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Abstract

Most of the natural systems are non-linear in nature and can exhibit irregu-
lar and complex behaviour. Such complex dynamics, in general are termed
as chaotic or hyper chaotic behaviour, leading to irregular �uctuations and
hence are not desirable in most of the situations or applications. Hence there
is an increasing interest in methods to control such complex behaviour.

In my project work, we have introduced a new control technique to quench
such complex dynamical systems to steady state behaviour. We numerically
and analytically study the resultant properties of the system when coupled
with an external damped system. We observe that for critical coupling coef-
�cient, the complex behaviour can be controlled to periodic or steady state
dynamics. We �nd the value of the output result depends on the coupling
coe�cient values and by adjusting the damping coe�cient, any desirable be-
haviour can be obtained. We also study the nature of transition of di�erent
systems from a complex behaviour to the steady state behaviour. So also by
adding a periodic dynamics in the control system, we can produce periodic
behaviour of a desired frequency in such complex systems.
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Chapter 1

Introduction

The dynamics of a nonlinear dynamical system is governed by a set of di�er-
ential equations that decide the way their variables change in time. In gen-
eral these systems can have a variety of dynamical behaviours such as steady
state, periodicity, quasi periodicity, chaos and hyper chaos[1],[2]. Their dy-
namics is mathematically represented as

Ẋ = F (X, a) (1.1)

where X is an array containing the variable

X = [x1, x2, ...xn]
T , x ⊂ Rn (1.2)

which govern the dynamics of the system, F (X, a) is an array of non linear
functions

F (X, a) = [f1(X, a), f2(X, a), ..., fn(X, a)] (1.3)

that decides the nature of the dynamics of the system and a is a set contain-
ing all the parameters involved in the construction of system dynamics.

We can obtain the �xed points or steady state of the system by equating
each variable

ẋi = 0 (1.4)

Then the solution of the system is X∗ where X∗ is an array

X∗ = [x∗1, x
∗
2, ...x

∗
n]
T (1.5)

containing the solutions of each variable governing the system and

F (x∗i , a) = 0 (1.6)
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Depending on the nonlinearity of the function F (X), we can have m number
of solutions, thereby having m number of �xed points for the system but
these �xed points can be stable or unstable. The stability of a �xed point is
determined by obtaining the eigen values of the Jacobian matrix correspond-
ing to the �xed point. Jacobian matrix of the system Eq[1.1] contains all the
partial derivatives of the function F (X) and is

J =



∂f1(X,a)
∂x1

∂f2(X,a)
∂x1

. . . ∂fn(X,a)
∂x1

∂f1(X,a)
∂x2

∂f2(X,a)
∂x2

. . . ∂fn(X,a)
∂x2

. . . . . .

. . . . . .

. . . . . .
∂f1(X,a)
∂xn

∂f2(X,a)
∂xn

. . . ∂fn(X,a)
∂xn


(1.7)

We obtain the eigen values of the system by solving the characteristic equa-
tion

Det[J − λI] = 0 (1.8)

where λ is the eigen value. This analysis is commonly known as linear stabil-
ity analysis. From the sign and complexity of the eigen values, the stability
of the system can be analysed.[1] A �xed point is said to be stable if all the
eigen values have negative real parts.

Chaos is a particular behaviour which the system exhibits for certain val-
ues of control parameters. In this state, the system is highly sensitive to the
initial conditions. This indicates that even when the system starts from very
close initial conditions after a period of time there exists no correlation be-
tween the respective states and hence the dynamics of the system over time
becomes unpredictable. This behaviour of dynamical systems, being highly
sensitive to initial conditions is popularly referred to as butter�y e�ect. Such
a behaviour can be detected by calculating an index called Lyapunov expo-
nent, which gives the average rate at which two near by trajectories diverge
in time. Chaotic behaviour has been studied in various �elds such as math-
ematical sciences, physical, engineering, biological, physiological, ecological
and even economic sciences. There are many mathematical models which
exhibit chaos, a few of which are discussed in detail in the following chapters.

Lyapunov exponent is a quantity which characterises the rate of separa-
tion of in�nitesimally close trajectories, and its positive nature is one of the
essential signatures of chaotic behaviour[1]. The number of Lyapunov expo-
nents of a system depends on the number of �rst order di�erential equations
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governing the system.

If δz0 is the separation of the initial conditions of the two trajectories
of the system and δz(t) is the separation of the two trajectories of the sys-
tem after a time interval t, then the lyapunov exponent λ relates the two
separations of the system as

|δz(t)| ≈ eλt|δz0| (1.9)

This equation clearly indicates that when the λ value for the system is less
than zero then the separation between the two trajectories tend to decrease
over time. When the λ value is greater than zero, there is divergence of
nearby trajectories and so chaos.

Hence for a given system the nature of dynamics can be inferred from the
spectrum of lyapunov exponents. If all the lyapunov exponents are less than
zero then the system has a steady state or a �xed point behaviour. If one of
the lyapunov exponent is equal to zero and rest all are less than zero then
the system has a periodic behaviour. If one lyapunov exponent is greater
than zero and one is equal to zero and rest all are less than zero then the sys-
tem exhibits chaos. And if the system has more than one positive lyapunov
exponent then the system is hyperchaotic in nature. Hence this index serves
as a quanti�er to study the nature of the complexity of dynamics.

In general a dynamical system can undergo a sequence of transitions or
bifurcations from steady state behaviour to chaotic behaviour as the param-
eter values are varied. In most of the dynamical systems chaos is reached by
a sequence of period doubling bifurcations. There are other routes to attain
chaos such as tangent bifurcation, interior crisis, intermittency, etc. We il-
lustrate such transitions by taking speci�c examples of systems that exhibit
chaotic behaviour.

1.1 Chaotic Systems

1.1.1 Rö ssler System

This is a continuous - time dynamical system with three non linear di�eren-
tial equations governing the dynamics of the system and are represented as
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follows.[[1]]
ẋ = −y − x
ẏ = x+ ay

ż = β + z(x− c)
(1.10)

This system exhibits varied kind of dynamical behaviour depending on
the parameter values of the system. For example for parameter values a =
0.1, b = 0.1, and c = 18, system exhibits chaotic behaviour Fig[1.1].

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

x

y

Figure 1.1: Rö ssler System with parameter values a = 0.1, b= 0.1, c = 18

The �xed points of the system by considering Eq[1.4] are obtained as

(x∗,
x∗

a
,
−x∗

a
) (1.11)

where

x∗ =
c±
√
c2 − 4ab

2
(1.12)

The corresponding Jacobian matrix is

J =

 0 −1 −1
1 a 0
z∗ 0 x∗ − c

 (1.13)

We can obtain the stability of the �xed points from the characteristic
equation Eq[1.8].

From the linear stability analysis we observe that the �xed point of the
system exists only when c2 > 4ab, but is not stable for any range of c.
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(a) (b)

(c) (d)

Figure 1.2: Rö ssler system at a = b = 0.1 and (a) c = 4, (b) c = 6 (c) c= 8
(d) c = 8.7

In order to study the dynamics of the system's behaviour, we gradually
increase the parameter value c keeping other parameter values a and b con-
stant. Fig[1.2] At c = 4 we observe a stable limit cycle, at c = 6 , we observe 2
period limit cycle, at c = 8, we observe 4 period limit cycle, at c = 8.7 we ob-
serve 8 period limit cycle and so on and at c = 18 we observe that the system
has in�nite period limit cycles indicating the presence of chaotic behaviour.

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12  14  16  18

x

c

Bifurcation Diagram

Figure 1.3: Bifurcation Diagram of
Rö ssler System

By gradually increasing the param-
eter value c the system undergoes
sequence of period doubling bifurca-
tion eventually leading to a chaotic
state. It is a continuous change from
stable �xed point state to chaotic
state. The bifurcation diagram of
the transition of periodic behaviour
to a chaotic state, is shown in
Fig[1.3]. Here have plotted all local
maxima of x variable at each param-
eter value c. This pattern is called
period doubling scenario.

1.1.2 Lorenz System

Lorenz system is another continuous time non-linear dynamical system ex-
hibiting chaos for particular range of parameter values. This system is derived
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as a model for study of atmosphere systems. It can also model many other
systems like laser, water wheel [1] etc. The equations of Lorenz system are
as follows:

ẋ = σ(y + x)

ẏ = γx− y − xz
ż = xy − zβ

(1.14)
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Figure 1.4: Lorenz System at parameter values σ = 10, β = 8/3 and γ = 28
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Figure 1.5: Bifurcation Diagram of
Lorenz system

For parameter values σ =
10, β = 8/3 and γ = 28,
system exhibits chaotic behaviour.
Fig[1.4]

Like in the case of Rö ssler sys-
tem we vary parameter value γ,
keeping other parameter values con-
stant to study the route to chaos.
We observe that unlike Rö ssler Sys-
tem, Lorenz system has a sudden
transition from stable �xed point be-
haviour to chaotic behaviour.

We consider parameter values σ and β to be constant and vary parameter
value γ, we observe that at c = 20 the system has a stable �xed point be-
haviour and at c = 21 there is a sudden transition from �xed point behaviour
to chaotic behaviour. The bifurcation diagram shown in Fig[1.5] shows the
sudden transition of the Lorenz system evidently.
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1.2 Hyper Chaotic Systems

Systems with more than one positive lyapunov exponent are called Hyper-
chaotic systems and this behaviour is found in continuous-time n-dimensional
systems with n > 3. These systems are more complex, highly random and
have higher unpredictability than chaotic systems. Hence, such systems are
used in secure communication of signals. Chua and Chen are two of the
hyperchaotic systems which are discussed in detail below.

1.2.1 Chen System

This hyperchaotic system has been obtained by introducing an additional
feedback into a 3D quadratic chaotic system and it can exhibit varied system
dynamics depending on the parameter values [20]. This systems is practically
used in many communication networks and in cryptography. Following are
the equations which govern the system dynamics.

ẋ = a(y − x) + eyz

ẏ = cx− dxz + y + u

ż = xy − bz
u̇ = −ky

(1.15)

  

(a)

(b) (c)

Figure 1.6: Chen System at (a) k = 100, (b) k = 535 (c) k = 700

For the parameter values a = 35, b = 4.9, c = 25, d = 5, e = 35, k = 100
the system exhibits hyperchaos Fig[1.6 (a)]. At higher values of parameter
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value k keeping the other parameters constant, the system exhibits di�erent
dynamical behaviour. For example at k = 264.5 we have periodic orbit
Fig[1.6 (b)], at k = 700 system displays quasi periodicity. Fig[1.6 (c)]

1.2.2 Chua System

Chua system is widely applied in electrical circuits as hyperchaotic chua
circuit. [?] It is also used in many laser models, neuron models, etc. Following
are the equations governing the nature of the system.

ẋ = α(y − ax3 − (1 + c)x)

ẏ = x− y + z

ż = −βy − γz + u

u̇ = −sx+ yz

(1.16)

  

(a) (b)

(c)
(d)

Figure 1.7: Chua System at (a)α = 20, (b)α = 23, (c)α = 23.7, (d) α = 27

For parameters values α = 27 ,β = 50, c = −1.2, a = 0.03, s = 0.1,
γ = 0.3, the system exhibits hyperchaos Fig[1.7(d)]. This system reaches
chaos by a period doubling phenomenon. We vary parameter α keeping
all the other parameter values constant, at α = 16 the system displays a
�xed point behaviour at α = 20 the system displays a 1-period limit cycle
Fig[1.7(a)], at α = 23 the system has 2-period limit cycle Fig[1.7(b)] and at
α = 23.7 the system has 4-period limit cycle Fig[1.7(c)]and so on. Finally at
α = 27 the system has a hyperchaotic behaviour.
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Figure 1.8: Bifurcation Diagram of Chua system

We can observe this transition from the stable �xed point behaviour to
the hyperchaotic behaviour from the bifurcation diagram Fig[1.8]

1.3 Time Delay System

Time delay is very often encountered in various technical systems, such as
electric, pneumatic and hydraulic networks, chemical processes, long trans-
mission lines, robotics, etc where a �nite delay in feedback is inevitable.
The presence of time lag in the dynamics of the system makes the system
∞ dimension and may cause undesirable system dynamics or even instabil-
ity. Hence in order to obtain a steady dynamics we need to apply control
techniques. We discuss below two typical time delay systems.

1.3.1 Mackey Glass System

This is a non linear time delay dynamical model with τ as the delay param-
eter of the system. This is applied in modelling many physiological models
especially model for blood�ow in Leukemia[30]. Following equation governs
the dynamics of this system.

ẋ = β
xτ

1 + xnτ
− γx (1.17)

We consider the parameters values as β = 2 , τ = 2, γ = 1 . For di�erent
parameter value ′n′ Mackey Glass displays di�erent dynamical behaviour.
This system has a continuous transition from a periodic behaviour to chaotic
dynamics and it attains chaos by period doubling bifurcation. Fig[1.9]. In
Fig[1.10]; the bifurcation diagram is shown for detailed study of the system
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(a) (b)

(c) (d)

Figure 1.9: Mackey Glass System at (a)n=6, (b)n= 7.4, (c)n=8, (d)n=10

dynamics. In this bifurcation diagram the global maxima and global minima
for each parameter value has been plotted Fig[1.10].
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x
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Bifurcation Diagram

Figure 1.10: Bifurcation Diagram of Mackey Glass system

1.3.2 Ikeda System

This is another model with time delay feedback in the system, with following
equations governing the motion of system dynamics. It arises as a model in
many laser systems. [23]
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ẋ = asin2[x(t− τ)− c]− βx(t) (1.18)

Figure 1.11: Bifurcation diagram of Ikeda system

This system has a continuous transition from a stable �xed point be-
haviour to chaotic behaviour. Fig[1.11][10] gives di�erent ranges of parame-
ter β value keeping the other parameters constant.

In this chapter we have introduced standard chaotic, hyperchaotic and
time delay systems that exhibit complex behaviour. In the next chapter,
we will present the feedback control method that can control such complex
dynamics to a steady state behaviour.
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Chapter 2

Feed back Control of Chaos

As we have described in the previous chapter, most of the nonlinear dynami-
cal systems are capable of displaying di�erent kinds of dynamical behaviours
such as �xed point behaviour, periodicity, quasi periodicity, chaos and hyper-
chaos. For many practical purposes and applications, systems with a stable
output is most essential and desirable than irregular �uctuations. Hence
controlling the dynamics of complex systems is of considerable interest. For
example such steady state behaviour is required in many practical cases such
as chemical reactions[3][4][5], for suppression of power �uctuation in coupled
laser systems[13][14], relativistic magnetrons, bio oscillators[28], ecological
models and many physiological systems like neuronal disorders. Most of the
studies are based on theorical and experimental point of view [6][7][8][12]. In
all these cases regulation of the system dynamics is of a major concern.

Since the classical work on chaos control was �rst presented by Ott, Gre-
bogi,and Yorke, there were various techniques introduced to stabilize unstable
and complex dynamical systems[18][22][25][11][21]. Few of the e�ective tech-
niques which were successful in controlling chaos are adaptive control[27][15],
time delay feed back control[17], linear feed back control[17][16][26], variation
in internal parameters of the system, targeting via linear augmentation [19]
etc.

We report a study on how an external system can control a systems dy-
namics. We have introduced a method of control which is a self adjustable
control mechanism where the dynamical system is connected through a lin-
ear feedback coupling with an external dynamic system. This system is an
over damped system kept alive by the feedback from the system and also the
system gets a continuous feedback from the external damped system.
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This mechanism is found to work for all kind of complex dynamical sys-
tems such as chaotic, hyperchaotic, timedelay hyperchaos. By properly mon-
itoring the coupling coe�cients of the control system, all these complex sys-
tems can be forced to the desired steady state behaviour or periodic be-
haviour.

2.1 General Mechanism of Control

The dynamics of a system 'x' in interaction with an external damped control
system can in general written by the following equations.

ẋ = f(x) + ε1γy

ẏ = −ky − ε2γTx
(2.1)

Here x represents n-dimensional dynamical system whose intrinsic dy-
namics is governed by f(x). The external system is a one dimensional over
damped oscillator y with damping parameter k. The external system is kept
alive by the feedback from the system as given by the last term is second
equation of Eq[2.1] and the system also gets feedback from the external sys-
tem by the last term in �rst equation of Eq[2.1]. γ is a column matrix [m×1],
with elements zeros and ones, it decides the components of x that gets feed-
back from the external system. γT is the tranpose of gamma and it decides
the components of x that gives feedback to the external system. We consider
ε1 to be the strength of feedback from the external system to the system and
ε2 the strength of feedback from system to the external system. By adjusting
the values of the coupling strengths ε1 and ε2 and the damping parameter k,
we can control the dynamics of the system to a stable �xed point or a steady
state behaviour.

We note that the �xed point of the new coupled system is not the same
as the �xed point of the intrinsic dynamical system but is a new one created
in the presence of the external system.

2.1.1 Linear stability analysis:

We present the linear stability analysis for a general case, coupled with an
external system as in Eq[2.1]. For this we write the variation equation formed
by linearizing Eq[2.1] as

ξ̇ = f ′(x)ξ + ε1γz

ż = −kz − ε2γT ξ
(2.2)
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where ξ, z are small deviations of the system and the external system
respectively. For the �xed point to be stable, all the eigen values of the Jaco-
bian matrix of the corresponding �xed point should have a negative real part.

It is not easy to proceed further with the analysis of the stability of this
coupled system as a general case. However, we can make an approximate
analysis by assuming that the time average value of f ′(x) as an e�ective
constant value µ. In this case γ and γT values will become one. So the above
equation would look like

ξ̇ = µξ + ε1z

ż = −kz − ε2ξ
(2.3)

and the corresponding Jacobian matrix is

J =

(
µ ε1
−ε2 −k

)
(2.4)

From the characteristic equation Eq[1.8] we deduce the eigen values as

λ± =
(µ− k)±

√
(µ− k)2 − 4(ε1ε2 − µk)

2
(2.5)

=⇒ λ± =
(µ− k)±

√
(µ+ k)2 − 4ε1ε2
2

(2.6)

From 2.6, we can �nd the stability conditions as follows
(a) If (µ+ k)2 < 4ε1ε2, λ± are complex and the stability condition is µ < k
(b) If (µ+ k)2 > 4ε1ε2, λ± are real and the stability condition is µk < ε1ε2

Hence for a given µ and k value, the transition of dynamics of the system
to a stable �xed point behaviour occurs at critical values of ε1 and ε2 and
they obey

ε1c =
µk

ε2c
(2.7)

We numerically analyse this stability criteria in the following sections for
speci�c cases.

2.2 Feed back control of Rö ssler systems

We have applied this control mechanism on Rö ssler system which as de-
scribed in Chapter 1 is chaotic in nature for particular parameter values.
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The equations of the system when coupled with an external system are,

ẋ1 = −x2 − x3 + ε1y

ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c)
ẏ = −ky − ε2x1

(2.8)
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Figure 2.1: Time series of chaotic
rossler system for coupling coe�cients
ε1 = 1, ε2 = 1 and k = 1 introduced at
t=500 timesteps

As described in the Chapter 1 for the
parameter values a = b = 0.1 and
c = 18, Rö ssler system displays a
chaotic behaviour. We observe from
Fig[2.1] that by introducing or by
coupling the system with the exter-
nal system the dynamics of the sys-
tem is quenched to a stable �xed
point state. In Fig[2.1] after 500
time steps the external system with
coupling coe�cient values ε1 = 1,
ε2 = 1 and k = 1 has been coupled
to the Rö ssler system. Thereby we
see a control of the chaotic system
to a stable �xed point state of the
system.

2.2.1 Stability analysis of the Rö ssler System:

We obtain the �xed points of the Rö ssler system coupled with an external
system by equating each ẋ = 0. By solving this we obtain the �xed points as

(x∗,
−x∗

a
,
−b

x∗ − c
,
ε2x
∗

k
) (2.9)

where

x∗ =
c±

√
c2 − 4ab k

k+aε1ε2

2
(2.10)

This �xed point is di�erent from the intrinsic �xed point of the Rö ssler
system Eq[1.10]. The corresponding Jacobian matrix is

J =


0 −1 −1 ε1
1 a 0 0
−b
x∗−c 0 x∗ − c 0

ε2 0 0 −k

 (2.11)
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The eigen value of this coupled system can now be obtained by solving
the characteristic equation Eq[1.8]

For the above �xed points, using Mathematica we obtain the eigen values
for any given set of parameters. For few choosen parameter values k, ε1, ε2
we have all eigen values with negative real part. For instance for k = 1,
ε1 = 1, ε2 = 1, we have

λ1 = −4.28874 + 8.13913i,

λ2 = −4.28874− 8.13913i,

λ3 = −0.890393,
λ4 = −0.0127554 (2.12)

We thus con�rm the stable �xed point state from a complex chaotic be-
haviour using our control mechanism.

Figure 2.2: Largest eigenvalue of the Jacobian matrix as ε1 is varied

Fig[2.2] is a plot of the largest eigen value varied with respect to a pa-
rameter value ε1 keeping all other parameter values constant. We can see
that as one of coupling coe�cient of the system crosses a critical value, the
largest eigen value crossed zero and the system displays a stable �xed point
behaviour.

2.2.2 Numerical Analysis of the Rö ssler System

We do a numerical analysis of the control method by solving Rö ssler system
with 4th order Runge − Kutta method. From the timeseries of the Rö ssler
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system Fig[2.1], we clearly observe the quenching of the chaotic dynamics to
the stable �xed point behaviour.

It is clear that the stability of the steady state depends on the coupling
coe�cients. Hence we study the transition of the chaotic behaviour of the
system to a stable �xed point behaviour by identifying the regions of sta-
ble �xed point in the parameter plane of coupling strengh ε and k, where
ε = ε1 = ε2. To characterize the state of stable �xed point region we use
an index A, de�ned as the di�erence between the global maxima and global
minima of the time series of the system over a su�ciently long interval. This
index A = 0 represents amplitude nearly equal to zero, which means the sta-
ble �xed point region, if the index A 6= 0 then the system has an oscillatory
dynamics.

Using this index, we identify regions of control in the parameter plane ε
vs k and ε1 and ε2 in Fig[2.3]. This is a 3d plot with x and y axis as the
parameters and the colour ranging axis contains values of amplitude of the
two systems oscillations over time. In �g[2.3(a)] we observe that for very
small values of the damping parameter k, we need higher coupling strengths
to obtain stable �xed point behaviour.

���
���

Figure 2.3: Parameter plane (a) ε vs k (b)ε1 vs ε2 with black region repre-
senting the region of control

In Fig[2.3(b)] ε1 vs ε2 parameter plane is plotted keeping the damping
parameter constant k = 1. We �nd that the transition curve agrees with the
condition obtained from the stability analysis in Eq[2.7].

In Fig[2.4] we show the transition of the system from the complex be-
haviour to the stable �xed point behaviour, where the plot gives the am-
plitude of the oscillations of the system as coupling strenghts ε1 is varied
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Figure 2.4: Change in amplitude of the systems oscillations as ε1 is varied
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Figure 2.5: (a) Bifurcation diagram of coupled Rö ssler system as ε1 is varied
(b)Largest Lyapunov exponent's of the coupled chaotic Rö ssler system

(keeping rest of the parameters constant). As the parameter value ε1 in-
creases, amplitude of the systems oscillations gradually decrease to be equal
to zero, indicating a stable �xed point behaviour. We observe the same trend
by varing any other parameter value ε2 and k.

We notice from the phase space and time series that as the coupling
strenghts increases, the system undergoes reverse period doubling behaviour.
Fig[2.5(a)]shows the bifurcation plot of the system when varied with the
coupling strength ε1 and we observe that the transtion is continuous and
is reverse period doubling bifurcation. We also con�rm this transition by
plotting the largest lyaponov exponent of the system Fig[2.5(b)]. As the
coupling coe�cient value increases the largest lyapunov exponent changes
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from positive to negative value justi�ng the control of complex dynamics to
a steady state behaviour.

2.2.3 Feed back control of Lorenz System

We illustrate this control mechanism on another chaotic system, Lorenz sys-
tem. Following are the equations of this system when coupled with an exter-
nal control system.

ẋ = σ(y + x) + ε1w

ẏ = γx− y − xz
ż = xy − zβ
ẇ = −kw − ε2x

(2.13)

We obtain the �xed points of this coupled system by equating each ẋ = 0,
as

(x∗, x∗ +
ε1ε2x

∗

kσ
,
x∗

b
(
ε1ε2x

∗

kσ
+ x∗),−ε2x

∗

k
) (2.14)

where

x∗ = ±

√
γb

( ε1ε2
kσ

+ 1)
− b (2.15)

or
x∗ = 0 (2.16)

Its corresponding Jacobian matrix is

J =


−σ σ 0 ε1

γ − x∗

b
( ε1ε2x

∗

kσ
+ x∗) −1 −x∗ 0

( ε1ε2x
∗

kσ
+ x∗) x∗ −b 0

ε2 0 0 −k

 (2.17)

We can solve the characteristic equation for obtaining the eigen values
Eq[1.8] of the corresponding �xed points of this coupled system. Using Math-
ematica we have calculated the eigen values of the coupled system for a set
of parameter values. For few choosen coupling coe�cient values for example
k = 1, ε1 = 20 and ε2 = 20, �xed point

(x∗, x∗ +
ε1ε2x

∗

kσ
,
x∗

b
(
ε1ε2x

∗

kσ
+ x∗),−ε2x

∗

k
) (2.18)

where

x∗ = −

√
γb

( ε1ε2
kσ

+ 1)
− b (2.19)
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has following eigen values

λ1,2 = −4.22031± 44.6456i,

λ3 = −4.53286,
λ4 = −1.69318 (2.20)

This �xed point for few selected values of coupling coe�cient and damping
parameter has all eigen values with negative real part, indicating the system
to have a steady state behaviour.
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Figure 2.6: ε1 and ε2 Parameter plot of Lorenz system, black region represents
the steady state behaviour

Fig[2.6] is the parameter plot with a transition of ε1 and ε2 curve, for
coe�cient values more than a critical condition, the system is quenched to
a stable dynamics. Lorenz system also justi�es the stability criteria of the
general mechanism Eq[2.7].

In this case, the transition from the chaotic behaviour to stable �xed
point behaviour is di�erent from the Rö ssler system. Hence a �xed point
state is reached from complex behaviour by a sudden transition. From �g
[2.7], bifurcation diagram and lyapunov exponent we observe the transition
is sudden, the largest lyapunov expontent of the system takes a sudden shift
from positive to negative.
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Figure 2.7: Lorenz system (a) Bifurcation Diagram (b) Lyapunov Exponent
as ε1 parameter is varied

2.3 Feed back Control of Chaotic behaviour to

Periodic oscillations

Periodic behaviour is also a desirable behaviour in many practical applica-
tions, periodicity is required in respiration and cardiac activity and is an
essential concept in �uid dynamics. Our general mechanism is also capable
of controlling any complex dynamical system to a periodic system for few
speci�c coupling coe�cient values, in the case of system like Rossler.
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Figure 2.8: Time series of Rö ssler ex-
hibiting periodic behaviour

In such cases the systems have
a continuous transition from the
chaotic behaviour to the �xed point
behaviour when coupled with an ex-
ternal damped system. In Fig[2.5]
as the coupling coe�cient ε1 is var-
ied considering all other parameters
to be constant the system gradually
changes from a chaotic behaviour
to a periodic behaviour and then
to the stable �xed point behaviour.
Hence in order to control the dynam-
ical system to a period state we can
choose the ε1 value where the system is controlled to a periodic behaviour.
Fig[2.8] gives a periodic behaviour of Rö ssler system for coupling coe�cients
ε1 = 0.15, ε2 = 1, k = 1.

24



But for the case of Lorenz system the route taken to control chaotic
behaviour to the �xed point behaviour is a sudden transition. So there are no
values of ε1 for which the system can settle to a periodic behaviour. For such
systems we are not able to control the system dynamics to periodic behaviour
through our feedback control mechanism. For this we modify the control by
adding a periodic function or drive to the control system. Following are the
set of equations of Lorenz system having an additional periodic function in
the general mechanism of control.

ẋ = σ(y + x) + ε1w

ẏ = γx− y − xz
ż = xy − zβ
ẇ = −kw − ε2x+ asin(u)

u̇ = ω

(2.21)

� �

� �

Figure 2.9: Periodic behaviour Lorenz system at (a)a = 1, (b)a = 10

where a is the amplitude of the introduced periodic function and ω is
the frequency. For speci�c values of the coupling coe�cient and damping
parameter values, the system exhibits a periodic behaviour. The amplitude
and the frequency of the desired periodic behaviour can be adjusted by vary-
ing the a and w values Fig[2.9]. Hence any desirable periodic orbit can be
obtained from a system which in general does not exhibit a periodic property.

In the parameter plane ε1 and ε2 the regions where the periodic behaviour
is stable is the same regions where the �xed point behaviour was stable in
the case of control mechanism with out the periodic function Fig[2.6].

In conclusion we have shown how the feedback mechanism introduced by
us can control chaotic system to periodic or steady state behaviour.
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Chapter 3

Feed back Control of Hyper

chaotic Systems

The control mechanism introduced in the previous chapter for the control
of chaotic systems is applied for the case of hyperchaotic systems in this
chapter. We couple the hyperchaotic system with a damped external system
in order to quench the complex dynamics.

3.1 Chen System

We consider one of the hyper chaotic systems described in the chapter 1.
One set of the parameter values for which the system is hyperchaotic are
a = 35, b = 4.9, c = 25, d = 5, e = 35, k′ = 100. In order to quench
the dynamics of the system we couple this system with an external damped
system. Following are the equations governing the dynamics of this coupled
hyperchaotic system.

ẋ = a(y − x) + eyz

ẏ = cx− dxz + y + u+ ε1w

ż = xy − bz
u̇ = −k′y + ε1w

ẇ = −kw − ε2y − ε2u

(3.1)

For particular coupling coe�cient ranges the system settles to a stable
�xed point behaviour. Fig[3.1] displays the time series of the system without
coupling with the external system till 500 time steps and then coupling with
the external system. Hence this control mechanism seems to work for the case
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Figure 3.1: Time series of hyper-
chaotic Chen System at parameters ε1
= 6, ε2 = 1, k = 2

of hyperchaotic system. Fig3.1 gives
a range of parameter values ε1 and
k values considering the parameter
value ε2 constant, for which the in-
dex A = 0 (.i.e) the amplitude of
the oscillations of the system as de-
scribed in the chapter 2. The dark
region where A = 0 in the parame-
ter ε1 and k plot shows the system's
complex behaviour settle to a stable
�xed point behaviour, after coupling
with this damped external system.
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Figure 3.2: Parameter plane of controlled Chen System, the black region
shows the �xed point region

This coupled system has a reverse period doubling sequence from the
hyperchaotic dynamics to the stable �xed point dynamics thereby having a
continuous transition. Hence we can control the complex dynamics even to
the periodic behaviour by adjusting the coupling coe�cient values accord-
ingly. Fig[3.3(a)] shows the continuous transition of the complex dynamics
to a steady state behaviour.

The bifurcation diagram shows the reverse period doubling sequence in-
volved during the control mechanism as in Fig[3.3(b)]
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Figure 3.3: (a)Variation of amplitude of the systems oscillations as ε1 is
varied, (b)Bifurcation diagram of Chen system as ε1 is varied

3.2 Chua System

Chua system is another complex hyperchaotic system which is generally used
in many hyperchaotic circuits for generating complex signals and is described
in chapter 1. Inorder to control the dynamics of the complex system we have
applied our control mechanism of coupling the system to the external system
like in the case of Chen hyper chaotic system. Following are the equations
governing the coupled system.

ẋ = α(y − ax3 − (1 + c)x)

ẏ = x− y + z + ε1w

ż = −βy − γz + u

u̇ = −sx+ yz

ẇ = −kw − ε2y

(3.2)

We obtain the �xed points of this coupled system by considering each
ẋi = 0, as

[x∗, y∗, z∗, u∗, w∗] (3.3)

where
y∗ = ax3 + x+ cx,

z∗ = (ax3 + x+ cx)(1 +
ε1ε2
k
− x),

u∗ = (ax3 + x+ cx)(β + γ +
γε1ε2
k

)− γx,

w∗ = −ε2(ax
3 + x+ cx)

k

(3.4)

where x is the solution of 6th order polynomial

(ax3 + x+ cx)[(ax3 + x+ cx)(1 +
ε1ε2
k
− x)]− sx = 0 (3.5)
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Using mathematica we obtain that

x = Root[−0.1 + (0.24 +
0.04ε1ε2

k
)1 + (−0.042− 0.012ε1ε2

k
)13

+(0.009 +
0.0009ε1ε2

k
)15, 2] (3.6)

is the stable solution and for certain coupling coe�cient values k = 1, ε1 = 10,
ε2 = 15, the �xed point mentioned above has all negative real part eigen
values, indicating stability of the �xed points.

λ1 = −10.5219
λ2,3 = −0.0803752± 9.00368i

λ4 = −0.595907
λ5 = −0.130487 (3.7)

The �xed point is stable only after a critical value of the coupling coe�-
cient values. In �g[3.4] we see a gradual change in the largest two eigen values
of the �xed point from a positive value to a negative real part as the one of
the coupling coe�cient is varied keeping all other parameters constant.

Figure 3.4: Largest Eigen values of Chua System as parameter ε1 is varied

The stability criteria Eq[2.7] as in the case of chaotic systems is justi�ed
even for the case of hyperchaotic systems. Only after a threshold value of
the coupling coe�cient values this mechanism of controlling the complex
dynamics to the steady state behaviour is possible. Fig[3.5] gives the critical
curve of the parameter values, with these values greater than the critical
values the system can be stabilized.

The transition from the hyperchaotic state to the steady state is sudden
unlike in the case of chen system.
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Figure 3.5: ε1 and ε2 Parameter plot of Chua system

The original route of Chua system with out coupling with the external sys-
tem from a �xed point behaviour to a hyperchaotic behaviour is through a pe-
riod doubling sequence,

Figure 3.6: Bifurcation diagram of
Chua system with varying ε1

which implies that the system
had a continuous transition to a
complex behaviour. But when
this system is coupled to the
external environment to control
its dynamics it does not take
the reverse period doubling in-
tead has a sudden transition from
complex behaviour to a steady
state behaviour. Fig[3.6] gives
the bifurcation plot of this sys-
tem to observe the sudden transi-
tion.

In this chapter, we have shown the control of hyperchaotic systems to
steady state behaviour using feed back control through an over damped ex-
ternal system.
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Chapter 4

Feed back Control of Time delay

Systems

4.1 Introduction

Time delay systems are very important systems that occurs often in the
real world situations[24]. These system can also be modelled using a set of
di�erential equations called delay di�erential equations. Two typical time
delay systems have been introduced in Chapter 1. In general, dynamics of
time delay systems x is represented as

ẋ = F (x, xτ , a) (4.1)

where xτ = x(t − τ) and F (x, xτ , a) determines the nature of the system
including delay variables. The �xed point of the system obeys

x∗ = x = xτ (4.2)

where x∗ is the �xed point of the system and

F (x∗) = 0 (4.3)

We note that the general stability analysis derived in chapter 2 is not
practical for time delay systems.

Let us assume the solution of this time delay system as

x(t) = Aeλt (4.4)

where A is an constant and λ is the eigen value of the system. then

x(t− τ) = Aeλ(t−τ) (4.5)
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⇒ x(t− τ) = Aeλte−λτ (4.6)

⇒ xτ = xe−λτ (4.7)

and the characteristic equation for the delay system is

|J0 + e−λτJτ − λI| = 0 (4.8)

with

J0 =
∂Fi
∂xj

(4.9)

and

J1 =
∂Fi
∂xτj
∀i, j = 1, 2, ..n (4.10)

where n is the number of variables involved in the system. We cannot obtain
the eigen values directly from the characteristic equation of a time delay
system as the characteristic equation is a transcendental equation and has
in�nitly many eigen values. Hence it is not easy to �nd the stability of the
time delay system analytically. However in speci�c cases, alternate methods
can be used as shown in the following sections.

4.2 Mackey Glass System

The general mechanism of controlling complex systems introduced in this
work is applied to the time delay chaotic systems. Mackey glass system
exhibits chaos for particular parameter values and inorder to control this
chaotic dynamics of this system we apply our general control mechanism.
Following are the set of di�erential equations governing the nature of the
chaotic Mackey Glass system coupled with an external damped system.

ẋ = β
xτ

1 + xnτ
− γx+ ε1w

ẇ = −kw − ε2x
(4.11)

Fig[4.1] gives the timeseries of the system with coupling with an external
system with control e�ective from t = 500 time step.

We obtain the �xed points of this system by equating each ẋ = 0, as

(x∗,−ε2x
∗

k
) (4.12)
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Figure 4.1: Time series of Mackey Glass system at coupling coe�cient values
ε1 = 2,ε2 = 2 and k =2 from t=500 time steps

where

x∗ = n

√
βk

γk + ε1ε2
− 1 (4.13)

or
x∗ = 0 (4.14)

The �xed point x∗ = 0 is the only real solution for

βk

γk + ε1ε2
< 1 (4.15)

for the paramter values used in our analysis β = 2, γ = 1, k = 2,ε1 = 2,
and ε2 = 2. This explains the timeseries of this system in Fig[4.1] where we
observe that the �xed point with x∗ = 0 is stable when controlled with an
external system.

4.3 Stability Analysis

In order to study the stability of this system we write the variation equation
formed by linearizing Eq[4.11]

δẋ =
β

1 + xnτ
[1− nxnτ

1 + xnτ
]δxτ − γxτ + ε1δw

δẇ = −kδw − ε2δx
(4.16)
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→
(
δẋ
δẇ

)
=

(
β

1+(x∗)n
[1− n(x∗)n

1+(x∗)n
]e−λτ − γ ε1

−ε2 −k

)(
δx
δw

)
(4.17)

as xτ = e−λτx From Eq[4.7]. Hence the characteristic equation of the
above pair of equations is(

β
1+(x∗)n

[1− n(x∗)n

1+(x∗)n
]e−λτ − γ ε1

−ε2 −k

)
− λ

(
1 0
0 1

)
= 0 (4.18)

→ β

1 + (x∗)n
[1− n(x∗)n

1 + (x∗)n
]e−λτ (k + λ) = (k + λ)(γ + λ) + ε1ε2 (4.19)

This is a trancendental equation and so is di�cult to obtain the eigen
values of the system. Hence to analysis the stability, we follow the geometric
method given in [29]. For x∗ = 0 is given by the eigen value equation.

β(k + λ)e−λτ = λ2 + λ(k + γ) + kγ + ε1ε2 (4.20)

First with the time delay parameter τ = 0 we check if the �xed point
x∗ = 0 is stable for choosen coupling coe�cient values of the external damped
system.

From Eq[4.20] by substituting τ = 0, we have

β(k + λ) = λ2 + λ(k + γ) + kγ + ε1ε2 (4.21)

This is a quadratic equation and hence the eigen values of the system with
out time delay are

λ1,2 =
−(k + γ − β)±

√
(k + γ − β)2 − 4(kγ + ε1ε2 − kβ)

2
(4.22)

By substituting choosen parameter values β = 2, γ = 1, k = 2,ε1 = 2, and
ε2 = 2 we get

λ1,2 = −
1

2
± i
√

(7) (4.23)

which shows that at delay parameter τ = 0 the �xed point x∗ = 0 is stable.

Now if τ is non zero, the change in stability of this �xed point can occur
only if the eigen value crosses the imaginary axis, (i.e) If the �xed point hav-
ing negative real part changes to positive real part it has to cross λ = 0+ iw,
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where w has a real solution.

To check this let us consider the eigen value of the system to be λ = iw.
By substituting this in Eq[4.20] we obtain

β(k + iw)e−iwτ = (iw)2 + (iw)(k + γ) + kγ + ε1ε2 (4.24)

→ e−iwτ = ((iw)2 +
(iw)(k + γ) + kγ + ε1ε2)

(β(k + iw)
) (4.25)

After factorizing RHS of Eq[4.25] we obtain

cos(wτ)− isin(wτ) = k(−w2 + kγ + ε1ε2)

β(k2 + w2)
+

w2(k + γ)

β(k2 + w2)

+i(−w(−w
2 + kγ + ε1ε2)

β(k2 + w2)
+
kw(k + γ)

β(k2 + w2)
) (4.26)

If there exists a solution to Eq[4.26] then the change of stability occurs
as there exists a real value of w. For this we look for a solution geometrically
by plotting the real and imaginary parts of the LHS and RHS and check if
they cross each other.

� �

Figure 4.2: Geometric Analysis for (a)ε1 = 0.1 and ε2 = 0.1 (b)ε1 = 2 and
ε2 = 2

In Fig[4.2] at τ = 2, for ε1 = 2 and ε2 = 2 there exists no solutions
of Eq[4.26], but as we vary the coupling coe�cient values to ε1 = 0.1 and
ε2 = 0.1 we have a solution for Eq[4.26] indicating a change in stability.

35



 0  0.5  1  1.5  2
ε1

 0

 0.5

 1

 1.5

 2

ε 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Figure 4.3: Parameter Plane of mackey glass system when coupled with a
control

From the parameter plane ε1 and ε2 at delay τ = 2, we observe that as the
control parameters attains critical values the chaotic system is quenched to
a steady state behaviour. This also justi�es the stability analysis for choosen
parameter values. Like for τ = 2 and ε1 = 2 and ε2 = 2 we observe no
change in stable state of the �xed point and hence is stable from the stability
analysis and for ε1 = 0.1 and ε2 = 0.1 we observe a change in stability.

The transition of chaotic Mackey glass system from its chaotic dynamics
to a stable �xed point state is a continuous transition of reverse period dou-
pling sequence. Fig[4.4(a)] gives the amplitude of the systems oscillations
after a long interval of time with varing ε1 parameter. We observe that as
the ε1 parameter values is gradually increasing the amplitude of the systems
oscillations change from very high value amplitude value to nearly equal to
zero. Amplitude value nearly equal to zero implies the system has settled
to a �xed point of the system. The �xed point of the system coupled with
an external system is di�erent from the intrinsic �xed points of the chaotic
Mackey glass system. The bifurcation of this system as ε1 parameter is varied
is shown in Fig[4.4(b)]

We also observe that when we couple Ikeda time delay system with the ex-
ternal system we observe that the chaotic dynamics of this system is quenched
to a steady state behaviour.
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Figure 4.4: (a)Amplitude vs the change in coupling coe�cient ε1 (b) Bifur-
cation Diagram

Thus the control mechanism is found e�ective in the case of time delay
systems also where control from hyperchaos to steady state is possible. The
stability in the presence of the delay is analysed using geometric control.
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Chapter 5

Feedback Control with Time

Delay and Di�usive Coupling

We know that time delay is unavoidable or inherent in any feed back or
coupling due to �nite transition time. Hence we study the control mechanism
used here in the presence of time delay. So also we study another type of
coupling called di�usive coupling in our control technique, which is a more
realistic type of coupling in many practical situations.

5.1 Control with Time Delay

We introduce time delay in the feedbacks from the external damped system
to the chaotic system and vise versa, in our general mechanism of control of
complex dynamics Eq[2.1]. We consider chaotic Rö ssler system for studing
this control mechanism with time delay in the construction of the coupled
system. Following are the modi�ed equations of the Rö ssler system coupled
with an external damped system, including the delay

ẋ = −σ(y + x) + ε1y(t− τ)
ẏ = x+ ay

ż = β + z(x− c)
ẇ = −kw − ε2x(t− τ)

(5.1)

For simplicity we take the time delay in the feedbacks between the exter-
nal system and Rö ssler system to be equal.

Fig[5.1(b)] gives the ranges of the parameter values ε1 and ε2 for the
steady state behaviour of the Rö ssler system when controlled by the exter-
nal damped system in presence of time delay in the feedback terms. From
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    (a)    (b)

Figure 5.1: Time delay in the feedback for controlling Rö ssler system with
τ = 0.2, with dark region representing the stable �xed point region

comparision with no time delay in the system shown in Fig[5.1(a)], the region
of control is less in the presence of time delay, observed as the time delay of
this coupled system increases the region of steady state behaviour reduces
gradually and for lower values of coupling coe�cient ε1 and ε2 compared to
the values with respect to no time delay, the system reaches instability and
escapes eventually compared to the case with out delay the region of steady
state behaviour is reduced.

We also observe that the transition curve above which the stable �xed
point region is obtained has also shifted to higher values of coupling coe�-
cients in case of delay system. i.e. For those values of coupling coe�ents for
which we had stable �xed point behaviour without delay in the system has
changed to complex behaviour in presence of delay in the system.

5.2 Di�usive coupling

Instead of the the feedback coupling of the chaotic system with the external
damped system, we couple the chaotic system by a di�usive coupling to the
external damped system. Let us consider chaotic Rö ssler system, following
are the equation's governing the nature of the Rö ssler system with a di�usive
coupling through a external damped system.
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ẋ1 = −x2 − x3 + ε1(y − x)
ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c)
ẏ = −ky + ε2(x− y)

(5.2)

Fig[5.2] gives the ε1 and ε2 parameter plane for constant k = 1, the
parameter plot shows the regions of stable �xed point regions of the Rö ssler
system when coupled with an external damped system through a di�usive
couling.
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Figure 5.2: Rö ssler System with di�usive feedback coupling, where the yel-
low region represents complex behaviour of the system and the black region
represents steady state behaviour.

We observe that even in the absence of di�usive feedback coupling from
the Rö ssler system to the external damped system at certain parameter val-
ues of ε1 the chaotic dynamics of the system is controlled to a stable �xed
point behaviour.

In this chapter, we present the e�ect of time delay in the control mech-
anism. We �nd that the control is still possible for small time delays even
though the regions of control in the parameter plane is reduced. The mech-
anism works with di�usive type of feed back also.
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Chapter 6

Feed back with delay and

detuning in Coupled Systems

In this section we present the e�ects of time delay and detuning in control-
ling the dynamics of two coupled Rö ssler systems. In a recent work it was
shown that an external damped system is coupled to two directly coupled
chaotic systems, their dynamics can be suppressed for few coupling coe�cient
values.[32] This is called amplitude death of the coupled systems.

6.1 Time - delay

We introduce time delay in the feedback terms from systems to the external
system and viceversa and also in the feedback terms between the systems.
Following are the equations of the coupled Rö ssler system coupled with an
external damped system with time-delay in their coupling.

ẋ11 = −x12 − x13 + εeβ1y(t− τ1) + εs(x21(t− τ2)− x11)
ẋ12 = x11 + ax12

ẋ13 = b+ x13(x11 − c)
ẋ21 = −x22 − x23 + εeβ2y(t− τ1) + εs(x11(t− τ2)− x21)
ẋ22 = x21 + ax22

ẋ23 = b+ x23(x21 − c)

ẏ = −ky − εe
2
[β1x11(t− τ1) + β2x22(t− τ1)]

(6.1)

Here τ1 is the time delay parameter in the feedback terms between the
systems and the external system and τ2 is the time delay parameter between
the two systems.

41



We �rst study the case where there is time delay only in the feedback terms
between the system and the external system but not in the feedback terms
between the two chaotic Rö ssler systems.

� �

� �

Figure 6.1: Delay between the systems and the external environment with τ1
= 0.15, where the red region represents the amplitude death region, the yellow
region represents the synchronizable region and the black region represents
the antisynchronisable region.

Fig[6.1] gives the parameter plane εe and εs of the coupled system coupled
with an external damped system when introduced with a delay in between
the system and the external system alone. We observe that when we in-
troduce time delay even for small increase in time delay, there is signi�cant
change in the region of amplitude death. We observe that as the time delay
between the systems and the external system increase the region of ampli-
tude death region has shifted to its right. For only for higher values of εe
value the systems reach amplitude death of the coupled systems. But for
values lower than εs for which we had anti syncronization region in the case
of no delay in system, displayed amplitude death region. This implies that
the antisynchronization regions of the coupled system has moved down and
the synchronization region has increased.

Now let us consider time delay in the feedback terms between the two
systems alone and not in between the systems and the external system. We
observe that for those coupling coe�cient values for which we observed syn-
chronization region in the case of no delay system has changed to amplitude
death region as we increase the delay parameter. This change is small as com-
pared to the case of change in delay between the systems and the external
system. We observe that even the region of anti synchronization increases as
the delay parameter increases and the shift from the synchronization region
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to amplitude death region has a pattern as shown in Fig[6.2] which is the
parameter plot εe and εs.

� �

�
�

Figure 6.2: Delay between the systems with τ2 = 1, where the red region
represents the amplitude death region, the yellow region represents the syn-
chronizable region and the black region represents the antisynchronisable
region.

Hence when there exists delays in both the feedback terms in between
the systems and in the feed back term between the systems and the external
system, the delay with respect to the feedback term between the system and
the external system is more e�ective. For small changes of this delay vanishes
the amplitude death reagions for few coupling coe�cient values.

6.2 Detuning

We introduce detuning to the coupled Rö ssler system coupled with an exter-
nal damped system. Following are the equations of the system with detuning
in the Rö ssler systems.

ẋ11 = −w1x12 − x13 + εeβ1y + εs(x21 − x11)
ẋ12 = x11 + ax12

ẋ13 = b+ x13(x11 − c)
ẋ21 = −w2x22 − x23 + εeβ2y + εs(x11 − x21)
ẋ22 = x21 + ax22

ẋ23 = b+ x23(x21 − c)

ẏ = −ky − εe
2
[β1x11 + β2x22]

(6.2)
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where w1 and w2 are the respective frequencies of the two Rö ssler systems
coupled to the external system. When w1 and w2 are equal to one there is
no detuning then the system is actually the original coupled Rö ssler systems
coupled with an external system.
As the value of w = w1 = w2 increases the amplitude death region is at-

� �

��� ���

Figure 6.3: Parameter plane ε1 and ε2. Yellow region shows synchroniza-
tion, red shows amplitude death region and the black region represents the
antisynchronisable region.

tained at higher values of the coupling coe�cient εe . The change in the
amplitude death region in the parameter plane is not gradual (i.e.) when w
= 1 or w = 1.9 the system has the no change in the parameter plane but
as w changes to 2 Fig[6.3] there is a shift of amplitude death region in the
parameter plane and amplitude death region is attained only at higher cou-
pling coe�cient values. Fig[6.3]

When the di�erence w1 ∼ w2 ≥ 1 then for all most all coupling coe�cient
values the system has amplitude death regions. There exists no regions of
synchronization and anti synchronization in this case.

Thus we �nd that the region of amplitude death observed by coupling two
directly coupled Rö ssler systems through a damped control system, changes
signi�cantly when there is delay in the coupling or detuning between the
systems.
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Chapter 7

Results and Discussions

In this project, we have introduced a control mechanism to control chaos and
hyperchaos in dynamical and time delay systems. We work out the stability
analysis analytically and numerically using Jacobian matrix, bifurcation di-
agrams, lyapunov exponents and obtain regions of control in the parameter
plane.

The salient features of this control mechanism are the following.

• External control system consists of a simple over damped oscillator.

• Control method is system independent with no direct manipulation of
system parameters.

• Control mechanism is very easy to implement in many practical cases
such as electrical circuits.

• E�ective for large variety of complex dynamical systems such as chaotic,
hyperchaotic, time delay systems.

• By choosing appropriate coupling coe�cient values, we can quench any
complex dynamics to a steady state behaviour.

• Any desired value of the �xed point can be obtained by adjusting the
parameters of the control system.

• Control of complex behaviour to a periodic behaviour is also possible
for a choosen set of parameters.

• For those systems with sudden transition from complex behaviour to
the steady state behaviour such as Lorenz system, we can obtain pe-
riodic behaviour by adding a periodic forcing term to the external
damped system.
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• Any desirable freqency and amplitude of the desired periodic dynam-
ics can be obtained by adjusting the amplitude and frequency of the
additional periodic forcing term of the external system.

• E�ect of delay in feedback coupling terms between the complex dynam-
ical system and the external damped system is analysed and a di�usive
type of feedback is also studied.

• We also studied the e�ects of time delay and detuning in the case of
two coupled chaotic systems when coupled with an external damped
system.

Further work in this direction will be to study this control method applied
to experimental and higher dimentional systems.
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