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Abstract

In this thesis we review some of the ideas that come up while investigating

the classical stability of spacetime geometries. We restrict to the case in

which there is no matter. We derive all the necessary material from the first

principles and assume an elementary knowledge of relativity theory on the

part of the reader. Later on we generalise these ideas to investigate the stabil-

ity/instability of higher dimensional Schwarzchild spacetimes(Schwarzchild-

Tangherlini) under Ricci flow [19]. This is a part of an ongoing work. We

also outline our basic strategy and suggest how we plan to proceed on the

problem.
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Chapter 1

Introduction

Einstein’s theory of general relativity provides classical description of physical

spacetime structure and gravity. By solving Einstein’s equation for space-

times, we can extract information about the phenomena of interest. The

non-linearity of the E.E. 1 makes it very difficult to obtain all solutions. In

fact, very few exact solutions to E.E. are known.

Apart from finding exact solutions, one might ask the question, such as

how a small inhomogeneity in some standard solution for e.g. Schwarzschild

black hole evolves with time classically. If the deviation from a known exact

solution is small, we can hope to find an approximate solution by considering

gab = g0
ab + hab (1.1)

where g0
ab is the exact solution known and linearising the E.E. in hab. Clas-

sical stability analysis of black holes under gravitational perturbations has

been an important subject of interest. A study of the standard Schwarzchild

black holes was initiated by Regge and Wheeler [1] and their work was later

polished by various other authors [2, 4, 3]. Recently, there has been an effort

to extend this analysis to investigate the stability of higher dimensional black

holes [5, 9].

The framework of Euclidean quantum gravity is another area where the

quantum stability of black hole spacetimes becomes an important issue to

1Einstein Equation
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investigate. To understand this better we give a very brief exposition of this

approach. The Euclidean path integral for the theory is given by,

Z =

∫
D[g] exp(−S[g]). (1.2)

In the above expression S[g] represents the Euclidean Einstein-Hilbert action

and the path integral is performed over all metrics mod diffeomorphism de-

grees of freedom. A discussion about the full path integral is beyond the scope

of this thesis. Instead, we present here the semi-classical approximation. In

this approximation we look for the saddle-points of the action(Euclidean ac-

tion) i.e. the classical solutions to Euclidean Einstein equation and perform

Taylor series expansion about it. Thus near the classical solution, the metric

can be expanded as

gMN = ḡMN + δgMN . (1.3)

In the above equation ḡMN denotes the classical (Euclidean) solution 2 and

δgMN represents off-shell perturbation. Further the action in the semi-

classical approximation is then written as,

S[g] = S0[ḡ] + S2[ḡ, δg] + . . . (1.4)

The term S2[ḡ, δg] is quadratic in the perturbations. It is this term that would

be of concern to us in the present context. In transverse gauge, the part of

S2[ḡ, δg] containing the traceless part of the perturbation is proportional to

[10], ∫
d4x
√
ḡhMN∆LhMN . (1.5)

Here ∆L denotes the Euclidean Lichnerowicz operator 3.10and hMN is a 2nd

rank symmetric transverse-traceless tensor. To evaluate the path integral one

can expand hMN in eigenfunctions of the Lichnerowicz operator viz. solutions

of the eigenvalue equation,

∆LhMN = λhMN . (1.6)

2these are also referred to as gravitational instantons
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Also appropriate boundary conditions are imposed so that hMN are well-

behaved. By well-behaved we mean that they vainish at infinity and have

finite norm, and are regular everywhere else. Thus, if one finds a normal-

izable eigenmode of the Lichnerowicz laplacian with negative eigenvalue the

effective action is decreased and this leads to the instability of the Euclidean

solution in semi-classical approximation.

Such studies have been initiated in the past. And important mention

is that carried by Gross, Perry and Yaffe (GPY) [11] to investigate the in-

stabilities of the Euclidean Schwarzchild instanton using the path-integral

formulation of relativity theory. GPY indeed found a normalizable tranverse-

tracefree eigenmode of the Lichnerowicz laplacian with a negative eigenvalue.

This established the instability of the Schwarzchild instanton in the semi-

classical approximation.

Thus computationally speaking the problem of investigating the stability

of gravitational instantons in the Euclidean quantum gravity approach using

the semi-classical approximation boils down to studying the eigenmodes of

the Lichnerowicz laplacian. Also it is to be noted that gauge freedom in

the theory led us to restrict the perturbations to transverse-trace free class

and thereof simplified the problem enormously. Even after gauge fixing the

equations are intricately coupled and hence the problems still remains very

difficult to solve. One of the solutions to this is to exploit the symmetry

of spacetime and decompose the perturbation into appropriate parts and

investigate the stability with respect to each of these.

1.0.1 Plan of the thesis

In this thesis we focus on various issues which would be useful to simplify

the Lichnerowicz laplacian eigenvalue equation. We first discuss the gauge

freedom in the problem and study how it can be used to impose transverse

and traceless gauge conditions. We also study a couple of properties of the

Lichnerowicz Laplacian with future application in mind.

We later extend these ideas to a problem we have been working on. This
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problem focusses on the investigation of stability/instability of higher dimen-

sional Schwarzchild spacetimes(Schwarzchild-Tangherlini) under Ricci flow.

In this connection we review some of the ideas of the formalism developed by

previous authors while studying the classical stability of spacetime geome-

tries [12, 14, 15, 16].
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Chapter 2

Notation and Conventions

In this section we establish notation and convention.

2.1 Basic Formulae

The metric of the background is given by,

ds̄2 = ḡMNdx̄
Mdx̄N . (2.1)

It is D dimensional. The formulae for various other quantities are given

below. We have tried to follow the convention discussed in this section

thoroughly throughout the thesis. In case a change from this convention

in needed, a remark has been made in that particular section.

Christoffel symbols

Γ̄MNP =
1

2
ḡMQ (−∂QḡNP + ∂N ḡQP + ∂P ḡQN) (2.2)

Riemann tensor

R̄M
NPQ = ∂P Γ̄MNQ − ∂QΓ̄MNP + Γ̄MSP Γ̄SNQ − Γ̄MSQΓ̄SNP (2.3)

R̄MN = R̄P
MPN (2.4)

R̄ = R̄M
M (2.5)
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Einstein tensor

ḠMN = R̄MN −
1

2
ḡMN R̄ (2.6)

2.2 Some important identities

Here we provide some important identities which would be used extensively

in this thesis. Majority of them are concerned with the symmetry properties

of Riemann tensor. [
∇̄M , ∇̄N

]
XP = −R̄Q

PMNXQ (2.7)

R̄KLMP + R̄KPLM + R̄KMPL = 0 (2.8)

∇̄KR̄PQRS + ∇̄RR̄KPQS + ∇̄QR̄RKPS = 0 (2.9)

∇̄P R̄MNQP = ∇̄N R̄MQ − ∇̄M R̄NQ (2.10)
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Chapter 3

Linearised Gravity

3.1 Linearised Einstein Equations

The vacuum Einstein field equation is given by

R̄MN −
1

2
ḡMN R̄ = 0. (3.1)

Also, if a cosmological constant is included then the vacuum E.E. reads,

R̄MN −
1

2
ḡMN R̄ + ΛḡMN = 0. (3.2)

For most of the purpose in this thesis we set Λ = 0. And wherever Λ 6= 0,

it has been explicitly mentioned in that particular context. On contracting

over both the indices with Λ set to zero we have,

R̄− D

2
R̄ = 0. (3.3)

If D 6= 2 then R̄ = 0. On substituting this in eg.(3.1) vacuum Einstein

equation becomes

R̄MN(ḡ) = 0. (3.4)

Here the Ricci tensor R̄MN has been calculated from the background metric

ḡMN and this is indicated in the above equation by putting ḡMN in paran-

theses. For the perturbed spacetime the field equation is given by

R̄MN(ḡ + h) = 0. (3.5)
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In this case it is assumed that the perturbed spacetime geometry is also

empty i.e. vacuum. In the linearised approximation we have

R̄MN(ḡ) + δR̄MN(h) = 0. (3.6)

Since R̄MN(ḡ) = 0, the equations governing the perturbation is given by

δR̄MN(h) = 0. (3.7)

3.2 Perturbation of the Ricci Tensors

We denote the perturbation of the metric tensor by δḡMN = hMN . Then the

perturbation of the Ricci tensor and scalar are given as

2δR̄MN = −∇̄L∇̄LhMN − ∇̄M∇̄Nh+ ∇̄M∇̄Lh
L
N + ∇̄N∇̄Lh

L
M

+ R̄MLh
L
N + R̄NLh

L
M − 2R̄MLNSh

LS,
(3.8)

δR̄ = −R̄MNhMN + ∇̄M∇̄NhMN − ∇̄M∇̄Mh. (3.9)

3.3 Lichnerowicz Laplacian

We define Lichnerowicz laplacian by the following formula

(∆Lh)MN = −∇̄P ∇̄PhMN + 2R̄P
MNSh

S
P + R̄P

MhNP + R̄P
NhMP (3.10)

(3.10) Using this the perturbation of the Ricci tensor can be written as

2δR̄MN = (∆Lh)MN − ∇̄M∇̄Nh+ ∇̄M∇̄Ph
P
N + ∇̄N∇̄Ph

P
M (3.11)

NOTE: At this point it is useful to notice that if we can somehow restrict

our study to transverse and trace free perturbations i.e.

∇̄MhMN = 0, (3.12)

ḡMNhMN = 0. (3.13)

then the problem simplifies to studying the solutions of the following equation

(∆Lh)MN = 0. (3.14)
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3.4 Gauge Invariance

Before we go further it is necessary that we study the concept of gauge invari-

ance in linearised theory. To begin with we refer to the following equation,

gMN = g0
MN + hMN . (3.15)

This break-up is not unique. What this means is that there can be other

coordinate systems too in which the complete metric can be written as a sum

of unperturbed background metric i.e. g0
MN and a small perturbation.

Consider an infinitesimal coordinate transformation of the form

xK → x′K = xK + ξK(x) (3.16)

where ξK are arbitrary infinitesimal functions of x such that |∂LξQ| << 1.

Now the components of metric tensor transform under according to

g′MN(x′) =
∂xP

∂x′M
∂xQ

∂x′N
gPQ(x) (3.17)

To first-order, the transformation matrix components are given by

∂xP

∂x′M
= δPM − ∂MξP (3.18)

We substitute this into the equation for transformation of metric components.

To first-order this yields,

g′MN(x′) = gMN(x)− gMQ∂Nξ
Q − gPN∂MξP

= gMN − ∂MξN − ∂NξM + ξQ∂NgMQ + ξQ∂MgQN
(3.19)

Also we can Taylor expand the L.H.S. about x so that we evaluate both sides

with the same numerical values of x. Then in first-order approximation we

have,

g′MN = gMN − ∂MξN − ∂NξM + ξQ∂NgMQ + ξQ∂MgQN − ξQ∂QgMN (3.20)

The last three terms on the R.H.S. can be clubbed together to yield the

following simple formula,

g′MN = gMN −∇MξN −∇NξM (3.21)

12



Now using the break-up of metric we have

g′MN = g0
MN + hMN −∇MξN −∇NξM (3.22)

We define

h′MN = hMN −∇MξN −∇NξM (3.23)

Recalling that |∂LξQ| << 1 we conclude that |h′MN | << 1. Thus the trans-

formed metric also qualifies as a valid candidate for linearised theory.

These are referred to as gauge transformations.
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3.5 Gauge Invariance and Linearised vacuum

Einstein equations

We recall that in vacuum the linearised Einstein equation is written as

δR̄MN(h) = 0.

In this section we primarily calculate how the linearised Ricci tensor behaves

under the gauge transformation hMN → hMN +∇MξN +∇NξM . To calculate

this we first recall that variation of Ricci tensor (or the linearised Ricci tensor)

is given by the formula

2δR̄MN = −∇̄P ∇̄PhMN + ∇̄P ∇̄MhPN + ∇̄P ∇̄NhPM − ∇̄M∇̄Nh.

The R.H.S. of the above equation has linear operators. So we just see what

additional pieces we get by substituting hMN = ∇̄MξN+∇̄NξM . The detailed

calculation is given below,

2δR̄MN = ∇̄P [−∇̄P (∇̄MξN + ∇̄NξM) + ∇̄M(∇̄P ξN + ∇̄NξP )

+ ∇̄N(∇̄P ξM + ∇̄MξP )]− 2∇̄M∇̄N∇̄P ξP

= ∇̄P [[∇̄M , ∇̄P ]ξN + [∇̄N , ∇̄P ]ξM + (∇̄M∇̄NξP + ∇̄N∇̄MξP )]

− 2∇̄M∇̄N∇̄P ξP

(3.24)

At this stage we recall the formula for the commutator of covariant derivatives

acting of vector(or one-forms),

[∇̄M , ∇̄N ]ξP = −R̄K
PMNξK . (3.25)

Using this we have,

2δR̄MN = ∇̄P [−R̄K
NMP ξK − R̄K

MNP ξK − R̄K
PMNξK + 2∇̄N∇̄MξP ]

− 2∇̄M∇̄N∇̄P ξP

= ∇̄P [−R̄KNMP ξ
K − R̄KMNP ξ

K − R̄KPMNξ
K + 2∇̄N∇̄MξP ]

− 2∇̄M∇̄N∇̄P ξP

= −∇̄P [ξK(R̄KNMP + R̄KMNP + R̄KPMN)] + 2∇̄P ∇̄N∇̄MξP

− 2∇̄M∇̄N∇̄P ξP

14



Here we use the following property of Riemann tensor,

R̄KNMP + R̄KPNM + R̄KMPN = 0. (3.26)

Then we have,

δR̄MN = −∇̄P [ξKR̄KNMP ] + ∇̄P ∇̄N∇̄MξP − ∇̄M∇̄N∇̄P ξP

= −∇̄P ξK .R̄KNMP − ξK .∇̄P R̄KNMP + ḡPQ∇̄Q∇̄N∇̄MξP − ∇̄M∇̄N∇̄P ξP

= −∇̄P ξK .R̄KNMP − ξK .∇̄P R̄KNMP + ḡPQ[∇̄N∇̄Q∇̄MξP − R̄K
MQN∇̄KξP

− R̄K
PQN∇̄MξK ]− ∇̄M∇̄N∇̄P ξP

= −∇̄P ξK .R̄KNMP − ξK .∇̄P R̄KNMP + ḡPQ[∇̄N(∇̄M∇̄QξP − R̄K
PQMξK)

− R̄K
MQN∇̄KξP − R̄K

PQN∇̄MξK ]− ∇̄M∇̄N∇̄P ξP

= −∇̄P ξK .R̄KNMP − ξK .∇̄P R̄KNMP − ḡPQ∇̄N(R̄KPQMξ
K)

− R̄KMQN∇̄KξQ − ḡPQR̄KPQN∇̄Mξ
K

= −∇̄P ξK .R̄KNMP − ξK .∇̄P R̄KNMP + ∇̄N(R̄KMξ
K)− R̄PMKN∇̄P ξK

+ R̄KN∇̄Mξ
K

The first and fourth term on the R.H.S. cancel by symmetry properties of

Riemann tensor(refer Chapter 2). To proceed further we recall that from

Bianchi Identity we have the following relation,

∇̄P R̄KNMP = ∇̄N R̄KM − ∇̄KR̄NM . (3.27)

Using this in the above calculation we have,

δR̄MN = −ξK [∇̄N R̄KM − ∇̄KR̄NM ] + R̄KM∇̄Nξ
K + ξK∇̄N R̄KM

+ R̄KN∇̄Mξ
K

= ξK∇̄KR̄NM + R̄KM∇̄Nξ
K + R̄KN∇̄Mξ

K

At this stage we notice that R̄MN satisfies the vacuum Einstein equations i.e

R̄MN = 0. Thus the R.H.S. of the above equation vanishes.

We conclude that the linearised vacuum Einstein equation is unaffected

by the following gauge transformation,

hMN → hMN + ∇̄MξN + ∇̄NξM .

15



3.6 Gauge Freedom

In the previous section we talked about invariance of the linearised Einstein

equations under the gauge transformation hMN → hMN +∇̄MξN +∇̄NξM . In

this section we utilise this gauge freedom to simplify the linearised equations.

We ask the following two questions,

• Can we restrict the study of perturbations such that they are transverse

i.e. ∇̄MhMN = 0.

• Also can we restrict the perturbations to be traceless i.e. ḡMNhMN = 0.

Our of the reasons for posing these questions stems from the variation formula

of Ricci tensor. The formula is given by,

2δR̄MN = (∆Lh)MN − ∇̄M∇̄Nh+ ∇̄M∇̄Lh
L
N + ∇̄N∇̄Lh

L
M

= (∆Lh)MN + ∇̄M∇̄L

(
hNL −

1

2
ḡNLh

)
+ ∇̄N∇̄L

(
hML −

1

2
ḡMLh

)
= (∆Lh)MN + ∇̄M∇̄Lh̃NL + ∇̄N∇̄Lh̃ML

(3.28)

where we have defined h̃MN as

h̃MN = hMN −
1

2
ḡMNh. (3.29)

Note that if we can make the last two terms on the R.H.S. of eq.(3.27)

vanish then we are just left with the Lichnerowicz operator acting on the

perturbation. We now show that this indeed can be done by exploiting the

gauge freedom in the linear theory.

We perform a gauge transformation and go to a primed coordinate system

in which the variation formula for Ricci tensor reads

2δR̄′MN = (∆Lh
′)MN + ∇̄M∇̄Lh̃′NL + ∇̄N∇̄Lh̃′ML (3.30)

In this system we assume that

∇̄M h̃′MN = 0. (3.31)
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This condition is known as the transverse gauge condition. Recall that h̃′NL =

h′NL − 1
2
ḡNLh

′ and that h′MN = hMN + ∇̄MξN + ∇̄NξM . Substituting these

in the transverse gauge condition we get

∇̄L∇̄LξN + R̄K
NξK = ∇̄M(hMN −

1

2
ḡMNh) (3.32)

The above equation is a hyperbolic partial differential equation, which can

be always solved locally. Thus, given any general perturbation hMN we can

solve the above equation for ξN , transform to h′MN = hMN + ∇̄MξN + ∇̄NξM

and hence impose the transverse gauge condition i.e. ∇̄Mh′MN = 0.

Now the eq.(3.31) does not completely fix the gauge. We can add vectors

η satisfying the homogeneous condition viz.

∇̄L∇̄LηN + R̄K
NηK = 0. (3.33)

to ξ and still satisfy the R.H.S. of eq.(3.31).

If the background spacetime is vacuum,then this residual gauge freedom

can be utilised to impose the tracefree condition too.1

It is important to note that this additional freedom to impose trace-free

condition is possible because we considered vacuum i.e no source terms. The

transversality condition can always be imposed.

1For a proof of this claim we refer the reader to Appendix A of the following paper[5]
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3.7 Properties of Lichnerowicz Laplacian

In this section we prove two very important properties of the Lichnerowicz

Laplacian. These are,

1. If hMN is traceless i.e ḡMNhMN = 0, then (∆Lh)MN is also traceless,

ḡMN(∆Lh)MN = 0. (3.34)

2. If the background metric ḡMN is an Einstein metric and hMN satisfies

the transverse condition i.e ∇̄MhMN = 0, then

∇̄M(∆Lh)MN = 0. (3.35)

To prove the above two properties we recall the expression for the Lich-

nerowicz laplacian. It is given by,

(∆Lh)MN = −∇̄L∇̄LhMN + 2R̄L
MNSh

S
L + R̄L

MhNL + R̄L
NhML

Proof 1:

ḡMN(∆Lh)MN = −ḡMN∇̄L∇̄LhMN + 2ḡMN R̄L
MNSh

S
L + ḡMN R̄L

MhNL

+ ḡMN R̄L
NhML

= −∇̄L∇̄L(ḡMNhMN)− 2ḡMN R̄MLNSh
SL + R̄NLh

NL

+ R̄LMh
ML

= 0− 2R̄LSh
SL + 2R̄LNh

NL

= 0.

Q.E.D.

Proof 2:

∇̄M(∆Lh)MN = 2∇̄M(R̄L
MNS).hSL + 2R̄L

MNS∇̄MhSL + ∇̄M R̄L
M .hNL

+ R̄L
M∇̄MhNL + ∇̄M R̄L

N .hML + R̄L
N∇̄MhML

− ∇̄M∇̄L∇̄LhMN

= 2∇̄M(R̄LMNS).hSL + 2R̄LMNS∇̄MhSL + ∇̄M R̄L
M .hNL

+ R̄L
M∇̄MhNL + ∇̄M R̄L

N .hML + 0

− ḡMP ḡLQ∇̄P ∇̄Q∇̄LhMN

18



To simplify the equation we evaluate the last term on the R.H.S. separately.

We then have,

∇̄P ∇̄Q∇̄LhMN = ∇̄Q∇̄P ∇̄LhMN − R̄K
LPQ∇̄KhMN − R̄K

MPQ∇̄LhKN

− R̄K
NPQ∇̄LhMK

= ∇̄Q(∇̄L∇̄PhMN − R̄K
MPLhKN − R̄K

NPLhMK)

− R̄K
LPQ∇̄KhMN − R̄K

MPQ∇̄LhKN − R̄K
NPQ∇̄LhMK

= ∇̄Q∇̄L∇̄PhMN − ∇̄QR̄KMPL.h
K
N − R̄KMPL∇̄Qh

K
N

− ∇̄QR̄KNPL.h
K
M − R̄KNPL∇̄Qh

K
M − R̄KLPQ∇̄KhMN

− R̄KMPQ∇̄Lh
K
N − R̄KNPQ∇̄Lh

K
M

Thus the last term simplifies to,

ḡMP ḡLQ∇̄P ∇̄Q∇̄LhMN = 0 + ∇̄LR̄KL.h
K
N + R̄KL∇̄LhKN − ∇̄LR̄KNPL.h

PK

− R̄KNPL∇̄LhPK − R̄KP ∇̄KhPN + R̄KQ∇̄QhKN

− R̄KNPQ∇̄QhPK

Plugging this expression and using the symmetry properties of the Riemann

tensor, we have the following relation,

∇̄M(∆Lh)MN = (2∇̄SR̄LN − ∇̄N R̄SL)hSL. (3.36)

Given that the background metric is Einstein i.e. R̄MN = cḡMN , the R.H.S.

of the above relation trivially goes to zero. Hence our claim is proved. 2

Q.E.D.

2It is to be noted here that even if ḡMN is not Einstein but R.H.S. goes to zero then

too the transverse property of Lichnerowicz operator is preserved.

19



Chapter 4

Work in progress...

In this chapter we present the research problem that we have been working

on. We utilise all the concepts that were reviewed in the previous chapters.

We give a brief description of the strategy that we plan to follow. This work

is in progress.

4.1 The Problem

We have been investigating the linear stability of higher dimensional Schwarz-

child black holes(Schwarzchild Tangherlini) under Ricci flow[10] for a special

class of static perturbations. The operator that governs the linearised flow of

the perturbation is the Lichnerowicz Laplacian. As discussed in the paper[17]

the stability/instability then depends on the spectrum of the Lichnerowicz

Laplacian i.e the solutions to the eigenvalue equation

(∆Lh)MN = λhMN .

Also it was remarked that solving the above equation was cumbersome

as these were intricately coupled. One has to exploit the symmetry of the

spacetime to decompose the perturbations and hence decouple the equations.

In this section we study these issues and see how these can be implemented.

We study the formalism for the general case and then specialise to the

higher dimensional Schwarzchild case.

20



4.2 Background Geometry

Consider an (m+n)-dimensional bulk spacetime M which is locally written

as a product type

Mm+n = Nm ×K n (4.1)

We distinguish the tensors residing in these different manifolds, M ,N m

and K n by adopting the following index notation. We use upper case latin in-

dices K ,L,M ,N , . . . to denote tensors on M , lower case latin indices a, b, . . . , h

on N m , and lower case latin indices i, j, . . . , p on K n .

We also introduce the following coordinates zM = (ya, xi). Then our

background spacetime metric is written as

ḡMNdz
MdzN = gab(y)dyadyb + r2(y)γij(x)dxidxj

= gabdy
adyb + r2ds̃2

n

(4.2)

Further we assume that the metric γij has a constant scalar curvature K

on K n . We call K n as the Base manifold. Also the covariant derivatives, the

connection coefficients and curvature tensors are denoted as

ḡMNdz
MdzN =⇒ ∇̄M , Γ̄

M
NL, R̄MNLS, (4.3)

gab(y)dyadyb =⇒ Da,
mΓabc(y), mRabcd(y), (4.4)

γij(x)dxidxj =⇒ D̂i, Γ̂
i
jk(x), R̂ijkl = K(γikγjl − γilγjk). (4.5)

4.2.1 Background Quantities

In this subsection we give the formulae for Christoffel symbols, Riemann ten-

sors and other related quantities. These would be required in the calculation

to be done further to calculate the expression for the Lichnerowicz Laplacian.

The Christoffel symbols are given by:

Γ̄abc = Γabc; Γ̄abj = Γ̄ajb = 0; Γ̄i ab = 0;

Γ̄i ja = Γ̄i aj = δij
Dar

r
;
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Γ̄aij = −rγijDar;

Γ̄i jk = ΣΓi jk

NOTE: In the above calculation we have used the following conditions:

gab = gab(y); γij = γij(x); gai = 0.

The components of the Riemann tensor are:

R̄a
bcd = Ra

bcd; R̄
a
bcj = −R̄a

bjc = 0;

R̄i
ajb = −R̄i

abj = −δij
DbDar

r
;

R̄a
ibj = −R̄a

ijb = −rγjiDbD
ar;

R̄a
ibc = 0; R̄i

abc = 0;

R̄i
jka = −R̄i

jak = 0;

R̄i
ajk = 0; R̄a

ijk = 0;

R̂ijkl = K(γikγjl − γilγjk)

R̄i
jkl = [K − (Dar)

2](δikγjl − δilγjk)

It is important to note that the ˆ terms refer to the Base manifold and ¯

refers to the whole spacetime.

4.3 Solving the problem

One of the key strategies that is followed while investigating the (in)stability

issues under Ricci flow is to split a perturbation in the following form [17],

hMN = hTTMN +
H

D
ḡMN + ∇̄MYN + ∇̄NYM − 2ḡMN

∇̄KYK
D

, (4.6)

where h̄TTMN is a transverse-tracefree part, H denotes the trace of hMN and

the last three parts make up traceless part of a divergence piece. We then

study the flows of hTTMN , H and YM . In Ricci flow problems the trace of

the perturbation cannot be gauged away, we have to study the flow of the
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trace too. The motivation for the above mentioned break-up of the pertur-

bation variable stems from the fact that (∆Lh
TT )MN gives us back a TT

piece. Hence, the flow of hTTMN decouples from other flows and can be studies

separately.

From here on we focus on the TT part of the perturbation and would drop

the superscript TT. Recalling the expression for the Lichnerowicz Laplacian,

(∆Lh)MN = −∇̄L∇̄LhMN + 2R̄L
MNSh

S
L + R̄L

MhNL + R̄L
NhML

For our case we assume that the background metric satisfies the vacuum

Einstein equation with cosmological constant set to zero i.e. R̄MN = 0. Then

this further simplifies to,

(∆Lh)MN = −∇̄L∇̄LhMN + 2R̄L
MNSh

S
L (4.7)

Our study of the Lichnerowicz Laplacian eigenvalue equation simplifies to

studying the equation,

− ∇̄L∇̄LhMN + 2R̄L
MNSh

S
L = λhMN . (4.8)

4.3.1 Classification of perturbations

The pertubations hMN may be classified into tensor, vector and scalar de-

pending on their tensorial behaviour w.r.t. coordinate transformations on the

maximally symmetric n− dimensional part of the whole spacetime. 1 Then

tensors of rank at most 2 w.r.t. the maximally symmetric n- dimensional

part can be decomposed into three types of components viz. tensor-type,

vector-type and scalar-type components.

As discussed in the paper [9], the hai component of the perturbation can

be decomposed in the following way,

hai = h
(1)
ai + D̂iha, (4.9)

1This section basically reviews some of the major ideas formulated by previous authors,

primarily Ishibashi, Sasaki and Kodama. Respective references are provided.
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where D̂ih
(1)
ai = 0. Also hij can be decomposed as,

hij = h
(2)
T ij + D̂ih

(1)
T j + D̂jh

(1)
T i + hLγij +

(
D̂iD̂j −

1

n
γij∆̂

)
h

(0)
T , (4.10)

where D̂jh
(2)
T ij = h

(2)i
T i = 0 and D̂ih

(1)
T i = 0.

Therefore, the tensor part of the general perturbation hMN consists of

h
(2)
T ij, the vector part consists of (h

(1)
ai , h

(1)
T i) and the scalar part comprises of

(hab, ha, hL, h
(0)
T ).

A linearised stability analysis of the higher dimensional Schwarzchild

black hole under Ricci flow restricted to tensor perturbations i.e hab = 0,

hai = 0 and hij = h
(2)
T ij has been carried out previously [17]. To study the

evolution of a general perturbation one has to study the vector 2 and scalar 3

perturbation on the base manifold.

2transforming as a rank 1 tensor under coordinate transformations on base manifold.
3transforming as a rank 0 tensor under coordinate transformations on base manifold.
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4.4 Analysis of Vector perturbation

In our study of vector perturbation, we set all the parts barring the vector

part to zero i.e. h
(2)
T ij, hab, ha, hL and h

(0)
T are all set to zero. This is not

a gauge choice. We are just restricting the type of perturbation we wish to

study.

Thus for our case the perturbation is given as,

hab = 0, (4.11)

hai = h
(1)
ai , (4.12)

hij = D̂ih
(1)
T j + D̂jh

(1)
T i, (4.13)

where D̂ih
(1)
T i = 0.

Further these components can be expanded in terms of harmonic tensors

of the respective type [12]. Since the different harmonics decouple on the

maximally symmetric space [14], we can study the Lichnerowicz eigenvalue

equation corresponding to each type separately.

In the next section we give the perturbation equation for the general case

and then apply it to the higher dimensional Schwarzchild case.4

4.5 Lichnerowicz operator revisited

For our case i.e. vacuum with cosmological constant set to zero, we saw that

the eigenvalue equation for the Lichnerowicz Laplacian reduces to

(∆Lh)MN = −∇̄L∇̄LhMN + 2R̄L
MNSh

S
L = λhMN .

We now give the perturbation equations. Setting M = a and N = i in

the above equation and utilising the Christoffel symbols and Riemann tensor

4For a general analysis of the stability under Ricci flow we need the expression for the

Lichnerowicz laplacian acting on hab, hai and hij . The Lichnerowicz operator acting on

hab is zero in the case for vector perturbation.
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components previously we have

(∆Lh)ai = −∇̄c∇̄chai − ∇̄k∇̄khai + 2R̄L
aiSh

S
L

= −∆̂hai
r2
− 2

r3
DarD̂

khki +
2

r
DbrD̂ihab −

(n+ 2)

r2
DbrDarhbi

+
n

r
DbrDbhai −

(n+ 1)

r2
(Dr)2hai − r�

(
hai
r

)
− 2DbDarh

b
i

(4.14)

Setting m = i and n = j we derive,

(∆Lh)ij = −�hij − 2Dc

(
Dcrhij
r

)
− 2

r
DcrDchij

4
(Dr)2

r2
hij −

∆̂hij
r2
− 2

r
Dar(D̂ihaj + D̂jhia)−

n

r
DarDahij

+
(2n+ 1)

r2
(Dr)2hij − 2DarDbrhabγij + 2rγijDdD

crhdc

+ [K − (Dr)2][δkj γim − δkmγij]hmk

(4.15)

NOTE: In the above expression ∆̂ represents the laplacian operator on the

maximally symmetric n-dimensional space and � represents the operator

DaDa on the metric gabdy
adyb. Also, (Dr)2 denotes DarDar.

4.6 Higher dimensional Schwarzchild case

We now specialise to the particular case of higher-dimensional Schwarzchild

black hole(Schwarzchild-Tangherlini) case. Thus, K = 1 (remember that we

considered background metric satisfying vacuum E.E.). The metric is given

by

dss = −f(r)dt2 + g(r)dr2 + r2ds̃2
n, (4.16)

where f(r) =
(

1−
(
α
r

)n−1
)

, f(r)g(r) = 1 and ds̃2
n denotes the metric on the

n- sphere Sn. In this case ∆̂ becomes the laplacian on Sn w.r.t. the metric

γij.
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To obatin the equations in this case we restrict a in our equation for

vector perturbation to t ≡ 0 and r ≡ 1. Thus we have the following two

equations for the two different values that a takes,

(∆Lh)0i = −∇̄c∇̄ch0i − ∇̄k∇̄kh0i + 2R̄L
0iSh

S
L

= −∆̂h0i

r2
− 2

r3
D0rD̂

khki +
2

r
DbrD̂ih0b −

(n+ 2)

r2
DbrD0rhbi

+
n

r
DbrDbh0i −

(n+ 1)

r2
(Dr)2h0i − r�

(
h0i

r

)
− 2DbD0rh

b
i

= −∆̂h0i

r2
+

2

r
DbrD̂ih0b +

n

r
DbrDbh0i

− (n+ 1)

r2
(Dr)2h0i − r�

(
h0i

r

)
,

(4.17)

(∆Lh)1i = −∇̄c∇̄ch1i − ∇̄k∇̄kh1i + 2R̄L
1iSh

S
L

= −∆̂h1i

r2
− 2

r3
D1rD̂

khki +
2

r
DbrD̂ih1b −

(n+ 2)

r2
DbrD1rhbi

+
n

r
DbrDbh1i −

(n+ 1)

r2
(Dr)2h1i − r�

(
h1i

r

)
− 2DbD1rh

b
i

= −∆̂h1i

r2
− 2

r3
D̂khki +

2

r
DbrD̂ih1b

− (n+ 2)

r2
Dbrhbi +

n

r
DbrDbh1i −

(n+ 1)

r2
(Dr)2h1i

− r�
(
h1i

r

)

(4.18)

The above equations can be further simplified by using the following

formulae for Christoffel symbols. These are given by

Γ̄0
00 = 0; Γ̄0

01 =
f ′

2f
; Γ̄1

00 =
f ′

2g
; Γ̄0

11 = 0; Γ̄1
01 = 0; Γ̄1

11 =
g′

2g
;

Γ̄0
ij = 0; Γ̄i 0j = 0; Γ̄0

0i = 0; Γ̄i 00 = 0; Γ̄1
ij = −r

g
γij;

Γ̄i 1j =
1

r
δij; Γ̄1

1i = 0; Γ̄0
00 = 0; Γ̄i 11 = 0; Γ̄0

1i = 0; Γ̄i 10 = 0;
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Γ̄1
i0 = 0; Γ̄i jk = Γ̂0

00 = 0

Also note that since we are restricting to static perturbations, we have

∂0hMN = 0. Also fg = 1. Using this information we have the following

expressions,

(∆Lh)0i = −∆̂h0i

r2
+ 2

f

r
D̂ih01 +

nf

r
∂1h0i − (n+ 1)

f

r2
h0i

− rf∂2
1

(
h0i

r

)
+

{
3

2
rf ′ − f ′

2

}
∂1

(
h0i

r

)
+

{
f

2
∂1

(
f ′

f

)
− f ′2

2f

}
h0i,

(4.19)

(∆Lh)1i = −∆̂h1i

r2
− 2

r3
D̂khki +

2f

r
D̂ih11 −

(n+ 2)

r2
fh1i +

nf

r
∂1h1i

− (n+ 1)

r2
fh1i − rf∂2

1

(
h1i

r

)
− 3

2
rf ′∂1

(
h1i

r

)
−
{
f

2
∂1

(
f ′

f

)
+
f ′2

2f

}
h1i

(4.20)

Similarly we can write the equation for (∆Lh)ij in the Schwarzchild-

Tangherlini spacetime.

4.7 Vector Harmonics

In the previous section we remarked that vector harmonics may be used to

expand the vector part of the perturbation hMN . In this section we give a

brief review of the vector harmonics and see how these can be used to expand

the vector perturbation. Also, recall that in vector perturbation case hab = 0,

hai = h
(1)
ai and hij = D̂ih

(1)
T j + D̂jh

(1)
T i.

The vector harmonics are defined as solutions to the eigenvalue equation,

∆̂Vi = −k2Vi. (4.21)

These are divergence-free i.e. D̂iVi = 0. To expand vector-type perturbations

of a rank 2 tensor, we define the vector-type harmonic tensor as,

Vij = − 1

2k

(
D̂iVj + D̂jVi

)
. (4.22)
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The vector-type harmonic tensors satisfy the following properties,[
∆̂ + k2 − (n+ 1)K

]
Vij = 0, (4.23)

Vi
i = 0, D̂iVi

j =
k2 − (n− 1)K

2k
Vj. (4.24)

The eigenvalue k2 is non-negative and k2 = 0 occurs only for K = 0 i.e

flat space for which the harmonic vectors become constant vectors. In our

study we do not consider this trivial case and focus on non-constant harmonic

vectors. An important point needs to be clarified here. For vector-type tensor

harmonics to be defined k2 − (n − 1)K > 0. But k2 > 0 and K > 0 does

not guarantee the positivity of k2 − (n − 1)K. If k2 − (n − 1)K < 0 then

vector-type harmonics should vanish i.e. D̂iVj + D̂jVi = 0. This is precisely

the definition of Killing vector.

The vector perturbation5 of the metric is then expanded as below,

hab = 0, hai = rfaVi, hij = 2r2HTVij. (4.25)

Such decompositions have been already utilised to explore the classical sta-

bility of a class of spacetimes [14]. Using these techniques one can decouple

the equations and hence study the Lichnerowicz Laplacian eigenvalue equa-

tion in detail. One of the key features to be noted is that the symmetry

of the base manifold enabled us to carry out the decomposition which other

wise could not have been possible.

5Here a point needs to be clarified. hai = h
(1)
ai and hij = D̂ih

(1)
T j + D̂ih

(1)
T j . Thus,

h
(1)
T i = −r2HT

k Vi
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Chapter 5

Summary and Discussion

This thesis primarily reviews the basics formalism to carry out perturbation

analysis for a class of spacetime geometries. We already discussed in the

introduction how this formalism may be useful to explore the instabilities

in Euclidean path integral approach to quantum gravity. The ideas were

then applied to study the (in)stablity of higher dimensional Schwarzchild

spacetimes under Ricci flow. We briefly summarise the main points of the

thesis in this section:

1. The gauge-freedom of the theory enables us to impose the transverse-

traceless conditions. Although transverse conditions may always be im-

posed in general but traceless condition can only be imposed in vacuo.

2. In TT gauge, the stability of the class of spacetimes we have considered

depends on the spectrum of the Lichnerowicz operator.

In the case of Ricci flow problem we focussed on, the strategy is to break

the perturbation variable into a transverse-traceless piece, a trace and

a traceless piece of a divergence. The TT part decouples from others

because the Lichnerowicz operator is also TT. We then study this TT

part.

3. To simplify the Lichnerowicz operator eigenvalue equation we need to

impose certain symmetry conditions on the base manifold. In our case
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we assumed that that base manifold is maximally symmetric and has

a constant curvature.

4. The symmetry of the base manifold enables one to decompose the per-

turbation into its tensor, vector and scalar part. These in turn can be

expanded in terms of respective harmonics on the base manifold. The

Lichnerowicz eigenvalue equation can then be studies for each type of

perturbation separately.

5.1 Future Directions

We are presently analysing the flow of vector perturbations using the strat-

egy suggested. Also, we plan to analyse the scalar perturbations moving

forward on the same track. We believe that systematic analysis as suggested

would help us better understand the unstable modes(if any) of the higher

dimensional Schwarzchild spacetimes(Schwarzchild-Tangherlini) under Ricci

flow.

We hope to generalise the ideas discussed in this thesis to study certain

problems which will help us understand better the stabilities/instabilities of

classical spacetimes in quantum gravity.
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Appendix A

Variational Formulae

In this section we review(and derive) some of the important formulae related

to linear perturbation theory in arbitrary background.

A.0.1 Variation of Christoffel symbols

Let g(s) be a one-parameter family of metrics such that ∂
∂s
gij = hij, then we

have

∂

∂s
Γkij =

1

2
gkl (−∇lhij +∇ihjl +∇jhil) (A.1)

To prove the above formula we follow the usual trick of computing at

an arbitrary point p in the manifold in normal coordinates. Then we have

∂kgij(p) = 0. Hence, Γkij(p) = 0. Also in such coordinates all the covariant

derivatives can be replaced by partial derivatives. Thus at p we have,

∂

∂s
Γkij =

1

2
gkl
(
−∂l

∂

∂s
gij + ∂i

∂

∂s
gjl + ∂j

∂

∂s
gil

)
(A.2)

=
1

2
gkl (−∂lhij + ∂ihjl + ∂jhil) (A.3)

Now since at p partial derivatives and covariant derivatives can be used

interchangeably hence we have
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∂

∂s
Γkij =

1

2
gkl (−∇lhij +∇ihjl +∇jhil) (A.4)

Also since both sides of the above equation are components of tensors

hence its validity is guaranteed in all coordinates systems.

A.0.2 Variation of Riemann and Ricci

Recalling the definition of Riemann and Ricci tensors we have

Ri
jkl = ∂kΓ

i
lj − ∂lΓi kj + Γi kmΓmlj − Γi lmΓmkj (A.5)

Rjl = Rk
jkl = ∂kΓ

k
lj − ∂lΓkkj + ΓkkmΓmlj − ΓklmΓmkj (A.6)

By same logic as in case of Christoffel symbols, the variation of Ricci tensor

is given by
∂

∂s
Rjl = ∇k

(
∂

∂s
Γklj

)
−∇l

(
∂

∂s
Γkkj

)
(A.7)

On substituting from equation we have

∂

∂s
Rjl = ∇k

{
gki

2
(−∇ihlj +∇lhij +∇jhil)

}
−∇l

{
gki

2
(−∇ihkj +∇khij +∇jhik)

}
= ∇i

{
−∇ihlj +∇lhij +∇jhil

2

}
− ∇l∇jh

2

(A.8)

Now recall the following relation

[∇a,∇b]Vc = −Rm
cabVm (A.9)

Using this we have the variation of Ricci tensor as

2
∂

∂s
Rjl = −∇i∇ihlj−∇j∇lh+Rmlh

m
j+Rmjh

m
l−2Rmjklh

mk+∇l∇ihij+∇j∇ihil

(A.10)

To obtain the formula for the variation of Ricci scalar we recall that Ricci

scalar is given as

R = gijRij (A.11)
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On differenting w.r.t. s we obtain

∂

∂s
R = Rij

∂

∂s
gij + gij

∂

∂s
Rij (A.12)

On plugging in the expression for variation of Ricci tensor calculated before

we have
∂

∂s
R = −hijRij +∇i∇jhij −∇k∇kh (A.13)
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