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Abstra
tIn this thesis we fo
us on supersymmetri
 quantum �eld theories. In parti
ularwe study the maximally supersymmetri
 N = 4 super Yang-Mills theory in light-
one superspa
e. We present two appli
ations of light-
one superspa
e formalism:1) we derive a new Lagrangian forN = 4 super Yang-Mills, where the s
attering am-plitudes are manifest, and 2) we initiate a new formalism for 
omputing 
orrelationfun
tions of gauge invariant operators.
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Chapter 1Introdu
tion
1.1 Quantum �eld theoryThe physi
s at small-s
ales is des
ribed using quantum me
hani
s. We resort tospe
ial relativity to explain phenomena at high speeds. Sin
e elementary parti
lesare both small and 
an travel at high speeds, we need to use relativisti
 quantumme
hani
s to des
ribe their dynami
s. The 
ombination of quantum me
hani
sand spe
ial relativity inevitably leads to the 
on
lusion that parti
le number is not
onserved, i.e. parti
les 
an be 
reated or annihilated - a feature regularly observedin 
ollider experiments.However, quantum me
hani
s is insu�
ient for des
ribing systems where theparti
le number is not �xed. Thus we des
ribe parti
les using �elds, whi
h 
anintefere 
onstru
tively or destru
tively resulting in 
reation or annihilation of parti-
les. Quantum �eld theory (QFT) is a quantum, relativisti
 theory of �elds, whi
his well-suited for explaining the intera
tion of elementary parti
les.In quantum me
hani
s, we quantize the dynami
al variables of 
lassi
al parti
leme
hani
s, i.e. we promote the dynami
al variables in the theory to operators a
tingon a Hilbert spa
e. In the same way, QFT is the quantization of 
lassi
al �elds, i.e.
lassi
al �elds are promoted to operators a
ting on a Hilbert spa
e.1.2 SymmetriesAn important obje
t in QFT is the Lagrangian of the system. The Lagrangian givesthe 
lassi
al equations of motion for the system, and the quantum me
hani
al prob-ability amplitudes. Various symmetry prin
iples govern the form of the Lagrangian.A Lagrangian may have several symmetries, both 
ontinuous and dis
rete. Thesymmetries may be global or lo
al; they may be spa
etime symmetries or internalsymmetries. A

ording to Noether's theorem, to every symmetry is asso
iated a
onserved quantity. These 
onserved quantities, also 
alled 
onserved 
harges, arethe generators of their respe
tive symmetry transformations. We mention belowsome of these symmetries. 4



1.2.1 Poin
aré invarian
eThe Lagrangian of a relativisti
 theory must be invariant under Lorentz transforma-tions, upto a divergen
e. A stronger 
ondition is Poin
aré invarian
e, whi
h in
ludesLorentz invarian
e as well as spa
etime translational invarian
e.The four 
onserved Noether 
urrents asso
iated with translational invarian
eform the energy-momentum tensor. The 
onserved 
harges, asso
iated with the
onserved 
urrents form the momentum four-ve
tor, P µ, where P 0 is the total energy
arried by the �eld and ~P is the total linear momentum of the �eld. Furthermore,there are six 
onserved 
harges asso
iated with Lorentz invarian
e, three of whi
hgive the total angular momentum of the �eld. The ten generators of the Poin
arégroup form a 
losed algebra through their 
ommutators 
alled the Poin
aré algebra.1.2.2 Gauge symmetryGauge symmetry, or gauge redundan
y is a fundamental prin
iple in modern parti
lephysi
s. It allows for independent, internal symmetry transformations of a �eld atevery point in spa
etime.The simplest example of a gauge theory is 
lassi
al ele
trodynami
s. The La-grangian of the theory is given by
L = −1

4
F µνFµν , Fµν ≡ ∂µAν − ∂νAν .The Lagrangian is invariant under the gauge transformation
Aµ(x)→ Aµ(x) + ∂µΛ(x) .This is also known as gauge redundan
y sin
e physi
al states related to ea
h otherby gauge transformations are one and the same. Thus we have freedom to �x thegauge, to get rid of the redundan
y in the des
ription. Common examples of gaugesare the Lorentz gauge, ∂µAµ = 0, and the Coloumb gauge, ~∇. ~A = 0.The gauge �eld Aµ des
ribes photons. Note that photons have only two physi
aldegrees of freedom, while the gauge �eld Aµ has four 
omponents. Although it is notmanifest, the gauge �eld has two independent 
omponents only (this is be
ause the

A0 
omponent has no kineti
 term, i.e. it is not dynami
al, and hen
e is 
ompletelydetermined in terms of the other three 
omponents; furthurmore, �xing a gauge fur-ther redu
es the number of independent 
omponents by one). As we shall 
ommentlater, implementing a parti
ular gauge 
hoi
e, the light-
one gauge, provides a de-s
ription of the theory solely in terms of the physi
al degrees of freedom. However,this 
omes at the expense of manifest Lorentz invarian
e. We dis
uss Yang�Millstheory in light-
one gauge in more detail in Chapter 2.Ele
tromagnetism, whi
h is dis
ussed above, is the simplest example of a Yang�Mills theory (also refered to as gauge theory). Quantum ele
trodynami
s (QED) is atheory of the ve
tor �eld Aµ (gauge �eld) and a spin-1/2 �eld ψ (spinor), intera
tingwith ea
h other. The spinor �eld gauge transforms as
ψ(x)→ e−ieΛ(x)ψ(x) ,5



and the (gauge invariant) QED Lagrangian is given by
L = ψ̄(iγµDµ)ψ −

1

4
F µνFµν −mψ̄ψ ,where γµ are the Dira
 matri
es, and the 
ovariant derivative Dµ ≡ ∂µ− ieAµ. Thespinor ψ des
ribes ele
trons. The 
onserved 
urrent asso
iated with gauge invarian
ein QED is the ele
tri
 
urrent density, and the 
onserved 
harge is the ele
tri
 
harge.QED is an example of a Yang�Mills theory where the gauge symmetry group isU(1). A non-abelian Yang�Mills theory, with gauge symmetry group SU(N) has theLagrangian

L = ψ̄(iγµDµ)ψ −
1

4
F µνaF a

µν −mψ̄ψ ,where ψ is now a multiplet of N spinors, the 
olour labels a = 1, . . . , N2 − 1,
Dµ = ∂µ − igAa

µT
a, and

F a
µν ≡ ∂µA

a
ν − ∂νAa

µ + gfabcAb
µA

c
ν ,where T a are the generators of the gauge group SU(N), obeying the 
ommutationrelations (or Lie algebra) [

T a, T b
]
= ifabcT c ,where the real fa
tors fabc are the stru
ture 
onstants of the group. The spinors andguuge �elds transform under gauge transformations as

ψ(x)→ e−igΛa(x)Ta

ψ(x) , Aa
µ(x)→ Aa

µ(x) + ∂µΛ
a(x) + gfabcΛbAc

µ .Quantum 
hromodynami
s (QCD) is an example of a non-abelian Yang�Mills theorybased on the gauge group SU(3).1.2.3 SupersymmetrySupersymmetry is a symmetry that relates bosons (�elds whi
h transform as in-tegral spin representations of the Poin
aré group) to fermions (�elds whi
h trans-form as half-integer spin representations of the Poin
aré group). Supersymmetrytransformations mix bosons with fermions, and thus their generators are ne
essarilyfermioni
. Supersymmetry is an extension of the spa
etime Poin
aré symmetry, withthe supersymmetry generators expanding the Poin
aré algebra to the superPoin
aréalgebra. We dis
uss supersymmetry in more detail in Chapter 2.Supersymmetry plays a role in several 
andidate theories des
ribing physi
s be-yond the Standard Model. However it has not yet been experimentally veri�ed.Regardless of its fate as a physi
al theory of Nature, supersymmetry has found sev-eral uses as a powerful 
al
ulational tool. The work presented in this thesis utilizesthis useful feature of supersymmetry. *This thesis is organised as follows. In Chapter 2 we review light-
one gauge, light-
one superspa
e, and N = 4 super Yang�Mills (SYM) theory. In Chapters 3 and 4we present two appli
ations of N = 4 super Yang�Mills (SYM) theory in light-
onegauge. 6



Chapter 2Light-
one superspa
e
2.1 Light-
one gaugeIn this se
tion, we shall review light-
one 
oordinates and light-
one gauge, in the
ontext of ele
tromagnetism and (non-abelian) pure Yang�Mills theory.2.1.1 Light-
one 
oordinatesWe are free to 
hoose any 
oordinate system we like to ta
kle a parti
ular problem.We 
hoose to work in light-
one 
oordinates, be
ause it makes the formulation ofour theory easier.With the spa
e-time metri
 (−,+,+,+), the light-
one 
oordinates and their deriva-tives are de�ned as

x± =
1√
2
(x0 ± x3) ; ∂± =

1√
2
(−∂0 + ∂3); (2.1)

x =
1√
2
(x1 + ix2) ; ∂̄ =

1√
2
(∂1 − i∂2); (2.2)

x̄ =
1√
2
(x1 − ix2) ; ∂ =

1√
2
(∂1 + i∂2), (2.3)su
h that

∂+x− = ∂−x+ = −1 ; ∂̄x = ∂x̄ = +1. (2.4)We 
an also verify that
� ≡ ∂µ∂µ = 2(∂∂̄ − ∂+∂−). (2.5)

x+ plays the role of light-
one time, ∂− is now a spatial derivative, and its inverse
1
∂−
, is de�ned using the pres
ription in [3℄,

1

∂−
f(x−) =

∫
dξ θ(ξ − x−)f(ξ) . (2.6)7



2.1.2 Ele
tromagnetism in light-
one gaugeClassi
al ele
tromagnetism (with no sour
es) follows from the Lagrangian
L = −1

4
F µνFµν , where Fµν = ∂µAν − ∂νAµ. (2.7)The ve
tor gauge �eld Aµ represents the photon.In the usual spa
e-time metri
, the gauge �eld Aµ has four 
omponents {A0, A1, A2, A3}.Working in light-
one 
oordinates, the gauge �eld has 
omponents {A, Ā, A+, A−}with

A± =
1√
2
(A0 ±A3) ; A =

1√
2
(A1 + iA2) ; Ā =

1√
2
(A1 − iA2) . (2.8)The de�ning path integral of the theory is,

∫
DADĀDA+DA− ei

∫
dx+L , (2.9)where the Lagrangian

L = −1
4

∫
dx dx̄ dx−F µνFµν (2.10)is a fun
tion of {A, Ā, A+, A−}. Re
all from the previous 
hapter that the gauge�eld Aµ is arbitrary upto a further �xing, whi
h is 
alled gauge freedom. We usegauge freedom in �xing the gauge, by implementing the light-
one gauge
A+ = 0. (2.11)This is e�e
ted in the path integral by introdu
ing a delta fun
tion

∫
DADĀDA+DA− ei

∫
dx+L δ(A+) , (2.12)whi
h leaves us with ∫

DADĀDA− ei
∫
dx+L , (2.13)where L is now just a fun
tion of {A, Ā, A−}. It is now possible to rewrite the pathintegral as a gaussian in A−:

∫
DADĀ ei

∫
d4x (Ā�A)

∫
DA− e−

1
2(∂−A−−∂Ā−∂̄A)

2

, (2.14)where the A− 
omponent 
an now be integrated out (after employing a 
hange ofvariables).The Lagrangian is now a fun
tion of only two 
omponents, A and Ā. Thusthe advantage of 
hoosing light-
one gauge is that we 
an eliminate the unphysi
aldegrees of freedom, and only work with the physi
al degrees (in this 
ase, A and Ārepresent the left-
ir
ularly polarised and the right-
ir
ularly polarised light).8



2.1.3 Non-abelian Yang�Mills in light-
one gaugeAs mentioned in Chapter 1, the Lagrangian for a (non-abelian) pure Yang�Millstheory is
L = −1

4
Tr (F µνFµν) , Fµν = ∂µAν − ∂νAµ + g [Aµ, Aν ] , (2.15)where the tra
e is over 
olour labels and g is the dimensionless 
oupling 
onstant inthe theory. Note that in 
ontrast to free ele
tromagnetism, this Lagrangian 
ontains
ubi
 and quarti
 terms in Aµ, whi
h represent the intera
tion verti
es in the theory.To rewrite this Lagrangian in light-
one gauge, we pro
eed in exa
tly the samemanner as we did for free ele
tromagnetism. We 
hoose the light-
one gauge, andintegrate out the A− 
omponent, so that the e�e
tive a
tion in the path integral,whi
h is now just a fun
tion of {A, Ā}, is

S =

∫
dx+L (2.16)with L = L−+ + L−++ + L−−+ + L−−++, where

L−+ = Tr

∫
d3x Ā�A, (2.17)

L−++ = −2ig Tr
∫
d3x

[
∂̄

∂−
A,A

]
∂−Ā, (2.18)

L−−+ = −2ig Tr
∫
d3x

[
∂̄

∂−
Ā, Ā

]
∂−A, (2.19)

L−−++ = 2g2 Tr

∫
d3x

1

∂−

[
∂−A, Ā

] 1

∂−

[
∂−Ā, A

]
. (2.20)2.2 Supersymmetry: superspa
e and super�eldsThe Lagrangian for a supersymmetri
 theory is invariant under supersymmetrytransformations. However the Lagrangian, written in terms of the 
omponent bosoni
and fermioni
 �elds may not be manifestly supersymmetri
, i.e. its invarian
e un-der supersymmetry transformations may not be obvious. However, it is possible torewrite the Lagrangian in a manifestly supersymmetri
 form, by introdu
ing newnotation, namely superspa
e and super�elds.Several di�erent supersymmetri
 models have been proposed in the literature.Some of these models have more than one kind of supersymmetry transformation.These are known as extended supersymmetri
 models. The N = 4 super Yang�Mills (SYM) theory in four dimensions is an extended supersymmetri
 theory, withmaximal supersymmetry allowed (for a theory des
ribing parti
les upto spin one).The �eld 
ontent of the N = 4 SYM theory 
omprises a gauge �eld, Aµ, fourWeyl fermions, ψm

α , and their 
onjugates, ψ̄mα̇, m = 1, . . . , 4, and six real s
alars,
ϕi, i = 1, . . . , 6. 9



We now explain what we mean by superspa
e and super�elds in the 
ontext of
N = 4 SYM theory. A 
ovariant super�eld formalism of this theory has not beenfound, but one in light-
one gauge has been su

essfully developed [4℄. We shallwork in light-
one gauge in the following.2.2.1 Grassmann numbersBefore we introdu
e the superspa
e, we shall dis
uss anti
ommuting numbers, 
alledGrassmann numbers. If η, η′ are Grassmann numbers, then

η2 = 0 , η′
2
= 0 , ηη′ = −η′η .Thus the most general fun
tion of a single Grassmann number η is

f(η) = f0 + f1η .The most general fun
tion of two Grassmann numbers, η and η′ is
g(η, η′) = g0 + g1η + g2η

′ + g3ηη
′ .Grassmann integration is de�ned as follows

∫
dη = 0 ,

∫
dη η = 1 .This implies ∫

dη dη′ ηη′ = −
∫

dη η

∫
dη′ η′ = −1 .Thus ∫

dη f(η) = f1 ,

∫
dη dη′ g(η, η′) = −g3 .The di�erentiation operator anti
ommutes with Grassmann numbers

∂η

∂η
= 1 ,

∂(η′η)

∂η
= −η′∂η

∂η
= −η′ .Thus

∂f

∂η
= f1 ,

∂g

∂η
= g1 + g3η

′ ,
∂g

dη′
= g2 − g3η ,

∂

∂η′
∂g

∂η
= g3 .The anti
ommuting Dira
 delta fun
tion has the property

∫
dη δ(η − η′)f(η) = f(η′) .This implies that
δ(η − η′) = η − η′ .10



2.2.2 N = 4 light-
one superspa
eThe light-
one superspa
e for N = 4 SYM theory is obtained by adding eightfermioni
 (Grassmann) 
oordinates to the four bosoni
 spa
etime 
oordinates,
z = {x , x̄ , x+ , x− , θ1 , θ2 , θ3 , θ4 , θ̄1 , θ̄2 , θ̄3 , θ̄4 }. (2.21)This 
an be 
ompa
tly written as z = {xµ , θm , θ̄m}, where m = 1, . . . , 4. Note that(

θ̄m
)
= θm. De�ne Grassmann derivatives

∂̄m ≡
∂

∂θm
; ∂m ≡ ∂

∂θ̄m
, (2.22)then the various anti
ommutation relations are

{θm, θn} = {θm, θ̄n} = {θm, θ̄n} = {∂m, θn} = {∂̄m, θ̄n} = 0 ; (2.23)
{∂m, θ̄n} = δmn ; {∂̄m, θn} = δnm . (2.24)We also introdu
e the superspa
e 
hiral derivatives, dm and d̄m, de�ned as

dm = − ∂

∂θ̄m
+

i√
2
θm∂− , d̄m =

∂

∂θm
− i√

2
θ̄m∂− , m = 1, . . . , 4 . (2.25)They obey

{dm, d̄n} = i
√
2 δmn ∂− . (2.26)The Grassmann integrals in light-
one superspa
e are normalised so that

∫
dθm θ

n = δnm ,

∫
dθ̄m θ̄n = δmn . (2.27)We de�ne

d4θ =
1

(4!)2
εmnpqdθmdθndθpdθq , d4θ̄ =

1

(4!)2
εmnpqdθ̄

mdθ̄ndθ̄pdθ̄q . (2.28)This, together with (2.27), ensures that
∫

d4θ δ(4)(θ) =

∫
d4θ̄ δ(4)(θ̄) = 1 , (2.29)where the δ-fun
tions are de�ned as

δ(4)(θ) = 〈θ4〉 ≡ εmnpqθ
mθnθpθq , δ(4)(θ̄) = 〈θ̄4〉 ≡ εmnpqθ̄mθ̄nθ̄pθ̄q . (2.30)Note that due to the anti
ommutativity of Grassmann numbers and the antisym-metry of the Levi-Civita symbol,
εmnpqθ

mθnθpθq = 4! θ1θ2θ3θ4 . (2.31)The following identity 
an be veri�ed using the normalisation of Grassmann integrals
∫

d4θd4θ̄ θmθnθpθqθ̄mθ̄nθ̄pθ̄q =
1

4!
. (2.32)11



2.2.3 N = 4 super�eld in light-
one superspa
eThe following des
ription of the N = 4 super�eld in light-
one superspa
e 
loselyfollows the des
riptions presented in [1, 4℄.The irredu
ible representations of the supersymmetry algebra are referred toas supermultiplets. Ea
h supermultiplet 
ontains an equal number of bosons andfermions, whi
h are 
alled the 
omponent �elds. A super�eld is a fun
tion of super-spa
e 
oordinates 
ontaining all the 
omponent �elds.As previously mentioned, the �eld 
ontent of the N = 4 SYM theory 
omprisesa gauge �eld, Aµ, four Weyl fermions, ψm
α , and their 
onjugates, ψ̄mα̇, m = 1, . . . , 4,and six real s
alars, ϕi, i = 1, . . . , 6. The gauge �eld 
omponents are

A± =
1√
2
(A0 ± A3) , A =

1√
2
(A1 + iA2) , Ā =

1√
2
(A1 − iA2) . (2.33)The light-
one gauge des
ription of the theory uses only physi
al degrees of freedom.As before, we �x the gauge by setting A+ = 0 and integrating out A−, leaving thetwo transverse 
omponents, A and Ā. Similarly the four Weyl fermions, ψm

α , andtheir 
onjugates, ψ̄mα̇, are de
omposed a

ording to the proje
tion
ψm
α → ψm

(±) = P±ψ
m
α , ψ̄mα̇ → ψ̄(±)

m = P±ψ̄mα̇ , (2.34)where P± = − 1√
2
σ±, with σ± = 1√

2
(σ0 ± σ3). We then integrate out the ψm

(+) and
ψ̄

(+)
m 
omponents, leaving four one-
omponent fermioni
 �elds and their 
onjugates,

λm ≡ ψm
(−) , λ̄m ≡ ψ̄(−)

m . (2.35)The N = 4 multiplet is 
ompleted by the six real s
alar �elds, whi
h we representas SU(4)R bi-spinors, ϕmn, m,n = 1, . . . , 4, satisfying the reality 
ondition
ϕ̄mn ≡ (ϕmn)∗ =

1

2
εmnpqϕ

pq . (2.36)An irredu
ible representation of the N = 4 super-algebra is realised in terms of asingle 
omplex super�eld, Φ(x, θ, θ̄), whi
h 
ontains all the �elds (A , Ā , λm , λ̄m , ϕmn)as 
omponents. The super�eld Φ(x, θ, θ̄) is de�ned by the 
onstraints [4, 5℄
dmΦ(x, θ, θ̄) = 0 , d̄md̄nΦ(x, θ, θ̄) =

1

2
εmnpqd

pdqΦ̄(x, θ, θ̄) , (2.37)where Φ̄ = Φ∗ satis�es d̄mΦ̄(x, θ, θ̄) = 0, where dm and d̄m are the 
hiral derivativesde�ned in (2.25). The unique solution to these 
onstraints is a super�eld with thefollowing 
omponent expansion [4℄
Φ (x, θ, θ̄) = − 1

∂−
A(y)− i

∂−
θmλ̄m(y) +

i√
2
θmθnϕ̄mn(y)

+

√
2

6
θmθnθpεmnpqλ

q(y)− 1

12
θmθnθpθqεmnpq∂−Ā(y), (2.38)where we introdu
ed the 
hiral variable

y = (x+, y− = x− − i√
2
θmθ̄m, x, x̄) (2.39)12



and the right hand side is understood to be a power expansion about x−.In terms of the super�elds Φ and Φ̄, the N = 4 SYM light-
one a
tion is [3, 4℄
S = 72

∫
d4x

∫
d4θ d4θ̄ L(Φ, Φ̄, ∂µΦ, ∂µΦ̄) , (2.40)where the Lagrangian density, L(Φ, Φ̄, ∂µΦ, ∂µΦ̄) ≡ LΦ,Φ̄, is

LΦ,Φ̄ = Tr

{
−2 Φ̄ �

∂2−
Φ + i

8

3
g

(
1

∂−
Φ̄
[
Φ, ∂̄Φ

]
+

1

∂−
Φ
[
Φ̄, ∂Φ̄

])

+2g2
(

1

∂−
[Φ, ∂−Φ]

1

∂−

[
Φ̄, ∂−Φ̄

]
+

1

2

[
Φ, Φ̄

] [
Φ, Φ̄

])}
. (2.41)The super�elds Φ and Φ̄, just like the 
omponent �elds in the N = 4 multi-plet, transform in the adjoint representation of the gauge group SU(N). They 
antherefore be represented as matri
es,

Φ(x, θ, θ̄) = Φa(x, θ, θ̄)T a , Φ̄(x, θ, θ̄) = Φ̄a(x, θ, θ̄)T a , (2.42)where T a, a = 1, . . . , N2 − 1, are generators of the fundamental representation ofSU(N), satisfying
[
T a, T b

]
= ifabcT c , Tr

(
T aT b

)
=

1

2
δab , (2.43)and fabc are the stru
ture 
onstants for SU(N).The super�elds Φ and Φ̄ satisfy additional �hidden� 
onstraints. One veri�es that(2.37), together with the supersymmetry algebra (2.26), gives the following relations

d̄m d̄n d̄p d̄q Φ = 2 εmnpq ∂
2
− Φ̄ , (2.44)

d̄m d̄n d̄pΦ = i
√
2 εmnpq d

q ∂− Φ̄ , (2.45)
d̄m d̄n Φ =

1

2
εmnpq d

p dq Φ̄ , (2.46)
d̄mΦ =

i

6
√
2
εmnpq d

n dp dq
1

∂−
Φ̄ (2.47)

Φ =
1

48
εmnpqd

m dn dp dq
1

∂2−
Φ̄ . (2.48)In fa
t, the 
omplex 
onjugate of 
onstraint (2.48) 
an be used to write the La-grangian for N = 4 SYM (2.41) purely in terms of the super�eld Φ,

LΦ,Φ̄ =
1

2
Φa

(
−3〈d̄

4〉�
∂4−

)
Φa

−2gfabc

[(〈d̄4〉
∂3−

Φa

)
Φb∂̄Φc +

1

48

(
1

∂−
Φa

)(〈d̄4〉
∂2−

Φb

)
∂

(〈d̄4〉
∂2−

Φc

)]

−g
2

32
f eabf ecd

[
1

∂−

(
Φa∂−Φ

b
) 1

∂−

(〈d̄4〉
∂2−

Φc

)(〈d̄4〉
∂−

Φd

)

+
1

2
Φa

(〈d̄4〉
∂2−

Φb

)
Φc

(〈d̄4〉
∂2−

Φd

)]
, (2.49)13



where tra
e has been performed over the 
olour indi
es, using (2.43), and 〈d̄4〉 ≡
εmnpqd̄md̄nd̄pd̄q.On some o

assions it will be 
onvenient to rewrite the N = 4 super�eld (2.38)as

Φ (x, θ, θ̄) = e
− i√

2
θmθ̄m∂−

[
− 1

∂−
A(x)− i

∂−
θmλ̄m(x) +

i√
2
θmθnϕ̄mn(x)

+

√
2

6
εmnpqθ

mθnθpλq(x)− 1

12
εmnpqθ

mθnθpθq ∂−Ā(x)

]
. (2.50)

2.2.4 Position spa
e super Feynman rulesPerturbative evaluation of 
orrelation fun
tions or s
attering amplitudes in a quan-tum �eld theory be
omes mathemati
ally in
reasingly tedious with in
reasing ordersin the 
oupling 
onstant. Feynman rules for the theory are a set of rules whi
h spe
-ify on
e and for all how to represent ea
h term in the perturbation series witha pi
torial representation, 
alled a Feynman diagram. Feynman diagrams o�er a
onvenient way to keep tra
k of the terms in the double exponential series in the
oupling 
onstant and external sour
es. Feynman rules are then used to translatethe pi
tures ba
k to mathemati
al expressions.We shall now present the position spa
e Feynman rules for N = 4 SYM theory.We work solely in terms of the 
hiral super�eld, using the a
tion in the form (2.49).The super�eld propagator is given by
∆a

b (z − z′) = 〈Φa(x, θ, θ̄) Φb(x
′, θ′, θ̄′)〉

= − 2

(4!)3
δab

(2π)2
1

(x− x′)2 〈d
4〉δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′), (2.51)where 〈d4〉 ≡ εmnpqd

mdndpdq, and δ(4)(θ − θ′) ≡ εmnpq(θ
m − θ′m)(θn − θ′n)(θp −

θ′p)(θq − θ′q). The result is derived in appendix A.2.1. In appendix A.2.2 we showthat this propagator leads to the 
orre
t propagators for the 
omponent �elds.The super�eld intera
tion verti
es in 
on�guration spa
e 
an be immediatelyread o� from the superspa
e a
tion (2.49). They involve a 
ombination of 
hiraland spa
e-time derivatives and 1/∂− operators a
ting on the various legs as well asgroup theory fa
tors. The two 
ubi
 verti
es are
∫

d12z (−2g)fabc

(〈d̄4〉
∂3−

Φa

)
Φb∂̄Φc −→ (−2g)fabc

〈d̄4〉
∂3−

∂̄
a

b

c

z
(2.52)14



and
∫

d12z
(
− g

24

)
fabc

(
1

∂−
Φa

)(〈d̄4〉
∂2−

Φb

)
∂

(〈d̄4〉
∂2−

Φc

)

−→
(
− g

24

)
fabc

〈d̄4〉
∂2−

a

b

c

z

∂〈d̄4〉
∂2−

1

∂− (2.53)Here we use a bla
k dot to denote intera
tion verti
es, whi
h are integrated over thewhole superspa
e, z = (x, θ, θ̄), re�e
ting the fa
t that all intermediate steps in the
al
ulations are manifestly N = 4 supersymmetri
. In the following we will refer to(2.52) and (2.53) as Vertex 3-I and Vertex 3-II respe
tively.The two quarti
 verti
es are
∫

d12z

(
−g

2

32

)
f eabf ecd

[
1

∂−
(Φa∂−Φb)

1

∂−

(〈d̄4〉
∂2−

Φc
〈d̄4〉
∂−

Φd

)]

−→
(
−g

2

32

)
f eabf ecd

〈d̄4〉
∂2−

a c

d

z

〈d̄4〉
∂−

b

1

∂−

1

∂−

∂−

(2.54)
and

∫
d12z

(
−g

2

64

)
f eabf ecd

[
Φa

(〈d̄4〉
∂2−

Φb

)
Φc

(〈d̄4〉
∂2−

Φd

)]

−→
(
−g

2

64

)
f eabf ecd

a c

d

z

〈d̄4〉
∂2−

b 〈d̄4〉
∂2−

(2.55)
In the vertex (2.54) the two 1/∂− operators in the shaded ovals a
t on both theadja
ent legs. We will refer to (2.54) as Vertex 4-I and to (2.55) as Vertex 4-II.
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Chapter 3MHV LagrangianThe material in this 
hapter is largely based on a paper [1℄ by the author (withDr. Sudarshan Ananth and Dr. Stefano Kova
s).3.1 Introdu
tionS
attering amplitudes 
arry all the physi
al information in QFT. The traditionalapproa
h to 
omputing s
attering amplitudes goes as follows: �rst we 
ompute the
orrelation fun
tions in the theory using Feynman diagrams, and then apply theLSZ redu
tion formula to obtain the amplitudes.There are several disadvantages of working with the traditional method for agauge theory. First, the individual Feynman diagrams are not gauge invariant -thus do not re�e
t the symmetry of the theory. But the sum of all possible Feynmandiagrams is gauge invariant. However, with growing number of external parti
les,the number of Feynman diagrams to 
onsider grows very rapidly, e.g. for a 9 parti
les
attering, there are 559,408 diagrams to evaluate - whi
h is impra
ti
al. Se
ondly,expli
it 
omputation reveals there are huge 
an
ellations between diagrams, and the�nal expressions for s
attering amplitudes (at tree-level) have a very simple form.The simpli
ity of the s
attering amplitudes hints at the possibility of an alternateway to arrive at the amplitudes.In parti
ular the simpli
ity is strikingly evident when one 
onsiders planar am-plitudes with external states of de�nite heli
ity and fo
usses on the so-
alled 
olour-ordered partial amplitudes, as opposed to full 
ross-se
tions. They depend only onthe momenta and heli
ities of the n gluons. The simplest non-trivial partial ampli-tudes are those with two gluons of one heli
ity and all the others of the oppositeheli
ity. Amplitudes of this type with two gluons of negative heli
ity and n − 2gluons of positive heli
ity are referred to as maximally heli
ity violating (MHV).Ca
hazo, Svr
ek and Witten [7℄ suggested an approa
h to perturbative 
al
ula-tions in Yang�Mills theory, refered to as MHV formalism, whi
h makes it possible to
onstru
t generi
 heli
ity amplitudes by sewing together o�-shell MHV amplitudesin the theory. In [9℄ and [10℄, it was shown that a �MHV Lagrangian� 
an be derivedfrom the usual light-
one Yang�Mills Lagrangian, by a suitable �eld rede�nition.The MHV s
attering amplitudes are manifest in the new MHV Lagrangian.16



We have extended this idea to a supersymmetri
 Yang�Mills theory, the N = 4supersymmetri
 Yang�Mills (SYM) theory. In this 
hapter, we derive a manifestlyMHV Lagrangian for the N = 4 SYM theory in light-
one superspa
e. This isa
hieved by 
onstru
ting a 
anoni
al rede�nition whi
h maps the N = 4 super�eld,
Φ, and its 
onjugate, Φ̄, to a new pair of super�elds, χ and χ̃. In terms of the newsuper�elds the N = 4 Lagrangian takes a manifestly MHV form, i.e. involves onlyMHV verti
es. We also identify new 
onstraint relations satis�ed by the new super-�elds. Finally, we test our derivation by showing that an expansion of our superspa
eLagrangian in 
omponent �elds reprodu
es the 
orre
t gluon MHV verti
es.3.2 Heli
ity assignmentsIn light-
one gauge we 
an identify heli
ity with the U(1) 
harge asso
iated withrotations in the transverse (x, x̄) plane. Complex �elds are used to des
ribe parti
leswith heli
ity. Real �elds des
ribe heli
ity zero parti
les (Lorentz s
alars). In the
ase of N = 4 SYM, the heli
ity assignments are as given in table 3.1.Fields U(1) 
harge Heli
ity Fa
tors U(1) 
harge Heli
ity

A +1 + θm +1/2 +

Ā −1 − θ̄m −1/2 −
λm −1/2 − ∂ +1 +

λ̄m +1/2 + ∂̄ −1 −
ϕmn 0 0 ∂± 0 0Table 3.1: Heli
ity assignmentsAs a result the super�eld Φ(x, θ, θ̄) has de�nite heli
ity +1, as shown by the
omponent expansion (2.38). Similarly, the expression of the 
onjugate super�eld,

Φ̄(x, θ, θ̄), in terms of 
omponent �elds shows that it has heli
ity −1. This ensuresthat the N = 4 SYM a
tion (2.40) is U(1) neutral as required by Lorentz invarian
e.In view of these heli
ity assignments for the N = 4 super�elds, Φ and Φ̄, we 
anwrite the light-front Lagrangian as
LΦ,Φ̄ =

∫

Σ

d3x d4θ d4θ̄
[
L(−+)

Φ,Φ̄
+ L(−++)

Φ,Φ̄
+ L(−−+)

Φ,Φ̄
+ L(−−++)

Φ,Φ̄

]
, (3.1)where the integration is on a surfa
e of 
onstant x+, Σ, and the supers
ripts referto the number of super�elds of heli
ity +1 (Φ) and −1 (Φ̄). Comparing with (2.41)we �nd

L(−+)

Φ,Φ̄
= −2Tr

(
Φ̄
�

∂2−
Φ

)
, (3.2)

L(−++)

Φ,Φ̄
= i

8

3
gTr

(
1

∂−
Φ̄[Φ, ∂̄Φ]

)
, L(−−+)

Φ,Φ̄
= i

8

3
gTr

(
1

∂−
Φ[Φ̄, ∂Φ̄]

) (3.3)17



and
L(−−++)

Φ,Φ̄
= 2g2Tr

(
1

∂−
[Φ, ∂−Φ]

1

∂−
[Φ̄, ∂−Φ̄] +

1

2
[Φ, Φ̄][Φ, Φ̄]

)
. (3.4)3.3 Towards a MHV Lagrangian for N = 4 SYMIn this se
tion, we identify a super�eld rede�nition

Φ(x, θ, θ̄)→ χ(x, θ, θ̄) , Φ̄(x, θ, θ̄)→ χ̃(x, θ, θ̄) , (3.5)su
h that in terms of the new super�elds the N = 4 a
tion takes a manifestly MHVform. We require the rede�nition to be a 
anoni
al transformation in superspa
e,to ensure that the 
hange of variables (3.5) does not give rise to a Ja
obian whenused in the path integral. The transformation must also preserve the heli
ity of thesuper�elds, so that χ(x, θ, θ̄) and χ̃(x, θ, θ̄) must have the same de�nite heli
ities,
+1 and −1 respe
tively, as the original super�elds.Our 
onstru
tion of the super�eld rede�nition (3.5) follows 
losely that of [10, 11℄for the pure Yang�Mills 
ase. As in those papers, we will �nd that, in order toprodu
e a manifestly MHV Lagrangian, the rede�nition (3.5) is ne
essarily nonpolynomial. The super�elds Φ and Φ̄ are given by in�nite series in the new �elds χand χ̃. We will show that the super�eld rede�nitions take the form

Φ(p) =

∞∑

n=2

gn−2

∫
d3p1 · · ·d3pn−1 δ

(3)(p− p1 − · · · − pn−1)Γ(p; p1, . . . , pn−1)

×χ(p1) · · ·χ(pn−1)

Φ̄(−p) = −
∞∑

n=2

n∑

s=2

gn−2

∫
d3p1 · · ·d3pn−1 δ

(3)(p+ p1 + · · ·+ pn−1)
p−

(ps)−

×Ξ(s−1)(p; p1, . . . , pn−1)χ(p1) · · ·χ(ps−1)χ̃(ps)χ(ps+1) · · ·χ(pn−1)where the dependen
e on the fermioni
 
oordinates, θ and θ̄, has not been indi
atedexpli
itly. Here and in the following d3p denotes dp− dp dp̄ in momentum spa
eintegrals. We will outline how to derive the expli
it form of the 
oe�
ient fun
tions,
Γ and Ξ, in these series.Substituting the expressions of Φ and Φ̄ in terms of χ and χ̃ gives rise to aLagrangian of the form

Lχ,χ̃ =

∫

Σ

d3x d4θ d4θ̄


L(−+)

χ,χ̃ +
∞∑

k=1

L(−−

k︷ ︸︸ ︷
+ · · ·+)

χ,χ̃


 (3.6)in whi
h all terms are manifestly MHV in light-
one superspa
e. Here the k-th termin sum 
ontains two χ̃'s, k χ's and a fa
tor of gk.Our superspa
e analysis presents additional 
ompli
ations, whi
h do not arisein the non-supersymmetri
 
ase. The transformed super�elds do not satisfy the
onstraints (2.37) satis�ed by the original super�elds, and so they are not guaranteedto des
ribe the same degrees of freedom. We shall identify new 
onstraints satis�edby the transformed super�elds and prove that χ and χ̃ with these new 
onstraintsdes
ribe the irredu
ible N = 4 multiplet.18



3.3.1 Canoni
al TransformationAs in the pure Yang�Mills 
ase [9, 10, 11℄, the aim is to 
onstru
t the super�eldrede�nition in su
h a way as to eliminate the non-MHV 
ubi
 vertex, L(−++)

Φ,Φ̄
, fromthe Lagrangian. The new super�elds, χ and χ̃, are thus de�ned requiring

L(−+)

Φ,Φ̄
+ L(−++)

Φ,Φ̄
→ L(−+)

χ,χ̃ . (3.7)To ensure the 
anoni
ity of the transformation, we de�ne the new super�elds, χand χ̃, via a generating fun
tional. In 
omplete analogy with the pure Yang�Mills
ase [10℄, we sear
h for a generating fun
tional of the form
K(χ, πΦ) =

∫
d3x d4θ d4θ̄ Tr [k(χ) πΦ] , (3.8)where πΦ is the 
onjugate momentum to Φ. From K(χ, πΦ) we 
onstru
t the 
anon-i
al 
hange of variables, whi
h is de�ned by the relations

Φ(x, θ, θ̄) =

∫
d3x′d4θ′ d4θ̄′

δ
(
Tr [k(χ) πΦ] (x

′, θ′, θ̄′)
)

δπΦ(x, θ, θ̄)

πχ(x, θ, θ̄) =

∫
d3x′d4θ′ d4θ̄′

δ
(
Tr [k(χ) πΦ] (x

′, θ′, θ̄′)
)

δχ(x, θ, θ̄)
,

(3.9)where πχ is the momentum 
onjugate to χ.The fun
tional k(χ) in (3.8) is �xed by the requirement that the Lagrangianwritten in terms of the new super�elds take the desired MHV form. The �rstequation in (3.9) implies Φ = k(χ), i.e. it de�nes the relation between Φ and thenew super�eld χ. The se
ond equation in (3.9) be
omes
πχ(x, θ, θ̄ ) ≡

1

∂−
χ̃(x, θ, θ̄ )=

∫
d3x′d4α d4ᾱ

δ {Φa(x′, α, ᾱ)(ta)ij}
δχ(x, θ, θ̄ )

1

∂−

{
Φ̄b(x′, α, ᾱ)(tb)ji

}
.(3.10)and it de�nes the new super�eld χ̃ in terms of Φ and Φ̄. The form of the generatingfun
tional (3.8) ensures that the terms involving ∂+ 
an
el out in (3.7),

∫
d3x d4θ d4θ̄Tr

(
2
1

∂−
Φ̄ ∂+Φ

)
=

∫
d3x d4θ d4θ̄Tr

(
2
1

∂−
χ̃ ∂+χ

)
. (3.11)We substitute (3.10) into (3.7) to obtain (after Fourier transforming)

ω1Φ1 + i
2

3
g

∫

23

δ(3)(p1 − p2 − p3)
{2,3}

p2− + p3−
Φ2Φ3−

∫

l

ωl
δΦ1

δχl
χl = 0, (3.12)where Φj ≡ Φ(pj), ωk ≡ pkp̄k

pk−
and {i,j} ≡ (p̄jpi− − p̄ipj−) and for the measures wehave de�ned

∫

12...n

≡
∫ n∏

k=1

dpk− dpk dp̄k and

∫
dθ ≡

∫
d4θ d4θ̄ . (3.13)19



In the following we will also use the notation (pi, pj) = pjpi− − pipj−.Condition (3.12) indi
ates that Φ is a power-series in χ of the following form
Φ1 =

∞∑

n=2

gn−2

∫

2...n

δ(3)(p1 − p2 − · · · − pn) Γ1,2,...,n χ2 . . . χn . (3.14)
Γ1,2,...,n ≡ Γ(p1, p2, . . . , pn) are 
oe�
ients to be determined order by order. Substi-tuting the ansatz (3.14) ba
k into (3.12), we �nd the Γ 
oe�
ient is

Γ+,2,...,n =

(
i
2

3

)n−2 p2−p
2
3−p

2
4− . . . p

2
(n−1)−pn−

(p2,p3)(p3,p4) . . . (pn−1,pn)
, (3.15)where Γ+,i,j ≡ Γi+j,i,j.Having obtained an all-order expression for the �eld rede�nition for Φ we nowturn to Φ̄. We di�erentiate Φ with respe
t to χ and substitute the result in (3.10)to obtain the following expression for Φ̄

Φ̄−1 = −
∞∑

m=2

gm−2

m∑

s=2

∫

2...m

δ(3)(p1+p2+· · ·+pm)
p1−
ps−

Ξs−1
1,2,...,mχ2 . . . χs−1χ̃sχs+1 . . . χm,(3.16)where the supers
ript on Ξ 
orresponds to the position of χ̃ in the string of χ's. To
ompute the higher order Ξ 
oe�
ients, we start with (3.11). From the expansionof Φ in (3.14), sin
e all the �elds have the same x+ dependen
e and none of the Γ
oe�
ients depend on x+, we get

∂+Φ1 =

∞∑

n=2

gn−2

n∑

r=2

∫

2...n

δ(3)(p1 − p2 − · · · − pn) Γ1,2,...,nχ2 . . . χr−1∂+χrχr+1 . . . χn.(3.17)We substitute (3.16) and (3.17) in (3.11), and evaluate order by order to �nd,
Ξs−1
−,2,...,m =

p1−
ps−

Γ+,2,...,m , (m ≥ 3 ; 2 ≤ s ≤ m) , (3.18)where Ξs−1
−,i,j = Ξs−1

−i−j,i,j.The transformations (3.14) and (3.16) 
an be inverted to express χ and χ̃ interms of Φ and Φ̄. The details of the 
al
ulation in this se
tion are presented in [1℄.3.3.2 New 
onstraintsAs dis
ussed in se
tion 2.2.3 the original super�elds, Φ and Φ̄, are both 
onstrained.They satisfy (anti) 
hirality 
onditions,
dmΦ = 0 , d̄m Φ̄ = 0 , (3.19)and 
onstraints (2.44)-(2.48).The most general super�eld inN = 4 superspa
e does not des
ribe an irredu
iblemultiplet of the N = 4 superalgebra. Imposing the 
onstraints (3.19) and (2.44)-(2.48) redu
es the number of independent 
omponents in Φ and Φ̄ ensuring thatthese super�elds des
ribe only the N = 4 degrees of freedom.20



We need to show that the new super�elds also des
ribe theN = 4 supermultiplet.This is not guaranteed, be
ause in 
onstru
ting the 
anoni
al 
hange of variables,we have treated Φ and Φ̄ as un
onstrained. We need to dedu
e what 
onditions for
χ and χ̃ are implied by the 
onstraints on the original super�elds and then showthat these new 
onditions give rise to the 
orre
t degrees of freedom. This 
anbe a
hieved starting with the inverse transformations and imposing the 
onditions(3.19), (2.44)-(2.48) on the right hand side.From the transformation relating Φ and χ one 
an verify that the latter is also
hiral,

d χ = 0 . (3.20)The remaining 
onstraints on Φ and Φ̄ are, however, not valid for χ and χ̃. Inparti
ular, the super�eld χ̃ is not anti-
hiral. Moreover, as a 
onsequen
e of thestru
ture of the �eld rede�nition, we expe
t the 
onstraints satis�ed by χ and χ̃ tobe modi�ed order by order in the 
oupling. We will present here the s
hemati
 formof the new 
onditions for χ and χ̃ to order g.We start with the inverse transformations trun
ated at order g,
χp = Φp − g

∫

qr

δ(p− q − r) Γp,q,r Φq Φr +O(g2) , (3.21)
χ̃p = Φ̄p + g

∫

qr

δ(p− q − r)
{
p−
q−

Γ−q,r,−p Φ̄q Φr +
p−
r−

Γ−r,−p,q Φq Φ̄r

}
+O(g2) .(3.22)The expansion (3.21) is 
onsistent with the 
hirality of χ. A
ting with the superspa
ederivative d̄m on (3.22) and using (3.19), (2.44)-(2.48) we arrive at the relation

1

∂2−
d̄ χ̃ ∼ g

(
d3

∂−
χ̃

)
χ̃ , (3.23)whi
h repla
es the anti-
hirality 
ondition for Φ̄.The additional 
onstraint relations [1℄, analogous to (2.44)-(2.48), are

d4

∂2−
χ̃ ∼ χ+ gχ2 + g3χ3 + · · · , (3.24)

d3

∂−
χ̃ ∼ d̄χ + gχd̄χ+ g2χ2d̄χ+ · · · , (3.25)

d2χ̃ ∼ d̄ 2χ+ gd̄χd̄χ+ gχd̄ 2χ+ g2χd̄χd̄χ+ g2χ2d̄ 2χ+ · · · , (3.26)
∂−dχ̃ ∼ d̄ 3χ+ gd̄χd̄ 2χ+ gχd̄ 3χ+ · · · , (3.27)
∂2−χ̃ ∼ d̄ 4χ+ gd̄ 2χd̄ 2χ+ gd̄χd̄ 3χ+ gχd̄ 4χ+ · · · . (3.28)Noti
e that at zero-th order in the 
oupling χ and χ̃ 
oin
ide with Φ and Φ̄ respe
-tively. The above 
onditions are 
onsistent with this observation. The super�eld χis 
hiral and (3.23) redu
es to

d̄ (χ̃)0 = 0 , (3.29)21



showing that χ̃ is anti-
hiral for g = 0. Similarly the 
onditions (3.24)-(3.28) redu
eto (2.44)-(2.48) at g = 0.Having obtained the new 
onstraints satis�ed by χ and χ̃ we pro
eed to showthat they give rise to the 
orre
t �eld 
ontent. Sin
e χ is 
hiral, we 
an write it as 1
χ(x, θ, θ̄) = α(y) + β(y) [θ] + γ(y) [θ]2 + δ(y) [θ]3 + ε(y) [θ]4 . (3.30)We �nd that χ̃ satisfying the �inside-out� relations (3.24)-(3.28) is for
ed to havethe stru
ture

χ̃(x, θ, θ̄) = A00(y) + A10(y) [θ] + A20(y) [θ]
2 + A30(y) [θ]

3 + A40(y) [θ]
4

+A01(y) [θ̄] + A02(y) [θ̄]
2 + A03(y) [θ̄]

3 + A04(y) [θ̄]
4 , (3.31)where y is the 
hiral variable (2.39) and all 
omponent �elds, Aij , i, j = 0, . . . , 4,are fully determined in terms of the 
omponent �elds α, β, γ, δ and ε.The remaining 
ondition on χ and χ̃ is (3.23). Imposing this 
onstraint halves thenumber of independent 
omponents in the new super�elds. Therefore we 
on
ludethat χ and χ̃ 
ontain a total of eight bosoni
 and eight fermioni
 independent degreesof freedom.3.4 MHV Lagrangian for N = 4 Yang�MillsThe manifestly MHV Lagrangian in terms of the new super�elds χ and χ̃ to order

g2 is
Lχ,χ̃ = Tr

∫
dθ dp g0(p) χ̃−p χp

+g Tr

∫
dθ dp dk dl δ(p+ k + l) g1(p, k, l) χp [χ̃k , χ̃l] (3.32)

+g2Tr

∫
dθ dp dq dr dl δ(p+ q + r + l) g21(p, q, r, l) [χp , χq] [χ̃r , χ̃l]

+g2Tr

∫
dθ dp dq dr dl δ(p+ q + r + l) g22(p, q, r, l) [χp , χ̃q] [χr , χ̃l] ,where

g0(p) = −4 pp̄− p+p−
p2−

, (3.33)
g1(p, q, r) =

i4

3

(q, r)

p−(q− + r−)
, p + q + r = 0 , (3.34)

g21(p, q, r, l) =
16

9

p−
q2−

(q− + r−)
2(q, r)

l−(q + r, l)
− 4

9

q−p−(r, l)

(r− + l−)2(r + l, q)
, (3.35)

g22(p, q, r, l) =
16

9

r−
p2−

(q− + r−)
2(q + r, l)

q−(q, r)
− 2

(q−p− + l−r−)

(q− + l−)2
, (3.36)1Here we use the notation [θ]n to denote n powers of θ without spe
ifying the SU(4)R indi
es.22



where p+ q + r + l = 0.Using the expli
it expressions for the 
oe�
ients Γ and Ξ in (3.14) and (3.16) itis possible, though tedious, to derive higher order verti
es in the MHV Lagrangian.We will not present these 
al
ulations here.3.5 Component LagrangianIn this se
tion we dis
uss the form of the gluon MHV verti
es arising from the
omponent expansion of the superspa
e Lagrangian given in the previous se
tion.These gluon verti
es should 
oin
ide with those in the pure Yang�Mills MHV La-grangian [10℄. This will thus allow us to test our superspa
e result. We will 
arryout the 
omparison for terms up to order g2, i.e. we will 
onsider 
ubi
 and quarti
verti
es.We use the inverse transformations writing (χ, χ̃) in terms of (Φ, Φ̄) to �rst order,(3.21-3.22). Next we expand the super�elds in terms of the 
omponent gluon �elds.,setting all other 
omponents in Φ and Φ̄ to zero
Φp = − 1

ip−
Ap e

− i√
2
θmθ̄mip− − 1

12
εrstuθ

rθsθtθu ip− Āp ,

Φ̄p = − 1

ip−
Āp e

i√
2
θmθ̄mip− − 1

12
εrstuθ̄rθ̄sθ̄tθ̄u ip−Ap . (3.37)In order to make 
onta
t with the known form of the MHV gluon 
ouplings we thenneed to express the 
omponent �elds, A and Ā, in terms of the new �elds des
ribingthe two heli
ities of the gluons, B and B̃. We use the form of the �eld rede�nitionderived in [9, 10℄ for the Yang�Mills 
ase. Using these relations the new �elds χand χ̃ 
an be written in terms of B and B̃. Substituting these expressions intoour superspa
e Lagrangian (3.32) reprodu
es exa
tly the 
ubi
 and quarti
 verti
esin the MHV Lagrangian of [9, 10℄. The details of the 
al
ulation are presented inreferen
e [1℄.3.6 Dis
ussionIn this 
hapter, we 
onstru
ted a manifestly MHV Lagrangian from the usual La-grangian for N = 4 SYM in light-
one superspa
e. We found that the 
anoni
al�eld rede�nitions whi
h were needed were non-polynomial. We determined the �eldrede�nitions to all orders, and also determined the new 
onstraints satis�ed by therede�ned �elds. We also 
he
ked whether these 
onstraints were enough to limitthe degree of freedom in the new super�elds to des
ribe the N = 4 supermultiplet.Finally, we reprodu
ed the Yang�Mills MHV Lagrangian from the MHV Lagrangianfor N = 4 SYM.As dis
ussed in the introdu
tion se
tion, a MHV Lagrangian, with MHV verti
esmanifest, provides a Lagrangian origin to the MHV formalism developed in [7℄. Thishas many 
onsequen
es, as te
hniques and lessons from the traditional Lagrangianformulation of �eld theories may be utilized to understand more deeply propertiesof s
attering amplitudes in QFT. 23



Chapter 4Gauge invariant 
orrelation fun
tionsThe material in this 
hapter is largely based on a preprint [2℄ by the author (withDr. Sudarshan Ananth and Dr. Stefano Kova
s), whi
h has been submitted forreview.4.1 Introdu
tionIn a 
onformally invariant gauge theory, the fundamental observables are the 
orre-lation fun
tions of gauge-invariant operators. In the 
ase of the N = 4 supersym-metri
 Yang�Mills (SYM) theory su
h 
orrelation fun
tions play a 
entral role inthe 
ontext of the AdS/CFT 
orresponden
e [12, 13, 14℄.In this 
hapter, we study su
h 
orrelation fun
tions in N = 4 SYM theory usingthe light-
one superspa
e formalism. The unique advantage of this formalism is thatit provides a des
ription, solely in terms of physi
al degrees of freedom, in whi
h thefull N = 4 supersymmetry as well as the SU(4) R-symmetry are manifestly realised.However, this is a
hieved at the expense of manifest Lorentz invarian
e.In this 
hapter we shall introdu
e the main features of N = 4 light-
one super-spa
e as applied to the study of gauge-invariant 
orrelation fun
tions in positionspa
e. We shall spe
i�
ally present the one-loop 
al
ulation of a simple four-point
orrelator of gauge-invariant s
alar operators belonging to the super-multiplet ofthe energy-momentum tensor. We will reprodu
e the known tree-level and one-loopresults for the four point fun
tion of 
omposite operators whi
h are bilinear in theelementary s
alars and transform in the 20′ representation of the SU(4) R-symmetryof N = 4 SYM.Our primary aim is to develop e�
ient methods for 
omputing perturbative
orre
tions to 
orrelation fun
tions. We 
omment on the intriguing possibility thatthe manifest N = 4 supersymmetry in this approa
h may allow for a 
ompa
tdes
ription of entire multiplets and their 
orrelation fun
tions.4.2 Perturbative 
al
ulations in position spa
eGauge-invariant 
orrelation fun
tions in a 
onformal �eld theory are most naturallystudied in position spa
e rather than momentum spa
e. We now dis
uss some general24



aspe
ts of perturbative 
al
ulations using the formalism of light-
one superspa
e. Inse
tion 2.2.4, we presented the form of the super�eld propagator and summarisedthe Feynman rules in position spa
e.Noti
e that the super�eld propagator in position spa
e (2.51) has essentially thesame form as in momentum spa
e [5℄. Consequently the basi
 manipulations em-ployed in the 
al
ulation of position spa
e super Feynman diagrams are the sameas used in momentum spa
e. This represents a distin
t feature 
ompared with 
o-variant superspa
e formalisms, where there are more signi�
ant di�eren
es betweenposition and momentum spa
e formulations.Super Feynman diagrams 
onstru
ted from the intera
tion verti
es and the prop-agator 
ontain spa
e-time derivatives (∂, ∂̄ and ∂−, but not ∂+) as well as 
hiralderivatives dm and d̄m de�ned in (2.25). All these derivatives 
an be integrated byparts in superspa
e integrals. They 
an also be transferred from one end point tothe other of the super-propagator they a
t on, ∆(z − z′), using the fa
t that thelatter is only a fun
tion of the di�eren
e (z− z′). Moreover, the 1/∂− operators 
ane�e
tively be �integrated by parts� as explained in (A.45).The general strategy for the evaluation of position spa
e Feynman diagrams isas follows. The �rst step 
onsists in 
omputing Grassmann integrals, utilising thefermioni
 δ-fun
tions in the super-propagator. For this purpose one needs to free upone internal line of all the 
hiral derivatives, using repeated integrations by parts,and then use the relation (A.46) in appendix A.3.On
e the fermioni
 integrals at ea
h intera
tion vertex have been 
omputed, theexternal super-operators are proje
ted onto spe
i�
 
omponents, thus drasti
allyredu
ing the number of non-zero 
ontributions.At this point the resulting bosoni
 integrals 
an be dire
tly 
ompared to the
orresponding expressions obtained using Lorentz 
ovariant formulations. In se
tion4.4 we illustrate these steps in the 
ase of a simple four-point fun
tion and we showhow the light-
one superspa
e analysis reprodu
es the known 
ovariant results priorto the evaluation of the �nal bosoni
 integrals.4.3 Composite operators and 
orrelation fun
tionsIn this paper we will only 
onsider examples of 
orrelators of operators 
onstru
tedfrom the elementary s
alars in the N = 4 multiplet, ϕmn. This ensures that theexpli
it form of the operators remain the same (in light-
one gauge) as in Lorentz
ovariant formulations. The simplest su
h operators are s
alars of dimension 2belonging to the super-multiplet of the energy-momentum tensor. They transformin the representation 20
′ of the SU(4) R-symmetry group and, in terms of the ϕmnrepresentation for the elementary s
alars, they take the form

Q[mn][pq] = Tr (ϕmnϕpq)− 1

12
εmnpq Tr (ϕ̄rsϕ

rs)

=
1

3
Tr (2ϕmnϕpq + ϕmpϕnq − ϕmqϕnp) . (4.1)25



We 
an express the same operators in terms of the representation ϕi of the s
alarsas SU(4)R ve
tors as
Qij = Tr

(
ϕiϕj

)
− 1

6
δij Tr

(
ϕkϕk

)
. (4.2)The equivalen
e of the two forms (4.1) and (4.2) 
an be veri�ed using the identity(A.1).In order to des
ribe the operators (4.1)-(4.2) in light-
one superspa
e we intro-du
e 
omposite super�eld operators whi
h 
ontain them in their 
omponent expan-sion. For this purpose it is 
onvenient to work with the form (4.2) whi
h, using(A.1) we 
an rewrite as

Qij =
1

8

(
σi pqσj rs − 1

3
δijεpqrs

)
Tr (ϕ̄pqϕ̄rs) . (4.3)From the form of the N = 4 super�eld (2.38) and the de�nition (2.25) of the 
hiralderivatives, d̄m, it is easy to verify that the s
alar �eld ϕ̄mn(x) in the expansion of

Φ(z) 
an be isolated as follows
ϕ̄mn(x) =

i√
2

[
d̄md̄nΦ(x, θ, θ̄)

]∣∣
θ=θ̄=0

. (4.4)We 
an then de�ne the super-operator
Qij(z) = − 1

16

(
σi pqσj rs − 1

3
δijεpqrs

)
Tr
[(
d̄pd̄qΦ(z)

) (
d̄rd̄sΦ(z)

)]
, (4.5)whi
h 
ontains (4.3) as its θ = θ̄ = 0 
omponent,

Qij(x) =
[
Qij(z)

]∣∣
θ=θ̄=0

. (4.6)The only other operator of bare dimension 2 in the N = 4 theory is an unprote
tedone, the super
onformal primary operator, K(x), belonging to the long Konishimultiplet [15, 16℄. K(x) is a SU(4)R singlet and takes the form
K = Tr(ϕiϕi) =

1

4
εmnpqTr (ϕ̄mnϕ̄pq) . (4.7)Using (4.4) we 
an 
onstru
t a super-operator 
ontaining K(x) as θ = θ̄ = 0 
om-ponent. We de�ne

K(z) = −1
8
εmnpqTr

[(
d̄pd̄qΦ(z)

) (
d̄rd̄sΦ(z)

)]
, (4.8)so that

K(x) = [K(z)]|θ=θ̄=0 . (4.9)In the present paper we 
onsider only 
orrelators of prote
ted operators, fo
ussingon a four-point fun
tion of the Qij de�ned in (4.5). In the following se
tion wepresent the tree-level and one-loop 
al
ulations for this four-point fun
tion and inderiving our results we will assume the non-renormalisation of two- and three-pointfun
tions as it is a gauge-invariant result and thus remains valid when working inlight-
one superspa
e. 26



4.4 A simple four-point 
orrelation fun
tionThe study of four-point 
orrelation fun
tions of prote
ted operators in N = 4 SYMprovides a good starting point for the appli
ation of light-
one superspa
e te
hniquesto the 
al
ulation of o�-shell observables.In the 
ase of four-point fun
tions of N = 4 primary operators the dependen
eon the external points is not �xed by the symmetries of the theory. Quantum
orre
tions to these 
orrelators 
an be reorganised into fun
tions, F4(r, s; g), of the
oupling 
onstant and two 
onformally invariant 
ross ratios, whi
h 
an be 
hosenas
r =

x212x
2
34

x213x
2
24

, s =
x214x

2
23

x213x
2
24

, (4.10)where x2ij = (xi − xj)2.We 
onsider four-point 
orrelation fun
tions of the operators Qij given in (4.3),
G

(Q)
4 (x1, . . . , x4) = 〈Qi1j1(x1)Q

i2j2(x2)Q
i3j3(x3)Q

i4j4(x4)〉 , (4.11)whi
h 
an be obtained from the 
orrelation fun
tions of the 
orresponding super-operators, Qij , de�ned as
G(Q)
4 (z1, . . . , z4) = 〈Qi1j1(z1)Qi2j2(z2)Qi3j3(z3)Qi4j4(z4)〉 , (4.12)by setting to zero the external fermioni
 
oordinates,

G(Q)(x1, . . . , x4) = G(Q)
4 (z1, . . . , z4)

∣∣∣
θ(α)m=θ̄

(α)
m =0

, ∀ α = 1, . . . , 4 , m = 1, . . . , 4 ,(4.13)where the index α labels the external points.In this 
hapter we restri
t our attention to a simple four-point fun
tion in the
lass (4.11), whi
h we denote by G(H)
4 (x1, . . . , x4). It 
orresponds to the following
hoi
e for the �avour indi
es

G
(H)
4 (x1, . . . , x4) = 〈Q12(x1)Q

34(x2)Q
34(x3)Q

12(x4)〉 . (4.14)We re-derive the known tree-level and one-loop 
ontributions to (4.14) working inlight-
one superspa
e. Our starting point is thus
G(H)
4 (z1, . . . , z4) = 〈Q12(z1)Q34(z2)Q34(z3)Q12(z4)〉 , (4.15)whi
h redu
es to (4.14) upon setting to zero the external fermioni
 
oordinates.The simpli�
ations indu
ed by the 
hoi
e of SU(4)R indi
es in (4.14) will be-
ome apparent in the next subse
tions where we evaluate this parti
ular four-pointfun
tion at tree-level and one-loop.We start by writing (4.14) using the form (4.3) for the Qij operators,

G
(H)
4 (x1, . . . , x4) =

〈
Tr
[(
ϕ1ϕ2

)
(x1)

]
Tr
[(
ϕ3ϕ4

)
(x2)

]
Tr
[(
ϕ3ϕ4

)
(x3)

]
Tr
[(
ϕ1ϕ2

)
(x4)

] 〉

=

(
1

8

)4

σ1m1n1σ2p1q1σ3p2q2σ4m2n2σ3p3q3σ4m3n3σ1m4n4σ2p4q4 (4.16)
×
〈
Tr [(ϕ̄m1n1ϕ̄p1q1)(x1)] Tr [(ϕ̄m2n2ϕ̄p2q2)(x2)] Tr [(ϕ̄m3n3ϕ̄p3q3)(x3)] Tr [(ϕ̄m4n4ϕ̄p4q4) (x4)]

〉
.27



The expli
it form of the super-operator 
ontaining (4.16) as its θ = θ̄ = 0 
omponentis
G(H)
4 (z1, . . . , z4) =

1

16

(
1

8

)4(
i√
2

)8

σ1m1n1σ2p1q1σ3p2q2σ4m2n2σ3p3q3σ4m3n3σ1m4n4σ2p4q4

×
〈(
d̄(1)m1

d̄(1)n1
Φa(z1)d̄

(1)
p1
d̄(1)q1

Φa(z1)
)(
d̄(2)m2

d̄(2)n2
Φb(z2)d̄

(2)
p2
d̄(2)q2

Φb(z2)
)

×
(
d̄(3)m3

d̄(3)n3
Φc(z3)d̄

(3)
p3
d̄(3)q3

Φc(z3)
)(
d̄(4)m4

d̄(4)n4
Φd(z4)d̄

(4)
p4
d̄(4)q4

Φd(z4)
)〉

. (4.17)Noti
e that in G(H)
4 (x1, . . . , x4) we 
hoose all the Qij operators with distin
t �avourindi
es, so that when re-writing them in the form (4.3) the se
ond term, whi
h sub-tra
ts the SU(4)R tra
e never appears. This leads to simpli�
ations in the 
al
ulationsin
e there are fewer 
ontra
tions to 
onsider.For 
ompa
tness of notation, in the following we write the super-propagator as

∆i
j(z1 − z2) =

kδij
x212
〈d4〉δ(8)12 , (4.18)where k = −2/(2π)2(4!)3, x212 = (x1 − x2)2 and δ(8)12 = δ(4)(θ1 − θ2)δ(4)(θ̄1 − θ̄2).4.4.1 Tree levelAt tree level there are multiple 
ontra
tions possible in (4.17). However, only theone shown in �gure 4.1 is non-zero. The reason why all other 
ontra
tions vanishis evident from the form of G(H)

4 in the �rst line of (4.16): all other 
ontra
tion arezero be
ause the propagator (A.32) for the elementary s
alars is diagonal in �avourspa
e.
ϕ1 a ϕ2 a

1

4

ϕ1 d ϕ2 d

3

ϕ3 c ϕ4 c

ϕ4 bϕ3 b

2

Figure 4.1: Tree-level 
ontribution to G(H)
4 (x1, . . . , x4).It is straightforward to obtain the same result in superspa
e. A free propagator
onne
ting s
alars ϕa1 i1(x1) and ϕa2 i2(x2) in two Q operators gives rise to the fa
tor

σi1m1n1σi2m2n2

(
d̄m1 d̄n1〈d4〉

δ
(8)
12

x212

←−−−−
d̄m2 d̄n2 δ

a1a2

)
, (4.19)28



whi
h, upon setting to zero the θ and θ̄ 
oordinates at points z1 and z2, redu
es to
δa1a2

x212
σi1m1n1σi2m2n2〈d4〉d̄m1d̄n1d̄m2 d̄n2 δ

(8)
12

∣∣∣∣
θ1=θ̄1=0

= (4!)3 8
δa1a2

x212
δi1i2 , (4.20)where σi1m1n1σi2m2n2εm1n1m2n2 = 8 δi1i2 . Thus ea
h external ϕi 
an only be 
onne
tedthrough a free propagator to a ϕj with i = j for a non-vanishing 
ontribution.Therefore at tree level the only allowed 
ontra
tion in G(H)

4 (z1, . . . , z4) is the one in�gure 4.1 whi
h, using (4.18), yields
G(H)
4 (z1, . . . , z4) =

1

220
σ1m1n1σ2p1q1σ3p2q2σ4m2n2σ3p3q3σ4m3n3σ1m4n4σ2p4q4

× k4
(
d̄m1 d̄n1〈d4〉

δ
(8)
14

x214

←−−−−
d̄n4 d̄m4δ

ad

)(
d̄p1d̄q1〈d4〉

δ
(8)
14

x214

←−−−
d̄q4d̄p4δ

ad

)

×
(
d̄m2 d̄n2〈d4〉

δ
(8)
23

x223

←−−−−
d̄n3d̄m3δ

bc

)(
d̄p2d̄q2〈d4〉

δ
(8)
23

x223

←−−−
d̄q3d̄p3δ

bc

)
. (4.21)Setting to zero all the external θm's and θ̄m's we get

[
G

(H)
4 (x1, . . . , x4)

]
tree

=
(N2 − 1)

2

16(2π)8
1

(x214)
2(x223)

2
. (4.22)4.4.2 One-loopOne-loop 
ontributions to G(H)

4 (x1, . . . , x4) are of order g2 and involve either two
ubi
 intera
tion verti
es or a single quarti
 vertex. Moreover we 
an distinguishbetween dis
onne
ted diagrams, whi
h fa
torise into the produ
t of tree-level andone-loop two-point fun
tions, and 
onne
ted four-point diagrams.Fa
torised two-point fun
tionsFigure 4.2 depi
ts the dis
onne
ted one-loop 
ontributions to G(H)
4 . They fa
toriseas

〈Q12(z1)Q12(z4)〉1−loop〈Q34(z2)Q34(z3)〉tree . (4.23)A se
ond set of diagrams in whi
h the intera
tion verti
es 
onne
t to the externalpoints z2 and z3 gives rise to a 
ontribution of the form
〈Q12(z1)Q12(z4)〉tree〈Q34(z2)Q34(z3)〉1−loop . (4.24)Both (4.23) and (4.24) vanish thanks to the non-renormalisation of two-point fun
-tions of prote
ted operators. Therefore we assume that G(H)

4 (x1, . . . , x4) re
eives no
ontribution from the sum of all diagrams with the topologies in �gure 4.2.29
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(d)Figure 4.2: Dis
onne
ted one-loop 
ontributions to G(H)
4 (x1, . . . , x4).Conne
ted diagrams involving two 
ubi
 verti
esThe next set of diagrams of order g2 that we need to 
onsider are 
onne
ted onesinvolving two 
ubi
 verti
es. There are two distin
t types of 
ontra
tions to takeinto a

ount whi
h are shown in �gure 4.3.The building blo
ks for these diagrams are the 
ubi
 verti
es (2.52) and (2.53).Analysing the 
ombinations of 
hiral derivatives in these verti
es one 
an verify thatin order to produ
e a potentially non-vanishing 
ontribution a diagram must involveone vertex of ea
h type. This is proven in appendix A.4.1.The 
ontributions from the two diagrams in �gure 4.3 vanish individually, butfor di�erent reasons.The vanishing of diagrams of the type in �gure 4.3a is straightforward. Sin
ethe super�eld propagator is diagonal in 
olour spa
e, the free 
ontra
tions betweenpoints z1 and z4 and between points z2 and z3, 
ombined with the tra
es at ea
h ex-ternal point, for
e two of the indi
es of the totally antisymmetri
 stru
ture 
onstants

fabc at the intera
tion verti
es in z5 and z6 to be the same. Therefore these diagramsare identi
ally zero. Sin
e this vanishing result follows from the 
olour stru
ture ofthe diagram, all other Wi
k 
ontra
tions, whi
h di�er only in the distribution of�avour indi
es, give a zero result as well.Diagrams of the type shown in �gure 4.3b also vanish, but the proof is slightly30



ϕ1 a ϕ2 a

1

4

ϕ1 d ϕ2 d

3

ϕ3 c ϕ4 c

ϕ4 bϕ3 b

2

5 6

(a)
ϕ1 a

ϕ2 a
1

4

ϕ1 d

ϕ2 d
3ϕ3 c

ϕ4 c

ϕ4 b

ϕ3 b
25

6(b)Figure 4.3: Conne
ted one-loop 
ontributions to G(H)
4 (x1, . . . , x4) involving 
ubi
verti
es.more involved, requiring manipulations whi
h are des
ribed in detail in appendixA.4.1. The vanishing of 
ontributions with this topology follows from the observationthat a 
ontra
tion in whi
h two external �elds ϕi1 and ϕi2 are 
onne
ted to a 
ubi
intera
tion vertex gives rise to a fa
tor of σi1mnσi2pqεmnpq = 8δi1i2 . The reason forthis is explained under Rule A.4.1 in Appendix A.4.1.In the 
ase of the diagram in �gure 4.3b the internal point z5 (z6) 
onne
ts ϕ2with ϕ3, whi
h results in a fa
tor of σ2mnσ3pqεmnpq = 0. Other Wi
k 
ontra
tions,with a di�erent distribution of �avour indi
es, vanish for the same reason.Conne
ted diagrams involving one quarti
 vertexThe last type of 
ontribution to G(H)

4 (x1, . . . , x4) at order g2 
omes from diagramsinvolving a single quarti
 vertex. With our 
hoi
e of external �avours the onlyallowed topology is depi
ted in �gure 4.4, where the intera
tion vertex at point z5
an be either (2.54) or (2.55). The �rst type of 
ontribution, 
onstru
ted using thevertex (2.54), vanishes. Therefore the entire one-loop 
orre
tion to G(H)
4 (x1, . . . , x4)
omes from diagrams of the type in �gure 4.4, with the quarti
 intera
tion at point

z5 
orresponding to Vertex 4-II (2.55).We present below the 
al
ulation of the 
ontra
tion shown in the �gure, in whi
hthe two free propagators 
onne
ting points z1 and z4 and points z2 and z3 
arry�avour 1 and 4 respe
tively. There are additional 
ontributions in whi
h the z1 −
z4 line has �avour 2 and/or the z2 − z3 line has �avour 3. These produ
e thesame 
ontribution as the diagram we analyse and therefore simply give rise to amultipli
ity fa
tor in the �nal answer.The vanishing of diagrams involving Vertex 4-I (2.54) follows from Rule A.4.2 inAppendix A.4.2. The requirement that the stru
ture fun
tions be non-zero 
on�i
tswith the requirement that the σσε 
ontra
tions be non-zero. Consequently Vertex4-I does not 
ontribute.Finally we 
ome to the 
al
ulation of the non-zero 
ontribution from diagramsof the topology in �gure 4.4 in whi
h the intera
tion vertex is of type 4-II.31
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Figure 4.4: Conne
ted one-loop 
ontributions to G(H)
4 (x1, . . . , x4) involving a quarti
vertex (a5, b5, c5 and d5 are 
olour indi
es).We fa
torise the diagram as in �gure 4.5. The di�erent Wi
k 
ontra
tions 
or-respond to inequivalent ways of gluing together parts (a) and (b) in the �gure.
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a5 b5

c5d5 (a)
5

a5 b5

c5d5 (b)Figure 4.5: Fa
torisation of diagram involving a quarti
 vertex.The following 
ontribution 
omes from �gure 4.5a and is 
ommon to all diagramsin this set
E4[a5, b5, c5, d5] =

1

16

(
1

8

)4
σ1m1n1σ2p1q1σ3p2q2σ4m2n2σ3p3q3σ4m3n3σ1m4n4σ2p4q4 k6δadδbc

×
(

i√
2

)8(
d̄m1 d̄n1〈d4〉

δ814
x214

←−−−−
d̄n4d̄m4

)(
d̄m2 d̄n2〈d4〉

δ823
x223

←−−−−
d̄n3d̄m3

)
f ea5b5f ec5d5

(
−g

2

64

)
. (4.25)This 
ommon portion simpli�es to

E4[a5, b5, c5, d5] = T (σ)

(
− g

2

226

)
k6 δadδbcf ea5b5 f ec5d5

(4!)6

84
εm1n1n4m4εm2n2n3m3

1

x214

1

x223
,(4.26)where T (σ) denotes the produ
t of the eight σ 
oe�
ients in (4.25).We now need to 
onsider all possible ways of gluing of this fa
tor with the pie
eresulting from �gure 4.5b. We use the following notation,32



5

a5 b5

c5d5

≡ V4[a5, b5, c5, d5] ,where the order of the arguments in V4 
orresponds to the 
lo
kwise labelling in thevertex starting from the top left leg.The di�erent Wi
k 
ontra
tions are analysed in appendix A.4.2. Combining allthe non-zero 
ontributions we �nd that �gure 4.4 evaluates to
− g2fabcfabc 1

8(2π)12
1

x214x
2
23

∫
d4x5

1

x251x
2
52x

2
53x

2
54

. (4.27)Using fabcfabc = N(N2 − 1) and in
luding all multipli
ity fa
tors the 
ompleteone-loop 
ontribution to (4.14) is therefore
[
G

(H)
4 (x1, . . . , x4)

]

1−loop
= −g2N(N2 − 1)

1

2(2π)12
1

x214x
2
23

∫
d4x5

1

x251x
2
52x

2
53x

2
54

. (4.28)The box integral in (4.28) is well known [17℄ and 
an be expressed in terms ofthe 
ross ratios (4.10). Using the form of the box integral in [18℄, the one-loop
ontribution to G(H)
4 (x1, . . . , x4) takes the form

[
G

(H)
4 (x1, . . . , x4)

]
1−loop

= −g2N(N2−1)π2 1

2(2π)12
1

x214x
2
23x

2
13x

2
24

F
(H)
4 (r, s) , (4.29)where F (H)

4 (r, s) 
an be expressed as a 
ombination of logarithms and dilogarithmsas
F

(H)
4 (r, s) =

1√
p

{
log(r) log(s)−

[
log

(
r + s− 1−√p

2

)]2
+

−2 Li2
(

2

1 + r − s+√p

)
− 2 Li2

(
2

1− r + s+
√
p

)}
,(4.30)where Li2(z) =

∑∞
n=1

zn

n2 and
p = 1 + r2 + s2 − 2r − 2s− 2rs . (4.31)4.5 Dis
ussionIn this 
hapter we studied 
orrelation fun
tions of gauge-invariant operators in N =

4 SYM using the light-
one superspa
e formulation. Our main goals are to develope�
ient te
hniques for the 
omputation of perturbative 
orre
tions to 
orrelationfun
tions. 33



As a 
omputational tool light-
one superspa
e is parti
ularly promising for anumber of reasons. This formulation of the N = 4 SYM theory uses only one typeof super�eld, whi
h 
arries no spa
e-time or SU(4)R indi
es. Therefore the generalstru
ture of super Feynman diagrams and the 
ombinatorial analysis involved intheir study are simpler than in other formulations. Moreover we expe
t that themanifest N = 4 supersymmetry will lead to a signi�
ant 
omputational advantage,in terms of the number of diagrams to evaluate, at higher orders in the perturbativeexpansion.In the 
ase of the simple four-point fun
tion G
(H)
4 (x1, . . . , x4) we reprodu
edthe known result to one-loop order. The light-
one gauge thus yields a manifestlyLorentz 
ovariant result. This is thanks to non-trivial 
an
ellations of derivativesand 1/∂− fa
tors. It will be important to understand these 
an
ellations in a sys-temati
 way for more 
ompli
ated 
orrelation fun
tions and/or at higher orders inperturbation theory.One of the bene�ts of superspa
e formulations of supersymmetri
 gauge theoriesis the possibility of providing a 
ompa
t des
ription of entire multiplets in terms ofsuper�elds. In this respe
t the light-
one superspa
e des
ription of N = 4 SYM isparti
ularly interesting as it is the only formulation of the theory in whi
h the full

N = 4 supersymmetry is manifest. Working with super-operators su
h as (4.5) and(4.8) should make it possible to extra
t all 
orrelation fun
tions of operators in thesame supersymmetry multiplet from a single super-
orrelator. It will be interestingto study other 
omponents in the θ-expansion of the super-
orrelation fun
tion G(Q)
4 .These should 
ontain information about 
orrelation fun
tions of the super-partnersof the Qij 's.Although here we were 
on
erned only with 
orrelation fun
tions of the super
on-formal primaries (4.1)-(4.2), it is natural to spe
ulate that the light-
one superspa
eformalism will permit a des
ription of the entire energy-momentum tensor multipletusing a single 
omposite super�eld. This will require the addition of terms 
ubi
and quarti
 in the super�eld Φ to the super-operator (4.5). These additional termsshould not modify the θ = θ̄ = 0 
omponent, while produ
ing the 
orre
t 
ubi
and quarti
 terms in the remaining operators. The exa
t form of these additionalterms in the super-operator should be determined by the entire N = 4 superal-gebra, in
luding the non-linearly realised dynami
al generators. The possibility of
onstru
ting su
h a 
omposite super�eld operator is intriguing.

34



Appendix AConventions and useful formulae
A.1 Conventions and notationThe s
alar �elds in the N = 4 multiplet 
an be represented either as SU(4)R bi-spinors, ϕmn, satisfying the reality 
ondition (2.36) or as ve
tors, ϕi, i = 1, . . . , 6.The two representations are related by

ϕi =
1√
8
Σi

mnϕ
mn =

1

2
√
8
εmnpqΣi

mn ϕ̄pq =
1√
8
σi pq ϕ̄pq . (A.1)where Σi

mn (Σ̄mn
i ) are Clebs
h-Gordan 
oe�
ients relating the produ
t of two 4's(4̄'s) to the 6 of SU(4). They are de�ned as follows
Σi

mn = (ΣI
mn,Σ

I+3
mn ) = (ηImn, iη̄

I
mn) ,

Σ̄mn
i = (Σ̄mn

I , Σ̄mn
I+3) = (ηImn,−iη̄Imn) , I = 1, 2, 3 , (A.2)where (ηImn, iη̄

I
mn) are 't Hooft symbols,

ηImn = η̄Imn = εImn , m, n = 1, 2, 3

ηIm4 = η̄I4m = δIm , m = 1, 2, 3

ηImn = −ηInm , η̄Imn = −η̄Inm . (A.3)Splitting up the i index in terms of I = 1, 2, 3, the 
oe�
ients (A.2) 
an be writtenas
ΣI

mn = εImn4 + (δImδ
4
n − δInδ4m) ,

ΣI+3
mn = iεImn4 − i(δImδ4n − δInδ4m) . (A.4)From this we obtain the σimn 
oe�
ients
σIpq = εIpq4 + (δIpδq4 − δp4δIq) ,

σ(I+3)pq = −iεIpq4 + i(δIpδq4 − δp4δIq) . (A.5)35



A.2 Super�eld and 
omponent �eld propagatorsIn this appendix we dis
uss in detail the derivation of the propagator (2.51) for the
N = 4 super�eld. We start with a path integral derivation whi
h will allow us to
he
k the 
onsisten
y of various 
onventions for Grassmann integrals and fun
tionalderivatives.A.2.1 Path integral derivationThe super�eld propagator 
an be obtained inverting the kineti
 operator in (2.49).We 
an obtain it 
onstru
ting the generating fun
tional for Green fun
tions of the
N = 4 super�eld in the free theory limit, Z0[J ].Fun
tional di�erentiation of Z[J ] with respe
t to the sour
es, J(x, θ, θ̄), givesrise to Green fun
tions of the N = 4 super�elds. Be
ause of the 
hirality of both
Φ and J we need to be 
areful in de�ning the rules for fun
tional di�erentiation insuperspa
e. In de�ning the fun
tional derivative with respe
t to a 
hiral super�eldwe require the 
ondition that the variation of a 
hiral super�eld be 
hiral. To satisfythis 
ondition we 
onsider a 
hiral super�eld, Ψ(x, θ, θ̄), written in terms of the
hiral variable (2.39) and we impose

δΨ(y′, θ′)

δΨ(y, θ)
= δ(4)(y − y′)δ(4)(θ − θ′) . (A.6)To obtain the form of the derivative δΨ(x′, θ′, θ̄′)/δΨ(x, θ, θ̄) in terms of the standardsuperspa
e 
oordinates we 
onsider

δ

δΨ(x, θ, θ̄)

∫
d4x′d4θ′d4θ̄′ Ψ(x′, θ′, θ̄′)F (x′, θ′, θ̄′) , (A.7)where F (x, θ, θ̄) is a generi
 (non-
hiral) super�eld. Using (A.6) we 
an evaluate(A.7) as follows

δ

δΨ(x, θ, θ̄)

∫
d4x′d4θ′d4θ̄′ Ψ(x′, θ′, θ̄′)F (x′, θ′, θ̄′)

=

∫
d4y′d4θ′d4θ̄′

δΨ(y′, θ′)

δΨ(y, θ)
F (x′

+
, y′

−
+

i√
2
θ′θ̄′, x′, x̄′, θ′, θ̄′)

=

∫
d4θ̄′ F (x+, y− +

i√
2
θθ̄′, x, x̄, θ, θ̄′)

=
1

(4!)2
〈d4〉F (x, θ, θ̄) , (A.8)where in the last step we used

∫
dθ̄k F (x+, y− +

i√
2
θθ̄, x, x̄, θ, θ̄) = dkF (x+, x−, x, x̄, θ, θ̄) , k = 1, . . . , 4 ,(A.9)36



whi
h 
an be veri�ed expanding left and right hand sides in 
omponents. From (A.8)we dedu
e the rule for fun
tional di�erentiation with respe
t to a 
hiral super�eld,
δΨa(x′, θ′, θ̄′)

δΨb(x, θ, θ̄)
=

1

(4!)2
δab 〈d4〉δ(4)(x− x′)δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′) , (A.10)whi
h applies in parti
ular to the N = 4 super�eld, Φ. For its 
onjugate, Φ̄, usingthe 
omplex 
onjugate of (2.48), we get

δΦ̄a(x′, θ′, θ̄′)

δΦb(x, θ, θ̄)
=

1

2(4!)3
δab
〈d̄4〉〈d4〉
∂2−

δ(4)(x− x′)δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′) . (A.11)We 
an now de�ne the generating fun
tional, Z[J ], as follows
Z[J ] =

∫
[dΦ] e

−S[Φ]+
∫
d12zΦa(z) 〈d̄

4〉
4∂4−

Ja(z)

∫
[dΦ] e−S[Φ]

, (A.12)where, as usual, d12z = d4x d4θ d4θ̄.Noti
e, in parti
ular, the 
oupling to the sour
es, J(z), in (A.12). This is 
hosenso as to produ
e the 
orre
t 
oupling to external sour
es in the equations of motion.This 
an be seen 
onsidering the free theory in the presen
e of external sour
es,
∫

d12z
1

2
Φa(z)K b

a Φb(z) +

∫
d12zΦa(z)

〈d̄4〉
4∂4−

Ja(z) , (A.13)where the kineti
 operator is
K b

a = −3 δ b
a

〈d̄4〉�
∂4−

. (A.14)Varying (A.13) with respe
t to the super�eld Φ gives rise to the 
orre
t equationsof motion in the presen
e of an external sour
e,
1

(4!)2
〈d4〉K b

a Φb(x, θ, θ̄) = Ja(x, θ, θ̄) . (A.15)The right hand side is straightforward to obtain using the de�nition (A.10),
δ

δΦa(z)

∫
d12z′ Φb(z′)

〈d̄4〉
4∂4−

Jb(z
′) =

1

(4!)2

∫
d12z′ 〈d4〉δ(12)(z − z′)〈d̄

4〉
4∂4−

Ja(z
′)

=
1

(4!)2

∫
d12z′ δ(12)(z − z′)〈d

4〉〈d̄4〉
4∂4−

Ja(z
′) =

∫
d12z′ δ(12)(z − z′)Ja(z′) = Ja(z) ,where we used the fa
t that 〈d4〉〈d̄4〉 = 4(4!)2 ∂4− when a
ting on a 
hiral super�eldsu
h as J(z). 37



In the free theory limit the exponent in the generating fun
tional (A.12) redu
esto
−1
2

(
Φa,K b

a Φb

)
+

(
Φa,
〈d̄4〉
4∂4−

Ja

)
= −1

2

∫
d12z Φa(z)K b

a Φb(z)+

∫
d12z Φa(z)

〈d̄4〉
4∂4−

Ja(z) .(A.16)The fun
tional integral (A.12) be
omes Gaussian and thus straightforward to 
om-pute. The result is
Z0[J ] = e

1
2(J̃a,[K−1] ba J̃b) (A.17)where

J̃a(z) =
〈d̄4〉
4∂4−

Ja(z) (A.18)and K−1 is the inverse of the kineti
 operator (A.14). In (A.17) a fa
tor of det(K)−1/2has been 
an
elled between numerator and denominator. The free generating fun
-tional (A.17) allows to 
onstru
t the perturbative expansion of the full fun
tional
Z[J ] in (A.12).Introdu
ing the kernel, ∆(z, z′), of the operator K−1, we 
an rewrite (A.17) as

Z0[J ] = e
1
2

∫
d12z d12z′ J̃a(z)[∆(z,z′)] ba J̃b(z

′) . (A.19)
∆(z, z′) is of 
ourse the super-propagator we are interested in. Let us denote by
K(z, z′) the kernel of the kineti
 operator (A.14),

K(z, z′) = −3 δ(12)(z − z′) 〈d̄
4〉�
∂4−

, (A.20)where δ(12)(z − z′) = δ(4)(x − x′)δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′). Then ∆(z, z′) is de�ned bythe 
ondition ∫
d12z′′ ∆(z, z′′)K(z′′, z′) = δ(12)(z − z′) , (A.21)or, introdu
ing a 
hiral test super�eld, Ψ(z),

∫
d12z′′

∫
d12z′ ∆(z, z′′)K(z′′, z′) Ψ(z′) = Ψ(z) . (A.22)Using the expli
it form (A.20) of K(z, z′) we have

Ψ(z) =

∫
d12z′

∫
d12z′′ ∆(z, z′′)δ(12)(z′′ − z′)

(
−3〈d̄

4〉�
∂4−

Ψ

)
(z′)

=

∫
d12z′ ∆(z, z′)

(
−3〈d̄

4〉�
∂4−

Ψ

)
(z′) . (A.23)The solution for ∆(z, z′) is of the form

∆(z, z′) = k
〈d4〉

(x− x′)2 δ
(4)(θ − θ′)δ(4)(θ̄ − θ̄′) , (A.24)38



with k a 
onstant to be �xed. Substituting into the right hand side of (A.23) we get
∫

d12z′ k
〈d4〉

(x− x′)2 δ
(4)(θ − θ′)δ(4)(θ̄ − θ̄′)

(
−3〈d̄

4〉�
∂4−

Ψ

)
(z′)

= −3k
∫

d12z′ �
1

(x− x′)2 δ
(4)(θ − θ′)δ(4)(θ̄ − θ̄′)

(〈d4〉〈d̄4〉
∂4−

Ψ

)
(z′)

= −3k(2π)24(4!)2
∫

d12z′ δ12(z − z′)Ψ(z′) = −3k(4!)
3(2π)2

2
Ψ(z) , (A.25)where we used integration by parts and the relations

�
1

(x− x′)2 = (2π)2δ(4)(x− x′) (A.26)and
〈d4〉〈d̄4〉Ψ(z) = 4(4!)2∂4−Ψ(z) . (A.27)The latter is valid for a 
hiral super�eld Ψ(z). From (A.25) we read o� the value ofthe 
onstant k,

k = − 2

(4!)3(2π)2
. (A.28)So the super�eld propagator is

∆a
b (z − z′) = −

2

(4!)3
δab

(2π)2
1

(x− x′)2 〈d
4〉δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′) . (A.29)A.2.2 Relation to 
omponent �eld propagatorsIn order to verify that the super�eld propagator 
onstru
ted in the previous subse
-tion 
ontains the 
orre
t propagators for the individual �elds in the N = 4 multipletwe now re-derive the ∆(z − z′) starting from the 
omponent expansion of Φ(z).In the following it will be 
onvenient to write the N = 4 super�eld in the form(2.50). The kineti
 terms in the N = 4 light-
one 
omponent a
tion are

S0 =

∫
d4x

[
Ā(x)�A(x) +

1

2
ϕi(x)�ϕ

i(x)− i√
2
λ̄m(x)

�

∂−
λm(x)

]
, (A.30)where the relation between the six real s
alar �elds ϕi, i = 1, . . . , 6 and the ϕmn's,

m,n = 1, . . . , 4 in (2.50) involves Clebs
h-Gordan 
oe�
ients and it is given expli
-itly in (A.1).From (A.30) we get the free propagators for the 
omponent �elds,
(∆(A))

a
b (x− y) = 〈Āa(x)Ab(y)〉 =

1

(2π)2
δab

(x− y)2 (A.31)
(∆(ϕ))

a ij
b (x− y) = 〈ϕa i(x)ϕj

b(y)〉 =
1

(2π)2
δijδab

(x− y)2 (A.32)
⇒ (∆(ϕ))

a pq
bmn (x− y) = 〈ϕ̄amn(x)ϕ

pq
b (y)〉 = 1

(2π)2
(δqmδ

p
n − δpmδqn)δab
(x− y)2

(∆(λ))
a n
bm (x− y) = 〈λ̄am(x) λnb (y)〉 =

i
√
2

(2π)2
∂−

δnmδ
a
b

(x− y)2 =
i
√
2

(2π)2
δnmδ

a
b (x

+ − y+)
(x− y)4 . (A.33)39



We 
an now 
onsider the super�eld two-point fun
tion,
∆a

b (x, θ, θ̄; x
′, θ′, θ̄′) = 〈Φa(x, θ, θ̄) Φb(x

′, θ′, θ̄′)〉 . (A.34)Using (2.50), we expand this two-point fun
tion as
〈Φa(x, θ, θ̄) Φb(x

′, θ′, θ̄′)〉 = e
− i√

2
(θmθ̄m∂−+θ′mθ̄′m∂′

−)〈
[
− 1

∂−
Aa(x)− i

∂−
θmλ̄am(x)

+
i√
2
θmθnϕ̄a

mn(x) +

√
2

6
εmnpqθ

mθnθpλa q(x)− 1

12
εmnpqθ

mθnθpθq ∂−Ā
a(x)

]

[
− 1

∂′−
Ab(x

′)− i

∂′−
θ′

r
λ̄b r(x

′) +
i

2
√
2
εrsuvθ

′rθ′
s
ϕuv
b (x′) +

√
2

6
εrsuvθ

′rθ′
s
θ′

u
λvb(x

′)

− 1

12
εrsuvθ

′rθ′
s
θ′

u
θ′

v
∂′−Āb(x

′)

]
〉 , (A.35)where ∂′− = ∂/∂x′− and we used the reality 
ondition

ϕ̄mn(x) =
1

2
εmnpq ϕ

pq(x) (A.36)for the s
alar �eld in the se
ond super�eld.In the superspa
e two-point fun
tion (A.35) the only non-zero 
ontra
tions 
or-respond to the 
omponent two-point fun
tions (A.31)-(A.33). Therefore we get
〈Φa(x, θ, θ̄) Φb(x

′, θ′, θ̄′)〉 = e
− i√

2
(θmθ̄m∂−+θ′mθ̄′m∂′

−)

[
1

12
εmnpqθ

mθnθpθq〈∂−Āa(x)
1

∂′−
Ab(x

′)〉

+
1

12
εmnpqθ

′mθ′
n
θ′

p
θ′

q〈 1
∂−
Aa(x) ∂′−Āb(x

′)〉 − 1

4
εmnpqθ

rθsθ′
m
θ′

n〈ϕ̄a
rs(x)ϕ

pq
b (x′)〉(A.37)

−i
√
2

6
εmnpqθ

rθ′
m
θ′

n
θ′

p〈 1
∂−
λ̄ar(x) λ

q
b(x

′)〉 − i
√
2

6
εmnpqθ

mθnθpθ′
r〈λq a(x) 1

∂−
λ̄r b(x

′)〉
]
,Using (A.31)-(A.33) and integration by parts to get rid of the extra ∂−'s, we �nd

〈Φa(x, θ, θ̄) Φb(x
′, θ′, θ̄′)〉 = δab e

− i√
2
(θmθ̄m−θ′mθ̄′m)∂−εmnpq

[
− 1

12
θmθnθpθq − 1

12
θ′

m
θ′

n
θ′

p
θ′

q

−1
2
θmθnθ′

p
θ′

q
+

1

3
θmθ′

n
θ′

p
θ′

q
+

1

3
θmθnθpθ′

q

]
1

(2π)2
1

(x− x′)2

= − 1

12(2π)2
δab e

− i√
2
(θmθ̄m−θ′mθ̄′m)∂− δ

(4)(θ − θ′)
(x− x′)2 . (A.38)where we used the de�nition (2.30) of the fermioni
 δ-fun
tion. The super-propagator
an be put in a more 
onvenient form using the following identity

〈d4〉δ(4)(θ̄ − θ̄′) = (4!)2 e
− i√

2
(θmθ̄m−θmθ̄′m)∂− , (A.39)40



whi
h 
an be proven expanding the left hand side as
〈d4〉δ(4)(θ̄ − θ̄′) = εmnpqε

rsuvdmdndpdq(θ̄r − θ̄′r)(θ̄s − θ̄′s)(θ̄u − θ̄′u)(θ̄v − θ̄′v)
= (4!)2 d1d2d3d4(θ̄1 − θ̄′1)(θ̄2 − θ̄′2)(θ̄3 − θ̄′3)(θ̄4 − θ̄′4) (A.40)and using (no sum over the repeated index k)

dk(θ̄k − θ̄′k) = −1 +
i√
2
(θkθ̄k − θkθ̄′k)∂− = −e−

i√
2
(θk θ̄k−θk θ̄′

k
)∂− k = 1, . . . , 4 .(A.41)The identity (A.39) 
an be rewritten as

1 =
1

(4!)2
e
+ i√

2
(θmθ̄m−θmθ̄′m)∂−〈d4〉δ(4)(θ̄ − θ̄′) . (A.42)Inserting (A.42) into the expression for the super-propagator we get

〈Φa(x, θ, θ̄)Φb(x
′, θ′, θ̄′)〉 = − δab

12(2π)2
e
− i√

2
(θmθ̄m−θmθ̄′m)∂− δ

(4)(θ − θ′)
(x− x′)2

× 1

(4!)2
e
+ i√

2
(θmθ̄m−θmθ̄′m)∂−〈d4〉δ(4)(θ̄ − θ̄′) , (A.43)where we used the δ-fun
tion in (A.38) to 
hange θ′m into θm in the �rst exponential.The exponential fa
tors in (A.43) 
an
el and we �nally get

〈Φa(x, θ, θ̄)Φb(x
′, θ′, θ̄′)〉 = − 2

(4!)3
δab

(2π)2
〈d4〉δ(4)(θ − θ′)δ(4)(θ̄ − θ̄′)

(x− x′)2 . (A.44)in agreement with (A.29).A.3 Useful superspa
e relationsWe 
olle
t in this appendix various relations used in manipulations of super Feynmandiagrams in light-
one superspa
e.Although 1
∂−

is not a di�erential operator, it 
an be �integrated by parts� insuperspa
e expressions. For generi
 super�elds f(x, θ, θ̄) and g(x, θ, θ̄) we have
∫

d12z f(z)
1

∂−
g(z) =

∫
d12z

∂−
∂−
f(z)

1

∂−
g(z)

= −
∫

d12z
1

∂−
f(z)

∂−
∂−
g(z) = −

∫
d12z

1

∂−
f(z)g(z) . (A.45)Using the de�nition (2.25) of the 
hiral derivatives, dm and d̄m, and their 
ommu-tation relation, it is easy to verify the following identity

∫
d12z2 δ

(8)(θ1 − θ2)
[
〈d4(1)〉〈d̄4(1)〉δ(8)(θ1 − θ2)

]
= (4!)4 , (A.46)41



whi
h is used repeatedly to 
arry out the integrations over the fermioni
 
oordinatesat ea
h intera
tion vertex in superspa
e Feynman diagrams.The 
ommutation relation (2.26) for the superspa
e 
hiral derivatives implies
−−−−−−−−→
〈d̄4〉〈d4〉d̄pd̄q = 4! εabpq

−−−−−−−→
∂2−〈d̄4〉dadb , (A.47)

−−−−−−−−→
〈d̄4〉〈d4〉〈d̄4〉 = 4(4!)2

−−−−→
∂4−〈d̄4〉 . (A.48)A.4 Details of four-point fun
tion 
al
ulationA.4.1 Diagrams involving 
ubi
 verti
esAs pointed out in se
tion 4.4.2 
ontributions to four-point fun
tions of the Qijoperators 
annot be built using two 
ubi
 verti
es of the same type (Vertex 3-I in(2.52) or Vertex 3-II in (2.53)). This 
an be seen from a simple 
ounting of 
hiralderivatives and fermioni
 
oordinates θ and θ̄.We start by 
ounting the super�
ial numbers (or powers) of d, d̄, θ and θ̄ presentin various fa
tors used in 
onstru
ting a four point fun
tion.Stru
ture d d̄ θ θ̄Propagator 4 0 4 4Cubi
 Vertex 3-I 0 4 0 0Cubi
 Vertex 3-II 0 8 0 0External ϕ �eld in Q 0 2 0 0Table A.1: Super�
ial powers of d, d̄, θ, θ̄The super�
ial numbers (or powers) of various derivatives and fermioni
 variablesin a four point fun
tion as shown in �gure A.1, are presented in table A.2 for thethree possible 
ases.Combination of verti
es d d̄ θ θ̄ dθ dθ̄Vertex 3-I and Vertex 3-II 20 20 20 20 8 8Vertex 3-I twi
e 20 16 20 20 8 8Vertex 3-II twi
e 20 24 20 20 8 8Table A.2: Super�
ial powers of d, d̄, θ, θ̄, dθ, dθ̄ in a four point fun
tionAfter performing the fermioni
 integrals in a super Feynman diagram, we areleft with an equal number of θ's and θ̄'s. Thus when fermioni
 
oordinates are setto zero, a non-vanishing 
ontribution 
an only arise if there are equal numbers of

d's and d̄'s present to 
an
el the θ's and θ̄'s. Thus, as 
an be seen from table A.2,only the 
ombination of one vertex of type 3-I and one of type 3-II 
an produ
e anon-zero result, as this is the only way of satisfying the above 
riterion.42



ϕ2 a

1
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ϕ2 d
3
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ϕ3 b
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6
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c6 a6

b6

Figure A.1Rule A.4.1 In the topology shown in Figure A.1, a 
ubi
 vertex 
annot have 
om-ponent �elds ϕi and ϕj with i 6= j, 
onne
ted to any two of its legs.This result 
an be understood in terms of 
omponent �elds. The only 
ubi
 verti
esinvolving two s
alar �elds in the N = 4 a
tion � in any gauge, in
luding the light-
one gauge � are the minimal 
oupling to the gauge �eld. Sin
e the latter is a �avoursinglet, the intera
tion 
annot 
hange the �avour index 
arried by the s
alar �eld.This result 
an be obtained [2℄ in superspa
e as well.A.4.2 Diagrams involving quarti
 verti
esRule A.4.2 In the topology shown in Figure A.2, 
omponent �elds ϕi and ϕj with�avour i 6= j, 
annot simultaneously atta
h to those legs of the quarti
 vertex whi
hare both 
hiral �elds, or both anti-
hiral �elds 1.
ϕ2 a

1

4
ϕ2 d

3ϕ3 c

ϕ3 b
2

5a5 c5

d5b5

Figure A.2For a four point fun
tion 
onstru
ted using Vertex 4-I (2.54), if the leg with 
olourindex a5 (
hiral �eld) is 
onne
ted with the external �eld ϕi, and the leg with 
olourindex b5 (
hiral �eld) with the �eld ϕj, we get a fa
tor of σimnσj pqεmnpq = 8δij1Here we use the term �anti-
hiral� �eld to refer to super�elds asso
iated with legs in a diagram
arrying a 〈d̄4〉/∂2

−

fa
tor. These were originally Φ̄'s before use of the 
omplex 
onjugate of (2.48).43



when evaluating the 
orrelation fun
tion. The same thing happens with legs 
ar-rying 
olour indi
es c5 and d5 (anti-
hiral �elds) 
onne
ted with external �elds ϕiand ϕj . For Vertex 4-II (2.55), if the leg with 
olour index a5 (
hiral �eld) is 
on-ne
ted with ϕi and the leg with index c5 (
hiral �eld) with ϕj , we get a fa
tor of
σimnσj pqεmnpq = 8δij. The same happens with legs 
arrying 
olour indi
es d5and b5 (anti-
hiral �elds). Thus for su
h arrangements with i 6= j, the 
ontra
tionvanishes.This rule is veri�ed [2℄ by evaluating ea
h permutation of the intera
tion vertexin Figure A.2.The only non-zero 
ontributions to G(H)

4 (x1, . . . , x4) at one loop 
ome from dia-grams involving a quarti
 vertex of type 4-II. As explained in se
tion 4.4.2 there arevarious inequivalent Wi
k 
ontra
tions to 
onsider and we analyse them in detailbelow. We begin with
5

a5 b5

c5d5

≡ V4[a5, b5, c5, d5]

=

∫

5

δaa5δbb5δcc5δdd5
(
d̄p1d̄q1〈d4〉

δ815
x215

)(〈d̄4〉
∂2−
〈d4〉 δ

8
52

x252

←−−−
d̄q2d̄p2

)

×
(
d̄p3d̄q3〈d4〉

δ835
x235

)(〈d̄4〉
∂2−
〈d4〉 δ

8
54

x254

←−−−
d̄q4d̄p4

)

∝ εp1q1p3q3 .Produ
t with the 
ommon part E4[a5, b5, c5, d5] in (4.25) results in the 
ontra
tion
σ2p1q1σ3p3q3εp1q1p3q3 = 0. The reason why V4[a5, b5, c5, d5] leads to this 
ontra
tion isexplained under Rule A.4.2 above.

5

a5 b5

d5c5

≡ V4[a5, b5, d5, c5]

=

∫

5

δa5aδb5bδc5dδd5c
(
d̄p1d̄q1〈d4〉

δ815
x215

)(〈d̄4〉
∂2−
〈d4〉 δ

8
52

x252

←−−−
d̄q2d̄p2

)(
d̄p3d̄q3〈d4〉

δ835
x235

←−−
〈d̄4〉
∂2−

)

×
(
〈d4〉 δ

8
54

x254

←−−−
d̄q4d̄p4

)

=

∫

5

δa5aδb5bδc5dδd5c
(
〈d4〉d̄q1d̄p1

δ851
x251

)(
4!εrsq2p2〈d̄4〉drds

δ852
x252

)(
4!εuvq3p3〈d̄4〉dudv

δ853
x253

)

×
(
〈d4〉d̄q4d̄p4

δ854
x254

)
, (A.49)where we used (A.47).We now use the following rule for partially integrating 〈d4〉 to a produ
t of twoterms (disregarding the 
ases where both the terms are not a
ted upon by two d'sea
h),

∫
d4θ(〈d4〉F )(GH) = 6 εm1n1m2n2

∫
d4θ F (dm1dn1G)(dm2dn2H) , (A.50)44



and simplify V4[a5, b5, d5, c5] to
6

∫

5

da5aδb5bδc5dδd5c
(
δ851
x251

)(
4!εrsq2p2d

m1dn1〈d̄4〉drds δ
8
52

x252

)

×
(
4!εuvq3p3d

m2dn2〈d̄4〉dudv δ
8
53

x253

)(
d̄q1d̄p1〈d4〉d̄q4d̄p4

δ854
x254

)
εm1n1m2n2 . (A.51)

V4[a5, b5, d5, c5] as written in (A.51) simpli�es to
6(4!)2

∫
d4x5 d

a5aδb5bδc5dδd5c
(
εm1n1m2n2

x251

)(
(4!)3εrsq2p2ε

m1n1rs

x252

)

×
(
(4!)3εuvq3p3ε

m2n2uv

x253

)(
(4!)3εq1p1q4p4

x254

)
, (A.52)in the limit θ, θ̄→ 0. Using the following property of the Levi-Civita symbol

εm1n1m2n2 ε
m1n1pq = 2

(
δpm2

δqn2
− δpn2

δqm2

)
, (A.53)we simplify

(εm1n1m2n2 ε
m1n1rs) εrsq2p2 (εuvq3p3ε

m2n2uv) = 4εm2n2q2p2 (εuvq3p3ε
m2n2uv) = 16εp3q3p2q2 .(A.54)Thus V4[a5, b5, d5, c5] (A.52) simpli�es to

16× 6× (4!)11 × da5aδb5bδc5dδd5c × εp3q3p2q2εp1q1p4q4
∫

d4x5
1

x251x
2
52x

2
53x

2
54

. (A.55)Substituting
k = (−1).2. 1

(4!)3
1

(2π)2
, T (σ)εεεε = 212 , (A.56)we obtain the �nal expression for V4[a5, b5, d5, c5] times the 
ommon part (4.26) as

− g2f eabf eab 1

(2π)1264

1

x214x
2
23

∫
d4x5

1

x251x
2
52x

2
53x

2
54

. (A.57)All permutations of the arguments in V4[a5, b5, d5, c5] of the form [e1, g1, e2, g2] where
ei ∈ {a5, c5}, gi ∈ {b5, d5} or ei ∈ {b5, d5}, gi ∈ {a5, c5}, i = 1, 2, will have a non-zero
ontribution. The reason is explained under Rule A.4.2 above.From the stru
ture of Vertex 4-II (2.55), it is easy to see that

V4[a5, b5, d5, c5] = V4[a5, d5, b5, c5] = V4[c5, b5, d5, a5] = V4[c5, d5, b5, a5]

= V4[b5, a5, c5, d5] = V4[b5, c5, a5, d5] = V4[d5, a5, c5, b5] = V4[d5, c5, a5, b5] .
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