
A comparison of stochastic and
deterministic model of insulin

secretion from islets of Langerhans

A thesis submitted to
Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the
BS-MS Dual Degree Programme

Thesis Supervisor: Dr. Pranay Goel

by
Ankit Dwivedi
April, 2012

Indian Institute of Science Education and Research Pune
Sai Trinity Building, Pashan, Pune India 411021





Certificate

This is to certify that this thesis entitled "A comparison of stochastic and
deterministic model of insulin secretion from islets of Langerhans" submitted
towards the partial fulfillment of the BS-MS dual degree programme at the Indian
Institute of Science Education and Research Pune, represents the work carried out
by Ankit Dwivedi at Indian Institute of Science Education and Research Pune,
during the academic year 2011-2012 under the supervision of Dr. Pranay Goel.

Ankit Dwivedi

Thesis committee:
Dr. Pranay Goel
Dr. Chetan Gadgil

Professor A. Raghuram
Coordinator of Mathematics





Acknowledgments

This project would not have been possible without the support and guidance of several
people.

First, I would sincerely like to express my gratefulness to Dr. Pranay Goel for
introducing me to the interesting field of Mathematical Biology. He has encouraged
and guided me in every aspect of the project and thesis work. Being my guide
and mentor for the last two years he has patiently taught me many techniques and
aspects of mathematical modelling and different ways to think about and tackle a
problem. Also, without his encouragement and guidance I would not have been able
to participate in poster presentations at various conferences on Mathematical Biology.

Next, I would like to thank Dr. Chetan Gadgil for guiding me through many
aspects of the project. His guidance and valuable suggestions has helped me a lot in
learning and understanding various aspects of stochastic processes. I am also grateful
to him for being a member of my thesis advisory committee.

I would sincerely like to thank Dr. Arthur Sherman for sharing relevant infor-
mation about the model with us, which helped us in understanding the model in a
better way and producing the deterministic solution.

I am also very thankful to my batch mate Mr. Shadab Alam for helping me
through my programming work in MATLAB, and Ms. Ankita Jha a 4th year student
for helping me through and making me understand the biological portion of the
project.

I am also thankful to Dr. Rama Mishra, who has been my faculty advisor and
guided me for the last 5 years. In the last, I would like to thank my family members
and friends for showing belief in me and supporting me in every way.

- Ankit Dwivedi

v



vi



Abstract
A comparison of stochastic and deterministic model of insulin

secretion from islets of Langerhans
by Ankit Dwivedi

The main aim of the project is to present a stochastic version of the model of
Insulin secretion in islets of Langerhans in pancreatic β-cells by Pederson et al.(2009)
and account for integral copy numbers of the granules instead of concentrations. The
reactions involved in the system corresponding to the granule pools are modelled as a
set of coupled ordinary differential equations. We have implemented a hybrid Gillespie
stochastic simulation algorithm to produce a stochastic version of this model.

In the beginning we implemented the usual Gillespie SSA in order to carry out
the stochastic simulations and got discrepancies in comparison to the deterministic
solution. As the model of Insulin granule pools contains time-dependent rates we later
used a hybrid Gillespie SSA to include time-dependent propensities. The difference in
the usual and the hybrid Gillespie algorithm is the step to calculate time of occurrence
of the next reaction. Then using the hybrid Gillespie SSA, the average pool sizes were
calculated and were compared to the deterministic solution which showed discrepancy
in some pools.

To check the working and correctness of the algorithm, the algorithm was imple-
mented on related examples and different cases. Euler’s method was used to solve the
differential equations involved. For small pool sizes for the IRP chain of the model
the deterministic solution were also verified against the solutions using the Master
equation. As the discrepancies were more significant in the IRP chain of the model
as compared to other pools, cases with different fI(Cmd) functions , number of runs
and different Euler time step were tested on the IRP chain.

We show the analytical solution for the open and closed systems. Also, we show
the mean and variance over stochastic runs for fast and slow depolarisation protocols
described by Pederson et al.(2009) matching up with the deterministic solution for
the complete model. The calcium compartment functions used are close fits of the
Arthur Sherman’s description of the calcium compartment equations. For all the
pools, stabilized variance is plotted against mean and deterministic solution choosing
random and discrete initial conditions for each run.
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Chapter 1

Introduction

The main reference for the project work was the paper by Morton Gram Pederson and
Arthur Sherman "Newcomer insulin secretory granules as a highly calcium-sensitive
pool" [1]. They present a model of insulin secretory cells in islets of Langerhans which
include insulin granule pools. These pools correspond to the different states of the
granules moving from production in the Golgi body towards the membrane and the
L-type calcium channels.

The process of insulin secretion takes place as the plasma glucose concentration
is increased which causes the ADP/ATP ratio to increase. Due to the increase in
ATP/ADP the ATP-gated potassium channel closes causing depolarisation of the
cell membrane as the potassium ions (positive charge) accumulate inside the cell [21].
This in turn opens the voltage gated calcium channels causing calcium influx. This
increase in the calcium concentration leads to release of insulin containing granules
from the cell. [17]

The process of secretion of insulin occurs in 2 phases. Experimentally, 2 different
mechanisms are suggested for the 2 phases of insulin secretion. One which shows
that the first secretion is large with the already docked granules contributing and in
the second phase secretion is flat and rises with a very slow rate with the newcomer
granules contributing [21], [13]. Another research shows that two different releasing
pools with different calcium sensitivities exist [23], [19]. Pederson et al. propose
that including a pool with a high calcium sensitivity away from the L-type calcium
channels leads to the newcomer granules participating in the second phase of insulin
secretion [20], [22].

The insulin granule pools model presented by Pederson et al. [1] is modified
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2 CHAPTER 1. INTRODUCTION

from the model by Chen et al. [14]. The model includes 9 vesicle pools representing
granules in different states as shown in Fig. 1.1. Inside the cell, from the reserve pool
(RP) which is considered to be infinity, granules move towards the membrane. Passing
through the actin network from the almost docked pool (AP) granules tether weakly
to the membrane with a very high affinity for cytosolic calcium and are said to be
in the highly calcium sensitive pool (HCSP). Maturing further the granules undergo
docking and priming, and are said to be in the Docked pool (DP) and Primed pool
(PP) respectively. Moving further the primed granules move close to the L-type
calcium channel and are in the Immediately releasable pool (IRP). From the IRP the
granules fuse with low affinity for microdomain calcium. FHP and FIP are the fusion
pools of HCSP and IRP respectively. After fusing, the fusion pore expands and the
granules are in the releasing pools. RHP and RIP are the releasing pools of HCSP
and IRP respectively. The docked pool, primed pool and the immediately releasable
pool are identified as readily releasable pool (RRP). [1]

Figure 1.1: Schematic overview of the insulin granule pools model by Pederson et al.
Granules from RP goes to HCSP through AP. Maturing further they are in DP and
then PP. The primed granules move close to the L-type calcium channels and are said
to be in IRP. FHP and FIP are the fusion pools of HCSP and IRP respectively. RHP
and RIP are the releasing pools of HCSP and IRP respectively.

The microdomain calcium compartment receive calcium ions from the L-type Volt-
age gated calcium channels and cytosolic calcium compartment receives calcium ions
from other types of calcium channels. There is also a diffusion process between the
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Figure 1.2: Reaction overview of the Arthur Sherman’s description of the insulin
ganule pools model. The rates in red color are the function of calcium and hence
time. r5, r3, r2 and fh(Ci) are the function of Cytosolic calcium Ci and the fI(Cmd)
is the function of micro domain calcium Cmd.

microdomain and cytosolic calcium compartments. The calcium equations defined by
Pederson et al. are adapted from the sample experiments carried out by Yang and
Gillis [19], [23], in which the membrane was depolarized to +20 mv 3 times for 10
ms followed by the photo elevation of Ci to 1.8 µM to release the HCSP. Parameters
were changed and chosen to get pools sizes defined by Rorsman et al. [1], [15]. The
oscillations approximated were square pulses of membrane depolarisation from -70
mv to + 20 mv. Fast protocol refers to the period of oscillation as 1 minute and the
slow protocol refers to the period of oscillations as 6 minutes. For the equations of
the calcium compartments see Appendix: Supporting information. Also, the concen-
tration of microdomain calcium and cytosolic calcium for the fast and slow protocol
are plotted versus time and shown in Section. 5.2.

We follow Arthur Sherman’s description of the insulin granule pools model in
which the combined fusion pools and releasing pools of DP and PP are also described.
This chain is not considered in the simulations as it contribute very less to the total
secretion and capacitance. The reaction overview of the model is shown in Fig.
1.2. For the equations involved, initial conditions and the involved parameters see
Appendix : Supporting information.

For all the pools and the calcium compartments in the model, the rate of change of
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the concentration are described by first-order ordinary differential equations (ODE’s).
The model of insulin secretion in islets of Langerhans is deterministic and the con-
centrations are continuous as the rate law is described by the ordinary differential
equations. The species with large number of particles or concentration can be con-
sidered to be continuous variables. But, the particles or the granules (in our case)
involved can not be fraction. These are discrete quantities and for the small pool sizes
these can be stochastic processes described by probability functions. The stochastic
model represents a biological system more accurately when the system can have only
discrete values. [9]

To produce the stochastic solution of the existing deterministic solution we used a
hybrid Gillespie stochastic simulation algorithm which is modification of the classical
Gillespie SSA to include time-dependent propensities (Described in Chapter 2). The
usual Gillespie algorithm is highly used to stochastically simulate chemical and bio-
chemical models accurately. Basically, in this SSA we choose two random numbers
from the uniform distribution, one for calculating the time of occurrence of the next
reaction and other for selecting the reaction taking place at that time. The pseudo
code for the usual and hybrid Gillespie SSA are explained in Chapter 2. [2]

We also verified the working of the hybrid Gillespie SSA and correctness of the
code on different examples and with different cases of membrane depolarisation. We
also verify the deterministic solution with the Master equation. Later in chapter 4
we compute analytical solution for the mean and variance in open and closed system.
The mean and variance are shown matching up with the deterministic solution for
both the protocols (fast and slow) and integral copy numbers for the granules can be
predicted.



Chapter 2

Algorithm

For developing a stochastic version of the model of insulin secretion from the islets of
Langerhans [1], we have used a modified Gillespie stochastic simulation algorithm to
include the time-dependent propensities as the model contains time-dependent rates.
This algorithm simulates the time evolution of the coupled equations stochasticaly
which is in a way solving the Master equation [3]. In this chapter we describe and
explain the working of the usual and hybrid Gillespie SSA. The difference between
usual and hybrid Gillespie SSA is the step to calculate the time of occurrence of the
next reaction (tnext) as tnext depends on the total propensity.

2.1 Gillespie algorithm

Gillespie stochastic simulation algorithm simulates chemical and biochemical reac-
tions and considers the time evolution as a random process governed by the Master
equation [2]. Unlike the in the deterministic solution, inherent fluctuations and rela-
tions are accounted using this SSA. Mathematically, it is very similar to kinetic Monte
Carlo method. In Gillespie SSA, each reaction is defined by a probability ai dt. Then,
we choose 2 random numbers from the uniform distribution for calculating the time
of occurence of the next reaction i.e tnext and choosing the reaction occuring at tnext.

2.1.1 Pseudo code for Gillespie SSA

The pseudo code for the Gillespie SSA for i = 1, 2, ......M reactions is as follows [2]:

• Calculate the propensity ai for each reaction, which is the product of two parts:

5



6 CHAPTER 2. ALGORITHM

(the reaction rate ki for the reaction i)×( the number of particles of the reactant)

• Let a0 be sum of all the ai ′s,

a0 =
∑
ai

• To find the time after t at which the next reaction will take place (let it be de-
noted with “τ ”), draw a random number u1 from a uniform distribution function
and calculate the tnext as shown in Eq. 2.7.

• Now choose at random the reaction occurring at time t+ τ by getting another
random number u2 from a uniform distribution. If the number falls between
0 and a1/a0, first reaction is chosen ; if the number is between a1/a0 and
(a1 + a2)/a0, second reaction is chosen and so on. The numbers of molecules
involved will change due to occurrence of the chosen reaction at time t+ τ .

• Therefore the number of particles of the reactant involved in the choosen reac-
tion will change. Update the values of the ai with the new distributions of the
particles at time t+ τ .

• The process can be reiterated for as long as one wants to evolve the system.

2.1.2 Expression for tnext

The reactants involved in the model are exponentially distributed, so the random
numbers have to be choosen from the exponential distribution instead of uniform
distribution. We use Inverse Transform method for choosing continuous random
numbers.

Uniform−→Exponential

For transforming the uniform distribution to some other distribution the process is
as follows,
Let X be a random variable with F(x) as cumulative distribution function (CDF)
where x ∈ R
Then CDF in terms of probability density functions is defined as

CDF (x) =

∫ x

−∞
f(t)dt (2.1)
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Also,

F (x) = P (X ≤ x) (2.2)

Since the CDF of the probability function is non-decreasing, a quantile function for
y ∈ [0, 1] may be defined as

F−1(y) = infx : F (x) ≥ y (2.3)

Now, if U is uniformly distributed in (0,1), then

X = F−1(U) (2.4)

can be shown to have a CDF = F(x)

Proof:

P (X ≤ x) = P (F−1(U) ≤ x)

= P (U ≤ F (x))

= F (x)

So, Given a density function convert it to CDF = F (x).

Next, Set F (x) = U solving x in terms of U .

Now,

For Exponential Distribution, density will be λe−λx, where λ is the total propensity
of the system.

Integrating the density function, we get

∫
f(x)dx =

x∫
0

λe−λxdx

= λ

x∫
0

e−λxdx

= e−λx|x0
= 1− e−λx (2.5)
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Equationg the CDF of the exponential distribution to uniform distribution implies

1− e−λx = U

e−λx = 1− U
−λx = ln(1− U)

x = −1/λln(1− U) (2.6)

Therefore, the expression for tnext (x) that we get in terms of U is

x = 1/λln(1/U) (2.7)

where, λ is the total propensity of the system and U is the uniform random number.

2.2 Gillespie algorithm with time-dependent rates

As mentioned earlier that the Insulin granule pools model include time dependent
rates, a modified Gillespie SSA is used to include the time-dependent propensities.

Now, for the time dependent rates λ the total propensity will be a function of time t,

P (k) = 1− e−
∫ t+τ
t λ(t)dt (2.8)

Equating the CDF to the uniform distribution implies

1− U ∼ U = e−
∫ t+τ
t λ(t)dt (2.9)

Now, equating a dummy variable to the total propensity, we get

Ẋdummy = λ(t) (2.10)
t+τ∫
t

X = −lnU (2.11)

The value of t we get after checking this event is the time of occurence of the next
reaction (tnext).
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Therefore, the pseudo code for the hybrid Gillespie algorithm with time-dependent
propensity λ(t) is as follows:

• Calculate λ(t) = a0(t) =
∑
ai(t) (Number of molecules involved)

• Ẋdummy = a0(t) ; X(0) = 0

• Generate Y ∈ U [0, 1]

• Integrate X from t to t+ τ and stop when
∫ t+τ
t

X = −lnY

The value of t we get is the time at which the next reaction is occurring i.e tnext.
After getting the value of tnext, follow the usual Gillespie algorithm.

In further chapters we show some cases to verify the working and correctness of
the algorithm. Also, stochastic simulations for the complete model using the hybrid
Gillespie SSA are shown.
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Chapter 3

Verification of hybrid Gillespie SSA

In this chapter we show different examples and cases tested to verify the working
and correctness of the hybrid Gillespie algorithm. We have tested the working of
the hybrid Gillespie algorithm on a simple model, where A degrades to, and another
where A acts a catalyst in the production of B (Section. 3.1) showing that the results
using usual Gillespie algorithm and results using hybrid Gillespie algorithm agree well.
For some pools with small number of particles the deterministic solution is compared
against the Master equation. Later in this chapter we simulate different cases of
the IRP chain of the Insulin granule compartment model, as when the differential
equations were solved using a ODE solver ode23, the IRP chain of the model showed
discrepancy compared to the rest of the model. To test this we have used Euler’s
method to solve the differential equations. IRP chain of the model is simulated using
different fI(Cmd) functions as it is the time-dependent rate and also with different
number of runs and different Euler time steps.

3.1 Catalysis model

In the example, where A degrades with a rate k1 and catalyses the formation of B,
i.e, B is produced with the rate k2 [A] (time-dependent rate), it has been shown that
the results using usual Gillespie SSA and hybrid Gillespie SSA agree well.

A
k1−−→φ

φ
k2[A]
−−−−→B

11



12 CHAPTER 3. VERIFICATION OF HYBRID GILLESPIE SSA

where, the initial concentrations and constant rates are
A(0) = 10 , B(0) = 0, k1 = 1 s−1 , k2 = 10 s−1

Average over 1000 simulations for 7 seconds using usual Gillespie algorithm (green)
and hybrid Gillespie algorithm (red) is calculated.
Euler method is used for solving the differential equations involved with a Euler time
step = 1e−4.
The analytical solution for A implies

A(t) = A(0)e−|k1 t| (3.1)

For both A and B, average over 1000 runs using usual Gillespie algorithm (green)
matches closely with the average over 1000 runs using hybrid Gillespie algorithm
(red). For A both the averages match with the deterministic solution. Deterministic
solution for B is not calculated. (Fig. 3.1)

(a) A (b) B

Figure 3.1: Comparison of the average solution using usual Gillespie algorithm (green)
and hybrid Gillespie algorithm (red). (a) A, both the solutions agree very well with
the deterministic solution deterministic solution, (b) B, both solutions overlap.

3.2 Verification with the Master Equation

In this section we have compared the deterministic solution to the Master equation
of the IRP chain of the model with 3 particles with a time dependent rate (fI(Cmd)).
It is a closed system i.e no secretion from RIP.

IRP
fI(Cmd)−−−−−−−→FIP

u2−−−→RIP
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where, fI(Cmd) is the function with 3 peaks at t = 0.1s, 0.2s and 0.3s for 0.01s as
shown in Fig. 5.2(a) and u2 = 3.
Number of possible states of the system = 10, i.e

IRP FIP RIP
3 0 0
0 3 0
0 0 3
2 1 0
2 0 1
0 2 1
1 2 0
1 0 2
0 1 2
1 1 1

Let, P300 be the probability of being in state IRP = 3 , FIP = 0 and RIP = 0.
Similarly P030 , P003 , P210 , P201 , P021 , P120 , P102 , P012 and P111 be the probability
of being in corresponding states Fig. 3.2. Then,
where,

P300(0) = 1 , P210(0) = 0 , P030(0) = 0 , P201(0) = 0 , P021(0) = 0 , P120(0) = 0 ,
P003(0) = 0 , P102(0) = 0 , P012(0) = 0 , P111(0) = 0

Therefore, probability equations corresponding to each state, will be

P ′300 = −3 fI(Cmd)P200

P ′210 = 3 fI(Cmd)P300 − 2 fI(Cmd)P210 − u2P110

P ′120 = 2 fI(Cmd)P210 − fI(Cmd)P120 − 2u2P120

P ′201 = u2P210 − 2 fI(Cmd)P201

P ′030 = fI(Cmd)P120 − 3u2 P030

P ′111 = 2u2 P120 − fI(Cmd)P111 − u2P111 + 2 fI(Cmd)P201

P ′021 = 3u2 P030 − 2u2 P021 + fI(Cmd)P111

P ′102 = u2 P111 − fI(Cmd)P102

P ′012 = 2u2 P021 − u2 P012 + fI(Cmd)P102

P ′003 = u2 P012
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Figure 3.2: Representation of probability of being in each state.

Then the number of particles in IRP , FIP and RIP are

NIRP = 3P300 + 2P210 + 2P201 + 1P120 + 1P111 + 1P102 (3.2)

NFIP = 3P030 + 2P120 + 2P021 + 1P210 + 1P012 + 1P111 (3.3)

NRIP = 3P003 + 2P012 + 2P102 + 1P021 + 1P201 + 1P111 (3.4)

We know that,

[IRP ]′ = −fI(Cmd) [IRP ] (3.5)

[FIP ]′ = fI(Cmd) [IRP ]− u2 [FIP ] (3.6)

[RIP ]′ = u2 [FIP ] (3.7)
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Now, the solution of the Master equation can be shown equal to the analytical solution

N ′IRP = −fI(Cmd) (3P300 + 2P210 + 2P201 + 1P120 + 1P111 + 1P102)

= −fI(Cmd) IRP
N ′FIP = fI(Cmd) (3P300 + 2P210 + 2P201 + 1P120 + 1P111 + 1P102)

−u2 (3P030 + 2P120 + 2P021 + 1P210 + 1P012 + 1P111)

= fI(Cmd) IRP − u2 FIP

N ′RIP = u2 (3P030 + 2P120 + 2P021 + 1P210 + 1P012 + 1P111)

= u2 FIP

(a) IRP (b) FIP

(c) RIP (d) Total

Figure 3.3: The deterministic solution (black) exactly overlaps the solution using
master equation (red) for (a) IRP, (b) FIP, (c) RIP. Also, (d) Total = IRP + FIP +
RIP, total number of molecules at each point of time is constant i.e 3.

Hence, the deterministic solution matches up with the solution using the Master
equation.
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3.3 IRP chain of the Insulin granule compartments

model

3.3.1 Constant fI(Cmd)

In this section we have simulated the IRP chain of the vesicle compartment model
considering no secretion from RIP (i.e considering it to be a close system). IRP goes
to FIP with a constant rate fI(Cmd) and FIP goes to RIP with a constant rate u2.
Solution using usual Gillespie algorithm can not be calculated as the initial propensity
for this chain of the model is 0 and we get tnext =∞.
fI(Cmd) and u2 are kept constant.
Average over 5000 simulations for 10 seconds using hybrid Gillespie algorithm is cal-
culated. (red)
Euler method is used for solving the differential equations involved with a Euler time
step (d) = e−4.

IRP
fI(Cmd)−−−−−−−→FIP

u2−−−→RIP

where, the initial pool size and rates are
IRP(0) = 3 , FIP(0) = 0 , RIP(0) = 0, u2 = 3 , fI(Cmd) = 28.72
We see that for all the three IRP, FIP and RIP the mean over 5000 runs using hybrid
Gillespie algorithm (red) and the Deterministic solution (black) match up very closely
as shown in Fig. 3.4.
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(a) IRP (b) FIP

(c) RIP

Figure 3.4: Comparison of the average solution using hybrid Gillespie algorithm (red)
and the deterministic solution (black). For the small pool size (a) IRP (till 1 sec), (b)
FIP (till 1 sec) and (c) RIP (till 1 sec) the mean over 5000 stochastic solution agrees
well with the deterministic solution.

3.3.2 fI(Cmd) as a step function

Here we have simulated the same model as above with a different fI(Cmd) function.
fI(Cmd) is a step function as shown in Fig. 3.5(a). Average over 1000 simulations for
5 seconds using hybrid Gillespie algorithm is calculated.
Euler method is used for solving the differential equations involved with a Euler time
step (d) = e−4.

IRP
fI(Cmd)−−−−−−−→FIP

u2−−−→RIP

where, the initial pool size and rates are
IRP(0) = 3 , FIP(0) = 0 , RIP(0) = 0, u2 = 3 and

fI(Cmd) =

28.72 for t ≥ 2secs

0 for t < 2secs
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We see that for all the three IRP, FIP and RIP the mean over 1000 runs using hybrid
Gillespie alorithm (red) and the Deterministic solution (black) match up very closely
as shown in Fig. 3.5.

(a) fI(Cmd) (b) IRP

(c) FIP (d) RIP

Figure 3.5: (a) fI(Cmd), at t = 2 value of fI(Cmd) is raised to 28.72 (step function).
Comparison of the average solution using hybrid Gillespie algorithm (red) and the
deterministic solution (black) for (b) IRP , (c) FIP and (d) RIP. The mean over 1000
stochastic simulations agrees well with the deterministic solution for IRP, FIP and
RIP.

3.3.3 fI(Cmd) as a function of square pulses

Here we have simulated the same model as above with a different fI(Cmd) function
and average is calculated over increased number of runs. fI(Cmd) is a function with
3 square pulses at 0.1, 0.2, 0.3 for 0.01 seconds as shown in Fig. 3.6(a). Average
over 50,000 simulations for 10 seconds using hybrid Gillespie algorithm has been
calculated. (red)
Euler method is used for solving the differential equations involved with a Euler time
step (d) = e−4.

IRP
fI(Cmd)−−−−−−−→FIP

u2−−−→RIP
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where, the initial pool size and rates are

IRP(0) = 3 , FIP(0) = 0 , RIP(0) = 0, u2 = 3 and

fI(Cmd) =

28.72 for t = 0.1, 0.2, 0.3secs for 0.01secs

0 for elsewhere

Here also we see that for all the three pools IRP, FIP and RIP, mean over 50,000
simulations using hybrid Gillespie algorithm shows some discrepancy at the peaks in
comparison to the deterministic solution as shown in Fig. 3.6. Increasing the number
of runs the mean over stochastic simulation is more smoothed.

(a) fI(Cmd) (b) IRP

(c) FIP (d) RIP

Figure 3.6: (a) fI(Cmd) (till 1 sec), at t = 0.1, 0.2, 0.3 value raised to 28.72 for
0.01 seconds. Comparison of the average solution using hybrid Gillespie algorithm
(red) and the deterministic solution (black) for (b) IRP (till 0.5 secs) , (c) FIP (till
0.5 seconds) and (d) RIP (till 2 secs). The mean over 50,000 stochastic simulations
agrees well with the deterministic solution with small discrepencies at the peaks for
IRP and FIP.
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3.3.4 Smaller Euler time step

Here we have simulated the same model as above with a much smaller Euler time
step. fI(Cmd) is a function with 3 square pulses at 0.1, 0.2, 0.3 for 0.01 seconds as
shown in Fig. 3.6(a). Average over 50,000 simulations for 10 seconds using hybrid
Gillespie algorithm has been calculated.
Euler method is used for solving the differential equations involved with a much
smaller Euler time step (d) = e−5.

IRP
fI(Cmd)−−−−−−−→FIP

u2−−−→RIP

where, the initial pool size and rate u2 and fI(Cmd) are as mentioned above in Section.
3.3.3
Here we can see that for all the three pools IRP, FIP and RIP, average over 50,000
simulations using hybrid Gillespie algorithm shows some discrepancy at the peaks in
comparison to the deterministic solution as shown in Fig. 3.7.

(a) IRP (b) FIP

(c) RIP

Figure 3.7: Comparison of the average solution using hybrid Gillespie algorithm (red)
and the deterministic solution (black). (a) IRP (till 0.5 seconds) , (b) FIP (till 0.5
seconds) and (c) RIP (till 2 seconds).



Chapter 4

Mean and Variance in closed and
open systems

In this chapter we show the mean and variance for a closed system i.e number of
particles in our case granules are conserved, and open system i.e number of particles
are not conserved. For the closed system, AP is considered to be degrading with some
rate r1 = 1 with a low initial particle number i.e AP(0) = 5. It has been shown in
Fig. 4.1 that for a closed system, mean and variance match up and goes to 0 in the
course of time. For the case of open system, AP is considered to be coupled to a
infinite pool RP which increases AP with a rate r1 = 3 and AP decreases to φ with a
rate r2 = 1. It has been shown in Fig. 4.2 that for open system, mean and variance
settle near the value r1/r2 as t→∞.

4.1 Closed system

Consider the case where AP is degrading to φ with a constant rate r1 i.e the system
is closed

AP
r1−−−→φ

There can be 5 possible states for AP i.e states with 5 , 4 , 3 , 2 , 1 and 0 particles
in AP. Let P5 , P4 , P3 , P2 , P1 and P0 be the probability of each state respectively.
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Then, the differential equations corresponding to each state can be written as

dP5

dt
= −5 r1 P5

dP4

dt
= 5 r1 P5 − 4 r1 P4

dP3

dt
= 4 r1 P4 − 3 r1 P3

dP2

dt
= 3 r1 P3 − 2 r1 P2

dP1

dt
= 2 r1 P2 − r1 P1

dP0

dt
= r1 P1

Now, the expectation value of AP is

< n > =
5∑

n=0

nPn (4.1)

d < n >

dt
=

5∑
n=0

n
dPn
dt

d < n >

dt
= −r1 < n > (4.2)

Similarly,

d < n2 >

dt
=

5∑
n=0

n2 dPn
dt

d < n2 >

dt
= −r1 (45P5 + 28P4 + 15P3 + 6P2 + P1)

(4.3)

Variance can be shown to be

V ar[AP] = AP(0) e−r1t

(
1− e−r1t

)
(4.4)
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Figure 4.1: Mean (red) and Variance (blue) has been calculated over 5000 stochastic
runs using Gillespie SSA and plotted against time (seconds). In the closed system if
the variance is started from 0 at t = 0 it settles to 0 matching up with the mean for
t→∞ .

4.2 Open system

Now, for the open system, AP is considered to be coupled to a infinite size pool RP
making the system open i.e granule number is not conserved.

RP
r1−−−→AP

r2−−−→φ

In the open system case, there can be n possible states for AP as the granule number
is also increasing. So, derivative of the nth state can be written as

dPn
dt

= (n+ 1) r2 Pn+1 − n r2 Pn + r1 Pn−1 − r1 Pn (4.5)

Therefore, the derivative of the expectation value will be

d < n >

dt
=

∞∑
n=0

d nPn
dt

∞∑
n=0

d nPn
dt

= r2[
∞∑
n=0

n(n+ 1)Pn+1 −
∞∑
n=0

n2 Pn]

+r1[
∞∑
n=1

nPn−1 −
∞∑
n=0

nPn] (4.6)

Let the 4 terms in Eq. (4.6) be Term 1, Term 2, Term 3 and Term 4 respectively, i.e
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∞∑
n=0

d nPn
dt

= r2[Term1− Term2] + r1[Term3− Term4] (4.7)

Solving each term separately in Eq. (4.6) implies
Term 1 =

∑∞
n=0 n(n+ 1)Pn+1

∞∑
n=0

n(n+ 1)Pn+1 =
∞∑
n=0

(n+ 1)2 Pn+1 −
∞∑
n=0

(n+ 1)Pn+1

∞∑
n=0

n(n+ 1)Pn+1 = < n2 > − < n > (4.8)

Term 2 =
∑∞

n=0 n
2 Pn

∞∑
n=0

n2 Pn = < n2 > (4.9)

Term 3 =
∑∞

n=1 nPn−1

∞∑
n=1

nPn−1 =
∞∑
n=1

(n− 1)Pn−1 +
∞∑
n=1

Pn−1

∞∑
n=1

nPn−1 = < n > +1 (4.10)

Term 4 =
∑∞

n=0 nPn

∞∑
n=0

nPn = < n > (4.11)

Now, putting the values of Term 1, Term 2, Term 3 and Term 4 in Eq. (4.7), we get

d < n >

dt
= r2[< n2 > − < n > − < n2 >] + r1[< n > +1− < n >]

d < n >

dt
= r1 − r2 < n > (4.12)
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Similarly solve for d<n2>
dt

d < n2 >

dt
=

∞∑
n=0

n2 dPn
dt

(4.13)

d < n2 >

dt
= r2[

∞∑
n=0

n2(n+ 1)Pn+1 −
∞∑
n=0

n3 Pn]

+r1[
∞∑
n=0

n2 Pn−1 −
∞∑
n=0

n2 Pn] (4.14)

Let the 4 terms in Eq. (4.14) be Term 1, Term 2, Term 3 and Term 4 respectively, i.e
Term 1 =

∑∞
n=0 n

2(n+ 1)Pn+1

∞∑
n=0

n2(n+ 1)Pn+1 =
∞∑
n=0

(n2 − 1 + 1)(n+ 1)Pn+1

=
∞∑
n=0

{[(n− 1)(n+ 1) + 1](n+ 1)Pn+1}

=
∞∑
n=0

{(n− 1)(n+ 1)2 Pn+1 + (n+ 1)Pn+1}

=
∞∑
n=0

{n(n+ 1)2 Pn+1 − (n+ 1)2 Pn+1 + (n+ 1)Pn+1}

=
∞∑
n=0

{(n+ 1− 1)(n+ 1)2 Pn+1 − (n+ 1)2 Pn+1 + (n+ 1)Pn+1}

=
∞∑
n=0

{(n+ 1)3 Pn+1 − (n+ 1)2 Pn+1 − (n+ 1)2 Pn+1

+(n+ 1)Pn+1}

=
∞∑
n=0

{(n+ 1)3 Pn+1 − 2 (n+ 1)2 Pn+1

+(n+ 1)Pn+1}
∞∑
n=0

n2(n+ 1)Pn+1 = < n3 > −2 < n2 > + < n > (4.15)
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Term 2 =
∑∞

n=0 n
3 Pn

∞∑
n=0

n3 Pn = < n3 > (4.16)

Term 3 =
∑∞

n=0 n
2 Pn−1

∞∑
n=0

n2 Pn−1 =
∞∑
n=0

{[(n− 1)2 + (2n− 1)]Pn−1}

=
∞∑
n=0

{(n− 1)2 Pn−1 + 2Pn−1(n− 1) + Pn−1}

∞∑
n=0

n2 Pn−1 = < n2 > +2 < n > +1 (4.17)

Term 4 =
∑∞

n=0 n
2 Pn

∞∑
n=0

n2 Pn = < n2 > (4.18)

Now, putting the values of Term 1, Term 2, Term 3 and Term 4 in Eq. (4.14), we get

d < n2 >

dt
= r2[< n3 > −2 < n2 > + < n > − < n3 >]

+r1[< n2 > +2 < n > +1− < n2 >]

d < n2 >

dt
= −r2 (2 < n2 > + < n >) + r1 (2 < n > +1) (4.19)

Then, variance can be shown to satisfy

V ar[AP] = r1/r2 (4.20)
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Figure 4.2: Mean (red) and Variance (blue) has been calculated over 5000 stochastic
runs using Gillespie SSA and plotted against time (seconds). In the open system,
mean is started from 5 and if the variance is started from 0 it settles into a non-zero
equilibrium given by r1/r2 as the mean.

We have also calculated mean and variance making the full vesicle pool model a
closed system i.e decoupling RP from AP and compared it with the open system i.e
RP coupled to AP. For all the pools except AP, deterministic solution for open and
close system match up exactly. For AP the deterministic solution for closed system
is slightly below the deterministic solution for open system. (Fig. 4.3)

Figure 4.3: Deterministic solution when the system is open (black) and deterministic
solution when the system is closed (blue).
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Chapter 5

Results

5.1 Pulse protocols

Pederson et al. (2009) have described two different depolarisation patterns for the
Insulin granule pool model. A fast depolarisation pattern consists of 3 peaks at
very short intervals for very small depolarisation as shown in Fig. 5.1(a). A slow
depolarisation pattern consist of long depolarisation for long intervals as shown in
Fig. 5.1(b).

(a) Fast depolarisation (b) Slow depolarisation

Figure 5.1: (a) Fast depolarisation pattern (shown for 1 sec), voltage goes from -70
mV to 20 mV at t = 0.1, 0.2 and 0.3 seconds for 0.01 seconds. (b) Slow depolarisation
pattern (shown for 300 seconds), voltage goes from -70 mV to -20 mV at t = 0, 120,
180, 240 and so on till 3000 seconds and voltage goes from -20 mV to -70 mV at t =
90, 150, 210 and so on till 3000 seconds.
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5.2 Calcium fits

In this section we show the microdomain calcium and cytosolic calcium corresponding
to the fast and slow depolarisation protocols mentioned in Section 5.1. For simplic-
ity we have used close fits of the microdomain and cytosolic calcium compartments
defined by Arthur Sherman for both fast and slow protocols.

(a) Microdomain calcium (b) Cytosolic calcium

Figure 5.2: (a) Cmd (shown for 1 sec) rises upto 48.13 at t = 0.1, 0.2 and 0.3 seconds
for 0.01 seconds. (b) Ci (shown for 1 sec) is raised to 2µM at t = 0.5 seconds to
depict the flash release. [1]

But, for simplicity we take the square pulse approximation of the calcium equations
for fast protocol and it is defined as

Cmd = 0.1132 + 48.0168((heav(t− 0.1))(heav(0.1 + 0.01− t)))
+(heav(t− 0.2))(heav(0.2 + 0.01− t))
+(heav(t− 0.3))(heav(0.3 + 0.01− t)) (5.1)

Ci =



0.06419 for t < 0.5{
1.299 ∗ exp(−((t− (−0.6304))/1.2)2)

+(3.285e+ 008) ∗ exp(−((t− (−1036))/220.8)2)

+1.375 ∗ exp(−((t− 0.4701)/2.028)2)
}

for t ≥ 0.5

(5.2)



5.2. CALCIUM FITS 31

(a) Microdomain calcium (b) Cytosolic calcium

Figure 5.3: (a) Cmd (shown for 1 sec) is a function with 3 square pulses that rises
upto 48.13 at t = 0.1, 0.2 and 0.3 seconds for 0.01 seconds. (b) Ci (shown for 1 sec)
is raised to 2µM at t = 0.5 seconds.

For the slow protocol, depolarisation takes place for longer time with longer time
intervals.

(a) Microdomain calcium (b) Cytosolic calcium

Figure 5.4: (a) Cmd (shown for 300 seconds), (b) Ci (shown for 300 seconds).

We have taken the fits of the calcium equations responding to slow protocol using the
fitting tool ’cftool’ in MATLAB. The fits for the slow protocol are shown in Fig. 5.5
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(a) Microdomain calcium (b) Cytosolic calcium

Figure 5.5: (a) Cmd (shown for 300 seconds), (b) Ci (shown for 300 seconds).

5.3 Deterministic solution

In this section we compare the deterministic solution corresponding to the model
described by Pederson et al. (2009) and the deterministic solution from the close fits of
the actual calcium compartment equations. It can be seen that both the deterministic
solution differs as the calcium compartment equations used are different, and also the
initial conditions for the pools are different. We use discrete initial conditions close
to the steady state values of each pool. The comparison of both the deterministic
results for each pool are shown below.

In the figures below we can see that there is a difference between both the solutions.
The difference is due to the different initial conditions. For the large pools AP and DP,
both the solutions follow the same trend whereas for PP the deterministic solution
using the close fits is a little different from the deterministic solution by Pederson et
al. For the small pools i.e IRP chain and the HCSP chain of the model, both the
solutions follow the same trend with a little differnce because of the different initial
conditions.

5.4 Response to fast protocol

In this section we show the variance and mean over 5000 stochastic runs compared
to the deterministic solution for each pool. The microdomain calcium and cytosolic
calcium functions used are the close fits of Pederson et al. (2009) model shown
in Section. 5.2. We also show the stochastic mean and variance calculated with
random initial conditions for each pool as to run the simulation after the variance has
stabilized.
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5.4.1 No variance in the initial conditions

In this section we have simulated the complete model of insulin vesicle pools with
Cmd and Ci as close fits (Fig. 5.3) of the calcium compartment equations in Arthur
Sherman’s representation of the Insulin granule pool model. The mean and variance
over 5000 stochastic runs for 10 seconds have been calculated and compared with
the deterministic solution. We have simulated the model in 2 ways, in the first
method we keep the initial conditions for each pool same for each run, which shows
var(t = 0) = 0. In the second method we choose random initial conditions from
the normal distribution whose mean is size of the pool. This shows variance after it
has stabilized. For all the pools mean over stochastic simulations is shown matching
up with the deterministic solution. Euler’s method is used to solve the differential
equations involved with a Euler time step of e−4. The results for the fast protocol
response are shown in Fig. (5.8) and Fig. (5.9).

We also show the results for the case when the model is simulated using Arthur
Sherman’s description of Cmd and Ci as shown in Fig. 5.2. For all the pools results
are same as the results computed with close fits of the calcium equations except for
the IRP chain of the model. For all the three IRP, FIP and RIP the mean over 5000
stochastic runs does not match up with the deterministic solution and the variance
is also comparatively low.(shown in Fig. 5.10)

5.4.2 Initial conditions corresponding to asymptotic steady

state

Now, when calculating the mean and variance with Cmd and Ci as mentioned in Fig.
(5.3) over 5000 stochastic runs with random initial conditions for each run, the mean,
variance and the deterministic solution are shown matching up. In this case instead
of variance starting from 0, it starts form the steady state value of variance. The
mean is slightly below the deterministic solution as we have used the floor values of
the random initial conditions from normal distribution to choose the discrete values.
The results for the fast protocol response with random initial conditions for each pool
for each run are shown in Fig. (5.11) and Fig. (5.12).
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5.5 Response to slow protocol

In this section we show the mean and variance over 500 stochastic runs for the slow
depolarisation protocol. Cmd and Ci are taken to be very close fits (Fig. 5.5) of the
calcium compartment equations described by Pederson et al. (2009). Euler’s method
is used to solve the differential equations involved with a Euler time step of e−4. The
mean and the deterministic solution match up very closely for all the pools, but the
variance is slightly away for large pools i.e AP, DP and PP. For the HCSP chain of the
model the variance follows the trend as of the mean, but is not very smooth. Unlike
the other pools of the model, in the IRP chain of the model the mean, variance and
the deterministic solution match up closely. The results for the slow protocol response
are shown in Fig. (5.13), Fig. (5.14) and Fig. (5.15).
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(a) Almost Docked Pool

(b) Docked Pool

(c) Primed Pool

Figure 5.6: Results for the fast protocol with no variance in the initial conditions. For
the large pools AP, DP and PP, the deterministic solution with the calcium equations
described by Pederson et al. (red) compared with the deterministic solution with the
close fits of the calcium equations (black) plotted against time (seconds).
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(a) Highly Calcium Sensitive Pool (b) Immediately Releasable Pool

(c) Fusion Pool of HCSP (d) Fusion Pool of IRP

(e) Releasing Pool of HCSP (f) Releasing Pool of IRP

Figure 5.7: Results for the fast protocol with no variance in the initial conditions. For
the HCSP chain and the IRP chain of the model, the deterministic solution with the
calcium equations described by Pederson et al. (red) and the deterministic solution
using the close fits of the calcium equations (black) plotted against time (seconds).
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(a) Almost Docked Pool (b) Variance of AP

(c) Docked Pool (d) Variance of DP

(e) Primed Pool (f) Variance of PP

Figure 5.8: Results for the fast protocol with close fits of the calcium equations and
no variance in the initial conditions. Stochastic runs (green), deterministic solution
(black) and mean (red) over stochastic runs for (a) AP, (c) DP, (e) PP and (b)
variance for AP, (d) variance for DP and (f) variance for PP are plotted versus time
(seconds). For all the large pools the mean over stochastic simulations matches very
closely to the deterministic solution and the variance is comparatively low.
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(a) Highly Calcium Sensitive Pool (b) Immediately Releasable Pool

(c) Fusion Pool of HCSP (d) Fusion Pool of IRP

(e) Releasing Pool of HCSP (f) Releasing Pool of IRP

Figure 5.9: Results for the fast protocol with close fits of the calcium equations and
no variance in the initial conditions. Stochastic runs (green), deterministic solution
(black), mean (red) and variance (blue) over stochastic runs are plotted versus time
(seconds) for HCSP and IRP chain of the model. For small pools the mean over
stochastic solution is very close to the deterministic solution and the variance is
comparatively large.
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(a) Immediately Releasable Pool

(b) Fusion Pool of IRP

(c) Releasing Pool of IRP

Figure 5.10: Results for the fast protocol where simulations are carried out with the
Arthur Sherman’s description of the calcium compartment equations. The stochastic
solution (green) does not match up with the deterministic solution (black) and also
the variance (blue) is very low for (a) IRP, (b) FIP and (c) RIP. The mean and
variance over 5000 stochastic simulations don’t agree with the deterministic solution.
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(a) Almost Docked Pool

(b) Docked Pool

(c) Primed Pool

Figure 5.11: Results for the fast protocol with close fits of the calcium equations and
random initial conditions for each run. Evolution of AP, DP and PP for the 3 square
pulse and protocol over 10 seconds. Mean (red) of AP, DP and PP over 5000 runs
and variance (blue) are seen to lie close to each other. Also overlaid are 20 stochastic
runs (green) and the deterministic solution (black).
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(a) Highly Calcium Sensitive Pool (b) Immediately Releasable Pool

(c) Fusion Pool of HCSP (d) Fusion Pool of IRP

(e) Releasing Pool of HCSP (f) Releasing Pool of IRP

Figure 5.12: Results for the fast protocol with close fits of the calcium equations and
random initial conditions for each run. Evolution of HCSP and IRP chain for the 3
square pulse protocol over 10 seconds. HCSP pathway responds to the the sudden
rise of the cytosolic calcium at t = 0.5 seconds. Mean (red) of HCSP, IRP, FHP, FIP,
RHP and RIP over 5000 runs and variance (blue) are seen to lie close to each other.
Also overlaid are 20 stochastic runs (green) and the deterministic solution (black).
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(a) Almost Docked Pool

(b) Docked Pool

(c) Primed Pool

Figure 5.13: Evolution of AP, DP and PP for the slow depolarisation protocol over
3000 seconds as shown in Fig. 5.5 for 500 stochastic runs . Mean (red) of AP, DP and
PP over 500 runs and the deterministic solution are seen to lie close to each other.
Variance (blue) is slightly away.
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(a) Highly Calcium Sensitive Pool (b) HCSP till 500s

(c) Fusion Pool of HCSP (d) FHP till 500s

(e) Releasing Pool of HCSP (f) RHP till 500s

Figure 5.14: Evolution of HCSP, FHP and RHP for the slow depolarisation protocol
over 3000 seconds as shown in Fig. 5.5 for 500 stochastic runs. (b), (d) and (f) are
the zoomed view of HCSP, FHP and RHP respectively shown till 500 seconds.
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(a) Immediately Releasable Pool (b) IRP till 500s

(c) Fusion Pool of IRP (d) FIP till 500s

(e) Releasing Pool of IRP (f) RIP till 500s

Figure 5.15: Evolution of IRP, FIP and RIP for the slow depolarisation protocol over
3000 seconds as shown in Fig. 5.5 for 500 stochastic runs. (b), (d) and (f) are the
zoomed view of IRP, FIP and RIP respectively shown till 500 seconds.
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Discussion

The primary aim of the project was to develop a stochastic model of glucose-stimulated
exocytosis adapted from Pederson et al. to account for integral copy numbers of
the granules instead of concentrations. The equations were solved with a Gillespie
stochastic simulation algorithm modified to include the time-dependent propensities.
The simulations recover the deterministic solution in the mean and the variance that
is expected.

6.1 The hybrid algorithm

For carrying out the stochastic simulations, a hybrid Gillespie algorithm is used which
is modified to include the time-dependent propensities (in Section. 2.2). In the
model of Insulin granule pools described by Pederson et al. [1], some of the rates are
dependent on the concentration of calcium and hence dependent on time. The rates
r5, r3, r2 and fH(Ci) are dependent on the concentration of cytosolic calcium and the
rate fI(Cmd) is dependent on the concentration of microdomain calcium which makes
the total propensity a function of time.

The difference in the usual and hybrid Gillespie SSA is the step to calculate
time of occurrence of the next reaction tnext. The mean and variance over stochastic
simulations using hybrid Gillespie algorithm show expected results.
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6.2 Verification

For verifying the correctness of the deterministic solution, the solution for low pool
sizes for the IRP chain of the model was compared with the solution of the Master
equation. Both the solutions match up exactly showing that the code for producing
the deterministic solution is correct.

We have also checked the algorithm on a trivial example with a time dependent
rate and compared the solutions of usual Gillespie SSA and the solutions of hybrid
Gillespie SSA. Both the solutions match up for both the species A and B as expected.
For A both the solutions are also shown matching up with the analytical solution for
A. For B the analytical solutions has not been calculated as it is non-trivial.

Previous trials of simulating the model with Gillespie algorithm did not produce
the correct results. Also, for this model the usual Gillespie algorithm can’t be applied
for the given initial conditions as the total propensity goes to 0 at some point of time
which causes tnext = ∞. When the model was simulated using hybrid Gillespie
SSA the discrepancies in the IRP chain of the model were more prominent than
the other pools. Instead solving the involved ordinary differential equations using
MATLAB ode solver, we used Euler’s method to solve the ODE. Comparison of the
stochastic solution with the deterministic solution was done for different fI(Cmd)
functions showing that for constant functions and step functions the solutions match
up very closely. Also for the functions with square pulses the stochastic solution
diverges from the deterministic solution as the width of the pulse is decreased. The
reason for the prominent discrepancies in the IRP chain of the model can be the
dependence on the microdomain calcium with very fine spikes due to which the spikes
are not detected by the hybrid Gillespie SSA and less run are contributing to the mean.
We also show that changing the Euler time step and increasing the number of runs
the mean over deterministic solution can be smoothed and can be made more closer
to the deterministic solution.
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6.3 Results

In Chapter 4, we have shown the analytical solution for the mean and variance of the
open and closed system. For the close system we see the mean for the reactant specie
AP starting from the initial condition and settling to 0, and the variance starts from
0 and settles with the mean to 0 as expected. For the open system i.e AP coupled
to a infinite pool RP, if Var[AP] = 0 at t = 0 and the mean starts with the initial
condition both mean and variance settle to a non-zero equilibrium value near r1/r2
as expected. It can be shown analytically that if the value of V ar[AP ] 6= 0 at t = 0
or mean is started from some other value than the initial conditions, the results will
still settle near the value r1/r2.

In chapter 5, we show the stochastic results for the fast and slow protocol described
by Pederson et al. (2009) in Chapter 5. For both the cases the calcium compartment
functions used are the close fits of the Arthur’s Sherman representation of the calcium
compartment equations of the Insulin granule compartments model. We use the close
fits for simplicity and decreasing the run time. Also for all the pools we have used
random initial conditions for each stochastic run selected from a normal distribution
where the mean is the size of the pool. This causes the variannce to start from the
steady state instead of 0. The mean is slightly below the deterministic solution as we
use floor values of the random initial conditions in order to select discrete numbers.

We also show the comparison of the deterministic solution produced using the
fits of the actual calcium compartment equations and the deterministic solution by
Pederson et al. For all the pools except PP and IRP chain of the model, both
the solutions follow the same trend with some difference because of different initial
conditions. For PP the deterministic solution using the close fits is slightly away
beacause of coupling to IRP. As we have used square pulses instead of peaks for
microdomain calcium and IRP chain depends on microdomain calcium the difference
is prominent in the IRP chain and PP.

For the fast protocol, when the model was simulated using the actual calcium
compartment equations the mean over stochastic runs was not following the trend
of the deterministic solution only for the IRP chain of the model. For all the other
pools the mean over stochastic runs was similar to the mean when simulated using
the calcium equation fits. As mentioned in above section that the reason could be the
dependence of IRP chain on the microdomain calcium with very fine spikes. There
is a possibility that the variation in the stochastic solution from the deterministic



48 CHAPTER 6. DISCUSSION

solution can be decreased by increasing the number of runs or decreasing the Euler
time step (not tested).Simulating the model with fast protocol using the fits of the
actual calcium equations we see the mean, variance and the deterministic solution
matching up closely as expected.

For the slow protocol, the width of the pulses are very large and are continued for
a long time. The code for the slow protocol is modified from that of the fast protocol.
We show the mean matching up with the deterministic solution, and also the variance
following the trend, but not very smoothly. We have calculated the mean over 1000
stochastic runs for slow protocol. The variance could be smoothed by increasing the
number of runs.

In our knowledge this study of the stochastic version of the model of insulin
secretion from pancreatic islets of Langerhans hasn’t be done before. We achieve the
goal of presenting the stochastic version of the model and getting the estimate of the
integral copy numbers of the granules. The algorithm can be optimized using other
languages and modified to speed up the simulations. Also, different method such
as Tau leaping method can be used and tested for faster stochastic simulations. In
Appendix: Code, we present the code for the hybrid Gillespie stochastic simulation
algorithm which can be implemented to produce the stochastic mean and variance of
other chemical and biochemical systems.
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Appendix: Supporting Information

The main source of the supporting information is the Arthur Sherman’s description
of the Insulin secretion model by Pederson et al. (2009) [1].
Ordinary differential equations corresponding to each pool except RP as it is consid-
ered to be infinity [1]. Rates are measured in seconds. The rates r5, r3, r2 and fH(Ci)

are cytosolic calcium dependent and fI(Cmd) is microdomain calcium dependent.

IRP ′ = (r1 PP − r−1 IRP − fI(Cmd) IRP ) (1)

PP ′ = (r−1 IRP − (r1 + r−2)PP + r2DP ) (2)

DP ′ = (r3HCSP + r−2PP − (r−3 + r2)DP ) (3)

AP ′ = (r5 − r−5AP − r4AP + r−4HCSP ) (4)

HCSP ′ = (r4AP − (r−4 + r3)HCSP + r−3DP − fH(Ci)HCSP ) (5)

FIP ′ = (fI(Cmd) IRP − u2FIP ) (6)

RIP ′ = (u2FIP − u3RIP ) (7)

FHP ′ = (fH(Ci)HCSP − u2FHP ) (8)

RHP ′ = (u2FHP − u3RHP ) (9)

where,

r2 = r20
Ci

Ci+Kp2
(10)

r3 = r30
Ci

Ci+Kp
(11)

r5 = r50
Ci

Ci+Kp
(12)
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Fusion rate from IRP (fI(Cmd)) and HCSP (fH(Ci)) follow hill functions.

fI(Cmd) = fmaxI
Cnmd

Kn
I +Cnmd

(13)

fH(Ci) = fmaxH
Cni

Kn
H+Cni

(14)

Microdomain and cytosolic calcium compartments are modelled and described by

C ′md = (−fmd JL − fmdB (Cmd − Ci)) (15)

C ′i = (−fi JR + fv fiB (Cmd − Ci)− fi L) (16)

Molar fluxes through L-type and R-type channels are

JL = α IL/vmd, (17)

JR = α IR/vcell (18)

with respective currents

IL = gLm∞(v) (V − VCa), (19)

IR = gRm∞(v) (V − VCa) (20)

where,

m∞(v) = 1/(1 + exp((Vm − V )/sm)). (21)

Calcium pumps and stores fluxes are given by

Jserca = Jmaxserca
C2
i

K2
serca+C

2
i
, (22)

Jpmca = Jmaxpmca
Ci

Kpmca+Ci
, (23)

Jncx = Jncx0 (Ci − 0.25), (24)

L = Jserca + Jpmca + Jncx + Jleak. (25)
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Table 1 shows the random initial conditions corresponding to each pool and Table 2
shows the initial microdomain and cytosolic calcium concentrations [1].
Instead of the steady state values, for stochastic simulations we used random and
discrete initial values which are choosen from the normal distribution where the mean
is the size of the pool.
For IRP, the expression implies that the initial condition for each run is selected from
a normal distribution were mean = 8 and the standard deviation =

√
8. As we need

discrete values, we use the ’floor’ condition . Same follows for the other pools.

Table 1
Pool Mean initial conditions
IRP floor(max(normrnd(8,

√
8)))

PP floor(max(normrnd(38,
√

38)))
DP floor(max(normrnd(298,

√
298)))

FIP 0
RIP 0
AP floor(max(normrnd(965,

√
965)))

HCSP floor(max(normrnd(12,
√

12)))
FHP 0
RHP 0

Table 2
Calcium domain Value

Cmd 0.0674
Ci 0.06274
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Table 3 contains values of all the parameters in the Insulin granule compartments
model. All the parameters are in reference with the Arthur Sherman’s description of
the model.

Table 3

Vesicle dynamics parameters, fusion constants, calcium currents and calcium fluxes.

Parameter Value Parameter Value

ficmd(0) 2.641e-9 s−1 fmaxH 30 s−1

fhci(0) 0.00001189 s−1 KH 2.5 µM
r1 0.005 s−1 gL 150 pS
r−1 0.025 s−1 gR 150 pS
r20 0.00015 s−1 Vm -20 mV
r−2 0.001 s−1 VCa 25 mV
r30 0.002 s−1 Sm 5 mV
r−3 0.00007 s−1 JmaxSerca 41 µM/s

r4 0.002 s−1 KSerca 0.27 µM
r−4 0.16 s−1 Jmaxpmca 21 µM/s

r50 0.224 s−1 Kpmca 0.5 µM
r−5 0.0002 s−1 Jleak -0.94 µM/s

u1 2000 s−1 Jncx0 18.67 s−1

u2 3 s−1 fmd 0.01
u3 0.02 s−1 fi 0.01
kp 0.01 B 17250 s−1

kp2 0.01 α 5.18e-15 µmol/s/fA
fmaxI 30 s−1 vcell 1.15e-12pl
KI 22 µM vmd 0.00385e-15 pl
n 4 fv vmd/vcell
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The code for the stochastic simulation using hybrid Gillespie algorithm. Program-
ming work is done in MATLAB. Euler’s method is used to solve the differential
equations involved. The working of the program is explained below. Code is for
the fast protocol. For the slow protocol replace the cmd and ci functions as men-
tioned in Fig. fitupdown calcium, increase tfinal to 3000s and replace r5 with r5 =
gluc*r50*(ci/(ci+0.01)) where, gluc = 3 for t > 10s and gluc = 1 for t< 10s.

Steps for producing the results are as follows:
1. Run deterministic.m to calculate and plot the deterministic solution.
2. Run gelldatafile.m to create the data files for all the pools.
3. Read the files.
T=dlmread(’datafile name.txt’);
4. Run interpolation.m to calculate and plot mean and variance.
Ta=interpolation(T,1024);
—————————————————————————————————————
File name = deterministic.m (MATLAB file)
Script to calculate and plot the deterministic solution. Euler Method is used to solve
the differential equations involved. Calcium functions are taken to be close fits of the
Arthur Sherman’s description of the calcium compartments in Insulin granule pools
model.

%Initialization of start time and stop time of the simulation:

tstart = 0;

tfinal = 10;

%Initialization Vectors for time, pools and calcium compartments:

time = [];
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rps = [];

aps = [];

hcsps = [];

fhps = [];

rhps = [];

dps = [];

pps = [];

irps = [];

fips = [];

rips = [];

cmds = [];

cis = [];

%Initial values of the pools (granule numbers) and calcium compartments:

rp = 1; %rp is considered to be infinity. Hence,

...it is not updated.

ap = 965;

hcsp = 12;

fhp = 0;

rhp = 0;

dp = 297;

pp = 38;

irp = 8;

fip = 0;

rip = 0;

cmd = 0.0674;

ci = 0.06274;

%Parameters: Rates (/s):

r50 = 0.224;

rm5 = 0.0002;

r4 = 0.002;

rm4 = 0.16;

r30 = 0.002;
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rm3 = 0.00007;

r20 = 0.00015;

rm2 = 0.001;

r1 = 0.005;

rm1 = 0.025;

fhci = 0;

ficmd = 0;

u2 = 3;

u3 = 0.02;

%Fusion constants:

fim = 30; %/s

fhm = 30; %/s

ki = 22; %microM

kh = 2.5; %microM

n = 4;

%Accumulating the initial values:

time = [time;tstart];

rps = [rps;rp];

aps = [aps;ap];

hcsps = [hcsps;hcsp];

fhps = [fhps;fhp];

rhps = [rhps;rhp];

dps = [dps;dp];

pps = [pps;pp];

irps = [irps;irp];

fips = [fips;fip];

rips = [rips;rip];

cmds = [cmds;cmd];

cis = [cis;ci];

d = 0.0001; %Euler time step.
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t = tstart; %Initializing t as tstart.

while(t<tfinal) %Each simulation will run until t vector

...reaches tfinal.

%Cmd - function with three square pulses

...at t = 0.1, 0.2 and 0.3 secs for 0.01 secs:

if (t>=0 && t<0.1)

cmd = 0.1132;

elseif(t>=0.1 && t<0.11)

cmd = 48.13;

elseif (t>=0.11 && t<0.2)

cmd = 0.1132;

elseif (t>=0.2 && t<0.21)

cmd = 48.13;

elseif (t>=0.21 && t<0.3)

cmd = 0.1132;

elseif (t>=0.3 && t<0.31)

cmd = 48.13;

else

cmd = 0.1132;

end

%Ci - function with the value of ci raised to 2 at 0.5 secs:

if (t<0.5)

ci = 0.06419;

else

ci = 1.299*exp(-((t-(-0.6304))/1.2)^2)...

+ (3.285e+008)*exp(-((t-(-1036))/220.8)^2)...

+ 1.375*exp(-((t-0.4701)/2.028)^2);

end

t = t + d; %Integrating time using Euler’s method with a

...Euler time step d.
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%Time-dependent rates:

r5 = r50*(ci/(ci+0.01));

r3 = r30*(ci/(ci+0.01));

r2 = r20*(ci/(ci+0.01));

ficmd = fim*((cmd^n)/((cmd^n)+(ki^n)));

fhci = fhm*((ci^n)/((ci^n)+(kh^n)));

%Differential equations corresponding to each pool:

drp = -(r5)+(rm5*ap);

dap = (r5)-(rm5*ap)-(r4*ap)+(rm4*hcsp);

dhcsp = (r4*ap)-(rm4*hcsp)-(fhci*hcsp)-(r3*hcsp)+(rm3*dp);

dfhp = (fhci*hcsp)-(u2*fhp);

drhp = (u2*fhp)-(u3*rhp);

ddp = (r3*hcsp)-(rm3*dp)-(r2*dp)+(rm2*pp);

dpp = (r2*dp)-(rm2*pp)-(r1*pp)+(rm1*irp);

dirp = (r1*pp)-(rm1*irp)-(ficmd*irp);

dfip = (ficmd*irp)-(u2*fip);

drip = (u2*fip)-(u3*rip);

%Updating the pool vectors:

rp = rp; %rp is not updated, as it is considered

...to be infinity.

ap = ap+dap*d;

hcsp = hcsp+dhcsp*d;

fhp = fhp+dfhp*d;

rhp = rhp+drhp*d;

dp = dp+ddp*d;

pp = pp+dpp*d;

irp = irp+dirp*d;

fip = fip+dfip*d;

rip = rip+drip*d;

%Accumulating the values for all the pools and calcium compartments
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...as evolve in time:

time = [time;t];

rps = [rps;rp];

aps = [aps;ap];

hcsps = [hcsps;hcsp];

fhps = [fhps;fhp];

rhps = [rhps;rhp];

dps = [dps;dp];

pps = [pps;pp];

irps = [irps;irp];

fips = [fips;fip];

rips = [rips;rip];

cmds = [cmds;cmd];

cis = [cis;ci];

end

%Plotting the pool concentrations and calcium concentrations with time:

%AP

figure(1)

hold on

xlabel(’Time (seconds)’);

ylabel(’AP’);

plot(time,aps,’r’)

%Similarly plot for other pools and calcium concentrations.

—————————————————————————————————————
File name = hybridgell.m (MATLAB file)
Script for calculating the stochastic solution using hybrid Gillespie solution. Euler
method is used to solve the differential equations with a Euler time step of e−4.
Function hybridgell.m returns the values to gelldatafile.m.

function [tnexts rps aps hcsps fhps rhps dps pps irps fips rips...

cmds cis] = hybridgell
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global tstart

global tfinal

tstart = 0;

%Initialization of time of next reaction:

tnext = 0;

%Initialization Vectors:

tnexts = [];

rps = [];

aps = [];

hcsps = [];

fhps = [];

rhps = [];

dps = [];

pps = [];

irps = [];

fips = [];

rips = [];

cmds = [];

cis = [];

%Initial values of the pools and calcium compartments. Here, the

...initial values are random and belong to a normal distribution

...where mean = size of the pool. As discrete values are required,

...’floor’ is used.

rp = 1;

ap = floor(max(normrnd(965,sqrt(965)),0));

hcsp = floor(max(normrnd(12,sqrt(12)),0));

fhp = 0;

rhp = 0;

dp = floor(max(normrnd(297,sqrt(297)),0));

pp = floor(max(normrnd(38,sqrt(38)),0));
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irp = floor(max(normrnd(8,sqrt(8)),0));

fip = 0;

rip = 0;

cmd = 0.0674;

ci = 0.06274;

%Parameters: Rates (/s):

r50 = 0.224;

rm5 = 0.0002;

r4 = 0.002;

rm4 = 0.16;

r30 = 0.002;

rm3 = 0.00007;

r20 = 0.00015;

rm2 = 0.001;

r1 = 0.005;

rm1 = 0.025;

fhci = 0;

ficmd = 0;

u2 = 3;

u3 = 0.02;

%Fusion constants:

fim = 30; %/s

fhm = 30; %/s

ki = 22; %microM

kh = 2.5; %microM

n = 4;

%Accumulating the initial values:

tnexts = [tnexts;tstart];

rps = [rps;rp];

aps = [aps;ap];

hcsps = [hcsps;hcsp];
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fhps = [fhps;fhp];

rhps = [rhps;rhp];

dps = [dps;dp];

pps = [pps;pp];

irps = [irps;irp];

fips = [fips;fip];

rips = [rips;rip];

cmds = [cmds;cmd];

cis = [cis;ci];

while (tnext<tfinal) %Each simulation will run until tnext reaches

...tfinal.

u = rand(1,1); %First random number for calculating tnext.

d = 0.0001; %Euler time step.

x = 0; %Dummy Variable.

event = 0; %Event checking variable.

t = tstart; %Initializing t vector as tstart.

while(t<tfinal && event==0)

%Cmd - function with three square pulses at

...t = 0.1, 0.2 and 0.3secs for 0.01 secs:

if (t>=0 && t<0.1)

cmd = 0.1132;

elseif(t>=0.1 && t<0.11)

cmd = 48.13;

elseif (t>=0.11 && t<0.2)

cmd = 0.1132;

elseif (t>=0.2 && t<0.21)

cmd = 48.13;

elseif (t>=0.21 && t<0.3)

cmd = 0.1132;

elseif (t>=0.3 && t<0.31)
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cmd = 48.13;

else

cmd = 0.1132;

end

%Ci - function with the value of ci raised to 2 at 0.5 secs:

if (t<0.5)

ci = 0.06419;

else

ci = 1.299*exp(-((t-(-0.6304))/1.2)^2)...

+ (3.285e+008)*exp(-((t-(-1036))/220.8)^2)...

+ 1.375*exp(-((t-0.4701)/2.028)^2);

end

t = t + d; %Integrating time with a Euler time step d.

%Time-dependet rate; r5, r3, r2 and fhci depend on ci and

...ficmd depends on cmd:

r5 = r50*(ci/(ci+0.01));

r3 = r30*(ci/(ci+0.01));

r2 = r20*(ci/(ci+0.01));

ficmd = fim*((cmd^n)/((cmd^n)+(ki^n)));

fhci = fhm*((ci^n)/((ci^n)+(kh^n)));

%Propensities:

p(1) = r5; %rp --r5--> ap

p(2) = rm5*ap; %ap --rm5-> rp

p(3) = r4*ap; %ap --r4--> hcsp

p(4) = rm4*hcsp; %hcsp --rm4-> ap

p(5) = fhci*hcsp; %hcsp --fhci-> fhp

p(6) = u2*fhp; %fhp --u2--> rhp

p(7) = u3*rhp; %rhp --u3-->

p(8) = r3*hcsp; %hcsp --r3--> dp

p(9) = rm3*dp; %dp --rm3-> hcsp
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p(10)= r2*dp; %dp --r2--> pp

p(11)= rm2*pp; %pp --rm2-> dp

p(12)= r1*pp; %pp --r1--> irp

p(13)= rm1*irp; %irp --rm1-> pp

p(14)= ficmd*irp; %irp -ficmd-> fip

p(15)= u2*fip; %fip --u2--> rip

p(16)= u3*rip; %rip --u3-->

%Reaction intervals:

p1 = p(1)/sum(p);

p2 = p(2)/sum(p);

p3 = p(3)/sum(p);

p4 = p(4)/sum(p);

p5 = p(5)/sum(p);

p6 = p(6)/sum(p);

p7 = p(7)/sum(p);

p8 = p(8)/sum(p);

p9 = p(9)/sum(p);

p10 = p(10)/sum(p);

p11 = p(11)/sum(p);

p12 = p(12)/sum(p);

p13 = p(13)/sum(p);

p14 = p(14)/sum(p);

p15 = p(15)/sum(p);

p16 = p(16)/sum(p);

%Initializing update vectors:

z1 = 0;

z2 = 0;

z3 = 0;

z4 = 0;

z5 = 0;

z6 = 0;

z7 = 0;
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z8 = 0;

z9 = 0;

z10= 0;

z11= 0;

z12= 0;

z13= 0;

z14= 0;

z15= 0;

z16= 0;

x = x + (sum(p)*d); %Integrating dummy variable using

...Euler’s method with a Euler time

...step d = e-4

%Event checking:

if (x >= -log(u)) %Event occurs when integration of

...dummy variable reaches -ln(u).

event=1;

x = 0; %Setting x again to 0 after an event

...has occurred

k = rand(1,1); %Second random number for selecting

...the reaction.

%Reaction selection:

if (k<1)

if (k<p1)

z1 = 1;

end

if (k>p1 && k<p1+p2)

z2 = 1;

end

if (k>p1+p2 && k<p1+p2+p3)
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z3 = 1;

end

if (k>p1+p2+p3 && k<p1+p2+p3+p4)

z4=1;

end

if (k>p1+p2+p3+p4 && k<p1+p2+p3+p4+p5)

z5=1;

end

if (k>p1+p2+p3+p4+p5 && k<p1+p2+p3+p4+p5+p6)

z6=1;

end

if (k>p1+p2+p3+p4+p5+p6 && k<p1+p2+p3+p4+p5+p6+p7)

z7=1;

end

if (k>p1+p2+p3+p4+p5+p6+p7 &&...

k<p1+p2+p3+p4+p5+p6+p7+p8)

z8=1;

end

if (k>p1+p2+p3+p4+p5+p6+p7+p8 &&...

k<p1+p2+p3+p4+p5+p6+p7+p8+p9)

z9=1;

end

if (k>p1+p2+p3+p4+p5+p6+p7+p8+p9 &&...

k<p1+p2+p3+p4+p5+p6+p7+p8+p9+p10)

z10=1;

end

if (k>p1+p2+p3+p4+p5+p6+p7+p8+p9+p10 &&...

k<p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11)

z11=1;

end

if (k>p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11 &&...

k<p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12)

z12=1;

end



68 Appendix

if (k>p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12 &&...

k<p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13)

z13=1;

end

if (k>p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13 &&...

k<p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13+p14)

z14=1;

end

if (k>p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13+p14 &&...

k<p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13+p14+p15)

z15=1;

end

if (k>p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13+p14+p15)

z16=1;

end

end

%Updating the pool values:

rp = rp; %rp is not updated,

...as it is considered to be infinity.

ap = ap +z1-z2-z3+z4;

hcsp = hcsp+z3-z4-z5-z8+z9;

fhp = fhp +z5-z6;

rhp = rhp +z6-z7;

dp = dp +z8-z9-z10+z11;

pp = pp +z10-z11-z12+z13;

irp = irp +z12-z13-z14;

fip = fip +z14-z15;

rip = rip +z15-z16;

else

rp = rp;

ap = ap;

hcsp = hcsp;
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fhp = fhp;

rhp = rhp;

dp = dp;

pp = pp;

irp = irp;

fip = fip;

rip = rip;

end

end

%Initializing tstart as tnext:

tnext=t;

tstart=tnext;

%Accumulating the values for the pools and calcium compartments:

tnexts = [tnexts;tnext];

rps = [rps;rp];

aps = [aps;ap];

hcsps = [hcsps;hcsp];

fhps = [fhps;fhp];

rhps = [rhps;rhp];

dps = [dps;dp];

pps = [pps;pp];

irps = [irps;irp];

fips = [fips;fip];

rips = [rips;rip];

cmds = [cmds;cmd];

cis = [cis;ci];

end

end

—————————————————————————————————————
File name = gelldatafile.m (MATLAB file)
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Script to write the concentrations of all the pools and tnext in data files and convert-
ing saw tooth form into square form. Data is written row wise in respective data files
where for the single run first row contains all the tnext values upto tfinal, and the sec-
ond row contains the values corresponding to each tnext and similarly other runs are
appended row wise in the file. Saw-tooth form is written in the data files. Individual
stochastic runs(square form) can be plotted. Calls the function hybridgell.m.

tic %Timer start

%Variables for plotting:

global tnexts

global rps

global aps

global hcsps

global fhps

global rhps

global dps

global pps

global irps

global fips

global rips

global cis

global cmds

global tstart

global tfinal

N=20; %Number of times the function hybridgell.m is called.

j=0; %Number of runs written in the datafile.

tstart = 0; %Start time of a simulation.

tfinal = 10; %Stop time of a simulation.

%Profiler:

profile clear

profile on
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while ( j < N)

clear tnexts1

clear rps1

clear aps1

clear hcsps1

clear fhps1

clear rhps1

clear dps1

clear pps1

clear irps1

clear fips1

clear rips1

clear fhcis1

clear ficmds1

%Function Call for the values of the pools and calcium compartments:

[tnexts rps aps hcsps fhps rhps dps pps irps fips rips

cmds cis] = hybridgell;

%Loop for converting the saw tooth form into square form:

for i=1:length(tnexts)-1

tnexts1(2*i-1) = tnexts(i);

tnexts1(2*i) = tnexts(i+1);

rps1(2*i-1) = rps(i);

rps1(2*i) = rps(i);

aps1(2*i-1) = aps(i);

aps1(2*i) = aps(i);

hcsps1(2*i-1) = hcsps(i);

hcsps1(2*i) = hcsps(i);

fhps1(2*i-1) = fhps(i);

fhps1(2*i) = fhps(i);
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rhps1(2*i-1) = rhps(i);

rhps1(2*i) = rhps(i);

dps1(2*i-1) = dps(i);

dps1(2*i) = dps(i);

pps1(2*i-1) = pps(i);

pps1(2*i) = pps(i);

irps1(2*i-1) = irps(i);

irps1(2*i) = irps(i);

fips1(2*i-1) = fips(i);

fips1(2*i) = fips(i);

rips1(2*i-1) = rips(i);

rips1(2*i) = rips(i);

fhcis1(2*i-1) = fhcis(i);

fhcis1(2*i) = fhcis(i);

ficmds1(2*i-1) = ficmds(i);

ficmds1(2*i) = ficmds(i);

%Plotting individual runs:

%AP

figure(1)

hold on

xlabel(’Time (seconds)’);

ylabel(’AP’);

plot(tnexts1,aps1,’r’)

%Similarly plot the other pools and calcium concentrations.

end

%Writting the values for only those simulations which are

...greater than some specified time. In this case 2.

nt = length(tnexts);
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if (tnexts(nt)>2)

%Filenames can be changed.

dlmwrite(’frphgellfast.txt’,[tnexts’;rps’],’-append’);

dlmwrite(’faphgellfast.txt’,[tnexts’;aps’],’-append’);

dlmwrite(’fhcsphgellfast.txt’,[tnexts’;hcsps’],’-append’);

dlmwrite(’ffhphgellfast.txt’,[tnexts’;fhps’],’-append’);

dlmwrite(’frhphgellfast.txt’,[tnexts’;rhps’],’-append’);

dlmwrite(’fdphgellfast.txt’,[tnexts’;dps’],’-append’);

dlmwrite(’fpphgellfast.txt’,[tnexts’;pps’],’-append’);

dlmwrite(’firphgellfast.txt’,[tnexts’;irps’],’-append’);

dlmwrite(’ffiphgellfast.txt’,[tnexts’;fips’],’-append’);

dlmwrite(’friphgellfast.txt’,[tnexts’;rips’],’-append’);

j=j+1;

end

end

time = toc %Timer stop

profile viewer

profile off

—————————————————————————————————————
File name = interpolation.m (MATLAB file)
Script to calculate mean and variance over T runs and interpolated over n = 1024
equal time points(can be changed). The data is read row wise where, for the single
run first row contains all the tnext points and the second row contains the values
corresponding to each tnext. Therefore, for 1000 runs there will be 2000 rows, where
all the odd rows will have tnext values and even rows will have value corresponding
to tnext.

function avg_vector = interpolation(T,n)
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%Shortest runlength = minl:

%1)In every odd row find the last tnext value.

%2)Compare all the last tnext values.

%3)minl = smallest last tnext value.

minl = max(T(:,end-1));

for i = 1:2:length(T(:,1))

idx = max(find(T(i,:)));

if(T(i,idx) < minl)

minl = T(i,idx);

end

end

%Now minl contains the minimum time to which all runs have completed

...We average only till t = minl.

fprintf(’shortest run length’)

minl

%We divide minl into n equal time points and interpolate the runs at

...these "nodes".

Ta = []; %Initializing the vector that will store values

...corresponding to each tnext till minl.

for t = 0:minl/n:minl

for i = 1:2:length(T(:,1))

T(i,:);

find(T(i,:) >= t);

id = min(find(T(i,:) >= t));

T(i+1,:);

if (id == 1)

Ta((i+1)/2,t*n/minl+1) = T(i+1,id);

else

Ta((i+1)/2,int16(t*n/minl+1)) = T(i+1,id-1);

end
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end

end

%Ta contains in its rows the different runs of pools interpolated...

...at n nodes.

avg_vector = Ta;

%Mean:(calculated for each column, and each column corresponds to a

...different node)

m = mean(Ta);

%Variance:(calculated for each column, and each column corresponds to

...a different node)

v = var(Ta,1);

%Plotting Mean versus time nodes:

figure(1)

hold on

plot(0:minl/n:minl,m,’r’)

xlabel(’time (seconds)’);

%Plotting Variance versus time nodes:

figure(1)

hold on

plot(0:minl/n:minl,v,’b’)


