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AbstratIn this thesis we fous on supersymmetri quantum �eld theories. In partiularwe study the maximally supersymmetri N = 4 super Yang-Mills theory in light-one superspae. We present two appliations of light-one superspae formalism:1) we derive a new Lagrangian forN = 4 super Yang-Mills, where the sattering am-plitudes are manifest, and 2) we initiate a new formalism for omputing orrelationfuntions of gauge invariant operators.
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Chapter 1Introdution
1.1 Quantum �eld theoryThe physis at small-sales is desribed using quantum mehanis. We resort tospeial relativity to explain phenomena at high speeds. Sine elementary partilesare both small and an travel at high speeds, we need to use relativisti quantummehanis to desribe their dynamis. The ombination of quantum mehanisand speial relativity inevitably leads to the onlusion that partile number is notonserved, i.e. partiles an be reated or annihilated - a feature regularly observedin ollider experiments.However, quantum mehanis is insu�ient for desribing systems where thepartile number is not �xed. Thus we desribe partiles using �elds, whih anintefere onstrutively or destrutively resulting in reation or annihilation of parti-les. Quantum �eld theory (QFT) is a quantum, relativisti theory of �elds, whihis well-suited for explaining the interation of elementary partiles.In quantum mehanis, we quantize the dynamial variables of lassial partilemehanis, i.e. we promote the dynamial variables in the theory to operators atingon a Hilbert spae. In the same way, QFT is the quantization of lassial �elds, i.e.lassial �elds are promoted to operators ating on a Hilbert spae.1.2 SymmetriesAn important objet in QFT is the Lagrangian of the system. The Lagrangian givesthe lassial equations of motion for the system, and the quantum mehanial prob-ability amplitudes. Various symmetry priniples govern the form of the Lagrangian.A Lagrangian may have several symmetries, both ontinuous and disrete. Thesymmetries may be global or loal; they may be spaetime symmetries or internalsymmetries. Aording to Noether's theorem, to every symmetry is assoiated aonserved quantity. These onserved quantities, also alled onserved harges, arethe generators of their respetive symmetry transformations. We mention belowsome of these symmetries. 4



1.2.1 Poinaré invarianeThe Lagrangian of a relativisti theory must be invariant under Lorentz transforma-tions, upto a divergene. A stronger ondition is Poinaré invariane, whih inludesLorentz invariane as well as spaetime translational invariane.The four onserved Noether urrents assoiated with translational invarianeform the energy-momentum tensor. The onserved harges, assoiated with theonserved urrents form the momentum four-vetor, P µ, where P 0 is the total energyarried by the �eld and ~P is the total linear momentum of the �eld. Furthermore,there are six onserved harges assoiated with Lorentz invariane, three of whihgive the total angular momentum of the �eld. The ten generators of the Poinarégroup form a losed algebra through their ommutators alled the Poinaré algebra.1.2.2 Gauge symmetryGauge symmetry, or gauge redundany is a fundamental priniple in modern partilephysis. It allows for independent, internal symmetry transformations of a �eld atevery point in spaetime.The simplest example of a gauge theory is lassial eletrodynamis. The La-grangian of the theory is given by
L = −1

4
F µνFµν , Fµν ≡ ∂µAν − ∂νAν .The Lagrangian is invariant under the gauge transformation
Aµ(x)→ Aµ(x) + ∂µΛ(x) .This is also known as gauge redundany sine physial states related to eah otherby gauge transformations are one and the same. Thus we have freedom to �x thegauge, to get rid of the redundany in the desription. Common examples of gaugesare the Lorentz gauge, ∂µAµ = 0, and the Coloumb gauge, ~∇. ~A = 0.The gauge �eld Aµ desribes photons. Note that photons have only two physialdegrees of freedom, while the gauge �eld Aµ has four omponents. Although it is notmanifest, the gauge �eld has two independent omponents only (this is beause the

A0 omponent has no kineti term, i.e. it is not dynamial, and hene is ompletelydetermined in terms of the other three omponents; furthurmore, �xing a gauge fur-ther redues the number of independent omponents by one). As we shall ommentlater, implementing a partiular gauge hoie, the light-one gauge, provides a de-sription of the theory solely in terms of the physial degrees of freedom. However,this omes at the expense of manifest Lorentz invariane. We disuss Yang�Millstheory in light-one gauge in more detail in Chapter 2.Eletromagnetism, whih is disussed above, is the simplest example of a Yang�Mills theory (also refered to as gauge theory). Quantum eletrodynamis (QED) is atheory of the vetor �eld Aµ (gauge �eld) and a spin-1/2 �eld ψ (spinor), interatingwith eah other. The spinor �eld gauge transforms as
ψ(x)→ e−ieΛ(x)ψ(x) ,5



and the (gauge invariant) QED Lagrangian is given by
L = ψ̄(iγµDµ)ψ −

1

4
F µνFµν −mψ̄ψ ,where γµ are the Dira matries, and the ovariant derivative Dµ ≡ ∂µ− ieAµ. Thespinor ψ desribes eletrons. The onserved urrent assoiated with gauge invarianein QED is the eletri urrent density, and the onserved harge is the eletri harge.QED is an example of a Yang�Mills theory where the gauge symmetry group isU(1). A non-abelian Yang�Mills theory, with gauge symmetry group SU(N) has theLagrangian

L = ψ̄(iγµDµ)ψ −
1

4
F µνaF a

µν −mψ̄ψ ,where ψ is now a multiplet of N spinors, the olour labels a = 1, . . . , N2 − 1,
Dµ = ∂µ − igAa

µT
a, and

F a
µν ≡ ∂µA

a
ν − ∂νAa

µ + gfabcAb
µA

c
ν ,where T a are the generators of the gauge group SU(N), obeying the ommutationrelations (or Lie algebra) [

T a, T b
]
= ifabcT c ,where the real fators fabc are the struture onstants of the group. The spinors andguuge �elds transform under gauge transformations as

ψ(x)→ e−igΛa(x)Ta

ψ(x) , Aa
µ(x)→ Aa

µ(x) + ∂µΛ
a(x) + gfabcΛbAc

µ .Quantum hromodynamis (QCD) is an example of a non-abelian Yang�Mills theorybased on the gauge group SU(3).1.2.3 SupersymmetrySupersymmetry is a symmetry that relates bosons (�elds whih transform as in-tegral spin representations of the Poinaré group) to fermions (�elds whih trans-form as half-integer spin representations of the Poinaré group). Supersymmetrytransformations mix bosons with fermions, and thus their generators are neessarilyfermioni. Supersymmetry is an extension of the spaetime Poinaré symmetry, withthe supersymmetry generators expanding the Poinaré algebra to the superPoinaréalgebra. We disuss supersymmetry in more detail in Chapter 2.Supersymmetry plays a role in several andidate theories desribing physis be-yond the Standard Model. However it has not yet been experimentally veri�ed.Regardless of its fate as a physial theory of Nature, supersymmetry has found sev-eral uses as a powerful alulational tool. The work presented in this thesis utilizesthis useful feature of supersymmetry. *This thesis is organised as follows. In Chapter 2 we review light-one gauge, light-one superspae, and N = 4 super Yang�Mills (SYM) theory. In Chapters 3 and 4we present two appliations of N = 4 super Yang�Mills (SYM) theory in light-onegauge. 6



Chapter 2Light-one superspae
2.1 Light-one gaugeIn this setion, we shall review light-one oordinates and light-one gauge, in theontext of eletromagnetism and (non-abelian) pure Yang�Mills theory.2.1.1 Light-one oordinatesWe are free to hoose any oordinate system we like to takle a partiular problem.We hoose to work in light-one oordinates, beause it makes the formulation ofour theory easier.With the spae-time metri (−,+,+,+), the light-one oordinates and their deriva-tives are de�ned as

x± =
1√
2
(x0 ± x3) ; ∂± =

1√
2
(−∂0 + ∂3); (2.1)

x =
1√
2
(x1 + ix2) ; ∂̄ =

1√
2
(∂1 − i∂2); (2.2)

x̄ =
1√
2
(x1 − ix2) ; ∂ =

1√
2
(∂1 + i∂2), (2.3)suh that

∂+x− = ∂−x+ = −1 ; ∂̄x = ∂x̄ = +1. (2.4)We an also verify that
� ≡ ∂µ∂µ = 2(∂∂̄ − ∂+∂−). (2.5)

x+ plays the role of light-one time, ∂− is now a spatial derivative, and its inverse
1
∂−
, is de�ned using the presription in [3℄,

1

∂−
f(x−) =

∫
dξ θ(ξ − x−)f(ξ) . (2.6)7



2.1.2 Eletromagnetism in light-one gaugeClassial eletromagnetism (with no soures) follows from the Lagrangian
L = −1

4
F µνFµν , where Fµν = ∂µAν − ∂νAµ. (2.7)The vetor gauge �eld Aµ represents the photon.In the usual spae-time metri, the gauge �eld Aµ has four omponents {A0, A1, A2, A3}.Working in light-one oordinates, the gauge �eld has omponents {A, Ā, A+, A−}with

A± =
1√
2
(A0 ±A3) ; A =

1√
2
(A1 + iA2) ; Ā =

1√
2
(A1 − iA2) . (2.8)The de�ning path integral of the theory is,

∫
DADĀDA+DA− ei

∫
dx+L , (2.9)where the Lagrangian

L = −1
4

∫
dx dx̄ dx−F µνFµν (2.10)is a funtion of {A, Ā, A+, A−}. Reall from the previous hapter that the gauge�eld Aµ is arbitrary upto a further �xing, whih is alled gauge freedom. We usegauge freedom in �xing the gauge, by implementing the light-one gauge
A+ = 0. (2.11)This is e�eted in the path integral by introduing a delta funtion

∫
DADĀDA+DA− ei

∫
dx+L δ(A+) , (2.12)whih leaves us with ∫

DADĀDA− ei
∫
dx+L , (2.13)where L is now just a funtion of {A, Ā, A−}. It is now possible to rewrite the pathintegral as a gaussian in A−:

∫
DADĀ ei

∫
d4x (Ā�A)

∫
DA− e−

1
2(∂−A−−∂Ā−∂̄A)

2

, (2.14)where the A− omponent an now be integrated out (after employing a hange ofvariables).The Lagrangian is now a funtion of only two omponents, A and Ā. Thusthe advantage of hoosing light-one gauge is that we an eliminate the unphysialdegrees of freedom, and only work with the physial degrees (in this ase, A and Ārepresent the left-irularly polarised and the right-irularly polarised light).8



2.1.3 Non-abelian Yang�Mills in light-one gaugeAs mentioned in Chapter 1, the Lagrangian for a (non-abelian) pure Yang�Millstheory is
L = −1

4
Tr (F µνFµν) , Fµν = ∂µAν − ∂νAµ + g [Aµ, Aν ] , (2.15)where the trae is over olour labels and g is the dimensionless oupling onstant inthe theory. Note that in ontrast to free eletromagnetism, this Lagrangian ontainsubi and quarti terms in Aµ, whih represent the interation verties in the theory.To rewrite this Lagrangian in light-one gauge, we proeed in exatly the samemanner as we did for free eletromagnetism. We hoose the light-one gauge, andintegrate out the A− omponent, so that the e�etive ation in the path integral,whih is now just a funtion of {A, Ā}, is

S =

∫
dx+L (2.16)with L = L−+ + L−++ + L−−+ + L−−++, where

L−+ = Tr

∫
d3x Ā�A, (2.17)

L−++ = −2ig Tr
∫
d3x

[
∂̄

∂−
A,A

]
∂−Ā, (2.18)

L−−+ = −2ig Tr
∫
d3x

[
∂̄

∂−
Ā, Ā

]
∂−A, (2.19)

L−−++ = 2g2 Tr

∫
d3x

1

∂−

[
∂−A, Ā

] 1

∂−

[
∂−Ā, A

]
. (2.20)2.2 Supersymmetry: superspae and super�eldsThe Lagrangian for a supersymmetri theory is invariant under supersymmetrytransformations. However the Lagrangian, written in terms of the omponent bosoniand fermioni �elds may not be manifestly supersymmetri, i.e. its invariane un-der supersymmetry transformations may not be obvious. However, it is possible torewrite the Lagrangian in a manifestly supersymmetri form, by introduing newnotation, namely superspae and super�elds.Several di�erent supersymmetri models have been proposed in the literature.Some of these models have more than one kind of supersymmetry transformation.These are known as extended supersymmetri models. The N = 4 super Yang�Mills (SYM) theory in four dimensions is an extended supersymmetri theory, withmaximal supersymmetry allowed (for a theory desribing partiles upto spin one).The �eld ontent of the N = 4 SYM theory omprises a gauge �eld, Aµ, fourWeyl fermions, ψm

α , and their onjugates, ψ̄mα̇, m = 1, . . . , 4, and six real salars,
ϕi, i = 1, . . . , 6. 9



We now explain what we mean by superspae and super�elds in the ontext of
N = 4 SYM theory. A ovariant super�eld formalism of this theory has not beenfound, but one in light-one gauge has been suessfully developed [4℄. We shallwork in light-one gauge in the following.2.2.1 Grassmann numbersBefore we introdue the superspae, we shall disuss antiommuting numbers, alledGrassmann numbers. If η, η′ are Grassmann numbers, then

η2 = 0 , η′
2
= 0 , ηη′ = −η′η .Thus the most general funtion of a single Grassmann number η is

f(η) = f0 + f1η .The most general funtion of two Grassmann numbers, η and η′ is
g(η, η′) = g0 + g1η + g2η

′ + g3ηη
′ .Grassmann integration is de�ned as follows

∫
dη = 0 ,

∫
dη η = 1 .This implies ∫

dη dη′ ηη′ = −
∫

dη η

∫
dη′ η′ = −1 .Thus ∫

dη f(η) = f1 ,

∫
dη dη′ g(η, η′) = −g3 .The di�erentiation operator antiommutes with Grassmann numbers

∂η

∂η
= 1 ,

∂(η′η)

∂η
= −η′∂η

∂η
= −η′ .Thus

∂f

∂η
= f1 ,

∂g

∂η
= g1 + g3η

′ ,
∂g

dη′
= g2 − g3η ,

∂

∂η′
∂g

∂η
= g3 .The antiommuting Dira delta funtion has the property

∫
dη δ(η − η′)f(η) = f(η′) .This implies that
δ(η − η′) = η − η′ .10



2.2.2 N = 4 light-one superspaeThe light-one superspae for N = 4 SYM theory is obtained by adding eightfermioni (Grassmann) oordinates to the four bosoni spaetime oordinates,
z = {x , x̄ , x+ , x− , θ1 , θ2 , θ3 , θ4 , θ̄1 , θ̄2 , θ̄3 , θ̄4 }. (2.21)This an be ompatly written as z = {xµ , θm , θ̄m}, where m = 1, . . . , 4. Note that(

θ̄m
)
= θm. De�ne Grassmann derivatives

∂̄m ≡
∂

∂θm
; ∂m ≡ ∂

∂θ̄m
, (2.22)then the various antiommutation relations are

{θm, θn} = {θm, θ̄n} = {θm, θ̄n} = {∂m, θn} = {∂̄m, θ̄n} = 0 ; (2.23)
{∂m, θ̄n} = δmn ; {∂̄m, θn} = δnm . (2.24)We also introdue the superspae hiral derivatives, dm and d̄m, de�ned as

dm = − ∂

∂θ̄m
+

i√
2
θm∂− , d̄m =

∂

∂θm
− i√

2
θ̄m∂− , m = 1, . . . , 4 . (2.25)They obey

{dm, d̄n} = i
√
2 δmn ∂− . (2.26)The Grassmann integrals in light-one superspae are normalised so that

∫
dθm θ

n = δnm ,

∫
dθ̄m θ̄n = δmn . (2.27)We de�ne

d4θ =
1

(4!)2
εmnpqdθmdθndθpdθq , d4θ̄ =

1

(4!)2
εmnpqdθ̄

mdθ̄ndθ̄pdθ̄q . (2.28)This, together with (2.27), ensures that
∫

d4θ δ(4)(θ) =

∫
d4θ̄ δ(4)(θ̄) = 1 , (2.29)where the δ-funtions are de�ned as

δ(4)(θ) = 〈θ4〉 ≡ εmnpqθ
mθnθpθq , δ(4)(θ̄) = 〈θ̄4〉 ≡ εmnpqθ̄mθ̄nθ̄pθ̄q . (2.30)Note that due to the antiommutativity of Grassmann numbers and the antisym-metry of the Levi-Civita symbol,
εmnpqθ

mθnθpθq = 4! θ1θ2θ3θ4 . (2.31)The following identity an be veri�ed using the normalisation of Grassmann integrals
∫

d4θd4θ̄ θmθnθpθqθ̄mθ̄nθ̄pθ̄q =
1

4!
. (2.32)11



2.2.3 N = 4 super�eld in light-one superspaeThe following desription of the N = 4 super�eld in light-one superspae loselyfollows the desriptions presented in [1, 4℄.The irreduible representations of the supersymmetry algebra are referred toas supermultiplets. Eah supermultiplet ontains an equal number of bosons andfermions, whih are alled the omponent �elds. A super�eld is a funtion of super-spae oordinates ontaining all the omponent �elds.As previously mentioned, the �eld ontent of the N = 4 SYM theory omprisesa gauge �eld, Aµ, four Weyl fermions, ψm
α , and their onjugates, ψ̄mα̇, m = 1, . . . , 4,and six real salars, ϕi, i = 1, . . . , 6. The gauge �eld omponents are

A± =
1√
2
(A0 ± A3) , A =

1√
2
(A1 + iA2) , Ā =

1√
2
(A1 − iA2) . (2.33)The light-one gauge desription of the theory uses only physial degrees of freedom.As before, we �x the gauge by setting A+ = 0 and integrating out A−, leaving thetwo transverse omponents, A and Ā. Similarly the four Weyl fermions, ψm

α , andtheir onjugates, ψ̄mα̇, are deomposed aording to the projetion
ψm
α → ψm

(±) = P±ψ
m
α , ψ̄mα̇ → ψ̄(±)

m = P±ψ̄mα̇ , (2.34)where P± = − 1√
2
σ±, with σ± = 1√

2
(σ0 ± σ3). We then integrate out the ψm

(+) and
ψ̄

(+)
m omponents, leaving four one-omponent fermioni �elds and their onjugates,

λm ≡ ψm
(−) , λ̄m ≡ ψ̄(−)

m . (2.35)The N = 4 multiplet is ompleted by the six real salar �elds, whih we representas SU(4)R bi-spinors, ϕmn, m,n = 1, . . . , 4, satisfying the reality ondition
ϕ̄mn ≡ (ϕmn)∗ =

1

2
εmnpqϕ

pq . (2.36)An irreduible representation of the N = 4 super-algebra is realised in terms of asingle omplex super�eld, Φ(x, θ, θ̄), whih ontains all the �elds (A , Ā , λm , λ̄m , ϕmn)as omponents. The super�eld Φ(x, θ, θ̄) is de�ned by the onstraints [4, 5℄
dmΦ(x, θ, θ̄) = 0 , d̄md̄nΦ(x, θ, θ̄) =

1

2
εmnpqd

pdqΦ̄(x, θ, θ̄) , (2.37)where Φ̄ = Φ∗ satis�es d̄mΦ̄(x, θ, θ̄) = 0, where dm and d̄m are the hiral derivativesde�ned in (2.25). The unique solution to these onstraints is a super�eld with thefollowing omponent expansion [4℄
Φ (x, θ, θ̄) = − 1

∂−
A(y)− i

∂−
θmλ̄m(y) +

i√
2
θmθnϕ̄mn(y)

+

√
2

6
θmθnθpεmnpqλ

q(y)− 1

12
θmθnθpθqεmnpq∂−Ā(y), (2.38)where we introdued the hiral variable

y = (x+, y− = x− − i√
2
θmθ̄m, x, x̄) (2.39)12



and the right hand side is understood to be a power expansion about x−.In terms of the super�elds Φ and Φ̄, the N = 4 SYM light-one ation is [3, 4℄
S = 72

∫
d4x

∫
d4θ d4θ̄ L(Φ, Φ̄, ∂µΦ, ∂µΦ̄) , (2.40)where the Lagrangian density, L(Φ, Φ̄, ∂µΦ, ∂µΦ̄) ≡ LΦ,Φ̄, is

LΦ,Φ̄ = Tr

{
−2 Φ̄ �

∂2−
Φ + i

8

3
g

(
1

∂−
Φ̄
[
Φ, ∂̄Φ

]
+

1

∂−
Φ
[
Φ̄, ∂Φ̄

])

+2g2
(

1

∂−
[Φ, ∂−Φ]

1

∂−

[
Φ̄, ∂−Φ̄

]
+

1

2

[
Φ, Φ̄

] [
Φ, Φ̄

])}
. (2.41)The super�elds Φ and Φ̄, just like the omponent �elds in the N = 4 multi-plet, transform in the adjoint representation of the gauge group SU(N). They antherefore be represented as matries,

Φ(x, θ, θ̄) = Φa(x, θ, θ̄)T a , Φ̄(x, θ, θ̄) = Φ̄a(x, θ, θ̄)T a , (2.42)where T a, a = 1, . . . , N2 − 1, are generators of the fundamental representation ofSU(N), satisfying
[
T a, T b

]
= ifabcT c , Tr

(
T aT b

)
=

1

2
δab , (2.43)and fabc are the struture onstants for SU(N).The super�elds Φ and Φ̄ satisfy additional �hidden� onstraints. One veri�es that(2.37), together with the supersymmetry algebra (2.26), gives the following relations

d̄m d̄n d̄p d̄q Φ = 2 εmnpq ∂
2
− Φ̄ , (2.44)

d̄m d̄n d̄pΦ = i
√
2 εmnpq d

q ∂− Φ̄ , (2.45)
d̄m d̄n Φ =

1

2
εmnpq d

p dq Φ̄ , (2.46)
d̄mΦ =

i

6
√
2
εmnpq d

n dp dq
1

∂−
Φ̄ (2.47)

Φ =
1

48
εmnpqd

m dn dp dq
1

∂2−
Φ̄ . (2.48)In fat, the omplex onjugate of onstraint (2.48) an be used to write the La-grangian for N = 4 SYM (2.41) purely in terms of the super�eld Φ,

LΦ,Φ̄ =
1

2
Φa

(
−3〈d̄

4〉�
∂4−

)
Φa

−2gfabc

[(〈d̄4〉
∂3−

Φa

)
Φb∂̄Φc +

1

48

(
1

∂−
Φa

)(〈d̄4〉
∂2−

Φb

)
∂

(〈d̄4〉
∂2−

Φc

)]

−g
2

32
f eabf ecd

[
1

∂−

(
Φa∂−Φ

b
) 1

∂−

(〈d̄4〉
∂2−

Φc

)(〈d̄4〉
∂−

Φd

)

+
1

2
Φa

(〈d̄4〉
∂2−

Φb

)
Φc

(〈d̄4〉
∂2−

Φd

)]
, (2.49)13



where trae has been performed over the olour indies, using (2.43), and 〈d̄4〉 ≡
εmnpqd̄md̄nd̄pd̄q.On some oassions it will be onvenient to rewrite the N = 4 super�eld (2.38)as

Φ (x, θ, θ̄) = e
− i√

2
θmθ̄m∂−

[
− 1

∂−
A(x)− i

∂−
θmλ̄m(x) +

i√
2
θmθnϕ̄mn(x)

+

√
2

6
εmnpqθ

mθnθpλq(x)− 1

12
εmnpqθ

mθnθpθq ∂−Ā(x)

]
. (2.50)

2.2.4 Position spae super Feynman rulesPerturbative evaluation of orrelation funtions or sattering amplitudes in a quan-tum �eld theory beomes mathematially inreasingly tedious with inreasing ordersin the oupling onstant. Feynman rules for the theory are a set of rules whih spe-ify one and for all how to represent eah term in the perturbation series witha pitorial representation, alled a Feynman diagram. Feynman diagrams o�er aonvenient way to keep trak of the terms in the double exponential series in theoupling onstant and external soures. Feynman rules are then used to translatethe pitures bak to mathematial expressions.We shall now present the position spae Feynman rules for N = 4 SYM theory.We work solely in terms of the hiral super�eld, using the ation in the form (2.49).The super�eld propagator is given by
∆a

b (z − z′) = 〈Φa(x, θ, θ̄) Φb(x
′, θ′, θ̄′)〉

= − 2

(4!)3
δab

(2π)2
1

(x− x′)2 〈d
4〉δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′), (2.51)where 〈d4〉 ≡ εmnpqd

mdndpdq, and δ(4)(θ − θ′) ≡ εmnpq(θ
m − θ′m)(θn − θ′n)(θp −

θ′p)(θq − θ′q). The result is derived in appendix A.2.1. In appendix A.2.2 we showthat this propagator leads to the orret propagators for the omponent �elds.The super�eld interation verties in on�guration spae an be immediatelyread o� from the superspae ation (2.49). They involve a ombination of hiraland spae-time derivatives and 1/∂− operators ating on the various legs as well asgroup theory fators. The two ubi verties are
∫

d12z (−2g)fabc

(〈d̄4〉
∂3−

Φa

)
Φb∂̄Φc −→ (−2g)fabc

〈d̄4〉
∂3−

∂̄
a

b

c

z
(2.52)14



and
∫

d12z
(
− g

24

)
fabc

(
1

∂−
Φa

)(〈d̄4〉
∂2−

Φb

)
∂

(〈d̄4〉
∂2−

Φc

)

−→
(
− g

24

)
fabc

〈d̄4〉
∂2−

a

b

c

z

∂〈d̄4〉
∂2−

1

∂− (2.53)Here we use a blak dot to denote interation verties, whih are integrated over thewhole superspae, z = (x, θ, θ̄), re�eting the fat that all intermediate steps in thealulations are manifestly N = 4 supersymmetri. In the following we will refer to(2.52) and (2.53) as Vertex 3-I and Vertex 3-II respetively.The two quarti verties are
∫

d12z

(
−g

2

32

)
f eabf ecd

[
1

∂−
(Φa∂−Φb)

1

∂−

(〈d̄4〉
∂2−

Φc
〈d̄4〉
∂−

Φd

)]

−→
(
−g

2

32

)
f eabf ecd

〈d̄4〉
∂2−

a c

d

z

〈d̄4〉
∂−

b

1

∂−

1

∂−

∂−

(2.54)
and

∫
d12z

(
−g

2

64

)
f eabf ecd

[
Φa

(〈d̄4〉
∂2−

Φb

)
Φc

(〈d̄4〉
∂2−

Φd

)]

−→
(
−g

2

64

)
f eabf ecd

a c

d

z

〈d̄4〉
∂2−

b 〈d̄4〉
∂2−

(2.55)
In the vertex (2.54) the two 1/∂− operators in the shaded ovals at on both theadjaent legs. We will refer to (2.54) as Vertex 4-I and to (2.55) as Vertex 4-II.
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Chapter 3MHV LagrangianThe material in this hapter is largely based on a paper [1℄ by the author (withDr. Sudarshan Ananth and Dr. Stefano Kovas).3.1 IntrodutionSattering amplitudes arry all the physial information in QFT. The traditionalapproah to omputing sattering amplitudes goes as follows: �rst we ompute theorrelation funtions in the theory using Feynman diagrams, and then apply theLSZ redution formula to obtain the amplitudes.There are several disadvantages of working with the traditional method for agauge theory. First, the individual Feynman diagrams are not gauge invariant -thus do not re�et the symmetry of the theory. But the sum of all possible Feynmandiagrams is gauge invariant. However, with growing number of external partiles,the number of Feynman diagrams to onsider grows very rapidly, e.g. for a 9 partilesattering, there are 559,408 diagrams to evaluate - whih is impratial. Seondly,expliit omputation reveals there are huge anellations between diagrams, and the�nal expressions for sattering amplitudes (at tree-level) have a very simple form.The simpliity of the sattering amplitudes hints at the possibility of an alternateway to arrive at the amplitudes.In partiular the simpliity is strikingly evident when one onsiders planar am-plitudes with external states of de�nite heliity and fousses on the so-alled olour-ordered partial amplitudes, as opposed to full ross-setions. They depend only onthe momenta and heliities of the n gluons. The simplest non-trivial partial ampli-tudes are those with two gluons of one heliity and all the others of the oppositeheliity. Amplitudes of this type with two gluons of negative heliity and n − 2gluons of positive heliity are referred to as maximally heliity violating (MHV).Cahazo, Svrek and Witten [7℄ suggested an approah to perturbative alula-tions in Yang�Mills theory, refered to as MHV formalism, whih makes it possible toonstrut generi heliity amplitudes by sewing together o�-shell MHV amplitudesin the theory. In [9℄ and [10℄, it was shown that a �MHV Lagrangian� an be derivedfrom the usual light-one Yang�Mills Lagrangian, by a suitable �eld rede�nition.The MHV sattering amplitudes are manifest in the new MHV Lagrangian.16



We have extended this idea to a supersymmetri Yang�Mills theory, the N = 4supersymmetri Yang�Mills (SYM) theory. In this hapter, we derive a manifestlyMHV Lagrangian for the N = 4 SYM theory in light-one superspae. This isahieved by onstruting a anonial rede�nition whih maps the N = 4 super�eld,
Φ, and its onjugate, Φ̄, to a new pair of super�elds, χ and χ̃. In terms of the newsuper�elds the N = 4 Lagrangian takes a manifestly MHV form, i.e. involves onlyMHV verties. We also identify new onstraint relations satis�ed by the new super-�elds. Finally, we test our derivation by showing that an expansion of our superspaeLagrangian in omponent �elds reprodues the orret gluon MHV verties.3.2 Heliity assignmentsIn light-one gauge we an identify heliity with the U(1) harge assoiated withrotations in the transverse (x, x̄) plane. Complex �elds are used to desribe partileswith heliity. Real �elds desribe heliity zero partiles (Lorentz salars). In thease of N = 4 SYM, the heliity assignments are as given in table 3.1.Fields U(1) harge Heliity Fators U(1) harge Heliity

A +1 + θm +1/2 +

Ā −1 − θ̄m −1/2 −
λm −1/2 − ∂ +1 +

λ̄m +1/2 + ∂̄ −1 −
ϕmn 0 0 ∂± 0 0Table 3.1: Heliity assignmentsAs a result the super�eld Φ(x, θ, θ̄) has de�nite heliity +1, as shown by theomponent expansion (2.38). Similarly, the expression of the onjugate super�eld,

Φ̄(x, θ, θ̄), in terms of omponent �elds shows that it has heliity −1. This ensuresthat the N = 4 SYM ation (2.40) is U(1) neutral as required by Lorentz invariane.In view of these heliity assignments for the N = 4 super�elds, Φ and Φ̄, we anwrite the light-front Lagrangian as
LΦ,Φ̄ =

∫

Σ

d3x d4θ d4θ̄
[
L(−+)

Φ,Φ̄
+ L(−++)

Φ,Φ̄
+ L(−−+)

Φ,Φ̄
+ L(−−++)

Φ,Φ̄

]
, (3.1)where the integration is on a surfae of onstant x+, Σ, and the supersripts referto the number of super�elds of heliity +1 (Φ) and −1 (Φ̄). Comparing with (2.41)we �nd

L(−+)

Φ,Φ̄
= −2Tr

(
Φ̄
�

∂2−
Φ

)
, (3.2)

L(−++)

Φ,Φ̄
= i

8

3
gTr

(
1

∂−
Φ̄[Φ, ∂̄Φ]

)
, L(−−+)

Φ,Φ̄
= i

8

3
gTr

(
1

∂−
Φ[Φ̄, ∂Φ̄]

) (3.3)17



and
L(−−++)

Φ,Φ̄
= 2g2Tr

(
1

∂−
[Φ, ∂−Φ]

1

∂−
[Φ̄, ∂−Φ̄] +

1

2
[Φ, Φ̄][Φ, Φ̄]

)
. (3.4)3.3 Towards a MHV Lagrangian for N = 4 SYMIn this setion, we identify a super�eld rede�nition

Φ(x, θ, θ̄)→ χ(x, θ, θ̄) , Φ̄(x, θ, θ̄)→ χ̃(x, θ, θ̄) , (3.5)suh that in terms of the new super�elds the N = 4 ation takes a manifestly MHVform. We require the rede�nition to be a anonial transformation in superspae,to ensure that the hange of variables (3.5) does not give rise to a Jaobian whenused in the path integral. The transformation must also preserve the heliity of thesuper�elds, so that χ(x, θ, θ̄) and χ̃(x, θ, θ̄) must have the same de�nite heliities,
+1 and −1 respetively, as the original super�elds.Our onstrution of the super�eld rede�nition (3.5) follows losely that of [10, 11℄for the pure Yang�Mills ase. As in those papers, we will �nd that, in order toprodue a manifestly MHV Lagrangian, the rede�nition (3.5) is neessarily nonpolynomial. The super�elds Φ and Φ̄ are given by in�nite series in the new �elds χand χ̃. We will show that the super�eld rede�nitions take the form

Φ(p) =

∞∑

n=2

gn−2

∫
d3p1 · · ·d3pn−1 δ

(3)(p− p1 − · · · − pn−1)Γ(p; p1, . . . , pn−1)

×χ(p1) · · ·χ(pn−1)

Φ̄(−p) = −
∞∑

n=2

n∑

s=2

gn−2

∫
d3p1 · · ·d3pn−1 δ

(3)(p+ p1 + · · ·+ pn−1)
p−

(ps)−

×Ξ(s−1)(p; p1, . . . , pn−1)χ(p1) · · ·χ(ps−1)χ̃(ps)χ(ps+1) · · ·χ(pn−1)where the dependene on the fermioni oordinates, θ and θ̄, has not been indiatedexpliitly. Here and in the following d3p denotes dp− dp dp̄ in momentum spaeintegrals. We will outline how to derive the expliit form of the oe�ient funtions,
Γ and Ξ, in these series.Substituting the expressions of Φ and Φ̄ in terms of χ and χ̃ gives rise to aLagrangian of the form

Lχ,χ̃ =

∫

Σ

d3x d4θ d4θ̄


L(−+)

χ,χ̃ +
∞∑

k=1

L(−−

k︷ ︸︸ ︷
+ · · ·+)

χ,χ̃


 (3.6)in whih all terms are manifestly MHV in light-one superspae. Here the k-th termin sum ontains two χ̃'s, k χ's and a fator of gk.Our superspae analysis presents additional ompliations, whih do not arisein the non-supersymmetri ase. The transformed super�elds do not satisfy theonstraints (2.37) satis�ed by the original super�elds, and so they are not guaranteedto desribe the same degrees of freedom. We shall identify new onstraints satis�edby the transformed super�elds and prove that χ and χ̃ with these new onstraintsdesribe the irreduible N = 4 multiplet.18



3.3.1 Canonial TransformationAs in the pure Yang�Mills ase [9, 10, 11℄, the aim is to onstrut the super�eldrede�nition in suh a way as to eliminate the non-MHV ubi vertex, L(−++)

Φ,Φ̄
, fromthe Lagrangian. The new super�elds, χ and χ̃, are thus de�ned requiring

L(−+)

Φ,Φ̄
+ L(−++)

Φ,Φ̄
→ L(−+)

χ,χ̃ . (3.7)To ensure the anoniity of the transformation, we de�ne the new super�elds, χand χ̃, via a generating funtional. In omplete analogy with the pure Yang�Millsase [10℄, we searh for a generating funtional of the form
K(χ, πΦ) =

∫
d3x d4θ d4θ̄ Tr [k(χ) πΦ] , (3.8)where πΦ is the onjugate momentum to Φ. From K(χ, πΦ) we onstrut the anon-ial hange of variables, whih is de�ned by the relations

Φ(x, θ, θ̄) =

∫
d3x′d4θ′ d4θ̄′

δ
(
Tr [k(χ) πΦ] (x

′, θ′, θ̄′)
)

δπΦ(x, θ, θ̄)

πχ(x, θ, θ̄) =

∫
d3x′d4θ′ d4θ̄′

δ
(
Tr [k(χ) πΦ] (x

′, θ′, θ̄′)
)

δχ(x, θ, θ̄)
,

(3.9)where πχ is the momentum onjugate to χ.The funtional k(χ) in (3.8) is �xed by the requirement that the Lagrangianwritten in terms of the new super�elds take the desired MHV form. The �rstequation in (3.9) implies Φ = k(χ), i.e. it de�nes the relation between Φ and thenew super�eld χ. The seond equation in (3.9) beomes
πχ(x, θ, θ̄ ) ≡

1

∂−
χ̃(x, θ, θ̄ )=

∫
d3x′d4α d4ᾱ

δ {Φa(x′, α, ᾱ)(ta)ij}
δχ(x, θ, θ̄ )

1

∂−

{
Φ̄b(x′, α, ᾱ)(tb)ji

}
.(3.10)and it de�nes the new super�eld χ̃ in terms of Φ and Φ̄. The form of the generatingfuntional (3.8) ensures that the terms involving ∂+ anel out in (3.7),

∫
d3x d4θ d4θ̄Tr

(
2
1

∂−
Φ̄ ∂+Φ

)
=

∫
d3x d4θ d4θ̄Tr

(
2
1

∂−
χ̃ ∂+χ

)
. (3.11)We substitute (3.10) into (3.7) to obtain (after Fourier transforming)

ω1Φ1 + i
2

3
g

∫

23

δ(3)(p1 − p2 − p3)
{2,3}

p2− + p3−
Φ2Φ3−

∫

l

ωl
δΦ1

δχl
χl = 0, (3.12)where Φj ≡ Φ(pj), ωk ≡ pkp̄k

pk−
and {i,j} ≡ (p̄jpi− − p̄ipj−) and for the measures wehave de�ned

∫

12...n

≡
∫ n∏

k=1

dpk− dpk dp̄k and

∫
dθ ≡

∫
d4θ d4θ̄ . (3.13)19



In the following we will also use the notation (pi, pj) = pjpi− − pipj−.Condition (3.12) indiates that Φ is a power-series in χ of the following form
Φ1 =

∞∑

n=2

gn−2

∫

2...n

δ(3)(p1 − p2 − · · · − pn) Γ1,2,...,n χ2 . . . χn . (3.14)
Γ1,2,...,n ≡ Γ(p1, p2, . . . , pn) are oe�ients to be determined order by order. Substi-tuting the ansatz (3.14) bak into (3.12), we �nd the Γ oe�ient is

Γ+,2,...,n =

(
i
2

3

)n−2 p2−p
2
3−p

2
4− . . . p

2
(n−1)−pn−

(p2,p3)(p3,p4) . . . (pn−1,pn)
, (3.15)where Γ+,i,j ≡ Γi+j,i,j.Having obtained an all-order expression for the �eld rede�nition for Φ we nowturn to Φ̄. We di�erentiate Φ with respet to χ and substitute the result in (3.10)to obtain the following expression for Φ̄

Φ̄−1 = −
∞∑

m=2

gm−2

m∑

s=2

∫

2...m

δ(3)(p1+p2+· · ·+pm)
p1−
ps−

Ξs−1
1,2,...,mχ2 . . . χs−1χ̃sχs+1 . . . χm,(3.16)where the supersript on Ξ orresponds to the position of χ̃ in the string of χ's. Toompute the higher order Ξ oe�ients, we start with (3.11). From the expansionof Φ in (3.14), sine all the �elds have the same x+ dependene and none of the Γoe�ients depend on x+, we get

∂+Φ1 =

∞∑

n=2

gn−2

n∑

r=2

∫

2...n

δ(3)(p1 − p2 − · · · − pn) Γ1,2,...,nχ2 . . . χr−1∂+χrχr+1 . . . χn.(3.17)We substitute (3.16) and (3.17) in (3.11), and evaluate order by order to �nd,
Ξs−1
−,2,...,m =

p1−
ps−

Γ+,2,...,m , (m ≥ 3 ; 2 ≤ s ≤ m) , (3.18)where Ξs−1
−,i,j = Ξs−1

−i−j,i,j.The transformations (3.14) and (3.16) an be inverted to express χ and χ̃ interms of Φ and Φ̄. The details of the alulation in this setion are presented in [1℄.3.3.2 New onstraintsAs disussed in setion 2.2.3 the original super�elds, Φ and Φ̄, are both onstrained.They satisfy (anti) hirality onditions,
dmΦ = 0 , d̄m Φ̄ = 0 , (3.19)and onstraints (2.44)-(2.48).The most general super�eld inN = 4 superspae does not desribe an irreduiblemultiplet of the N = 4 superalgebra. Imposing the onstraints (3.19) and (2.44)-(2.48) redues the number of independent omponents in Φ and Φ̄ ensuring thatthese super�elds desribe only the N = 4 degrees of freedom.20



We need to show that the new super�elds also desribe theN = 4 supermultiplet.This is not guaranteed, beause in onstruting the anonial hange of variables,we have treated Φ and Φ̄ as unonstrained. We need to dedue what onditions for
χ and χ̃ are implied by the onstraints on the original super�elds and then showthat these new onditions give rise to the orret degrees of freedom. This anbe ahieved starting with the inverse transformations and imposing the onditions(3.19), (2.44)-(2.48) on the right hand side.From the transformation relating Φ and χ one an verify that the latter is alsohiral,

d χ = 0 . (3.20)The remaining onstraints on Φ and Φ̄ are, however, not valid for χ and χ̃. Inpartiular, the super�eld χ̃ is not anti-hiral. Moreover, as a onsequene of thestruture of the �eld rede�nition, we expet the onstraints satis�ed by χ and χ̃ tobe modi�ed order by order in the oupling. We will present here the shemati formof the new onditions for χ and χ̃ to order g.We start with the inverse transformations trunated at order g,
χp = Φp − g

∫

qr

δ(p− q − r) Γp,q,r Φq Φr +O(g2) , (3.21)
χ̃p = Φ̄p + g

∫

qr

δ(p− q − r)
{
p−
q−

Γ−q,r,−p Φ̄q Φr +
p−
r−

Γ−r,−p,q Φq Φ̄r

}
+O(g2) .(3.22)The expansion (3.21) is onsistent with the hirality of χ. Ating with the superspaederivative d̄m on (3.22) and using (3.19), (2.44)-(2.48) we arrive at the relation

1

∂2−
d̄ χ̃ ∼ g

(
d3

∂−
χ̃

)
χ̃ , (3.23)whih replaes the anti-hirality ondition for Φ̄.The additional onstraint relations [1℄, analogous to (2.44)-(2.48), are

d4

∂2−
χ̃ ∼ χ+ gχ2 + g3χ3 + · · · , (3.24)

d3

∂−
χ̃ ∼ d̄χ + gχd̄χ+ g2χ2d̄χ+ · · · , (3.25)

d2χ̃ ∼ d̄ 2χ+ gd̄χd̄χ+ gχd̄ 2χ+ g2χd̄χd̄χ+ g2χ2d̄ 2χ+ · · · , (3.26)
∂−dχ̃ ∼ d̄ 3χ+ gd̄χd̄ 2χ+ gχd̄ 3χ+ · · · , (3.27)
∂2−χ̃ ∼ d̄ 4χ+ gd̄ 2χd̄ 2χ+ gd̄χd̄ 3χ+ gχd̄ 4χ+ · · · . (3.28)Notie that at zero-th order in the oupling χ and χ̃ oinide with Φ and Φ̄ respe-tively. The above onditions are onsistent with this observation. The super�eld χis hiral and (3.23) redues to

d̄ (χ̃)0 = 0 , (3.29)21



showing that χ̃ is anti-hiral for g = 0. Similarly the onditions (3.24)-(3.28) redueto (2.44)-(2.48) at g = 0.Having obtained the new onstraints satis�ed by χ and χ̃ we proeed to showthat they give rise to the orret �eld ontent. Sine χ is hiral, we an write it as 1
χ(x, θ, θ̄) = α(y) + β(y) [θ] + γ(y) [θ]2 + δ(y) [θ]3 + ε(y) [θ]4 . (3.30)We �nd that χ̃ satisfying the �inside-out� relations (3.24)-(3.28) is fored to havethe struture

χ̃(x, θ, θ̄) = A00(y) + A10(y) [θ] + A20(y) [θ]
2 + A30(y) [θ]

3 + A40(y) [θ]
4

+A01(y) [θ̄] + A02(y) [θ̄]
2 + A03(y) [θ̄]

3 + A04(y) [θ̄]
4 , (3.31)where y is the hiral variable (2.39) and all omponent �elds, Aij , i, j = 0, . . . , 4,are fully determined in terms of the omponent �elds α, β, γ, δ and ε.The remaining ondition on χ and χ̃ is (3.23). Imposing this onstraint halves thenumber of independent omponents in the new super�elds. Therefore we onludethat χ and χ̃ ontain a total of eight bosoni and eight fermioni independent degreesof freedom.3.4 MHV Lagrangian for N = 4 Yang�MillsThe manifestly MHV Lagrangian in terms of the new super�elds χ and χ̃ to order

g2 is
Lχ,χ̃ = Tr

∫
dθ dp g0(p) χ̃−p χp

+g Tr

∫
dθ dp dk dl δ(p+ k + l) g1(p, k, l) χp [χ̃k , χ̃l] (3.32)

+g2Tr

∫
dθ dp dq dr dl δ(p+ q + r + l) g21(p, q, r, l) [χp , χq] [χ̃r , χ̃l]

+g2Tr

∫
dθ dp dq dr dl δ(p+ q + r + l) g22(p, q, r, l) [χp , χ̃q] [χr , χ̃l] ,where

g0(p) = −4 pp̄− p+p−
p2−

, (3.33)
g1(p, q, r) =

i4

3

(q, r)

p−(q− + r−)
, p + q + r = 0 , (3.34)

g21(p, q, r, l) =
16

9

p−
q2−

(q− + r−)
2(q, r)

l−(q + r, l)
− 4

9

q−p−(r, l)

(r− + l−)2(r + l, q)
, (3.35)

g22(p, q, r, l) =
16

9

r−
p2−

(q− + r−)
2(q + r, l)

q−(q, r)
− 2

(q−p− + l−r−)

(q− + l−)2
, (3.36)1Here we use the notation [θ]n to denote n powers of θ without speifying the SU(4)R indies.22



where p+ q + r + l = 0.Using the expliit expressions for the oe�ients Γ and Ξ in (3.14) and (3.16) itis possible, though tedious, to derive higher order verties in the MHV Lagrangian.We will not present these alulations here.3.5 Component LagrangianIn this setion we disuss the form of the gluon MHV verties arising from theomponent expansion of the superspae Lagrangian given in the previous setion.These gluon verties should oinide with those in the pure Yang�Mills MHV La-grangian [10℄. This will thus allow us to test our superspae result. We will arryout the omparison for terms up to order g2, i.e. we will onsider ubi and quartiverties.We use the inverse transformations writing (χ, χ̃) in terms of (Φ, Φ̄) to �rst order,(3.21-3.22). Next we expand the super�elds in terms of the omponent gluon �elds.,setting all other omponents in Φ and Φ̄ to zero
Φp = − 1

ip−
Ap e

− i√
2
θmθ̄mip− − 1

12
εrstuθ

rθsθtθu ip− Āp ,

Φ̄p = − 1

ip−
Āp e

i√
2
θmθ̄mip− − 1

12
εrstuθ̄rθ̄sθ̄tθ̄u ip−Ap . (3.37)In order to make ontat with the known form of the MHV gluon ouplings we thenneed to express the omponent �elds, A and Ā, in terms of the new �elds desribingthe two heliities of the gluons, B and B̃. We use the form of the �eld rede�nitionderived in [9, 10℄ for the Yang�Mills ase. Using these relations the new �elds χand χ̃ an be written in terms of B and B̃. Substituting these expressions intoour superspae Lagrangian (3.32) reprodues exatly the ubi and quarti vertiesin the MHV Lagrangian of [9, 10℄. The details of the alulation are presented inreferene [1℄.3.6 DisussionIn this hapter, we onstruted a manifestly MHV Lagrangian from the usual La-grangian for N = 4 SYM in light-one superspae. We found that the anonial�eld rede�nitions whih were needed were non-polynomial. We determined the �eldrede�nitions to all orders, and also determined the new onstraints satis�ed by therede�ned �elds. We also heked whether these onstraints were enough to limitthe degree of freedom in the new super�elds to desribe the N = 4 supermultiplet.Finally, we reprodued the Yang�Mills MHV Lagrangian from the MHV Lagrangianfor N = 4 SYM.As disussed in the introdution setion, a MHV Lagrangian, with MHV vertiesmanifest, provides a Lagrangian origin to the MHV formalism developed in [7℄. Thishas many onsequenes, as tehniques and lessons from the traditional Lagrangianformulation of �eld theories may be utilized to understand more deeply propertiesof sattering amplitudes in QFT. 23



Chapter 4Gauge invariant orrelation funtionsThe material in this hapter is largely based on a preprint [2℄ by the author (withDr. Sudarshan Ananth and Dr. Stefano Kovas), whih has been submitted forreview.4.1 IntrodutionIn a onformally invariant gauge theory, the fundamental observables are the orre-lation funtions of gauge-invariant operators. In the ase of the N = 4 supersym-metri Yang�Mills (SYM) theory suh orrelation funtions play a entral role inthe ontext of the AdS/CFT orrespondene [12, 13, 14℄.In this hapter, we study suh orrelation funtions in N = 4 SYM theory usingthe light-one superspae formalism. The unique advantage of this formalism is thatit provides a desription, solely in terms of physial degrees of freedom, in whih thefull N = 4 supersymmetry as well as the SU(4) R-symmetry are manifestly realised.However, this is ahieved at the expense of manifest Lorentz invariane.In this hapter we shall introdue the main features of N = 4 light-one super-spae as applied to the study of gauge-invariant orrelation funtions in positionspae. We shall spei�ally present the one-loop alulation of a simple four-pointorrelator of gauge-invariant salar operators belonging to the super-multiplet ofthe energy-momentum tensor. We will reprodue the known tree-level and one-loopresults for the four point funtion of omposite operators whih are bilinear in theelementary salars and transform in the 20′ representation of the SU(4) R-symmetryof N = 4 SYM.Our primary aim is to develop e�ient methods for omputing perturbativeorretions to orrelation funtions. We omment on the intriguing possibility thatthe manifest N = 4 supersymmetry in this approah may allow for a ompatdesription of entire multiplets and their orrelation funtions.4.2 Perturbative alulations in position spaeGauge-invariant orrelation funtions in a onformal �eld theory are most naturallystudied in position spae rather than momentum spae. We now disuss some general24



aspets of perturbative alulations using the formalism of light-one superspae. Insetion 2.2.4, we presented the form of the super�eld propagator and summarisedthe Feynman rules in position spae.Notie that the super�eld propagator in position spae (2.51) has essentially thesame form as in momentum spae [5℄. Consequently the basi manipulations em-ployed in the alulation of position spae super Feynman diagrams are the sameas used in momentum spae. This represents a distint feature ompared with o-variant superspae formalisms, where there are more signi�ant di�erenes betweenposition and momentum spae formulations.Super Feynman diagrams onstruted from the interation verties and the prop-agator ontain spae-time derivatives (∂, ∂̄ and ∂−, but not ∂+) as well as hiralderivatives dm and d̄m de�ned in (2.25). All these derivatives an be integrated byparts in superspae integrals. They an also be transferred from one end point tothe other of the super-propagator they at on, ∆(z − z′), using the fat that thelatter is only a funtion of the di�erene (z− z′). Moreover, the 1/∂− operators ane�etively be �integrated by parts� as explained in (A.45).The general strategy for the evaluation of position spae Feynman diagrams isas follows. The �rst step onsists in omputing Grassmann integrals, utilising thefermioni δ-funtions in the super-propagator. For this purpose one needs to free upone internal line of all the hiral derivatives, using repeated integrations by parts,and then use the relation (A.46) in appendix A.3.One the fermioni integrals at eah interation vertex have been omputed, theexternal super-operators are projeted onto spei� omponents, thus drastiallyreduing the number of non-zero ontributions.At this point the resulting bosoni integrals an be diretly ompared to theorresponding expressions obtained using Lorentz ovariant formulations. In setion4.4 we illustrate these steps in the ase of a simple four-point funtion and we showhow the light-one superspae analysis reprodues the known ovariant results priorto the evaluation of the �nal bosoni integrals.4.3 Composite operators and orrelation funtionsIn this paper we will only onsider examples of orrelators of operators onstrutedfrom the elementary salars in the N = 4 multiplet, ϕmn. This ensures that theexpliit form of the operators remain the same (in light-one gauge) as in Lorentzovariant formulations. The simplest suh operators are salars of dimension 2belonging to the super-multiplet of the energy-momentum tensor. They transformin the representation 20
′ of the SU(4) R-symmetry group and, in terms of the ϕmnrepresentation for the elementary salars, they take the form

Q[mn][pq] = Tr (ϕmnϕpq)− 1

12
εmnpq Tr (ϕ̄rsϕ

rs)

=
1

3
Tr (2ϕmnϕpq + ϕmpϕnq − ϕmqϕnp) . (4.1)25



We an express the same operators in terms of the representation ϕi of the salarsas SU(4)R vetors as
Qij = Tr

(
ϕiϕj

)
− 1

6
δij Tr

(
ϕkϕk

)
. (4.2)The equivalene of the two forms (4.1) and (4.2) an be veri�ed using the identity(A.1).In order to desribe the operators (4.1)-(4.2) in light-one superspae we intro-due omposite super�eld operators whih ontain them in their omponent expan-sion. For this purpose it is onvenient to work with the form (4.2) whih, using(A.1) we an rewrite as

Qij =
1

8

(
σi pqσj rs − 1

3
δijεpqrs

)
Tr (ϕ̄pqϕ̄rs) . (4.3)From the form of the N = 4 super�eld (2.38) and the de�nition (2.25) of the hiralderivatives, d̄m, it is easy to verify that the salar �eld ϕ̄mn(x) in the expansion of

Φ(z) an be isolated as follows
ϕ̄mn(x) =

i√
2

[
d̄md̄nΦ(x, θ, θ̄)

]∣∣
θ=θ̄=0

. (4.4)We an then de�ne the super-operator
Qij(z) = − 1

16

(
σi pqσj rs − 1

3
δijεpqrs

)
Tr
[(
d̄pd̄qΦ(z)

) (
d̄rd̄sΦ(z)

)]
, (4.5)whih ontains (4.3) as its θ = θ̄ = 0 omponent,

Qij(x) =
[
Qij(z)

]∣∣
θ=θ̄=0

. (4.6)The only other operator of bare dimension 2 in the N = 4 theory is an unprotetedone, the superonformal primary operator, K(x), belonging to the long Konishimultiplet [15, 16℄. K(x) is a SU(4)R singlet and takes the form
K = Tr(ϕiϕi) =

1

4
εmnpqTr (ϕ̄mnϕ̄pq) . (4.7)Using (4.4) we an onstrut a super-operator ontaining K(x) as θ = θ̄ = 0 om-ponent. We de�ne

K(z) = −1
8
εmnpqTr

[(
d̄pd̄qΦ(z)

) (
d̄rd̄sΦ(z)

)]
, (4.8)so that

K(x) = [K(z)]|θ=θ̄=0 . (4.9)In the present paper we onsider only orrelators of proteted operators, foussingon a four-point funtion of the Qij de�ned in (4.5). In the following setion wepresent the tree-level and one-loop alulations for this four-point funtion and inderiving our results we will assume the non-renormalisation of two- and three-pointfuntions as it is a gauge-invariant result and thus remains valid when working inlight-one superspae. 26



4.4 A simple four-point orrelation funtionThe study of four-point orrelation funtions of proteted operators in N = 4 SYMprovides a good starting point for the appliation of light-one superspae tehniquesto the alulation of o�-shell observables.In the ase of four-point funtions of N = 4 primary operators the dependeneon the external points is not �xed by the symmetries of the theory. Quantumorretions to these orrelators an be reorganised into funtions, F4(r, s; g), of theoupling onstant and two onformally invariant ross ratios, whih an be hosenas
r =

x212x
2
34

x213x
2
24

, s =
x214x

2
23

x213x
2
24

, (4.10)where x2ij = (xi − xj)2.We onsider four-point orrelation funtions of the operators Qij given in (4.3),
G

(Q)
4 (x1, . . . , x4) = 〈Qi1j1(x1)Q

i2j2(x2)Q
i3j3(x3)Q

i4j4(x4)〉 , (4.11)whih an be obtained from the orrelation funtions of the orresponding super-operators, Qij , de�ned as
G(Q)
4 (z1, . . . , z4) = 〈Qi1j1(z1)Qi2j2(z2)Qi3j3(z3)Qi4j4(z4)〉 , (4.12)by setting to zero the external fermioni oordinates,

G(Q)(x1, . . . , x4) = G(Q)
4 (z1, . . . , z4)

∣∣∣
θ(α)m=θ̄

(α)
m =0

, ∀ α = 1, . . . , 4 , m = 1, . . . , 4 ,(4.13)where the index α labels the external points.In this hapter we restrit our attention to a simple four-point funtion in thelass (4.11), whih we denote by G(H)
4 (x1, . . . , x4). It orresponds to the followinghoie for the �avour indies

G
(H)
4 (x1, . . . , x4) = 〈Q12(x1)Q

34(x2)Q
34(x3)Q

12(x4)〉 . (4.14)We re-derive the known tree-level and one-loop ontributions to (4.14) working inlight-one superspae. Our starting point is thus
G(H)
4 (z1, . . . , z4) = 〈Q12(z1)Q34(z2)Q34(z3)Q12(z4)〉 , (4.15)whih redues to (4.14) upon setting to zero the external fermioni oordinates.The simpli�ations indued by the hoie of SU(4)R indies in (4.14) will be-ome apparent in the next subsetions where we evaluate this partiular four-pointfuntion at tree-level and one-loop.We start by writing (4.14) using the form (4.3) for the Qij operators,

G
(H)
4 (x1, . . . , x4) =

〈
Tr
[(
ϕ1ϕ2

)
(x1)

]
Tr
[(
ϕ3ϕ4

)
(x2)

]
Tr
[(
ϕ3ϕ4

)
(x3)

]
Tr
[(
ϕ1ϕ2

)
(x4)

] 〉

=

(
1

8

)4

σ1m1n1σ2p1q1σ3p2q2σ4m2n2σ3p3q3σ4m3n3σ1m4n4σ2p4q4 (4.16)
×
〈
Tr [(ϕ̄m1n1ϕ̄p1q1)(x1)] Tr [(ϕ̄m2n2ϕ̄p2q2)(x2)] Tr [(ϕ̄m3n3ϕ̄p3q3)(x3)] Tr [(ϕ̄m4n4ϕ̄p4q4) (x4)]

〉
.27



The expliit form of the super-operator ontaining (4.16) as its θ = θ̄ = 0 omponentis
G(H)
4 (z1, . . . , z4) =

1

16

(
1

8

)4(
i√
2

)8

σ1m1n1σ2p1q1σ3p2q2σ4m2n2σ3p3q3σ4m3n3σ1m4n4σ2p4q4

×
〈(
d̄(1)m1

d̄(1)n1
Φa(z1)d̄

(1)
p1
d̄(1)q1

Φa(z1)
)(
d̄(2)m2

d̄(2)n2
Φb(z2)d̄

(2)
p2
d̄(2)q2

Φb(z2)
)

×
(
d̄(3)m3

d̄(3)n3
Φc(z3)d̄

(3)
p3
d̄(3)q3

Φc(z3)
)(
d̄(4)m4

d̄(4)n4
Φd(z4)d̄

(4)
p4
d̄(4)q4

Φd(z4)
)〉

. (4.17)Notie that in G(H)
4 (x1, . . . , x4) we hoose all the Qij operators with distint �avourindies, so that when re-writing them in the form (4.3) the seond term, whih sub-trats the SU(4)R trae never appears. This leads to simpli�ations in the alulationsine there are fewer ontrations to onsider.For ompatness of notation, in the following we write the super-propagator as

∆i
j(z1 − z2) =

kδij
x212
〈d4〉δ(8)12 , (4.18)where k = −2/(2π)2(4!)3, x212 = (x1 − x2)2 and δ(8)12 = δ(4)(θ1 − θ2)δ(4)(θ̄1 − θ̄2).4.4.1 Tree levelAt tree level there are multiple ontrations possible in (4.17). However, only theone shown in �gure 4.1 is non-zero. The reason why all other ontrations vanishis evident from the form of G(H)

4 in the �rst line of (4.16): all other ontration arezero beause the propagator (A.32) for the elementary salars is diagonal in �avourspae.
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Figure 4.1: Tree-level ontribution to G(H)
4 (x1, . . . , x4).It is straightforward to obtain the same result in superspae. A free propagatoronneting salars ϕa1 i1(x1) and ϕa2 i2(x2) in two Q operators gives rise to the fator

σi1m1n1σi2m2n2

(
d̄m1 d̄n1〈d4〉

δ
(8)
12

x212

←−−−−
d̄m2 d̄n2 δ

a1a2

)
, (4.19)28



whih, upon setting to zero the θ and θ̄ oordinates at points z1 and z2, redues to
δa1a2

x212
σi1m1n1σi2m2n2〈d4〉d̄m1d̄n1d̄m2 d̄n2 δ

(8)
12

∣∣∣∣
θ1=θ̄1=0

= (4!)3 8
δa1a2

x212
δi1i2 , (4.20)where σi1m1n1σi2m2n2εm1n1m2n2 = 8 δi1i2 . Thus eah external ϕi an only be onnetedthrough a free propagator to a ϕj with i = j for a non-vanishing ontribution.Therefore at tree level the only allowed ontration in G(H)

4 (z1, . . . , z4) is the one in�gure 4.1 whih, using (4.18), yields
G(H)
4 (z1, . . . , z4) =

1

220
σ1m1n1σ2p1q1σ3p2q2σ4m2n2σ3p3q3σ4m3n3σ1m4n4σ2p4q4

× k4
(
d̄m1 d̄n1〈d4〉

δ
(8)
14

x214

←−−−−
d̄n4 d̄m4δ

ad

)(
d̄p1d̄q1〈d4〉

δ
(8)
14

x214

←−−−
d̄q4d̄p4δ

ad

)

×
(
d̄m2 d̄n2〈d4〉

δ
(8)
23

x223

←−−−−
d̄n3d̄m3δ

bc

)(
d̄p2d̄q2〈d4〉

δ
(8)
23

x223

←−−−
d̄q3d̄p3δ

bc

)
. (4.21)Setting to zero all the external θm's and θ̄m's we get

[
G

(H)
4 (x1, . . . , x4)

]
tree

=
(N2 − 1)

2

16(2π)8
1

(x214)
2(x223)

2
. (4.22)4.4.2 One-loopOne-loop ontributions to G(H)

4 (x1, . . . , x4) are of order g2 and involve either twoubi interation verties or a single quarti vertex. Moreover we an distinguishbetween disonneted diagrams, whih fatorise into the produt of tree-level andone-loop two-point funtions, and onneted four-point diagrams.Fatorised two-point funtionsFigure 4.2 depits the disonneted one-loop ontributions to G(H)
4 . They fatoriseas

〈Q12(z1)Q12(z4)〉1−loop〈Q34(z2)Q34(z3)〉tree . (4.23)A seond set of diagrams in whih the interation verties onnet to the externalpoints z2 and z3 gives rise to a ontribution of the form
〈Q12(z1)Q12(z4)〉tree〈Q34(z2)Q34(z3)〉1−loop . (4.24)Both (4.23) and (4.24) vanish thanks to the non-renormalisation of two-point fun-tions of proteted operators. Therefore we assume that G(H)

4 (x1, . . . , x4) reeives noontribution from the sum of all diagrams with the topologies in �gure 4.2.29
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(d)Figure 4.2: Disonneted one-loop ontributions to G(H)
4 (x1, . . . , x4).Conneted diagrams involving two ubi vertiesThe next set of diagrams of order g2 that we need to onsider are onneted onesinvolving two ubi verties. There are two distint types of ontrations to takeinto aount whih are shown in �gure 4.3.The building bloks for these diagrams are the ubi verties (2.52) and (2.53).Analysing the ombinations of hiral derivatives in these verties one an verify thatin order to produe a potentially non-vanishing ontribution a diagram must involveone vertex of eah type. This is proven in appendix A.4.1.The ontributions from the two diagrams in �gure 4.3 vanish individually, butfor di�erent reasons.The vanishing of diagrams of the type in �gure 4.3a is straightforward. Sinethe super�eld propagator is diagonal in olour spae, the free ontrations betweenpoints z1 and z4 and between points z2 and z3, ombined with the traes at eah ex-ternal point, fore two of the indies of the totally antisymmetri struture onstants

fabc at the interation verties in z5 and z6 to be the same. Therefore these diagramsare identially zero. Sine this vanishing result follows from the olour struture ofthe diagram, all other Wik ontrations, whih di�er only in the distribution of�avour indies, give a zero result as well.Diagrams of the type shown in �gure 4.3b also vanish, but the proof is slightly30



ϕ1 a ϕ2 a

1

4

ϕ1 d ϕ2 d

3

ϕ3 c ϕ4 c

ϕ4 bϕ3 b

2

5 6

(a)
ϕ1 a

ϕ2 a
1

4

ϕ1 d

ϕ2 d
3ϕ3 c

ϕ4 c

ϕ4 b

ϕ3 b
25

6(b)Figure 4.3: Conneted one-loop ontributions to G(H)
4 (x1, . . . , x4) involving ubiverties.more involved, requiring manipulations whih are desribed in detail in appendixA.4.1. The vanishing of ontributions with this topology follows from the observationthat a ontration in whih two external �elds ϕi1 and ϕi2 are onneted to a ubiinteration vertex gives rise to a fator of σi1mnσi2pqεmnpq = 8δi1i2 . The reason forthis is explained under Rule A.4.1 in Appendix A.4.1.In the ase of the diagram in �gure 4.3b the internal point z5 (z6) onnets ϕ2with ϕ3, whih results in a fator of σ2mnσ3pqεmnpq = 0. Other Wik ontrations,with a di�erent distribution of �avour indies, vanish for the same reason.Conneted diagrams involving one quarti vertexThe last type of ontribution to G(H)

4 (x1, . . . , x4) at order g2 omes from diagramsinvolving a single quarti vertex. With our hoie of external �avours the onlyallowed topology is depited in �gure 4.4, where the interation vertex at point z5an be either (2.54) or (2.55). The �rst type of ontribution, onstruted using thevertex (2.54), vanishes. Therefore the entire one-loop orretion to G(H)
4 (x1, . . . , x4)omes from diagrams of the type in �gure 4.4, with the quarti interation at point

z5 orresponding to Vertex 4-II (2.55).We present below the alulation of the ontration shown in the �gure, in whihthe two free propagators onneting points z1 and z4 and points z2 and z3 arry�avour 1 and 4 respetively. There are additional ontributions in whih the z1 −
z4 line has �avour 2 and/or the z2 − z3 line has �avour 3. These produe thesame ontribution as the diagram we analyse and therefore simply give rise to amultipliity fator in the �nal answer.The vanishing of diagrams involving Vertex 4-I (2.54) follows from Rule A.4.2 inAppendix A.4.2. The requirement that the struture funtions be non-zero on�itswith the requirement that the σσε ontrations be non-zero. Consequently Vertex4-I does not ontribute.Finally we ome to the alulation of the non-zero ontribution from diagramsof the topology in �gure 4.4 in whih the interation vertex is of type 4-II.31
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E4[a5, b5, c5, d5] =
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(
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. (4.25)This ommon portion simpli�es to

E4[a5, b5, c5, d5] = T (σ)

(
− g

2

226

)
k6 δadδbcf ea5b5 f ec5d5

(4!)6

84
εm1n1n4m4εm2n2n3m3

1

x214

1

x223
,(4.26)where T (σ) denotes the produt of the eight σ oe�ients in (4.25).We now need to onsider all possible ways of gluing of this fator with the pieeresulting from �gure 4.5b. We use the following notation,32



5

a5 b5

c5d5

≡ V4[a5, b5, c5, d5] ,where the order of the arguments in V4 orresponds to the lokwise labelling in thevertex starting from the top left leg.The di�erent Wik ontrations are analysed in appendix A.4.2. Combining allthe non-zero ontributions we �nd that �gure 4.4 evaluates to
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. (4.27)Using fabcfabc = N(N2 − 1) and inluding all multipliity fators the ompleteone-loop ontribution to (4.14) is therefore
[
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(H)
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. (4.28)The box integral in (4.28) is well known [17℄ and an be expressed in terms ofthe ross ratios (4.10). Using the form of the box integral in [18℄, the one-loopontribution to G(H)
4 (x1, . . . , x4) takes the form

[
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x214x
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F
(H)
4 (r, s) , (4.29)where F (H)

4 (r, s) an be expressed as a ombination of logarithms and dilogarithmsas
F

(H)
4 (r, s) =

1√
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log(r) log(s)−
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)]2
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−2 Li2
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1 + r − s+√p

)
− 2 Li2

(
2

1− r + s+
√
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)}
,(4.30)where Li2(z) =

∑∞
n=1

zn

n2 and
p = 1 + r2 + s2 − 2r − 2s− 2rs . (4.31)4.5 DisussionIn this hapter we studied orrelation funtions of gauge-invariant operators in N =

4 SYM using the light-one superspae formulation. Our main goals are to develope�ient tehniques for the omputation of perturbative orretions to orrelationfuntions. 33



As a omputational tool light-one superspae is partiularly promising for anumber of reasons. This formulation of the N = 4 SYM theory uses only one typeof super�eld, whih arries no spae-time or SU(4)R indies. Therefore the generalstruture of super Feynman diagrams and the ombinatorial analysis involved intheir study are simpler than in other formulations. Moreover we expet that themanifest N = 4 supersymmetry will lead to a signi�ant omputational advantage,in terms of the number of diagrams to evaluate, at higher orders in the perturbativeexpansion.In the ase of the simple four-point funtion G
(H)
4 (x1, . . . , x4) we reproduedthe known result to one-loop order. The light-one gauge thus yields a manifestlyLorentz ovariant result. This is thanks to non-trivial anellations of derivativesand 1/∂− fators. It will be important to understand these anellations in a sys-temati way for more ompliated orrelation funtions and/or at higher orders inperturbation theory.One of the bene�ts of superspae formulations of supersymmetri gauge theoriesis the possibility of providing a ompat desription of entire multiplets in terms ofsuper�elds. In this respet the light-one superspae desription of N = 4 SYM ispartiularly interesting as it is the only formulation of the theory in whih the full

N = 4 supersymmetry is manifest. Working with super-operators suh as (4.5) and(4.8) should make it possible to extrat all orrelation funtions of operators in thesame supersymmetry multiplet from a single super-orrelator. It will be interestingto study other omponents in the θ-expansion of the super-orrelation funtion G(Q)
4 .These should ontain information about orrelation funtions of the super-partnersof the Qij 's.Although here we were onerned only with orrelation funtions of the superon-formal primaries (4.1)-(4.2), it is natural to speulate that the light-one superspaeformalism will permit a desription of the entire energy-momentum tensor multipletusing a single omposite super�eld. This will require the addition of terms ubiand quarti in the super�eld Φ to the super-operator (4.5). These additional termsshould not modify the θ = θ̄ = 0 omponent, while produing the orret ubiand quarti terms in the remaining operators. The exat form of these additionalterms in the super-operator should be determined by the entire N = 4 superal-gebra, inluding the non-linearly realised dynamial generators. The possibility ofonstruting suh a omposite super�eld operator is intriguing.

34



Appendix AConventions and useful formulae
A.1 Conventions and notationThe salar �elds in the N = 4 multiplet an be represented either as SU(4)R bi-spinors, ϕmn, satisfying the reality ondition (2.36) or as vetors, ϕi, i = 1, . . . , 6.The two representations are related by

ϕi =
1√
8
Σi

mnϕ
mn =

1

2
√
8
εmnpqΣi

mn ϕ̄pq =
1√
8
σi pq ϕ̄pq . (A.1)where Σi

mn (Σ̄mn
i ) are Clebsh-Gordan oe�ients relating the produt of two 4's(4̄'s) to the 6 of SU(4). They are de�ned as follows
Σi

mn = (ΣI
mn,Σ

I+3
mn ) = (ηImn, iη̄

I
mn) ,

Σ̄mn
i = (Σ̄mn

I , Σ̄mn
I+3) = (ηImn,−iη̄Imn) , I = 1, 2, 3 , (A.2)where (ηImn, iη̄

I
mn) are 't Hooft symbols,

ηImn = η̄Imn = εImn , m, n = 1, 2, 3

ηIm4 = η̄I4m = δIm , m = 1, 2, 3

ηImn = −ηInm , η̄Imn = −η̄Inm . (A.3)Splitting up the i index in terms of I = 1, 2, 3, the oe�ients (A.2) an be writtenas
ΣI

mn = εImn4 + (δImδ
4
n − δInδ4m) ,

ΣI+3
mn = iεImn4 − i(δImδ4n − δInδ4m) . (A.4)From this we obtain the σimn oe�ients
σIpq = εIpq4 + (δIpδq4 − δp4δIq) ,

σ(I+3)pq = −iεIpq4 + i(δIpδq4 − δp4δIq) . (A.5)35



A.2 Super�eld and omponent �eld propagatorsIn this appendix we disuss in detail the derivation of the propagator (2.51) for the
N = 4 super�eld. We start with a path integral derivation whih will allow us tohek the onsisteny of various onventions for Grassmann integrals and funtionalderivatives.A.2.1 Path integral derivationThe super�eld propagator an be obtained inverting the kineti operator in (2.49).We an obtain it onstruting the generating funtional for Green funtions of the
N = 4 super�eld in the free theory limit, Z0[J ].Funtional di�erentiation of Z[J ] with respet to the soures, J(x, θ, θ̄), givesrise to Green funtions of the N = 4 super�elds. Beause of the hirality of both
Φ and J we need to be areful in de�ning the rules for funtional di�erentiation insuperspae. In de�ning the funtional derivative with respet to a hiral super�eldwe require the ondition that the variation of a hiral super�eld be hiral. To satisfythis ondition we onsider a hiral super�eld, Ψ(x, θ, θ̄), written in terms of thehiral variable (2.39) and we impose

δΨ(y′, θ′)

δΨ(y, θ)
= δ(4)(y − y′)δ(4)(θ − θ′) . (A.6)To obtain the form of the derivative δΨ(x′, θ′, θ̄′)/δΨ(x, θ, θ̄) in terms of the standardsuperspae oordinates we onsider

δ

δΨ(x, θ, θ̄)

∫
d4x′d4θ′d4θ̄′ Ψ(x′, θ′, θ̄′)F (x′, θ′, θ̄′) , (A.7)where F (x, θ, θ̄) is a generi (non-hiral) super�eld. Using (A.6) we an evaluate(A.7) as follows

δ

δΨ(x, θ, θ̄)

∫
d4x′d4θ′d4θ̄′ Ψ(x′, θ′, θ̄′)F (x′, θ′, θ̄′)

=

∫
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δΨ(y, θ)
F (x′

+
, y′

−
+

i√
2
θ′θ̄′, x′, x̄′, θ′, θ̄′)

=

∫
d4θ̄′ F (x+, y− +

i√
2
θθ̄′, x, x̄, θ, θ̄′)

=
1

(4!)2
〈d4〉F (x, θ, θ̄) , (A.8)where in the last step we used

∫
dθ̄k F (x+, y− +

i√
2
θθ̄, x, x̄, θ, θ̄) = dkF (x+, x−, x, x̄, θ, θ̄) , k = 1, . . . , 4 ,(A.9)36



whih an be veri�ed expanding left and right hand sides in omponents. From (A.8)we dedue the rule for funtional di�erentiation with respet to a hiral super�eld,
δΨa(x′, θ′, θ̄′)

δΨb(x, θ, θ̄)
=

1

(4!)2
δab 〈d4〉δ(4)(x− x′)δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′) , (A.10)whih applies in partiular to the N = 4 super�eld, Φ. For its onjugate, Φ̄, usingthe omplex onjugate of (2.48), we get

δΦ̄a(x′, θ′, θ̄′)

δΦb(x, θ, θ̄)
=

1

2(4!)3
δab
〈d̄4〉〈d4〉
∂2−

δ(4)(x− x′)δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′) . (A.11)We an now de�ne the generating funtional, Z[J ], as follows
Z[J ] =

∫
[dΦ] e

−S[Φ]+
∫
d12zΦa(z) 〈d̄

4〉
4∂4−

Ja(z)

∫
[dΦ] e−S[Φ]

, (A.12)where, as usual, d12z = d4x d4θ d4θ̄.Notie, in partiular, the oupling to the soures, J(z), in (A.12). This is hosenso as to produe the orret oupling to external soures in the equations of motion.This an be seen onsidering the free theory in the presene of external soures,
∫

d12z
1

2
Φa(z)K b

a Φb(z) +

∫
d12zΦa(z)

〈d̄4〉
4∂4−

Ja(z) , (A.13)where the kineti operator is
K b

a = −3 δ b
a

〈d̄4〉�
∂4−

. (A.14)Varying (A.13) with respet to the super�eld Φ gives rise to the orret equationsof motion in the presene of an external soure,
1

(4!)2
〈d4〉K b

a Φb(x, θ, θ̄) = Ja(x, θ, θ̄) . (A.15)The right hand side is straightforward to obtain using the de�nition (A.10),
δ

δΦa(z)
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4∂4−

Jb(z
′) =

1

(4!)2

∫
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4〉
4∂4−

Ja(z
′)

=
1

(4!)2

∫
d12z′ δ(12)(z − z′)〈d

4〉〈d̄4〉
4∂4−

Ja(z
′) =

∫
d12z′ δ(12)(z − z′)Ja(z′) = Ja(z) ,where we used the fat that 〈d4〉〈d̄4〉 = 4(4!)2 ∂4− when ating on a hiral super�eldsuh as J(z). 37



In the free theory limit the exponent in the generating funtional (A.12) reduesto
−1
2

(
Φa,K b

a Φb

)
+

(
Φa,
〈d̄4〉
4∂4−

Ja

)
= −1

2

∫
d12z Φa(z)K b

a Φb(z)+

∫
d12z Φa(z)

〈d̄4〉
4∂4−

Ja(z) .(A.16)The funtional integral (A.12) beomes Gaussian and thus straightforward to om-pute. The result is
Z0[J ] = e

1
2(J̃a,[K−1] ba J̃b) (A.17)where

J̃a(z) =
〈d̄4〉
4∂4−

Ja(z) (A.18)and K−1 is the inverse of the kineti operator (A.14). In (A.17) a fator of det(K)−1/2has been anelled between numerator and denominator. The free generating fun-tional (A.17) allows to onstrut the perturbative expansion of the full funtional
Z[J ] in (A.12).Introduing the kernel, ∆(z, z′), of the operator K−1, we an rewrite (A.17) as

Z0[J ] = e
1
2

∫
d12z d12z′ J̃a(z)[∆(z,z′)] ba J̃b(z

′) . (A.19)
∆(z, z′) is of ourse the super-propagator we are interested in. Let us denote by
K(z, z′) the kernel of the kineti operator (A.14),

K(z, z′) = −3 δ(12)(z − z′) 〈d̄
4〉�
∂4−

, (A.20)where δ(12)(z − z′) = δ(4)(x − x′)δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′). Then ∆(z, z′) is de�ned bythe ondition ∫
d12z′′ ∆(z, z′′)K(z′′, z′) = δ(12)(z − z′) , (A.21)or, introduing a hiral test super�eld, Ψ(z),

∫
d12z′′

∫
d12z′ ∆(z, z′′)K(z′′, z′) Ψ(z′) = Ψ(z) . (A.22)Using the expliit form (A.20) of K(z, z′) we have
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∫
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∂4−

Ψ

)
(z′)

=

∫
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4〉�
∂4−

Ψ

)
(z′) . (A.23)The solution for ∆(z, z′) is of the form

∆(z, z′) = k
〈d4〉

(x− x′)2 δ
(4)(θ − θ′)δ(4)(θ̄ − θ̄′) , (A.24)38



with k a onstant to be �xed. Substituting into the right hand side of (A.23) we get
∫

d12z′ k
〈d4〉

(x− x′)2 δ
(4)(θ − θ′)δ(4)(θ̄ − θ̄′)

(
−3〈d̄

4〉�
∂4−
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= −3k
∫
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1

(x− x′)2 δ
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(〈d4〉〈d̄4〉
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Ψ

)
(z′)

= −3k(2π)24(4!)2
∫

d12z′ δ12(z − z′)Ψ(z′) = −3k(4!)
3(2π)2

2
Ψ(z) , (A.25)where we used integration by parts and the relations

�
1

(x− x′)2 = (2π)2δ(4)(x− x′) (A.26)and
〈d4〉〈d̄4〉Ψ(z) = 4(4!)2∂4−Ψ(z) . (A.27)The latter is valid for a hiral super�eld Ψ(z). From (A.25) we read o� the value ofthe onstant k,

k = − 2

(4!)3(2π)2
. (A.28)So the super�eld propagator is

∆a
b (z − z′) = −

2

(4!)3
δab

(2π)2
1

(x− x′)2 〈d
4〉δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′) . (A.29)A.2.2 Relation to omponent �eld propagatorsIn order to verify that the super�eld propagator onstruted in the previous subse-tion ontains the orret propagators for the individual �elds in the N = 4 multipletwe now re-derive the ∆(z − z′) starting from the omponent expansion of Φ(z).In the following it will be onvenient to write the N = 4 super�eld in the form(2.50). The kineti terms in the N = 4 light-one omponent ation are

S0 =

∫
d4x

[
Ā(x)�A(x) +

1

2
ϕi(x)�ϕ

i(x)− i√
2
λ̄m(x)

�

∂−
λm(x)

]
, (A.30)where the relation between the six real salar �elds ϕi, i = 1, . . . , 6 and the ϕmn's,

m,n = 1, . . . , 4 in (2.50) involves Clebsh-Gordan oe�ients and it is given expli-itly in (A.1).From (A.30) we get the free propagators for the omponent �elds,
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We an now onsider the super�eld two-point funtion,
∆a

b (x, θ, θ̄; x
′, θ′, θ̄′) = 〈Φa(x, θ, θ̄) Φb(x

′, θ′, θ̄′)〉 . (A.34)Using (2.50), we expand this two-point funtion as
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−)〈
[
− 1
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]
〉 , (A.35)where ∂′− = ∂/∂x′− and we used the reality ondition

ϕ̄mn(x) =
1

2
εmnpq ϕ

pq(x) (A.36)for the salar �eld in the seond super�eld.In the superspae two-point funtion (A.35) the only non-zero ontrations or-respond to the omponent two-point funtions (A.31)-(A.33). Therefore we get
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]
,Using (A.31)-(A.33) and integration by parts to get rid of the extra ∂−'s, we �nd

〈Φa(x, θ, θ̄) Φb(x
′, θ′, θ̄′)〉 = δab e
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(x− x′)2 . (A.38)where we used the de�nition (2.30) of the fermioni δ-funtion. The super-propagatoran be put in a more onvenient form using the following identity

〈d4〉δ(4)(θ̄ − θ̄′) = (4!)2 e
− i√

2
(θmθ̄m−θmθ̄′m)∂− , (A.39)40



whih an be proven expanding the left hand side as
〈d4〉δ(4)(θ̄ − θ̄′) = εmnpqε

rsuvdmdndpdq(θ̄r − θ̄′r)(θ̄s − θ̄′s)(θ̄u − θ̄′u)(θ̄v − θ̄′v)
= (4!)2 d1d2d3d4(θ̄1 − θ̄′1)(θ̄2 − θ̄′2)(θ̄3 − θ̄′3)(θ̄4 − θ̄′4) (A.40)and using (no sum over the repeated index k)
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2
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2
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k
)∂− k = 1, . . . , 4 .(A.41)The identity (A.39) an be rewritten as
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(θmθ̄m−θmθ̄′m)∂−〈d4〉δ(4)(θ̄ − θ̄′) . (A.42)Inserting (A.42) into the expression for the super-propagator we get
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(θmθ̄m−θmθ̄′m)∂−〈d4〉δ(4)(θ̄ − θ̄′) , (A.43)where we used the δ-funtion in (A.38) to hange θ′m into θm in the �rst exponential.The exponential fators in (A.43) anel and we �nally get
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(x− x′)2 . (A.44)in agreement with (A.29).A.3 Useful superspae relationsWe ollet in this appendix various relations used in manipulations of super Feynmandiagrams in light-one superspae.Although 1
∂−

is not a di�erential operator, it an be �integrated by parts� insuperspae expressions. For generi super�elds f(x, θ, θ̄) and g(x, θ, θ̄) we have
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f(z)g(z) . (A.45)Using the de�nition (2.25) of the hiral derivatives, dm and d̄m, and their ommu-tation relation, it is easy to verify the following identity
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]
= (4!)4 , (A.46)41



whih is used repeatedly to arry out the integrations over the fermioni oordinatesat eah interation vertex in superspae Feynman diagrams.The ommutation relation (2.26) for the superspae hiral derivatives implies
−−−−−−−−→
〈d̄4〉〈d4〉d̄pd̄q = 4! εabpq

−−−−−−−→
∂2−〈d̄4〉dadb , (A.47)

−−−−−−−−→
〈d̄4〉〈d4〉〈d̄4〉 = 4(4!)2

−−−−→
∂4−〈d̄4〉 . (A.48)A.4 Details of four-point funtion alulationA.4.1 Diagrams involving ubi vertiesAs pointed out in setion 4.4.2 ontributions to four-point funtions of the Qijoperators annot be built using two ubi verties of the same type (Vertex 3-I in(2.52) or Vertex 3-II in (2.53)). This an be seen from a simple ounting of hiralderivatives and fermioni oordinates θ and θ̄.We start by ounting the super�ial numbers (or powers) of d, d̄, θ and θ̄ presentin various fators used in onstruting a four point funtion.Struture d d̄ θ θ̄Propagator 4 0 4 4Cubi Vertex 3-I 0 4 0 0Cubi Vertex 3-II 0 8 0 0External ϕ �eld in Q 0 2 0 0Table A.1: Super�ial powers of d, d̄, θ, θ̄The super�ial numbers (or powers) of various derivatives and fermioni variablesin a four point funtion as shown in �gure A.1, are presented in table A.2 for thethree possible ases.Combination of verties d d̄ θ θ̄ dθ dθ̄Vertex 3-I and Vertex 3-II 20 20 20 20 8 8Vertex 3-I twie 20 16 20 20 8 8Vertex 3-II twie 20 24 20 20 8 8Table A.2: Super�ial powers of d, d̄, θ, θ̄, dθ, dθ̄ in a four point funtionAfter performing the fermioni integrals in a super Feynman diagram, we areleft with an equal number of θ's and θ̄'s. Thus when fermioni oordinates are setto zero, a non-vanishing ontribution an only arise if there are equal numbers of

d's and d̄'s present to anel the θ's and θ̄'s. Thus, as an be seen from table A.2,only the ombination of one vertex of type 3-I and one of type 3-II an produe anon-zero result, as this is the only way of satisfying the above riterion.42
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−

fator. These were originally Φ̄'s before use of the omplex onjugate of (2.48).43



when evaluating the orrelation funtion. The same thing happens with legs ar-rying olour indies c5 and d5 (anti-hiral �elds) onneted with external �elds ϕiand ϕj . For Vertex 4-II (2.55), if the leg with olour index a5 (hiral �eld) is on-neted with ϕi and the leg with index c5 (hiral �eld) with ϕj , we get a fator of
σimnσj pqεmnpq = 8δij. The same happens with legs arrying olour indies d5and b5 (anti-hiral �elds). Thus for suh arrangements with i 6= j, the ontrationvanishes.This rule is veri�ed [2℄ by evaluating eah permutation of the interation vertexin Figure A.2.The only non-zero ontributions to G(H)

4 (x1, . . . , x4) at one loop ome from dia-grams involving a quarti vertex of type 4-II. As explained in setion 4.4.2 there arevarious inequivalent Wik ontrations to onsider and we analyse them in detailbelow. We begin with
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, (A.49)where we used (A.47).We now use the following rule for partially integrating 〈d4〉 to a produt of twoterms (disregarding the ases where both the terms are not ated upon by two d'seah),

∫
d4θ(〈d4〉F )(GH) = 6 εm1n1m2n2

∫
d4θ F (dm1dn1G)(dm2dn2H) , (A.50)44



and simplify V4[a5, b5, d5, c5] to
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V4[a5, b5, d5, c5] as written in (A.51) simpli�es to
6(4!)2
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, (A.52)in the limit θ, θ̄→ 0. Using the following property of the Levi-Civita symbol
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, T (σ)εεεε = 212 , (A.56)we obtain the �nal expression for V4[a5, b5, d5, c5] times the ommon part (4.26) as
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. (A.57)All permutations of the arguments in V4[a5, b5, d5, c5] of the form [e1, g1, e2, g2] where
ei ∈ {a5, c5}, gi ∈ {b5, d5} or ei ∈ {b5, d5}, gi ∈ {a5, c5}, i = 1, 2, will have a non-zeroontribution. The reason is explained under Rule A.4.2 above.From the struture of Vertex 4-II (2.55), it is easy to see that

V4[a5, b5, d5, c5] = V4[a5, d5, b5, c5] = V4[c5, b5, d5, a5] = V4[c5, d5, b5, a5]

= V4[b5, a5, c5, d5] = V4[b5, c5, a5, d5] = V4[d5, a5, c5, b5] = V4[d5, c5, a5, b5] .
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