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Abstract

In this thesis we focus on supersymmetric quantum field theories. In particular
we study the maximally supersymmetric N' = 4 super Yang-Mills theory in light-
cone superspace. We present two applications of light-cone superspace formalism:
1) we derive a new Lagrangian for AV = 4 super Yang-Mills, where the scattering am-
plitudes are manifest, and 2) we initiate a new formalism for computing correlation
functions of gauge invariant operators.
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Chapter 1

Introduction

1.1 Quantum field theory

The physics at small-scales is described using quantum mechanics. We resort to
special relativity to explain phenomena at high speeds. Since elementary particles
are both small and can travel at high speeds, we need to use relativistic quantum
mechanics to describe their dynamics. The combination of quantum mechanics
and special relativity inevitably leads to the conclusion that particle number is not
conserved, i.e. particles can be created or annihilated - a feature regularly observed
in collider experiments.

However, quantum mechanics is insufficient for describing systems where the
particle number is not fixed. Thus we describe particles using fields, which can
intefere constructively or destructively resulting in creation or annihilation of parti-
cles. Quantum field theory (QFT) is a quantum, relativistic theory of fields, which
is well-suited for explaining the interaction of elementary particles.

In quantum mechanics, we quantize the dynamical variables of classical particle
mechanics, i.e. we promote the dynamical variables in the theory to operators acting
on a Hilbert space. In the same way, QFT is the quantization of classical fields, i.e.
classical fields are promoted to operators acting on a Hilbert space.

1.2 Symmetries

An important object in QFT is the Lagrangian of the system. The Lagrangian gives
the classical equations of motion for the system, and the quantum mechanical prob-
ability amplitudes. Various symmetry principles govern the form of the Lagrangian.
A Lagrangian may have several symmetries, both continuous and discrete. The
symmetries may be global or local; they may be spacetime symmetries or internal
symmetries. According to Noether’s theorem, to every symmetry is associated a
conserved quantity. These conserved quantities, also called conserved charges, are
the generators of their respective symmetry transformations. We mention below
some of these symmetries.



1.2.1 Poincaré invariance

The Lagrangian of a relativistic theory must be invariant under Lorentz transforma-
tions, upto a divergence. A stronger condition is Poincaré invariance, which includes
Lorentz invariance as well as spacetime translational invariance.

The four conserved Noether currents associated with translational invariance
form the energy-momentum tensor. The conserved charges, associated with the
conserved currents form the momentum four-vector, P*, where P is the total energy
carried by the field and P is the total linear momentum of the field. Furthermore,
there are six conserved charges associated with Lorentz invariance, three of which
give the total angular momentum of the field. The ten generators of the Poincaré
group form a closed algebra through their commutators called the Poincaré algebra.

1.2.2 Gauge symmetry

Gauge symmetry, or gauge redundancy is a fundamental principle in modern particle
physics. It allows for independent, internal symmetry transformations of a field at
every point in spacetime.

The simplest example of a gauge theory is classical electrodynamics. The La-
grangian of the theory is given by

1
L=—-F"F
4

jnze

F. =0,A, —0,A,.
The Lagrangian is invariant under the gauge transformation
A (z) = A (x) + 0, A ().

This is also known as gauge redundancy since physical states related to each other
by gauge transformations are one and the same. Thus we have freedom to fix the
gauge, to get rid of the redundancy in the description. Common examples of gauges
are the Lorentz gauge, 9,A" = 0, and the Coloumb gauge, V.A = 0.

The gauge field A, descrlbes photons. Note that photons have only two physical
degrees of freedom, While the gauge field A, has four components. Although it is not
manifest, the gauge field has two independent components only (this is because the
Ag component has no kinetic term, i.e. it is not dynamical, and hence is completely
determined in terms of the other three components; furthurmore, fixing a gauge fur-
ther reduces the number of independent components by one). As we shall comment
later, implementing a particular gauge choice, the light-cone gauge, provides a de-
scription of the theory solely in terms of the physical degrees of freedom. However,
this comes at the expense of manifest Lorentz invariance. We discuss Yang-Mills
theory in light-cone gauge in more detail in Chapter

Electromagnetism, which is discussed above, is the simplest example of a Yang-
Mills theory (also refered to as gauge theory). Quantum electrodynamics (QED) is a
theory of the vector field A, (gauge field) and a spin-1/2 field ¢ (spinor), interacting
with each other. The spinor field gauge transforms as

Y(z) = e MY (a),



and the (gauge invariant) QED Lagrangian is given by

T

where 7# are the Dirac matrices, and the covariant derivative D, = 0, —ieA,. The
spinor 1) describes electrons. The conserved current associated with gauge invariance
in QED is the electric current density, and the conserved charge is the electric charge.

QED is an example of a Yang-Mills theory where the gauge symmetry group is
U(1). A non-abelian Yang-Mills theory, with gauge symmetry group SU(N) has the
Lagrangian

I 1 va a .
‘C:w(zfyuDﬂ>w_ZFu Fuu_mw’l/}7

where 1 is now a multiplet of N spinors, the colour labels @ = 1,...,N? — 1,
D, =0, —igA;T", and

Fi, = 0,A; —0,A] + gf“bcAi’LA,‘j ,
where T® are the generators of the gauge group SU(N), obeying the commutation
relations (or Lie algebra)
[Ta’ Tb] — ,l'fabcTc ’
where the real factors £ are the structure constants of the group. The spinors and
guuge fields transform under gauge transformations as

Y(z) = e IO Y(2), A (2) = Af(2) + 9,A%(x) + gfAAY,

Quantum chromodynamics (QCD) is an example of a non-abelian Yang—Mills theory
based on the gauge group SU(3).

1.2.3 Supersymmetry

Supersymmetry is a symmetry that relates bosons (fields which transform as in-
tegral spin representations of the Poincaré group) to fermions (fields which trans-
form as half-integer spin representations of the Poincaré group). Supersymmetry
transformations mix bosons with fermions, and thus their generators are necessarily
fermionic. Supersymmetry is an extension of the spacetime Poincaré symmetry, with
the supersymmetry generators expanding the Poincaré algebra to the superPoincaré
algebra. We discuss supersymmetry in more detail in Chapter 2L

Supersymmetry plays a role in several candidate theories describing physics be-
yond the Standard Model. However it has not yet been experimentally verified.
Regardless of its fate as a physical theory of Nature, supersymmetry has found sev-
eral uses as a powerful calculational tool. The work presented in this thesis utilizes
this useful feature of supersymmetry.

*

This thesis is organised as follows. In Chapter 2] we review light-cone gauge, light-
cone superspace, and N' = 4 super Yang-Mills (SYM) theory. In Chapters B and @
we present two applications of N' = 4 super Yang-Mills (SYM) theory in light-cone

gauge.



Chapter 2

Light-cone superspace

2.1 Light-cone gauge

In this section, we shall review light-cone coordinates and light-cone gauge, in the
context of electromagnetism and (non-abelian) pure Yang—Mills theory.

2.1.1 Light-cone coordinates

We are free to choose any coordinate system we like to tackle a particular problem.
We choose to work in light-cone coordinates, because it makes the formulation of
our theory easier.

With the space-time metric (—, +, +, +), the light-cone coordinates and their deriva-
tives are defined as

.T:t = —2(370 + .T3) 3 0i = —2(—60 —+ 83), (21)
1 - 1
1 1
such that
Ota” =0 2t = —1; Or = 0z = +1. (2.4)
We can also verify that
0= 09, =2(00 — 0,.0-). (2.5)

a2t plays the role of light-cone time, J_ is now a spatial derivative, and its inverse

L is defined using the prescription in [3],

o_"

51 = [ e -a)r©). (26)



2.1.2 Electromagnetism in light-cone gauge
Classical electromagnetism (with no sources) follows from the Lagrangian

L= —lF‘“’F

A u s

where F,, = 0,A, — 0,A,. (2.7)
The vector gauge field A, represents the photon.
In the usual space-time metric, the gauge field A,, has four components { Ay, Ay, Az, A3}.

Working in light-cone coordinates, the gauge field has components {4, A, A* A~}
with

1 1 . 1

Af = —(A°+ A3 A= —(A1+idy); A=—(A —iA,). 2.8
\/5( ) \/5( 1+ i4,) \/5( 1 —i4,) (2.8)

The defining path integral of the theory is,
/ DADADAT DA™ ¢/ "L (2.9)

where the Lagrangian
1 = — v

L= —Z/dxdxdx FM™E,, (2.10)

is a function of {4, A, AT, A~}. Recall from the previous chapter that the gauge
field A* is arbitrary upto a further fixing, which is called gauge freedom. We use
gauge freedom in fixing the gauge, by implementing the light-cone gauge

At =0. (2.11)

This is effected in the path integral by introducing a delta function
/ DADADA" DA™ /4 E54™) | (2.12)

which leaves us with
/DA DADA™ /4L (2.13)

where L is now just a function of {4, A, A~}. Tt is now possible to rewrite the path
integral as a gaussian in A™:

/ DADA ¢/ 4 (404) / DA~ ¢ 4(0-47-04-04)" (2.14)

where the A~ component can now be integrated out (after employing a change of
variables).

The Lagrangian is now a function of only two components, A and A. Thus
the advantage of choosing light-cone gauge is that we can eliminate the unphysical
degrees of freedom, and only work with the physical degrees (in this case, A and A
represent the left-circularly polarised and the right-circularly polarised light).

8



2.1.3 Non-abelian Yang—Mills in light-cone gauge

As mentioned in Chapter [, the Lagrangian for a (non-abelian) pure Yang—Mills
theory is

1
L= —ZTr (F"FEL), F., =0,A, —0,A,+glA. A, (2.15)

where the trace is over colour labels and ¢ is the dimensionless coupling constant in
the theory. Note that in contrast to free electromagnetism, this Lagrangian contains
cubic and quartic terms in A,, which represent the interaction vertices in the theory.

To rewrite this Lagrangian in light-cone gauge, we proceed in exactly the same
manner as we did for free electromagnetism. We choose the light-cone gauge, and
integrate out the A~ component, so that the effective action in the path integral,
which is now just a function of {A, A}, is

S = /d:c*L (2.16)

with L =L "+ Lt + L=t + L=="", where

L™ = Tr / d*x ADA, (2.17)
L™t = —2igTr / d*x L?A,A} O_A, (2.18)
Lt = —2igTr / d*x L)EA,A} O_A, (2.19)
L~ = 2¢° Tr/dgx 8% [0_A, A ai_ [0-A, Al (2.20)

2.2 Supersymmetry: superspace and superfields

The Lagrangian for a supersymmetric theory is invariant under supersymmetry
transformations. However the Lagrangian, written in terms of the component bosonic
and fermionic fields may not be manifestly supersymmetric, i.e. its invariance un-
der supersymmetry transformations may not be obvious. However, it is possible to
rewrite the Lagrangian in a manifestly supersymmetric form, by introducing new
notation, namely superspace and superfields.

Several different supersymmetric models have been proposed in the literature.
Some of these models have more than one kind of supersymmetry transformation.
These are known as extended supersymmetric models. The N = 4 super Yang—
Mills (SYM) theory in four dimensions is an extended supersymmetric theory, with
maximal supersymmetry allowed (for a theory describing particles upto spin one).

The field content of the N’ = 4 SYM theory comprises a gauge field, A, four
Weyl fermions, 1™, and their conjugates, ¥4, m = 1,...,4, and six real scalars,
e i=1,...,6.

m
o)



We now explain what we mean by superspace and superfields in the context of
N = 4 SYM theory. A covariant superfield formalism of this theory has not been
found, but one in light-cone gauge has been successfully developed [4]. We shall
work in light-cone gauge in the following.

2.2.1 Grassmann numbers

Before we introduce the superspace, we shall discuss anticommuting numbers, called
Grassmann numbers. If 7,77 are Grassmann numbers, then

2
=0, 7 =0, gn=-nn.

Thus the most general function of a single Grassmann number 7 is

fn) = fo+ fin.

The most general function of two Grassmann numbers, 7 and 7’ is

g, m") = go+ g1n + go2n’ + gz

Grassmann integration is defined as follows

/dn:O, /dnnzl.
/Mwﬁﬁz—/&m/ﬂﬂﬂz—L

/@ﬂmzﬁ, /@Mﬁ%%z—w

The differentiation operator anticommutes with Grassmann numbers

This implies

Thus

@ — 1 8(77/77> — _nl@ — _,r]l
on n n '
Thus
of o g Lo 00y _
a1 =J1, an =017 gsn, iy = g2 — 931, an’ o =93

The anticommuting Dirac delta function has the property

/ an 8(n— 1) f(n) = £(i)

This implies that

/

dn—n)=n—-1.

10



2.2.2 N =4 light-cone superspace

The light-cone superspace for ' = 4 SYM theory is obtained by adding eight
fermionic (Grassmann) coordinates to the four bosonic spacetime coordinates,

Z = {ZL‘,ZE,I‘—F,ZL'_ ,01,02,03,04,51 ,62,0_3,9_4}. (221)
This can be compactly written as z = {z#,0™ ,0,,}, where m = 1,...,4. Note that
(ém) = 0™. Define Grassmann derivatives
- 0
0

0
— 2.22
90, (2.22)

then the various anticommutation relations are

(0m.0") = {0m,0,) = {07,0,} = {0,0") = {9,0,} =0;  (2.23)

{0™,0,y =07 {0, 0"} =" . (2.24)
We also introduce the superspace chiral derivatives, d™ and d,,, defined as
g0 gy g 0 gy 14 (2.25)

W V2 o0 2

They obey B
{d™, d,} = ivV26m 0. (2.26)

The Grassmann integrals in light-cone superspace are normalised so that
/d@m 0" =9, , /d@m 0, =om. (2.27)
We define

1 ] I
440 = < A0n6,d0,06, 419 = iy S 07487 A07A0". (2.28)

This, together with ([2.27)), ensures that

/ A9 5% (9) = / d*06W @) =1, (2.29)
where the d-functions are defined as
S (0) = (0") = cpnpgd™0m0707, 5 (0) = (0" = ™9,,0,0,0,.  (2.30)

Note that due to the anticommutativity of Grassmann numbers and the antisym-
metry of the Levi-Civita symbol,

Emmpgd ™ 0"0P01 = 41 0102030* . (2.31)
The following identity can be verified using the normalisation of Grassmann integrals

- o 1
/d40d40 0"0"0v00,,0,,0,0, = 1 (2.32)

11



2.2.3 N =4 superfield in light-cone superspace

The following description of the A/ = 4 superfield in light-cone superspace closely
follows the descriptions presented in [I1 [4].

The irreducible representations of the supersymmetry algebra are referred to
as supermultiplets. Each supermultiplet contains an equal number of bosons and
fermions, which are called the component fields. A superfield is a function of super-
space coordinates containing all the component fields.

As previously mentioned, the field content of the A/ =4 SYM theory comprises
a gauge field, A, four Weyl fermions, 7', and their conjugates, Yma, m=1,...,4,
and six real scalars, ¢, i = 1,...,6. The gauge field components are

L L 1
R V3 V3

The light-cone gauge description of the theory uses only physical degrees of freedom.
As before, we fix the gauge by setting AT = 0 and integrating out A~, leaving the

Ay (Ag+ A3), A=—(A+iAy), A=-—(A —idy). (2.33)

two transverse components, A and A. Similarly the four Weyl fermions, 1™, and
their conjugates, ¥, 4, are decomposed according to the projection

U = Yl =Pl e = U = Pita, (2.34)

vifhere Py = —%ai, with 0% = %(00 +0°). We then integrate out the ¢}, and

1/1,(71+ ) components, leaving four one-component fermionic fields and their conjugates,

A=y Am =) (2.35)

The N = 4 multiplet is completed by the six real scalar fields, which we represent
as SU(4)r bi-spinors, ¢, m,n = 1,...,4, satisfying the reality condition

_ e L
Pmn = (4;0 ) - §5mnpq90pq . (236)

An irreducible representation of the N = 4 super-algebra is realised in terms of a
single complex superfield, ®(z, 0, #), which contains all the fields (A, A, \™ A, , ™)
as components. The superfield ®(x, 6, 0) is defined by the constraints [4] (]

_ _ 1 _ _
A" ®(2,0,0) =0, dudi®(2,0,0) = Jennpgd"d®(x,0.0), (2.37)

where ® = ®* satisfies d,,®(x,0,0) = 0, where d™ and d,, are the chiral derivatives
defined in ([Z23). The unique solution to these constraints is a superfield with the
following component expansion [4]

1 7 - )
D (x,0,0) = ——A(y) — —0™)\ — 0™ %
(2,6,0) 5 (y) 5 m(y) + NG mn (Y)
2 1 _
+%9m9"€pemnpq)\q(y) BET) 0m0" 0" 0% g O-Aly),  (2.38)
where we introduced the chiral variable

1

y=(at,y =a 0"0,,, , ) (2.39)
V2

12



and the right hand side is understood to be a power expansion about x™.
In terms of the superfields ® and ®, the N’ =4 SYM light-cone action is [3} 4]

S = 72/d4x/d48d48£(<1>,é,&ué,aué) , (2.40)

where the Lagrangian density, £(®, ®,0,9,0,9) = L4 5, is

Lop = Tr { 285 @ ting (81 [@.00] + - [é,a@})
Iy ( S (00.0) - [0.0.0] + L [0.0] [cp,q)})}. (2.41)

The superfields ® and ®, just like the component fields in the N' = 4 multi-
plet, transform in the adjoint representation of the gauge group SU(N). They can
therefore be represented as matrices,

O(z,0,0) = 0 (x,0,0)T*,  d(x,0,0) = ®*(x,0,0)T, (2.42)
where 7%, a = 1,..., N? — 1, are generators of the fundamental representation of
SU(N), satisfying

1
(7%, T"] =if*Te,  Tr(T°T°) = 3 5, (2.43)

and f* are the structure constants for SU(N).
The superfields ® and ® satisfy additional “hidden” constraints. One verifies that
(Z31), together with the supersymmetry algebra ([2:26]), gives the following relations

A dp dpydy ® = 2109, 0 P, (2.44)
A dpdy® = iV2Emp, d10_ (2.45)

_ - 1 -
dpd, @ = 5;;-m,,qdpdq<1>, (2.46)

_ 1

dp® = mnpg " dP d? — @ 2.47
6\/_8 Pq 8, ( )

1 m Jn
O = g Empd" A o 82 P. (2.48)

In fact, the complex conjugate of constraint (2.48) can be used to write the La-
grangian for N' =4 SYM (241]) purely in terms of the superfield ®,

R PO N I m A g
oo - Jor (50

gy et K% @a) woo L (8_¢a (<gg>_@b)a(<£> q;)]

(o) ()




where trace has been performed over the colour indices, using (Z43), and (d*) =
e, dydd,.

On some occassions it will be convenient to rewrite the A/ = 4 superfield (2.38))
as

_ __i_pmp 1 Z — 'l
O (2,0,0) = ¢ 200~ | A(g) — —0m),, 05,
(2,0,0) = e (z) 5 (z) + 7 ()
1

5 Sl 0" N (1) — T 00007 0_A(z) | . (2:50)

S

2.2.4 Position space super Feynman rules

Perturbative evaluation of correlation functions or scattering amplitudes in a quan-
tum field theory becomes mathematically increasingly tedious with increasing orders
in the coupling constant. Feynman rules for the theory are a set of rules which spec-
ify once and for all how to represent each term in the perturbation series with
a pictorial representation, called a Feynman diagram. Feynman diagrams offer a
convenient way to keep track of the terms in the double exponential series in the
coupling constant and external sources. Feynman rules are then used to translate
the pictures back to mathematical expressions.

We shall now present the position space Feynman rules for N/ =4 SYM theory.
We work solely in terms of the chiral superfield, using the action in the form (Z409]).
The superfield propagator is given by

Aj(z—2) = <<I>“(:v,9,55) Oy (2,0, 0))
= — 2 g 1 N\ p __ opN\NsD(pg _ o
@) 2nE (o =) @10 0= )0 =), (2:51)

where (d*) = cpnpd™d?dPd?, and 6 (0 — ') = €,pg (0™ — 0™) (0" — 0™)(0P —
0'7)(07 — 0'7). The result is derived in appendix [A.22l In appendix [A.2.2] we show
that this propagator leads to the correct propagators for the component fields.

The superfield interaction vertices in configuration space can be immediately
read off from the superspace action (2.49). They involve a combination of chiral
and space-time derivatives and 1/0_ operators acting on the various legs as well as
group theory factors. The two cubic vertices are

/ d122 (—2g) f0° (<§—>¢) B0, — (~29)f" «

(2.52)

14



and

(2.53)

Here we use a black dot to denote interaction vertices, which are integrated over the
whole superspace, z = (z, 0, 0), reflecting the fact that all intermediate steps in the
calculations are manifestly N/ = 4 supersymmetric. In the following we will refer to
[Z52) and ([Z53) as Vertex 3-I and Vertex 3-1I respectively.

The two quartic vertices are

Jors ()l g (G0

92 eab recd
— ()

and

(2.55)

In the vertex (Z54) the two 1/0_ operators in the shaded ovals act on both the
adjacent legs. We will refer to (254]) as Vertex 4-I and to (2.550]) as Vertex 4-IL.

15



Chapter 3

MHYV Lagrangian

The material in this chapter is largely based on a paper [I] by the author (with
Dr. Sudarshan Ananth and Dr. Stefano Kovacs).

3.1 Introduction

Scattering amplitudes carry all the physical information in QFT. The traditional
approach to computing scattering amplitudes goes as follows: first we compute the
correlation functions in the theory using Feynman diagrams, and then apply the
LSZ reduction formula to obtain the amplitudes.

There are several disadvantages of working with the traditional method for a
gauge theory. First, the individual Feynman diagrams are not gauge invariant -
thus do not reflect the symmetry of the theory. But the sum of all possible Feynman
diagrams is gauge invariant. However, with growing number of external particles,
the number of Feynman diagrams to consider grows very rapidly, e.g. for a 9 particle
scattering, there are 559,408 diagrams to evaluate - which is impractical. Secondly,
explicit computation reveals there are huge cancellations between diagrams, and the
final expressions for scattering amplitudes (at tree-level) have a very simple form.
The simplicity of the scattering amplitudes hints at the possibility of an alternate
way to arrive at the amplitudes.

In particular the simplicity is strikingly evident when one considers planar am-
plitudes with external states of definite helicity and focusses on the so-called colour-
ordered partial amplitudes, as opposed to full cross-sections. They depend only on
the momenta and helicities of the n gluons. The simplest non-trivial partial ampli-
tudes are those with two gluons of one helicity and all the others of the opposite
helicity. Amplitudes of this type with two gluons of negative helicity and n — 2
gluons of positive helicity are referred to as maximally helicity violating (MHV).

Cachazo, Svrcek and Witten [7] suggested an approach to perturbative calcula-
tions in Yang—Mills theory, refered to as MHV formalism, which makes it possible to
construct generic helicity amplitudes by sewing together off-shell MHV amplitudes
in the theory. In [9] and [10], it was shown that a “MHV Lagrangian” can be derived
from the usual light-cone Yang—Mills Lagrangian, by a suitable field redefinition.
The MHV scattering amplitudes are manifest in the new MHV Lagrangian.
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We have extended this idea to a supersymmetric Yang—Mills theory, the N/ = 4
supersymmetric Yang-Mills (SYM) theory. In this chapter, we derive a manifestly
MHV Lagrangian for the N' = 4 SYM theory in light-cone superspace. This is
achieved by constructing a canonical redefinition which maps the N' = 4 superfield,
®, and its conjugate, ®, to a new pair of superfields, y and Y. In terms of the new
superfields the N' = 4 Lagrangian takes a manifestly MHV form, i.e. involves only
MHYV vertices. We also identify new constraint relations satisfied by the new super-
fields. Finally, we test our derivation by showing that an expansion of our superspace
Lagrangian in component fields reproduces the correct gluon MHV vertices.

3.2 Helicity assignments

In light-cone gauge we can identify helicity with the U(1) charge associated with
rotations in the transverse (z, z) plane. Complex fields are used to describe particles
with helicity. Real fields describe helicity zero particles (Lorentz scalars). In the
case of N' =4 SYM, the helicity assignments are as given in table Bl

Fields | U(1) charge | Helicity | Factors | U(1) charge | Helicity
A +1 + om +1/2 +
A -1 - 0,, —1/2 —
A —1/2 - P +1 +
A +1/2 1 0 -1 —
o 0 0 ot 0 0

Table 3.1: Helicity assignments

As a result the superfield ®(z,6,0) has definite helicity +1, as shown by the
component expansion (23]). Similarly, the expression of the conjugate superfield,
®(x,0,0), in terms of component fields shows that it has helicity —1. This ensures
that the A" = 4 SYM action (240) is U(1) neutral as required by Lorentz invariance.

In view of these helicity assignments for the N' = 4 superfields, ® and ®, we can
write the light-front Lagrangian as

Log = / d*zd*0d*0 [qu;) +LoTT LT L (3.1)

b
where the integration is on a surface of constant z+, X, and the superscripts refer
to the number of superfields of helicity +1 (®) and —1 ( ). Comparing with (2.47))

we find -
(=) _ T

_ 1 - - _
£ _ZSgT (a—qD[@,@qD]) : EEI@ )—zggTr(

(3.2)

1

o (3.3)

o[, acp])

.3
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and

Lfbgﬂ) = 2¢? Tr(ai_[q% acb]ai_[cb, O0_d] + %[cb, P[D, <I>]) . (3.4)

3.3 Towards a MHV Lagrangian for N' =4 SYM

In this section, we identify a superfield redefinition
O(x,0,0) — x(x,0,0), O(x,0,0) — X(x,0,0), (3.5)

such that in terms of the new superfields the N' = 4 action takes a manifestly MHV
form. We require the redefinition to be a canonical transformation in superspace,
to ensure that the change of variables ([B.35]) does not give rise to a Jacobian when
used in the path integral. The transformation must also preserve the helicity of the
superfields, so that x(z,6,0) and X(z,6,0) must have the same definite helicities,
+1 and —1 respectively, as the original superfields.

Our construction of the superfield redefinition (8.3) follows closely that of [10, [1T]
for the pure Yang-Mills case. As in those papers, we will find that, in order to
produce a manifestly MHV Lagrangian, the redefinition (B.3]) is necessarily non
polynomial. The superfields ® and ® are given by infinite series in the new fields y
and Y. We will show that the superfield redefinitions take the form

Op)=> 9”2/d3p1 1 6P (p—pr— - = P )T (D P1s - Pa1)
n=2
XX (p1) -+ X(Pn-1)

®(—p) = —Zzg"‘zfdgpl & 8V (p - +pn_1)<§)

(p;ph cee 7pn71>X<p1> T X(psflﬁ\(/(ps)X(szrl) T X(pn*1>

where the dependence on the fermionic coordinates, 6 and , has not been indicated
explicitly. Here and in the following d®p denotes dp_ dpdp in momentum space
integrals. We will outline how to derive the explicit form of the coefficient functions,
I' and Z, in these series.

Substituting the expressions of ® and ® in terms of y and X gives rise to a
Lagrangian of the form

k

B 00 ——
Lz = / Crdtgdo |00+ T (3.6)
> k=1

7%

in which all terms are manifestly MHV in light-cone superspace. Here the k-th term
in sum contains two X’s, k x’s and a factor of g*.

Our superspace analysis presents additional complications, which do not arise
in the non-supersymmetric case. The transformed superfields do not satisfy the
constraints (231) satisfied by the original superfields, and so they are not guaranteed
to describe the same degrees of freedom. We shall identify new constraints satisfied
by the transformed superfields and prove that y and x with these new constraints
describe the irreducible A/ = 4 multiplet.
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3.3.1 Canonical Transformation

As in the pure Yang-Mills case [9] [0, II], the aim is to construct the superfield
redefinition in such a way as to eliminate the non-MHV cubic vertex, EEI:; +), from
the Lagrangian. The new superfields, y and Y, are thus defined requiring

() | pl+t) | pl=)
Lq)’é +£<1>,<i> —>£X& ) (3.7)

To ensure the canonicity of the transformation, we define the new superfields, x
and Y, via a generating functional. In complete analogy with the pure Yang—Mills
case [10], we search for a generating functional of the form

K(x,Te) = / d®z d*0d*0 Tr [k(x) 7s] , (3.8)

where 7g is the conjugate momentum to ®. From K(x, 7g) we construct the canon-
ical change of variables, which is defined by the relations

§(Tr [k(x) 7] (2, 0',0"))
ome(x,0,0)

6(Tr [k(x) me] (2,0, 0))
ox(x,0,0) ’

O(x,0,0) = /dgx'd49' d*o’
(3.9)

T (7,0,0) = /d3x'd49' de’

where 7, is the momentum conjugate to x.

The functional k(y) in (B.8) is fixed by the requirement that the Lagrangian
written in terms of the new superfields take the desired MHV form. The first
equation in ([39) implies ® = k(x), i.e. it defines the relation between ® and the
new superfield y. The second equation in (3.9) becomes

~ 1 ~
m(2,0,0) = a—%(m,@,@):/d?’x’d‘la d*a

0{d*(2, v, 642(15“)
dx(z,0,0)

ij} 1 Fb( ot —\ (1b\Jj
8_,{(1) (', a,@)(t");} .

(3.10)
and it defines the new superfield X in terms of ® and ®. The form of the generating
functional (B.8) ensures that the terms involving 0, cancel out in (B.7)),

= 1 - - 1
/d% d* d* Tr (28—<I> a+q>) = /d% d*0d*0 Tr (28—>za+x) . (3.11)
We substitute (BI0) into (B1) to obtain (after Fourier transforming)

2 {23} 00,
P Z §5G) — Dy — — P, —/ —x;1 =0 3.12
w1 Py +23g/23 (pl P2 ps) D2+ Pa_ 2®3 lwl o X1 ) ( )

where ©; = ®(p;), wy, = I;)kTﬁ_k and {i,j} = (pjpi- — pip;—) and for the measures we
have defined

/ = /Hdpk_ dpy. dpy and /d@ = /d40 d*6. (3.13)
12..n k—1
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In the following we will also use the notation (p;, p;) = p;pi_ — pip;_-
Condition (BI2]) indicates that ® is a power-series in x of the following form

¢y = ZgnQ/ 5@ (pr=p2——pa) D12 X2 Xn - (3.14)
n—>2 2..m

Tio o =T(p1,p2,...,pn) are coeflicients to be determined order by order. Substi-
tuting the ansatz (B.I4) back into (812), we find the I' coefficient is

O\ o3 Pl D} ) D
_mwm:( ) ( () (3.15)

[y ;
3 p?ap3)(p3ap4) ce (pn—lapn)
where F+7/L'7j = Fi+j7i7j.
Having obtained an all-order expression for the field redefinition for ® we now

turn to ®. We differentiate ® with respect to y and substitute the result in (ZI0)
to obtain the following expression for ®

[e.e]

i 2y Pl —s_ _
d_ Z gm? / 56 (p1+pat-- .—|—pm)p— :1,271.”’,%)(2 e X5 Xs Xt - - - Xoms
s—2 J2..m

| = —
m=2 ST
(3.16)
where the superscript on = corresponds to the position of y in the string of x’s. To
compute the higher order = coefficients, we start with (3.I1]). From the expansion
of ® in (BI4), since all the fields have the same 2™ dependence and none of the T’
coefficients depend on 2, we get

1Py = ZQW2 Z /5(3) (p1—=p2— = pa) Tz aX2 - Xr—104 XX 41 - - - Xne
n=2 r=2 7/ 2.-m
(3.17)
We substitute (8.16) and (BI7) in (BII), and evaluate order by order to find,
B gm = P Piom (m>3;2<s<m), (3.18)
-1 _ =s—1

where E75; = S5, 5-
The transformations ([B.I4) and (B.I6) can be inverted to express x and X in
terms of ® and ®. The details of the calculation in this section are presented in [I].

3.3.2 New constraints

As discussed in section 2223 the original superfields, ® and ®, are both constrained.
They satisfy (anti) chirality conditions,

"o =0, d,d=0, (3.19)
and constraints (2.44))-(2Z.48]).

The most general superfield in ' = 4 superspace does not describe an irreducible
multiplet of the N' = 4 superalgebra. Imposing the constraints (3I9) and (244)-
([Z48) reduces the number of independent components in ® and ® ensuring that
these superfields describe only the N = 4 degrees of freedom.
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We need to show that the new superfields also describe the N' = 4 supermultiplet.
This is not guaranteed, because in constructing the canonical change of variables,
we have treated ® and ® as unconstrained. We need to deduce what conditions for
x and Y are implied by the constraints on the original superfields and then show
that these new conditions give rise to the correct degrees of freedom. This can
be achieved starting with the inverse transformations and imposing the conditions
BI19), (Z44)-([248) on the right hand side.

From the transformation relating ® and x one can verify that the latter is also
chiral,

dx=0. (3.20)

The remaining constraints on ® and ® are, however, not valid for y and Y. In
particular, the superfield Y is not anti-chiral. Moreover, as a consequence of the
structure of the field redefinition, we expect the constraints satisfied by y and x to
be modified order by order in the coupling. We will present here the schematic form
of the new conditions for y and X to order g.

We start with the inverse transformations truncated at order g,

Xp = D, — g/ dp—q—7)Tper ©,P, + 0(g%) , (3.21)
qr

- _ p- . p- .
Xp = Pp + 9/5(10 —q—r) {q_ U gr—p P @r + . | (I)r} + 0(92) .
qr - -
(3.22)

The expansion (B2T)) is consistent with the chirality of y. Acting with the superspace

derivative d,,, on (8:22)) and using [B.19), ([2.44)-(2Z48) we arrive at the relation
1 - d?
—dx ~ —X | X 3.23
EdX~ g ( 5 X) X (3.23)

which replaces the anti-chirality condition for .
The additional constraint relations [I], analogous to (2.44)-([24])), are

dt

ZX X+ +x+ -, (3.24)
a3 _ ; _

8_~ ~ dy + gxdx + ¢*\Pdx + - -, (3.25)
X~ dx + gdxdx + gxd’x + ¢*xdxdx + g*x*d*x + -+, (3.26)
O_dx ~ d’x+ gdxd®x +gxd’x+---, (3.27)
PN ~ d*x+gd*xd*x + gdxd®x + gxd*x + - . (3.28)

Notice that at zero-th order in the coupling y and Y coincide with ® and ® respec-
tively. The above conditions are consistent with this observation. The superfield y
is chiral and (B23)) reduces to

d(X)o =0, (3.29)



showing that Y is anti-chiral for g = 0. Similarly the conditions ([3.24])-(B3.28) reduce

to (2.44)-(2.48) at g = 0.
Having obtained the new constraints satisfied by y and x we proceed to show
that they give rise to the correct field content. Since y is chiral, we can write it asl]

X(2.0,0) = a(y) + By) [0] +v(y) [6]* + 5(y) [6)° + =(y) [0]*. (3.30)

We find that Y satisfying the “inside-out” relations ([B.24))-([B.28) is forced to have
the structure

X(2,0,0) = Aw(y) + Ao(y) [0] + Azo(y) 101> + Aso(y) [0]> + Aso(y) [0]*
+ A0 (y) 16] + Aoz (y) [0 + Aos(y) [0]° + Aoa(y) [6]*, (3.31)

where y is the chiral variable (239) and all component fields, A;;, i,7 = 0,...,4,
are fully determined in terms of the component fields «, 5,7,0 and .

The remaining condition on x and Y is (B23). Imposing this constraint halves the
number of independent components in the new superfields. Therefore we conclude
that x and Y contain a total of eight bosonic and eight fermionic independent degrees
of freedom.

3.4 MHYV Lagrangian for N =4 Yang—Mills

The manifestly MHV Lagrangian in terms of the new superfields y and x to order
2 .
g is

Lo = T [ d8dp o) T

49T [ d0dpdk sty + k1) gi(pikD) o [ T (3.32)

4P T / 0 dpdgdrdid(p+q+1+1) g0, 1) [Xs Xal (%02 ¥

+92Tr/d€dpdqdrdl<5(p+q+'r’+l) 922(D: 4,7, 1) [Xp s Xl [Xr > X1]

where
PP — P+D—
go(p) = —4 T+’ (3.33)
4 (q,7)
s Y = 5 > +q+r= 0 5 3.34
91(p,q,7) 3ot P+q (3.34)
16p_ (q- +7_)%(q,7) 4 _p_(r,1

9¢* I (qg+mnl 9(r_+1.)2(r+1,q)°
6r (¢ +r )¢+l ,(@p +ir)
9 p> q-(g.7) (¢ +1-)?

'Here we use the notation [0]™ to denote n powers of 6 without specifying the SU(4) g indices.

g (p,q,m 1) = : (3.36)
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where p+q+r+1=0.

Using the explicit expressions for the coefficients I and = in (B.14]) and BI6) it
is possible, though tedious, to derive higher order vertices in the MHV Lagrangian.
We will not present these calculations here.

3.5 Component Lagrangian

In this section we discuss the form of the gluon MHV vertices arising from the
component expansion of the superspace Lagrangian given in the previous section.
These gluon vertices should coincide with those in the pure Yang-Mills MHV La-
grangian [I0]. This will thus allow us to test our superspace result. We will carry
out the comparison for terms up to order ¢2, i.e. we will consider cubic and quartic
vertices.

We use the inverse transformations writing (, Y) in terms of (®, ®) to first order,
B211B22). Next we expand the superfields in terms of the component gluon fields.,
setting all other components in ® and ® to zero

1 — 1 9m@,,ip_ 1 rpsptpu - A
(I)p = _—pr Ap e V2 P — Egrstue 0°60'0 p— AP7
_ ]_ — _i_pgmp i ]_ —~ = = =
(I)p _ _Zp__ Ap eﬁe Omip— Egrstuereseteu ip_ Ap ] (337)

In order to make contact with the known form of the MHV gluon couplings we then
need to express the component fields, A and A, in terms of the new fields describing
the two helicities of the gluons, B and B. We use the form of the field redefinition
derived in [9] [T0] for the Yang—Mills case. Using these relations the new fields x
and Y can be written in terms of B and B. Substituting these expressions into
our superspace Lagrangian (3.32) reproduces exactly the cubic and quartic vertices
in the MHV Lagrangian of [9 [I0]. The details of the calculation are presented in
reference [I].

3.6 Discussion

In this chapter, we constructed a manifestly MHV Lagrangian from the usual La-
grangian for N' = 4 SYM in light-cone superspace. We found that the canonical
field redefinitions which were needed were non-polynomial. We determined the field
redefinitions to all orders, and also determined the new constraints satisfied by the
redefined fields. We also checked whether these constraints were enough to limit
the degree of freedom in the new superfields to describe the A" = 4 supermultiplet.
Finally, we reproduced the Yang-Mills MHV Lagrangian from the MHV Lagrangian
for N =4 SYM.

As discussed in the introduction section, a MHV Lagrangian, with MHV vertices
manifest, provides a Lagrangian origin to the MHV formalism developed in [7]. This
has many consequences, as techniques and lessons from the traditional Lagrangian
formulation of field theories may be utilized to understand more deeply properties
of scattering amplitudes in QFT.
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Chapter 4

(Gauge invariant correlation functions

The material in this chapter is largely based on a preprint [2] by the author (with
Dr. Sudarshan Ananth and Dr. Stefano Kovacs), which has been submitted for
review.

4.1 Introduction

In a conformally invariant gauge theory, the fundamental observables are the corre-
lation functions of gauge-invariant operators. In the case of the N/ = 4 supersym-
metric Yang-Mills (SYM) theory such correlation functions play a central role in
the context of the AdS/CFT correspondence [12] [13], [14].

In this chapter, we study such correlation functions in N/ = 4 SYM theory using
the light-cone superspace formalism. The unique advantage of this formalism is that
it provides a description, solely in terms of physical degrees of freedom, in which the
full N = 4 supersymmetry as well as the SU(4) R-symmetry are manifestly realised.
However, this is achieved at the expense of manifest Lorentz invariance.

In this chapter we shall introduce the main features of N' = 4 light-cone super-
space as applied to the study of gauge-invariant correlation functions in position
space. We shall specifically present the one-loop calculation of a simple four-point
correlator of gauge-invariant scalar operators belonging to the super-multiplet of
the energy-momentum tensor. We will reproduce the known tree-level and one-loop
results for the four point function of composite operators which are bilinear in the
elementary scalars and transform in the 20’ representation of the SU(4) R-symmetry
of N =4 SYM.

Our primary aim is to develop efficient methods for computing perturbative
corrections to correlation functions. We comment on the intriguing possibility that
the manifest NV = 4 supersymmetry in this approach may allow for a compact
description of entire multiplets and their correlation functions.

4.2 Perturbative calculations in position space

Gauge-invariant correlation functions in a conformal field theory are most naturally
studied in position space rather than momentum space. We now discuss some general
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aspects of perturbative calculations using the formalism of light-cone superspace. In
section [2.2.4] we presented the form of the superfield propagator and summarised
the Feynman rules in position space.

Notice that the superfield propagator in position space (2.51)) has essentially the
same form as in momentum space [5]. Consequently the basic manipulations em-
ployed in the calculation of position space super Feynman diagrams are the same
as used in momentum space. This represents a distinct feature compared with co-
variant superspace formalisms, where there are more significant differences between
position and momentum space formulations.

Super Feynman diagrams constructed from the interaction vertices and the prop-
agator contain space-time derivatives (0, 0 and O_, but not d,) as well as chiral
derivatives d™ and d,, defined in (Z25)). All these derivatives can be integrated by
parts in superspace integrals. They can also be transferred from one end point to
the other of the super-propagator they act on, A(z — 2’), using the fact that the
latter is only a function of the difference (z — 2’). Moreover, the 1/0_ operators can
effectively be “integrated by parts” as explained in (A.43]).

The general strategy for the evaluation of position space Feynman diagrams is
as follows. The first step consists in computing Grassmann integrals, utilising the
fermionic d-functions in the super-propagator. For this purpose one needs to free up
one internal line of all the chiral derivatives, using repeated integrations by parts,
and then use the relation (A.46) in appendix [A.3]

Once the fermionic integrals at each interaction vertex have been computed, the
external super-operators are projected onto specific components, thus drastically
reducing the number of non-zero contributions.

At this point the resulting bosonic integrals can be directly compared to the
corresponding expressions obtained using Lorentz covariant formulations. In section
[4.4] we illustrate these steps in the case of a simple four-point function and we show
how the light-cone superspace analysis reproduces the known covariant results prior
to the evaluation of the final bosonic integrals.

4.3 Composite operators and correlation functions

In this paper we will only consider examples of correlators of operators constructed
from the elementary scalars in the A" = 4 multiplet, ¢"™". This ensures that the
explicit form of the operators remain the same (in light-cone gauge) as in Lorentz
covariant formulations. The simplest such operators are scalars of dimension 2
belonging to the super-multiplet of the energy-momentum tensor. They transform
in the representation 20’ of the SU(4) R-symmetry group and, in terms of the ¢™"
representation for the elementary scalars, they take the form

1
QUi = T (9™ P) — ™ T (fr™)

1
= 3 Tr (2™ 4 " — ™M™ (4.1)
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We can express the same operators in terms of the representation ¢’ of the scalars
as SU(4)g vectors as

QY =Tr (gpigoj) — %5’7 Tr (gpkgok) . (4.2)

The equivalence of the two forms (A1l and (£2) can be verified using the identity

(A1)

In order to describe the operators (AI))-(£2]) in light-cone superspace we intro-
duce composite superfield operators which contain them in their component expan-
sion. For this purpose it is convenient to work with the form (£2) which, using
(A1) we can rewrite as

i 1 7 TS 1 17 rSs = A
QJ = g (O’ PAdgITs gdjgpq ) Tr (Sopqgors) . (43)

From the form of the V' = 4 superfield (2.38) and the definition (2.23]) of the chiral
derivatives, d,,, it is easy to verify that the scalar field @,,,(x) in the expansion of
®(z) can be isolated as follows

P (1) = —= [dndn ®(,0,0)]],_5_, - (4.4)

We can then define the super-operator

Q(e) = g (07 = g T (dd0(2) (B0 09

which contains (£3) as its § = § = 0 component,
Q7 (z) = [Q7()] 55, - (4.6)

The only other operator of bare dimension 2 in the N/ = 4 theory is an unprotected
one, the superconformal primary operator, K (x), belonging to the long Konishi
multiplet [I5, [16]. K (x) is a SU(4) g singlet and takes the form

i, 1 1 mn — —
K =Tr(¢'y") = 15 PATY (PrnPpq) - (4.7)

Using (£4) we can construct a super-operator containing K (z) as § = 6 = 0 com-
ponent. We define

K(z) = —%em"qur (d,d,0(2)) (d,d,8(2))] . (4.8)

so that
K(z) = [K(2)]lp=po - (4.9)
In the present paper we consider only correlators of protected operators, focussing
on a four-point function of the Q% defined in (£35). In the following section we
present, the tree-level and one-loop calculations for this four-point function and in
deriving our results we will assume the non-renormalisation of two- and three-point
functions as it is a gauge-invariant result and thus remains valid when working in
light-cone superspace.
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4.4 A simple four-point correlation function

The study of four-point correlation functions of protected operators in N' =4 SYM
provides a good starting point for the application of light-cone superspace techniques
to the calculation of off-shell observables.

In the case of four-point functions of N’ = 4 primary operators the dependence
on the external points is not fixed by the symmetries of the theory. Quantum
corrections to these correlators can be reorganised into functions, Fy(r,s; g), of the
coupling constant and two conformally invariant cross ratios, which can be chosen

as 2 .9 2 .9
_ TyaT3y X453

55 =5, (4.10)
T3y T3y

2 _ )2
where x7; = (7; — x;)°. )
We consider four-point correlation functions of the operators Q% given in (£.3)),

G (@1, wa) = (QM (1) Q22 () QU9 (25) Q1 (x4)) (4.11)

which can be obtained from the correlation functions of the corresponding super-
operators, Q¥ defined as

G0 (21, ) = (QV (1) Q92 (25) QU (2) Q1494 (2y)) (4.12)

by setting to zero the external fermionic coordinates,

G(Q)(xl,...,x4): EQ)(zl,...,zzl) , Va=1,...,4, m=1,...,4,

(4.13)

glerym—gle) —g

where the index « labels the external points.

In this chapter we restrict our attention to a simple four-point function in the
class ([{I1]), which we denote by GiH) (x1,...,24). It corresponds to the following
choice for the flavour indices

G (@1, 1) = (Q™ (1) Q% (w2) Q% (3) Q" (1)) (4.14)

We re-derive the known tree-level and one-loop contributions to (A.I4) working in
light-cone superspace. Our starting point is thus

G (21, ) = (Q2(21) Q¥ (22) Q% (25) Q2 () (4.15)

which reduces to (LI4]) upon setting to zero the external fermionic coordinates.
The simplifications induced by the choice of SU(4)g indices in (EI4) will be-
come apparent in the next subsections where we evaluate this particular four-point
function at tree-level and one-loop.
We start by writing (ZI4) using the form (&3] for the Q¥ operators,

G (@) = (T [(162) (@0)] Tr (%) ()] T [(%6") (20)] Tr [('6%) (@) )

4
1
_ (_ glmin 52141 ;3202 pAmans 13p3qs pdmans p1mana 2paga (4.16)

8

X (T [(Bns Poacn) (@] T (B Prage) (22)) T [(Brnans P (23)] T (B Ppis) (2)] )
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The explicit form of the super-operator containing ([EI6)) as its § = § = 0 component
is

4 . 8
H 1 1 7
gi ) (21, o 24) (_) ( gl 2 2p1a1 ;3p242 pAmans 13p3qs pAmang plmana £2pada

“16\8) L2
><<(J,ggJ,glgq)a(zl)czgwgpq>a<zl))(JgggJ,(fgq>b<22)(ig>gg§>q>b<22>)

x (ggg; 490 (25)dDd q>c<zg>)(Jg,goz;@@d(a)g;,f Jgg>q>d(z4>)> . (4.17)
Notice that in GiH) (71,...,24) we choose all the Q% operators with distinct flavour

indices, so that when re-writing them in the form (£3) the second term, which sub-
tracts the SU(4) g trace never appears. This leads to simplifications in the calculation
since there are fewer contractions to consider.
For compactness of notation, in the following we write the super-propagator as
) ko'
_ 4\ 5(8)
A;-(Zl — Z2) = ;L‘—%;<d >512 s (418)

where k = —2/(2m)2(41)3, 22, = (21 — 22)? and 6 = 6@ (6, — 6,)6™ (6, — 6s).

4.4.1 Tree level

At tree level there are multiple contractions possible in (LI7). However, only the
one shown in figure is non-zero. The reason why all other contractions vanish
is evident from the form of G\ in the first line of ([@I18): all other contraction are
zero because the propagator ([A.32]) for the elementary scalars is diagonal in flavour
space.

\pla 9920,
gpld de
4
Figure 4.1: Tree-level contribution to Gle)(xl, cey Tg).

It is straightforward to obtain the same result in superspace. A free propagator
connecting scalars ¢ (z;) and ¢*%(xy) in two ) operators gives rise to the factor

, ‘ o 6B
A (dmldm<d‘*> 02 a6 ) (4.19)
T12
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which, upon setting to zero the # and @ coordinates at points z; and 2, reduces to

s ' S ® garaz
— 0N (A do, iy, A O = ()85, (420)
T12 01=6,=0 12

where gt gizmanzg = 8§12, Thus each external ¢* can only be connected
through a free propagator to a ¢’ with i = j for a non-vanishing contribution.
Therefore at tree level the only allowed contraction in QiH)(zl, ..., 24) is the one in
figure [@1] which, using (£I8), yields

giH)(Zla ) = % gl 2p1a1 ;3p242 pAmans 13p3qs pAmang plmana £2pada
_ 5(8) — _ 5(8) —
Xk iy oy () 2l 6 )yl (0) 22y 6
T4 L4
- 5(8) — - 5(8) —
. (dmdm<d4>;—5dn3dmgabc TRRTOL S BEESY
23 23
Setting to zero all the external §”’s and 0,,’s we get
N2 1) 1
G ()| _ . 4.22
[ e P 16(2m)8 (22,)%(22,)? (4.22)
4.4.2 One-loop
One-loop contributions to GiH) (71,...,24) are of order g? and involve either two

cubic interaction vertices or a single quartic vertex. Moreover we can distinguish
between disconnected diagrams, which factorise into the product of tree-level and
one-loop two-point functions, and connected four-point diagrams.

Factorised two-point functions

Figure depicts the disconnected one-loop contributions to Gle). They factorise
as

(Q"(21) Q" (24))1-100p (@7 (22) Q% (23) Dirce - (4.23)

A second set of diagrams in which the interaction vertices connect to the external
points zo and z3 gives rise to a contribution of the form

<Q12(21) Q12(24)>tree<Q34(Z2) Q34<z3)>17100p . (4-24)

Both ([£23)) and (£24) vanish thanks to the non-renormalisation of two-point func-

tions of protected operators. Therefore we assume that Gle)(xl, ..., T4) TECEiVes no
contribution from the sum of all diagrams with the topologies in figure [4.2]
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Figure 4.2: Disconnected one-loop contributions to Gfl )(371, Cey Ty).

Connected diagrams involving two cubic vertices

The next set of diagrams of order g? that we need to consider are connected ones
involving two cubic vertices. There are two distinct types of contractions to take
into account which are shown in figure [4.3]

The building blocks for these diagrams are the cubic vertices (2Z52)) and (Z.53).
Analysing the combinations of chiral derivatives in these vertices one can verify that
in order to produce a potentially non-vanishing contribution a diagram must involve
one vertex of each type. This is proven in appendix [A. 4.1l

The contributions from the two diagrams in figure [4.3] vanish individually, but
for different reasons.

The vanishing of diagrams of the type in figure [4.3al is straightforward. Since
the superfield propagator is diagonal in colour space, the free contractions between
points z; and z4 and between points z, and 23, combined with the traces at each ex-
ternal point, force two of the indices of the totally antisymmetric structure constants
£ at the interaction vertices in z5 and 24 to be the same. Therefore these diagrams
are identically zero. Since this vanishing result follows from the colour structure of
the diagram, all other Wick contractions, which differ only in the distribution of
flavour indices, give a zero result as well.

Diagrams of the type shown in figure [£.3h] also vanish, but the proof is slightly
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Figure 4.3: Connected one-loop contributions to thH)(xl, ...,24) involving cubic

vertices.

more involved, requiring manipulations which are described in detail in appendix
[A.41] The vanishing of contributions with this topology follows from the observation
that a contraction in which two external fields ¢“ and ¢® are connected to a cubic
interaction vertex gives rise to a factor of o™ g"Plg,, . = 8512, The reason for
this is explained under Rule [A.4.1] in Appendix [A. 4.1l

In the case of the diagram in figure the internal point 25 (z6) connects >
with ¢?, which results in a factor of o*""¢*4¢,,,,, = 0. Other Wick contractions,
with a different distribution of flavour indices, vanish for the same reason.

Connected diagrams involving one quartic vertex

The last type of contribution to Gle)(xl, ..., x4) at order g? comes from diagrams
involving a single quartic vertex. With our choice of external flavours the only
allowed topology is depicted in figure [4.4] where the interaction vertex at point zj
can be either (Z54]) or (Z55). The first type of contribution, constructed using the
vertex (Z54), vanishes. Therefore the entire one-loop correction to GiH) (X1, ...,24)
comes from diagrams of the type in figure [£4] with the quartic interaction at point
z5 corresponding to Vertex 4-11 (Z55)).

We present below the calculation of the contraction shown in the figure, in which
the two free propagators connecting points z; and z4 and points z, and z3 carry
flavour 1 and 4 respectively. There are additional contributions in which the z; —
z4 line has flavour 2 and/or the zy — z3 line has flavour 3. These produce the
same contribution as the diagram we analyse and therefore simply give rise to a
multiplicity factor in the final answer.

The vanishing of diagrams involving Vertex 4-I (Z54) follows from Rule[A.4.2]in
Appendix[A. 42 The requirement that the structure functions be non-zero conflicts
with the requirement that the ocoe contractions be non-zero. Consequently Vertex
4-1 does not contribute.

Finally we come to the calculation of the non-zero contribution from diagrams
of the topology in figure in which the interaction vertex is of type 4-II.
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Figure 4.4: Connected one-loop contributions to Gle) (x1,...,x4) involving a quartic
vertex (as, bs, c5 and ds are colour indices).

We factorise the diagram as in figure 5. The different Wick contractions cor-
respond to inequivalent ways of gluing together parts (a) and (b) in the figure.

1 2
2a 3b
@K Vﬂw
as b5
d5 Cs
4c
1d ©
® 2d
< P 903( X
4 3
(a) (b)

Figure 4.5: Factorisation of diagram involving a quartic vertex.

The following contribution comes from figure and is common to all diagrams
in this set

4
1 /1
E4 [a5 b5 cs d5] — - 0_1m1n1 0_2p1(11 0.3p2(I2 0_4m2n2 0_3p3q30_4m3n30_1m4n40_2p4q4 k’65ad5bc
) ) ) 16 8

(- d d, <d4>5§4d U | <d4>5§3d iy | fo00 foc5% g (4.25)
\/§ m1 Yy 1’14 n4“Ymy mo“Yng 1’23 n3“ms 64 . .

This common portion simplifies to

E4[a’57 b57 Cs, d5] = T<U) k6 5ad5bcfea5b5 f665d5 (4')68m ninamaEmaonansm Lia
226 ]4 1nin4amq 22331,%1,%3
(4.26)

where T'(o) denotes the product of the eight o coefficients in ([Z.25).
We now need to consider all possible ways of gluing of this factor with the piece
resulting from figure LDl We use the following notation,
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as br,

X = ‘/4[&57b5uc57d5]7
ds

Cs

where the order of the arguments in V; corresponds to the clockwise labelling in the
vertex starting from the top left leg.

The different Wick contractions are analysed in appendix [A.4.2l Combining all
the non-zero contributions we find that figure 4] evaluates to

1 1 1

2 rabc pabe 4

_ g2 fabey 7/01%—. (4.27)
8(2m)12 %423 T2 130557,

Using fe¢febe = N(N? — 1) and including all multiplicity factors the complete

one-loop contribution to (£I4) is therefore

G (@, ,:64)] = —¢’N(N? - 1) ! ! (4.28)

4
— Ts———5—5 -
12 .2 2/ 572 2 2 2
1-loop 2(2m)12 7, a3, T2 X5y TE T2,

The box integral in (4.28) is well known [I7] and can be expressed in terms of
the cross ratios (£I0). Using the form of the box integral in [I8], the one-loop

contribution to GiH) (x1,...,24) takes the form
G = NN D) L E"(s), (429)
1-loop 2(2m)12 23 23,0303,

where F4(H) (r,s) can be expressed as a combination of logarithms and dilogarithms

F{(r,s) = % {log(r) log(s) — [log (T ts—1- \/ﬁ)r i

2

—2 Li (1+7’—23+\/13) — 2 Li, (1_T+28+\/]3)} ,(4.30)

where Liy(z) = >°° . Z; and

n=1 n2

p=1+7r"+5>—2r—2s—2rs. (4.31)

4.5 Discussion

In this chapter we studied correlation functions of gauge-invariant operators in N’ =
4 SYM using the light-cone superspace formulation. Our main goals are to develop
efficient techniques for the computation of perturbative corrections to correlation
functions.
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As a computational tool light-cone superspace is particularly promising for a
number of reasons. This formulation of the N' =4 SYM theory uses only one type
of superfield, which carries no space-time or SU(4)g indices. Therefore the general
structure of super Feynman diagrams and the combinatorial analysis involved in
their study are simpler than in other formulations. Moreover we expect that the
manifest N' = 4 supersymmetry will lead to a significant computational advantage,
in terms of the number of diagrams to evaluate, at higher orders in the perturbative
expansion.

In the case of the simple four-point function Gle) (x1,...,24) we reproduced
the known result to one-loop order. The light-cone gauge thus yields a manifestly
Lorentz covariant result. This is thanks to non-trivial cancellations of derivatives
and 1/0_ factors. It will be important to understand these cancellations in a sys-
tematic way for more complicated correlation functions and/or at higher orders in
perturbation theory.

One of the benefits of superspace formulations of supersymmetric gauge theories
is the possibility of providing a compact description of entire multiplets in terms of
superfields. In this respect the light-cone superspace description of N' =4 SYM is
particularly interesting as it is the only formulation of the theory in which the full
N = 4 supersymmetry is manifest. Working with super-operators such as (3] and
(£8) should make it possible to extract all correlation functions of operators in the
same supersymmetry multiplet from a single super-correlator. It will be interesting
to study other components in the #-expansion of the super-correlation function QAEQ).
These should contain information about correlation functions of the super-partners
of the Q¥’s.

Although here we were concerned only with correlation functions of the supercon-
formal primaries (LI))-(£2), it is natural to speculate that the light-cone superspace
formalism will permit a description of the entire energy-momentum tensor multiplet
using a single composite superfield. This will require the addition of terms cubic
and quartic in the superfield ® to the super-operator (A3]). These additional terms
should not modify the § = § = 0 component, while producing the correct cubic
and quartic terms in the remaining operators. The exact form of these additional
terms in the super-operator should be determined by the entire N = 4 superal-
gebra, including the non-linearly realised dynamical generators. The possibility of
constructing such a composite superfield operator is intriguing.
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Appendix A

Conventions and useful formulae

A.1 Conventions and notation

The scalar fields in the N' = 4 multiplet can be represented either as SU(4)g bi-
spinors, ¢™", satisfying the reality condition (Z36) or as vectors, ', i = 1,...,6.
The two representations are related by

, 1 _. 1 , 1 .
i 3y mn __ gmnpqzz - O_zpq @pq ) (Al)

Y = \/g mn(p 2\/§ mn@pq— \/g

where X¢  (37") are Clebsch-Gordan coefficients relating the product of two 4’s
(4’s) to the 6 of SU(4). They are defined as follows

Zlmn = (Zﬁmv Zﬂf) - (nﬁmamﬁm) )
S = (S7 ST = M —i70) 1 =1,2,3, (A.2)

where (n!  inl ) are 't Hooft symbols,

Mhn = T = €tmn, m,n =123
Nt = M = 64, m=1,2,3

Splitting up the ¢ index in terms of I = 1,2, 3, the coefficients (A.2]) can be written
as

Z{rm - 51mn4 + (51{n51§ - 555;}4) )

From this we obtain the '™ coefficients
ot — glrat (51105:11 _ 5£5Iq) ’
oI — _jelvat (6T — 52519 (A-5)
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A.2 Superfield and component field propagators

In this appendix we discuss in detail the derivation of the propagator (Z31]) for the
N = 4 superfield. We start with a path integral derivation which will allow us to
check the consistency of various conventions for Grassmann integrals and functional
derivatives.

A.2.1 Path integral derivation

The superfield propagator can be obtained inverting the kinetic operator in (2.49]).
We can obtain it constructing the generating functional for Green functions of the
N = 4 superfield in the free theory limit, Z[J].

Functional differentiation of Z[J] with respect to the sources, J(z,6,8), gives
rise to Green functions of the N’ = 4 superfields. Because of the chirality of both
® and J we need to be careful in defining the rules for functional differentiation in
superspace. In defining the functional derivative with respect to a chiral superfield
we require the condition that the variation of a chiral superfield be chiral. To satisfy
this condition we consider a chiral superfield, ¥(x,#,d), written in terms of the
chiral variable (2:39) and we impose

oV (y',0)

8 0D (y —1)6 DO —0) . (A.6)

To obtain the form of the derivative 0¥ (z', 6, 60") /0¥ (z,0,0) in terms of the standard
superspace coordinates we consider

o

———— [ A%/ V(20,0 F (0, AT
i (@, 0.0) F(' 0.8 (A7

where F(z,0,0) is a generic (non-chiral) superfield. Using (A.6) we can evaluate

(A7) as follows

) _ _
d*2'd*¢'are v, 0,0 F(«', 0,0

5111 l‘ 0 0) / (x Y ) ) (l‘ Y ) )
/ ov(y',0")
oV (y,0)

/ T+ —90’ 7,7,0,0)

\/_
S(d")F(2,0,0), (A3)

F(:L‘/+, y/* + Leleﬁ’ l‘,, i‘/, 0/’ é/)

dy/d*'d*e —2—=
V2

- <4.>

where in the last step we used

/koF( Ly +700xx99)—dkF(x 7, 2,7,0,0), k=1,...,4,
(A.9)
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which can be verified expanding left and right hand sides in components. From (A.8))
we deduce the rule for functional differentiation with respect to a chiral superfield,

sUe (2,0,

1
SUb(z,0,0) (4

Sop(d)y oW (@ — 2/)6W (0 — 0')sW (6 - 0'), (A.10)

which applies in particular to the N' = 4 superfield, ®. For its conjugate, ®, using
the complex conjugate of (Z48), we get

5(T>a<x/,9/’§/) 1 a<J4><d4> @ o w0
Son(r.0.0) _ 2aih e 0 @— @) (0 =)o~ ). (A.11)

We can now define the generating functional, Z[J], as follows

/[d(I)] efS[é]qu d12z¢“(z)%Ja(z)
207 = , (A.12)

/ [dD] eS[®)
where, as usual, d'?z = d*x d*6 d46.
Notice, in particular, the coupling to the sources, J(z), in (A.12). This is chosen
so as to produce the correct coupling to external sources in the equations of motion.
This can be seen considering the free theory in the presence of external sources,

/dmz %@“(z) KL dy(2) + /dmz QU (2)—Ju(2), (A.13)

where the kinetic operator is

a0
o

Kb=-36) ( (A.14)

Varying ([A.I3)) with respect to the superfield ® gives rise to the correct equations
of motion in the presence of an external source,

(41)2 (dYKL ®y(2,0,0) = Ju(2,0,0). (A.15)

The right hand side is straightforward to obtain using the definition (A.10Q),

i [ 47 Vi W = g [ 48— G

= [ 40070 -G = [t 8000 <0,

where we used the fact that (d*)(d*) = 4(4!)29* when acting on a chiral superfield
such as J(z).
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In the free theory limit the exponent in the generating functional [A.T2]) reduces
to

_% @, K} CIDb)—i—((IDa, %—4)%) = —% /dnz P (2) K} <I>b(z)+/ dz @“(2)%%(2) .
(A.16)

The functional integral (A.12]) becomes Gaussian and thus straightforward to com-
pute. The result is

Zo[J] = e2(JHIK112 o) (A.17)
where o
J(z) = %—fﬂ(z) (A.18)

and K~! is the inverse of the kinetic operator (A14)). Tn (A7) a factor of det(K)~'/2
has been cancelled between numerator and denominator. The free generating func-
tional (A.I7) allows to construct the perturbative expansion of the full functional

Z[J] in (A12).
Introducing the kernel, A(z,2’), of the operator K~!, we can rewrite (A.17) as
Zo[J] _ 6% Jdt2zd1ze’ Jo(2)[A(z,2")] 2Ty (2)) ) (A]_g)

A(z,2') is of course the super-propagator we are interested in. Let us denote by
K(z,7') the kernel of the kinetic operator (A.14),

K(z,7)=-3609(z -2

(A.20)

where §12)(z — 2/) = 6W (2 — 2)6W (0 — 06D (0 — §'). Then A(z,2') is defined by
the condition

/dmz" Az, 2"V K (2", 7)) =699 (2 — o), (A.21)

or, introducing a chiral test superfield, W(z),

/dnz"/dmz' Az, 2"YK(2",2) V() = U(z). (A.22)

Using the explicit form (A.20) of K(z,2") we have

U(z) = / a1 / dmz”A(z,z:’)é(u)(z”—z’) <—3<d;zmxp) ()

= / A2/ A(z, 2) (—3 <d;ZD\D) (). (A.23)

The solution for A(z, z) is of the form

Az, 2) =k Lb(s@) 0 —60)0W 0 -0, (A.24)



with & a constant to be fixed. Substituting into the right hand side of [A.23]) we get

122/ <d4> Drp _on\s@ g _ ot o <J4>D .
/d k;i( 5W (6 — 0')6W(f 9)( 3 m)()

xr—x')? o4
_ 12 s 1 @Dp __onNsDro _ o <d4><cz4> /
= 3/<;/d zmi(:c—:c’)Qé 0 -6 0 —0") 7 U ) (2"
13 2
= —3k(2m)%4(4!)? /dwz/ 82 (2 — () = —w U(z), (A.25)
where we used integration by parts and the relations
2@
D(x i (2m)°0"Y (z — ) (A.26)
and
(dH (@ (2) = 4(4)20* U (z). (A.27)

The latter is valid for a chiral superfield ¥(z). From (A.25) we read off the value of
the constant k,

2
So the superfield propagator is
Al(z—2) = — 2% L (dHeW (6 — 0D (O -0, (A.29)

(41)? (2m)? (x — )2

A.2.2 Relation to component field propagators

In order to verify that the superfield propagator constructed in the previous subsec-
tion contains the correct propagators for the individual fields in the N = 4 multiplet
we now re-derive the A(z — 2’) starting from the component expansion of ®(z).

In the following it will be convenient to write the N' = 4 superfield in the form
([Z350). The kinetic terms in the N = 4 light-cone component action are

_ 1 , s O
Sy = /d4:v |:A<£L’)DA($) + §<pi(:c)D<pz(a:) - %)\m(a:)a—_km(:c) ) (A.30)
where the relation between the six real scalar fields ¢*, i = 1,...,6 and the ©™s,

m,n =1,...,4in (Z50) involves Clebsch-Gordan coefficients and it is given explic-

itly in (ALT)).

From ([A.30) we get the free propagators for the component fields,
1 oy
(2m)* (z —y)?
aii wi ; 1 51 e
(A) " (z —y) = (¢""(2) ¢y (y)) = .

@ (o= o)
= (A58, (2= 1) = (Pumnle) ) = oy aA

A o sa gy — Y2 g Omdh V2 Rt —y)
(A( )bm( y) - <)‘m( ))‘b (y>> - (271')2 0- (SL’ _ y>2 - (271')2 (.T _ y)4 : (A33)
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We can now consider the superfield two-point function,
A2, 0,0,2",0',0) = (®%(x,0,0) Dy(a', 0, 0)). (A.34)

Using (250), we expand this two-point function as

L A(x) — 07 A (@)

0

(% (2,0, 0) By (2, 0, 7)) = e~ va @ OmO-+0"0,00) [ :

4 mAan —a \/5 man a 1 man Aa
+EQ 0" o () + ?emnpqﬁ 0"0P\ 1 (z) — Eemnpqe 0"6701 0_A"(x)

2
__Ab( ") — —Q’TAbT( ")+ Ersuntd 0Oy () + % Ersunld 070Ny (2)

7
22

0" "
1 -
- 57,8uv0”9'89'u9/va/Ab(l‘,)] Y, (A.35)

where ' = 0/02’~ and we used the reality condition

1

5 Emnpg P"(2) (A.36)

@mn(x) = 9

for the scalar field in the second superfield.
In the superspace two-point function ([A.33]) the only non-zero contractions cor-
respond to the component two-point functions (A31)-([A.33)). Therefore we get

i

— — i mpar o ]_ _
(®(x,0,0) By(x/, 0, 0)) = e V2" OmO=F0T IO |~ o gmengrge(9_ A% (z) - Ab( )

12
1 1 . 1
gm0 0" (5= AN (1) 0L Ay(21)) = Jemnpat 6700 (7, (2) 4" (27)) (A-3T)

) @) — 1 0P (0% ) ;xrb«c’»] 7

Using (A31)-([A33) and integration by parts to get rid of the extra 0_’s, we find

— — m rm s 1 1
x,U, pl T, U, = m _gmn _ _
©°(1,0,0) by (', 0/,0)) = 6 va OO0 SO0m0 0T — — 00" 00
1 1
(2m)? (2 —27)?

i (om,—em . 0D (0 — 0)
a — 25 (Om0n—0m0;,)0-0 "0 — 07) A
T Tt (A.38)

—%emene'pe/q - %eme'”e/pe'q + lemenepe'q}

where we used the definition (2.30)) of the fermionic -function. The super-propagator
can be put in a more convenient form using the following identity

()68 — ) = (41)? T3 "I (A.39)

40



which can be proven expanding the left hand side as

(@)D (0~ 8) = g™ d"d" A0, — 6,6, — 0,)(8, — 0,)(0, — 0))
()2 PG, — 0)(0 — 0)(0s — )6~ F)  (Ad0)

and using (no sum over the repeated index k)

"0, —0,) = —1+ %(ekek 0RO = —e VA RO00- y,

(A.41)
The identity (A.39) can be rewritten as
1 _i_(gmg._ _pmp’ _ _
1= ety (ghy s (g — g7y (A.42)

(41)?

Inserting ([(A.42)) into the expression for the super-propagator we get

_ : 08 gm0 00— 0
% (2,0,0) Dy (2,0, 0)) = ——2 R o
< ("L‘a ) ) b(xa ) )> 12(27‘(‘)2 € (.’L‘ - 1’1)2
L (070 —0m8,)0- o\ c(4) (g g
e (@6 (@ — 7)), (A.43)

where we used the §-function in ([(A38)) to change 6™ into §™ in the first exponential.
The exponential factors in ([A.43)) cancel and we finally get

2 o (dNW(O—0)5W (6 —0)
(41)? (2m)? (z —2')? '

(% (2, 0,0), (<", 0, ) = — (A.44)

in agreement with (A.29).

A.3 Useful superspace relations

We collect in this appendix various relations used in manipulations of super Feynman
diagrams in light-cone superspace.
Although a% is not a differential operator, it can be “integrated by parts” in

superspace expressions. For generic superfields f(z,0,0) and g(z,0,0) we have

[z r@00 = [ @256 0

— [ @ @5 = - [ 4% ). ()

Using the definition (225) of the chiral derivatives, d™ and d,,, and their commu-
tation relation, it is easy to verify the following identity

/ A2 6901 — 05) [(dyy)(d (1)) 0P (61 — 65)] = (41)*, (A.46)
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which is used repeatedly to carry out the integrations over the fermionic coordinates
at each interaction vertex in superspace Feynman diagrams.
The commutation relation (Z28]) for the superspace chiral derivatives implies

(AN (d")dyd, = 4 e ppg O (J‘*)dadz, (A.47)
e —_—
(dY(d*)(d*) = 4(4)%0* (d*) . (A.48)

A.4 Details of four-point function calculation

A.4.1 Diagrams involving cubic vertices

As pointed out in section contributions to four-point functions of the Q%
operators cannot be built using two cubic vertices of the same type (Vertex 3-I in
2352) or Vertex 3-IT in (Z53])). This can be seen from a simple counting of chiral
derivatives and fermionic coordinates 6 and 6.

We start by counting the superficial numbers (or powers) of d, d,  and @ present
in various factors used in constructing a four point function.

Structure

Propagator

Cubic Vertex 3-1
Cubic Vertex 3-11
External ¢ field in Q

olo|o| ]|
po|oo| | of| =
ololo|ln]
olo|o|la|

Table A.1: Superficial powers of d, d, 6, 0

The superficial numbers (or powers) of various derivatives and fermionic variables
in a four point function as shown in figure [A.1] are presented in table [A.2] for the
three possible cases.

Combination of vertices d|l d| 6] 6]|do|do
Vertex 3-1 and Vertex 3-II | 20 | 20| 20| 20 | 8 8
Vertex 3-I twice 201161201 20| 8 8
Vertex 3-11 twice 20124 120120 8 8

Table A.2: Superficial powers of d, d, 6, 6, df, df in a four point function

After performing the fermionic integrals in a super Feynman diagram, we are
left with an equal number of ’s and #’s. Thus when fermionic coordinates are set
to zero, a non-vanishing contribution can only arise if there are equal numbers of
d’s and d’s present to cancel the #’s and #’s. Thus, as can be seen from table [A.2]
only the combination of one vertex of type 3-1 and one of type 3-IT can produce a
non-zero result, as this is the only way of satisfying the above criterion.
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Figure A.1

Rule A.4.1 In the topology shown in Figure[A 1 a cubic vertex cannot have com-
ponent fields ©' and @7 with i # j, connected to any two of its legs.

This result can be understood in terms of component fields. The only cubic vertices
involving two scalar fields in the A/ = 4 action — in any gauge, including the light-
cone gauge — are the minimal coupling to the gauge field. Since the latter is a flavour
singlet, the interaction cannot change the flavour index carried by the scalar field.
This result can be obtained [2] in superspace as well.

A.4.2 Diagrams involving quartic vertices

Rule A.4.2 In the topology shown in Figure[A.3, component fields o' and o’ with
flavour i # j, cannot simultaneously attach to those legs of the quartic vertex which
are both chiral fields, or both anti-chiral fields 1,

Figure A.2

For a four point function constructed using Vertex 4-I (2Z.54)), if the leg with colour
index ajs (chiral field) is connected with the external field ¢’, and the leg with colour
index b (chiral field) with the field 7, we get a factor of o'™07Ple,,, ., = 8%

IHere we use the term “anti-chiral” field to refer to superfields associated with legs in a diagram
carrying a (d*)/0? factor. These were originally ®’s before use of the complex conjugate of (Z45).
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when evaluating the correlation function. The same thing happens with legs car-
rying colour indices ¢5 and ds (anti-chiral fields) connected with external fields '
and ¢’. For Vertex 4-1T (Z53), if the leg with colour index aj (chiral field) is con-
nected with ' and the leg with index c; (chiral field) with 7, we get a factor of
olmngiPie,, . = 80%. The same happens with legs carrying colour indices dj
and b5 (anti-chiral fields). Thus for such arrangements with i # j, the contraction
vanishes.

This rule is verified [2] by evaluating each permutation of the interaction vertex
in Figure [A2

The only non-zero contributions to Gle) (x1,...,24) at one loop come from dia-
grams involving a quartic vertex of type 4-I1. As explained in section there are
various inequivalent Wick contractions to consider and we analyse them in detail
below. We begin with

X = ‘/21[(15,b5,05,d5]
dg

/5aa55bb550055dd5 (d d <d4> 5§5)(u<d4> 52d d )
P177q1 q2-"p2

5 $15 ? 52
o —
(a2 ) (S 20, )
57535 02 54
X Ep1g1p3gs -

Product with the common part E,fas, bs, c5, ds] in (£23]) results in the contraction
o?ragipstsg o = 0. The reason why Vjas, bs, c5, ds] leads to this contraction is
explained under Rule [A.4.2] above.

as b5
>5< = V4[a5,b5,d5,c5]
Cs d5
55\ ({0, 88 % (d)
— 5a5a5b5b505d5d50 (CZ J d4 LS)( d4 52 d 2d 2) d 3d , d4 35\ /
/ o (058 ) (G ) B, ) ) S5
S T
X 2 fI4 p4
< 3,
58, 58, 58
— /5a5a5b5b505d5d50 (<d4>d dp1 52 ( rsq2p2<d4>drdsx5 )(4 uvq3p3<d4>dudvx53)
5 52 53
4\ 7 7 5?4
X | (d*)dg,dp, —= ] (A.49)
54

where we used (A.47)).

We now use the following rule for partially integrating (d*) to a product of two

terms (disregarding the cases where both the terms are not acted upon by two d’s
each),

/ OV F)(GH) = 6 €mynmany / d*0 F(d™d™G)(d™d™ H) (A.50)
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and simplify V,[as, bs, ds, c5] to

8 8
6/ da5a5b5b505d5d5c ( 5 ) (4 Ersqugdml dm <d4>drds 552 )
5 %) 3

mo Jn U U58 7 7 58
(A (@00 5 ) 5 ) s (A5

53 T4

Vilas, bs, ds, cs] as written in ([(A5]) simplifies to

6(4')/(3141‘ da5a5b5b505d5d5c<gmlmmgng)( 8TSQQPQ mlnlrs)

% 72
% ((4!)381“}(]3])3 m2n2uv ) ( 4 8(11171(14174 ) (A52)
e 3y
in the limit 6,6 — 0. Using the following property of the Levi-Civita symbol
Emynimang € 1 P = 2 (5”m2532 5225312) , (A.53)

we simplify

(Eminimans €™") Ersqaps (Euvgsps€>">"") = 4€managaps (Euvgsps = >"") = 16Epsq3pgs -
(A.54)
Thus Vylas, bs, ds, ¢5] (A52) simplifies to
1
16 x 6 x (4!)11 X da5a5b5b5€5d5d5c X Ep3q3paqaCpiqipaqa /d4£L’5 2.2 .2 .9 (A55)
L51L52L53L54
Substituting
B 1 1 12
]{f = <—1)2®W7 T(O’)gEEE = 2 y (A56)
we obtain the final expression for Vj[as, b5, ds, ¢5] times the common part (£26) as
1 1 1
2 reab reab 4
GRfetf / (T — (A.57)
(27m)1264 x 149523 $51$§2$53$54

All permutations of the arguments in V,[as, bs, ds, cs5] of the form [eq, g1, €2, go] Where
e; € {as,c5},9; € {bs,ds} or e; € {bs,ds}, g; € {as,c5}, i = 1,2, will have a non-zero
contribution. The reason is explained under Rule above.

From the structure of Vertex 4-II (Z53]), it is easy to see that

Vilas, bs, ds, cs] = Vilas, ds, bs, c5] = Vilcs, bs, ds, as] = Vics, ds, bs, as)
= V4[b5,a5,c5,d5] = V4[b5,c5,a5,d5] = V4[d5,a5,c5,b5] = V4[d5,c5,a5,b5] .
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