K\{0}, then LM1

and LM2
are in the same A-orbit. More specifically, we have

LM1 = β diag(σ1γ, . . . , σnγ)LM2 , β = |NK
Q (γ)|−1/n. (3.11)

Let α1, . . . , αn be a basis for M . Define the norm form, F , on M by

F (x1, . . . , xn) = NK
Q (x1α1 + . . .+ xnαn). (3.12)

It is a easy to see that F is a homogeneous polynomial in x1, . . . , xn of degree n with integral

coefficients. Choosing a different basis for M will only change F (x1, . . . , xn) to F (x′1, . . . , x
′
n) , where

(x1, . . . , xn) is related to (x′1, . . . , x
′
n) by a unimodular transformation. So up to this equivalence, F

is uniquely determined by M . We use the notation (M,F ) to denote the norm form associated to M .

With a little more work it can be shown that F is irreducible over Q. Conversely any homogenous
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polynomial in x1, . . . , xn of degree n irreducible over Q which splits over R is of the form (3.12) (see

[2]).

More generally, given any lattice L ⊂ Rn, we can associate a form to it as follows. Choose a

basis v1, . . . , vn for L. Let Li be the linear form defined as

Li(x1, . . . , xn) = (

n∑
j=i

xjvj)i,

where the notation (y)i means the i-th coordinate of y. We define the product form associated to

L, denoted as (L,F ), by

F (x1, . . . , xn) =
∏
i

Li(x1, . . . , xn). (3.13)

It is easily verified that if L is a lattice arising from a number field, then the product form agrees

with the norm form.

The next theorem is rather interesting in that it shows every A-periodic orbit comes from a

number field.

Theorem 3.28 ([19]). For any unimodular lattice L ⊂ Rn the following conditions are equivalent.

1. AL is periodic.

2. L arises from a number field.

3. The pair (L,F ) is equivalent to (Zn, αf) where α ∈ R and f is an integral form that is

irreducible over Q.

Proof. (2 ⇒ 1). Suppose A.L is compact and let AL denote the stabilizer of L in A. Then L ⊗ Q
is a module over the commutative algebra R = Q[AL] ⊂ Mn(R). The matrices in A have only real

eigen values and so are semi-simple. By the structure theorem for semi-simple rings we get that R is

the direct sum of m totally real fields and therefore the rank of O×R is n−m. Since A.L is compact

AL ∼= Zn−1. (Otherwise AL will have infinite index in A and A.L ∼= A/AL cannot be compact).

Now, since AL ⊂ O×R we conclude that m = 1 and R itself is a totally real field. Thus L ⊗ Q is a

one dimensional vector space over R, so the lattice L itself is obtained from a full module M ⊂ R

by the process described above. We have already seen from lemma 3.27 that (1⇒ 2).

(2) and (3) are equivalent by our preceding discussion.

This theorem allows us to associate two important invariants to periodic A-orbits.

Definition 3.29. Let x ∈ Xn be such that Ax is periodic. Then by the theorem above, Ax = ALM

where M is a lattice in a totally real number field of degree n. We define the discriminant of Ax to

be disc(Ax) = disc(OM ), and we define the volume of Ax to be vol(Ax) = reg(OM ).

Remark 3.30. We see that periodic A-orbits in Xn come naturally in packets. Each packet corre-

sponds to an order O in a totlally real field K of degree n and consists of orbits of the form ALM

where M is a lattice in K, up to similarity, with O as its coefficient ring.
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3.2.2 Discreteness of periodic orbits.

The main purpose of this section is to prove that if n ≥ 3, periodic orbits of A of discriminant less

than D cannot be too close in Xn. We shall also explain the duality between lattices and linear

forms and use this to put the Littlewood conjecture (or rather a generalization of it due to Cassels

and Swinnerton-Dyer) in the perspective of the A action on Xn. Our treatment is based on [3], [20]

and [22].

Let N : Rn → R denote norm function defined by N(x) =
∏n

1 xi. For a unimodular lattice

L ⊂ Rn we define norm of the lattice by

N(L) = inf{|N(w)| : w ∈ L,w 6= 0}.

Clearly, the function N is constant on A-orbits.

Proposition 3.31. The function N : Xn → R is semicontinuous, i.e. if Ln → L in Xn, then

lim supN(Ln) ≤ N(L).

Proof. Define the star body of radius ε > 0 by Sε = {x ∈ Rn : |N(x)| < ε}. In terms of star bodies,

N(L) = inf{ε : Sε∩L 6= {0}}. Since Ln → L, given any ε > 0, all but finitely many Ln’s will intersect

SN(L)+ε. In other words N(Ln) ≤ N(L) + ε, for all n large enough. The proposition follows.

Proposition 3.32. Let L ⊂ Rn be a unimodular lattice. Then AL is compact if and only if

N(L) > 0.

Proof. By AM-GM inequality we have that |x| ≥
√
nN(x)1/n for any x ∈ Rn; also, if N(x) 6= 0, the

equality holds for some y ∈ Ax. So, if N(L) > r > 0 we would also have that |L| >
√
nr1/n = r′.

But N(L) = N(aL) for any a ∈ A, so |aL| > r′ for any a. By Mahler’s criterion we conclude that

AL is compact.

Conversely suppose AL is compact. Then there exists r > 0 such that |aL| > r for all a ∈ A. If

x 6= 0 in L we can find an a such that

N(x) = N(ax) = |ax|n/nn/2 ≥ rn/nn/2 > 0.

So N(L) > 0.

Remark 3.33. AL being compact is equivalent to saying that AL is bounded. So the proposition

may be restated as AL is bounded if and only if N(L) > 0.

We now turn towards computing the norm of lattices arising from number fields. Observe that

if θ(α) = x then N(x) = NK
Q (α). Using (3.10), we find that if M is a lattice in K then N(LM ) =

αnN(θ(M)). But αn = |det θ(M)| = |disc(M)|−1/2. And N(θ(M)) = inf{NK
Q (β) : β ∈ M,β 6= 0}.

Since similar lattices are related as in (3.11), N(LM ) depends only on the similarity class of M .

Assume then that M = I, an ideal in its coefficient ring OI . We have that disc(I) = disc(OI)N(I)2,

where N(I) is the familiar multiplicative function [OI : I] on ideals. Set N∗(I) = min{|NK
Q (β)| :
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β ∈ I, β 6= 0}. We then see that

N(LI) =
N∗(I)

N(I)
√
|disc(OI)|

. (3.14)

Suppose β ∈ I be an element such that |NK
Q (β)| = N∗(I). But |NK

Q (β)| = N(β) = N(I)[I : (α)].

We deduce that

N(LI) ≥
1√

|disc(OI)|
. (3.15)

We some times use N(L) to denote the set of values N(l) taken by l ∈ L. The meaning will be clear

from the context.

We now turn towards the main result in this section: isolation of periodic orbits. First, we

construct the necessary set up for the proof. For each pair 1 ≤ i 6= j ≤ n, we define the root

αij : a→ R to be the linear functional

t 7→ ti − tj .

The set of roots will be denoted by Φ.

Recall the logarithmic embedding (3.9) Log : O×K → a. For any order O in K, let us denote the

image of O× under Log by ΩO.

Lemma 3.34. ([22]) Let n ≥ 3. Then, for any root αij ∈ Φ, the set {αij(a) : a ∈ ΩO} is dense in

reals.

Proof. Since ΩO has finite index in ΩK , it is enough to justify why α(ΩK) is dense in R. As ΩK is

a lattice is a, this is equivalent ΩK ∩ ker(αij) not being a lattice in ker(αij). If this is indeed the

case then the field L = {θ ∈ K : σi(θ) = σj(θ)} is a subfield of K with a group of units containing

a copy of Zn−2. Since L has degree at most n/2, by Dirichlet’s unit theorem, the degree of the

group of units in L is at most n/2 − 1. This means that n/2 − 1 ≥ n − 2, or equivalently n ≤ 2, a

contradiction.

Corollary 3.35. Let O be an order in a totally real field K of degree n ≥ 3. Then for any i 6= j,

the set {
σi(η)

σj(η)
: η ∈ O×+

}
is a dense subset of R+.

Proof. Log(O×+) has finite index in ΩK , so αij(O×+) is dense in R. Applying exp : R → R+ and

using the definition of Log map (3.9) gives the desired result.

An element a in A is said to be regular if α(a) 6= 0 for any root α ∈ Φ; equivalently all entries of

a are distinct. Let b ∈ A be regular. We define the stable horospherical subgroup corresponding to b

to be

U−(b) = {g ∈ G : bngb−n → e as n→∞},

and the unstable horospherical subgroup to be

U+(b) = {g ∈ G : b−ngbn → e as n→∞}.
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The following lemma explains their usefulness.

Lemma 3.36. Let b ∈ A be regular. Any element g ∈ A which is close enough to e has a unique

decomposition g = au+u−, where a ∈ A, u+ ∈ U+(b), u− ∈ U−(b).

Proof. (Sketch). Let b = diag(b1, . . . , bn). The ij-th entry in bgb−1 is gijbi/bj . As there is no

change to diagonal entries on conjugation, we assume from now on that i 6= j. If gij is non-zero,

repeated conjugation will take the corresponding entry to 0 or ∞ depending on whether bi/bj < 1

or bi/bj > 1. This is equivalent to the condition αij(b) < 0 or αij(b) > 0 respectively. (αij(b) = 0

is ruled out as b is regular). In particular, u belongs to U−(b) if and only of all its diagonal entries

are 1 and uij = 0 for any ij such that αij(b) > 0. We then see that U−(b) is of rank
(
n
2

)
, half the

number of roots. Similar statement holds true for U+(b) (in fact, U+(b) is the transpose of U−(b)).

Consider the map from A× U+(b)× U−(b) −→ G, given by

(a, u+, u−) 7→ au+u−.

It can be shown, by using the aforementioned facts, that the Jacobian of the above map is non-

singular at e. By the inverse function theorem, there exists neighborhoods W 0(b),W+(b),W−(b) of

the identity elements in the groups A, U+(b) and U−(b) respectively, such that the above map is a

diffeomorphism onto its image.

From now on, for simplicity, we shall assume n = 3. We shall later explain how the results

generalize to any n ≥ 3.

Theorem 3.37. (Isolation of periodic orbits). Let L0 ∈ X3 be periodic (i.e. AL0 is compact).

Suppose L ∈ Xn be another lattice such that AL intersects AL0. Then either AL0 = AL or N(L)

is dense in R.

Proof. Suppose AL0 6= AL, then L0 ∈ AL\AL. We will show that N(L) is dense in R. By

semicontinuity of N , it is sufficient to show that N(L′) is dense for some L′ ∈ AL. Note that both

AL0 and AL are A-invariant.

Let V ⊆ G = SL3(R) denote the set of g such that gAL0 ∩ AL 6= ∅. As AL0 is compact, V is

closed. For a, b in A we have

agbAL0 ∩AL = a(gAL0 ∩AL),

so V is invariant under the action of A from both left and right.

Since L0 is periodic, from theorem 3.24 , it is of the form aLI for some ideal I in a totally real

order O. Further, since AL is invariant under A, we may as well assume a = 1. Let A0 = stabA(LI).

Elements in A0 are precisely of the form diag(σ1η, σ2η, σ3η) where η ∈ O×+ , the group of totally

positive units in O. Fix a regular element b ∈ A0.

Now, choose a sequence of lattices Ln → L0 from the orbit AL. Write Ln = gnL0 where

gn ∈ G and gn → e. From the previous lemma we have a decomposition gn = anu
+
nu
−
n , where

an ∈ A, u+
n ∈ U+(b), u−n ∈ U−(b), and an, u

+
n , u

−
n → e. Replacing gn by a−1

n gn, if necessary, we may

further assume that an = 1. Since gnL0 ∈ AL, we must have that gn 6= e for any n (as we have
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assumed AL0 6= AL). This condition is equivalent to saying that the pairs (u+
n , u

−
n ) are non-trivial.

We can then write

gn = (I + v+
n )(I + v−n ),

where v+
n and v−n are matrices with diagonal entries zero. Further, we also have that diagonal entries

of v+
n v
−
n is zero (owing to the complementarity in structure of the groups U+(b) and U−(b)). We

deduce that

gn = I + vn,

where vn is a non-zero matrix with diagonal entries zero. Since gn → e, we must have vn → 0. Let

‖vn‖ denote the maximum of the absolute values of the entries of vn. As n varies from 1 to ∞,

there must be some entry ij which achieves ‖vn‖ infinitely often. We pass to this subsequence and

abusing notation, we denote it again by vn. For concreteness, assume that the maximum is achieved

at (vn)12, i.e., ‖vn‖ = |(vn)12|. Further assume, passing to a subsequence if necessary, that all (vn)12

are of the same sign, say positive.

Conjugating by a = diag(a1, a2, a3) sends (vn)ij to (vn)ijai/aj . In particular, conjugating by

diag(a, 1/a, 1) multiplies (vn)ij by the ij-th entry of the matrix 1 a2 a

a−2 1 a−1

a−1 a 1

 .

Given t > 0, take an such that

a2
n(vn)12 = t.

Since ‖vn‖ → 0 we have that an →∞. Further, as (vn)12 is the largest entry, we conclude that the

matrix obtained by conjugating gn with diag(an, 1/an, 1) converges to

ut =

1 t 0

0 1 0

0 0 1

 .

As V is closed we deduce that V contains the semigroup U = {ut : t > 0}. Note that U is normalized

by A, i.e. aUa−1 = U for all a ∈ A.

Since ut ∈ V , we have that uta(L0) ∈ AL for some a ∈ A. But U is normalized by A, and thus

ut0(L0) ∈ AL for some t0 > 0. In order to complete the proof, it suffices to show that N(ut0L0) is

dense in R. Let x ∈ L0.

N(ut0x) = (x1 + tx2)x2x3 = N(x)(1 + tx2/x1).

Let c = diag(c1, c2, c3) ∈ A0, where A0 is the stabilizer of L0 in A. Then cx ∈ L0 and N(cx) = N(x).

We infer that

N(ut0cx) = N(x)
(
1 + t

c2
c1

x2

x1

)
.

From corollary 3.35 we have that {c2/c1 : c ∈ A0} is a dense subset of R+. Choosing yet another x
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with a different sign for x2/x1, we conclude that N(ut0L0) is dense in R.

By semicontinuity of N , it follows that N(L) is dense in R.

Remark 3.38. The above theorem is not true for n = 2. That is, we can construct bounded A

orbits in X2 which spiral in or oscillate between periodic orbits. The reason for the failure of the

above theorem is that corollary 3.35 is not valid for n = 2. In fact, for any order O is a real quadratic

field, the set {σ1η/σ2η : η ∈ O×} is a discrete subset of R.

We can strengthen theorem (3.37), using techniques similar to the ones used in its proof, as

follows:

Theorem 3.39. (Discreteness of periodic orbits [3]) Let n ≥ 3. Suppose AL0 ∈ Xn is periodic.

Let (Lk) ∈ Xn\AL0 be a sequence of lattices such that Lk → L0. Then given any ε > 0, we can

find, for all k ≥M(ε), lk ∈ Lk such that 0 < |N(lk)| < ε . In particular, as k →∞, N(Lk)→ 0.

We now describe how the above theorem can be interpreted as the “discreteness of periodic

orbits”. Let AL0 be periodic, and let LIk be a sequence of lattices arising from totally real cubic

number fields which converge to L0. In the light of (3.15) and the theorem above, we conclude that

|disc(OIk)| → ∞. In other words, qualitatively speaking, periodic orbits whose discriminants are

bounded from above cannot be too close in Xn.

We remark that in [3] only n = 3 is treated, but the general case (n ≥ 3) is similar. The following

is a conjecture first stated in [3], for n = 3, which was later generalized by Margulis.

Conjecture 3.40. (Margulis) Let L ∈ Xn, n ≥ 3. If N(L) > 0, then L arises from a number field.

Equivalently, bounded A-orbits in Xn are periodic.

We now state the Littlewood conjecture, an outstanding open problem concerning simultaneous

Diophantine approximation of real numbers.

Conjecture 3.41. (Littlewood) For any α, β ∈ R we have

lim inf
n→∞

n ‖nα‖ ‖nβ‖ = 0,

where ‖x‖ = minn∈Z |x− n|

Theorem 3.42. Margulis’s conjecture implies the Littlewood conjecture.

Proof. Suppose (α, β) ∈ R2 be a counterexample to the Littlewood conjecture, i.e.

|n(nα− a)(nβ − b)| ≥ δ > 0, (3.16)

for all integers n 6= 0, a, b. Consider the unimodular lattice L0 ∈ R3 generated by

{e1, e2, e3} = {(1, 0, 0), (0, 1, 0), (α, β, 1)}.

Let M0 = Ze1 ∪Ze2. From (3.16) we see that the norm is bounded away from zero on L0−M0 and

vanishes exactly on M0. In particular N(L0) is not dense.
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We say a lattice L ∈ R3 is admissible for a region V ∈ R3 if L ∩ V = {0}. From (3.16), we see

that L0 is admissible for the region

|xyz| < δ, max(|x|, |y|) < 1.

Let an = diag(n, n, n−2). Then Ln = anL0 is admissible for the region

|xyz| < δ, max(|x|, |y|) < n.

Note that all these lattices Ln are admissible for Bδ′ , the open ball of radius δ′, for some δ′ > 0 .

(One could take δ′ = 3δ2/3, assuming δ < 1). By Mahler’s compactness criterion, the sequence (Ln)

lies in a compact subset of X3. Let L∞ be a limit point of this sequence. Clearly, L∞ is admissible

for

|xyz| < δ.

In other words, N(L∞) ≥ δ. By Margulis’s conjecture, L∞ ∈ T for some periodic orbit T . But

L∞ ∈ AL0 and AL0 is unbounded (as N(L0) = 0). This contradicts theorem 3.37 as N(L0) is not

dense

We now state yet another conjecture by Margulis. In the next section we shall explain some

recent progress made towards it and its implications for strengthening the Minkowski bound on

class numbers.

Conjecture 3.43. For any compact set Ω ⊂ Xn, n ≥ 3, there are only finitely many periodic

A-orbits contained in Ω.

Theorem 3.44. Margulis’s conjecture implies conjecture 3.43.

Proof. Suppose there were infinitely many lattices Ln ∈ Ω such that ALn is periodic. From corollary

3.21 we have that Ω ⊂ Ωδ for some δ > 0. Then N(Ln) > r > 0, for some r = r(δ) for all n. Let L0

be a limit point of Ln’s. Clearly, N(L0) > r. If Margulis’s conjecture is true, then AL0 is periodic.

But now there is subsequence of lattices, whose norms are bounded away from zero, converging to

L0. This is in flat contradiction with theorem 3.39, and we conclude that if conjecture 3.43 is false

then Margulis’s conjecture is false.

Remark 3.45. Margulis’s conjecture says that if n ≥ 3, A-orbits in Xn are either compact or

unbounded. Using theorem 3.28 one can reformulate the conjecture as follows:

Let F (x1, . . . , xn) be a product of linear forms in n-variables over R with n ≥ 3. If F is not

proportional to a homogeneous polynomial with integer coefficients, then

inf
06=x∈Zn

|F (x)| = 0.

In fact, for n = 3, it is in this form that Cassels and Swinnerton-Dyer states this conjecture in [3].
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3.3 Application: Strengthening Minkowski’s theorem

In this section we shall describe some recent progress made towards conjecture 3.43 in [6]. Following

[6], we then explain an interesting application of this work in strengthening Minkowski’s theorem

regarding ideal classes, which we now recall.

Theorem 3.46. (Minkowski) Let K be a number field of degree n with maximal order OK . Then

any ideal class in OK possesses a representative J ⊂ OK of norm N(J) = O(
√

discK), where the

O-constant depends only on n.

Note that finiteness of the ideal-class group follows from the above theorem.

We shall be working with the group PGLn(R). As mentioned before, the proofs could easily be

translated back to SLn(R). Throughout this section, we shall denote PGLn(R) by G, PGLn(Z) by

Γ and PGLn(R)/PGLn(Z) by Yn. For x ∈ Rn, let ‖x‖∞ denote the sup norm of x. We continue to

denote the group of diagonal matrices by A. For δ > 0, let Ω′δ denote the set of homothety classes

of lattices Λ ⊂ Rn containing no vectors v with ‖v‖n∞ < δcovol(Λ), i.e.,

Ω′δ = {gΓ ∈ Yn : ‖gx‖n∞ ≥ δdet(g) for every x ∈ Z}.

This set is compact by Mahler’s compactness criterion. Also, Ω′a ⊂ Ω′b if a > b.

Let K be a totally real number field, with OK as its ring of integers, and let [J ] be an ideal class

in OK . We denote the regulator of OK by RK . Define

m([J ],K) = min
J′∈[J],J′⊂OK

N(J ′)

m(K) = max
[J]

m([J ],K),

where in the later definition the maximum is taken over all ideal classes in OK . As before, let

θ : K ↪→ Rn be the geometric embedding of K into Rn. We shall now see that m([J ],K) is

intimately related to how far the A-orbit of the homothety class of the lattice θ(J−1) penetrates the

cusp of Yn.

Lemma 3.47. Let J be a fractional ideal of K- a totally real number field of degree n. Let Y be

the periodic A-orbit corresponding to the ideal class [J−1], i.e., Y = A.θ(J−1). Then the following

are equivalent:

(1) m([J ],K) < δ disc(K)1/2 ;

(2) Y is not contained in Ω′δ.

Proof. It is clear from the definition of Ω′δ that if Λ ⊂ Rn is a lattice, then AΛ ⊂ Ω′δ if and only if,

for all non-zero x ∈ Λ, we have
∏
i |xi| = |N(x)| ≥ δcovol(Λ).

We apply this statement to the lattice Λ = θ(J−1). Recall that on this lattice the norm N(θx)

agrees with field norm NK
Q (x) and thus, that N is a multiplicative function on the fractional ideals

of K. Hence, the covolume Λ is N(J)−1(discK)1/2, where N(J) is the norm of the ideal J . With

this, we see that (2) is equivalent to the following

There exists x ∈ J−1 with |NK
Q (x)| < δ(discK)1/2. (3.17)



60 CHAPTER 3. ERGODIC METHODS IN NUMBER THEORY

Consider the map x 7→ xJ form J−1 to ideal classes I ⊂ OK equivalent to J . This map is surjective.

We conclude that (3.17) is equivalent to condition (1).

Next, we describe a consequence of conjecture 3.43.

Conjecture 3.48. Let n ≥ 3 be fixed. Then any ideal class in a totaly real number field of degree

n has a representative of norm o(
√

discK).

Theorem 3.49. Conjecture 3.43 implies conjecture 3.48.

Proof. Suppose conjecture 3.48 was false. Then for some δ > 0 there would an infinite sequence of

totally real fields Ki and ideals Ji ⊂ OKi
with m([Ji],Ki) ≥ δ

√
discKi. By lemma 3.47, this gives

us an infinite sequence of periodic A-orbits all contained inside the compact set Ω′δ, in contradiction

to conjecture 3.43.

Finally we describe the theorem of Einsiedler, Lindenstrauss, Michel and Venkatesh mentioned

in the beginning of this section.

Theorem 3.50. ([6]) For any fixed compact set Ω ⊂ Yn, n ≥ 3, and for any ε > 0, the total volume

of all periodic A-orbits contained in Ω of discriminant ≤ D is at most Oε(D
ε).

We shall not go into the proof of this theorem. We merely mention that the proof involves

deriving a relationship between total volume of a collection of A-periodic orbits Yi and the entropy

of any weak limit of A-invariant probability measures, µi = µYi , supported on Yi. The idea goes

back to Linnik and the authors call it Linnik’s principle.

Let hδ(K) be the number of ideal classes in OK with m([J ],K) > δ disc(K)1/2. Substituting

conjecture 3.43 with theorem 3.50, we get the following unconditional result towards conjecture 3.48.

Theorem 3.51. Let n ≥ 3, and let K denote a totally real number field of degree d. For all ε, δ > 0

we have ∑
discK<X

RKhδ(K)�ε,δ X
ε. (3.18)

In particular, conjecture 3.48 is true for almost all totally real fields. That is, the number of fields

K with discriminant ≤ X for which m(K) ≥ δ disc(K)1/2 is Oε(X
ε), for any ε, δ > 0.

Proof. Suppose that theorem 3.51 were false. Then we have constants C, ε, δ > 0 and a sequence of

integers Di →∞ such that ∑
disc(K)<Di

RKhδ(K) > CDε
i , for all i, (3.19)

the summation being over totally real fields of fixed degree n. For every totally real field for which

m(K) ≥ δ
√

discK, let [JK,j ] j = 1, . . . , hδ(K), be the ideal classes of K with m([JK,j ],K) ≥
δ
√

discK.

Let YK,j be the periodic A-orbit corresponding to θ(J−1
K,j). The volume of YK,j is proportional

to RK and the discriminant is proportional to disc(K). By lemma 3.47 we have that YK,j ⊂ Ω′δ.
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The assumption (3.19) implies that the collection of periodic A-orbits

Ci = {YK,j : disc(K) < Di, 1 ≤ j ≤ hδ(K)} ⊂ Ω′δ

have discriminant ≤ Di and total volume � Dε
i . Clearly, this contradicts theorem 3.50.
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