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Abstract

Nuclear Magnetic Resonance (NMR) forms a natural test-bed to perform quantum

information processing (QIP) and has so far proven to be one of the most successful

quantum information processors. The nuclear spins in a molecule are treated as quantum

bits or qubits which are the basic building blocks of a quantum computer.

The long lived singlet state (LLS) has found wide range of applications ever since it

was discovered by Carravetta, Johannessen, and Levitt in 2004. Under suitable condi-

tions, singlet states can live up to minutes or about many times of longitudinal relaxation

time constant (T1). For the first time, we have exploited the long lifetime of singlet states

in NMR to execute several potentially important QIP problems. We were able to pre-

pare high fidelity pseudopure states (PPS) in multi-qubit systems starting from LLS. We

developed an efficient scheme of density matrix tomography to study all these quantum

states. The tomographic study on LLS shows some interesting results. We performed

experiments, where we created all the four Bell states from LLS and then studied the

effect of various dynamical decoupling sequences on preserving these states. We found

that Uhrig dynamical decoupling sequence is better than CPMG sequence in preserving

Bell states for longer duration under suitable conditions.

Nuclear spin systems form convenient platforms for studying various quantum phe-

nomena. We used violation of Leggett-Garg Inequality (LGI) in a two-qubit system to

study the transition from quantum to macrorealistic behavior. We observed perfect vio-

lation of LGI for time scales which are much small compared to the spin-spin relaxation

time scales. However, with the increasing time scales, we notice a gradual transition of

spin-states from quantum to classical behavior. This steady arrival of classicality can be

attributed to the decoherence process. In a separate experiment we performed quantum

delayed choice experiment in nuclear spin ensembles to study the wave-particle duality

of quantum states. These set of experiments clearly demonstrate a continuous morphing

of the target qubit between particle-like and wave-like behaviors, thus supporting the

theoreticians’ demand to reinterpret Bohr’s complementary principles.

xix
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Chapter 1

Introduction

“If we cannot possibly reach our desired destination, what is the point

in setting out? This question might seem reasonable, but its premise is too

restrictive: sometimes one walks not to reach a destination, but to observe

the scenery along the way, and the pursuit of NMR quantum computation

has thrown up some surprising sights.”

- Jonathan A. Jones, 2010

1.1 Nuclear Magnetic Resonance

There are four main physical properties in an atomic nucleus: mass, electric charge,

magnetism, and spin [1, 2]. Most of the macroscopic physical or chemical properties

of matter depend on the mass and charge characteristics of nucleus. Though it is less

evident, most of the nuclei are magnetic and behave like a tiny bar magnet [1]. However,

this nuclear magnetism is very weak and may have little consequence on the matter’s

property. The dynamics of a nuclear spin can not be understood fully under classical

physics and one has to invoke quantum mechanics. The spin and the associated nuclear

magnetism provide us the tool to look not only inside the atom but also its microscopic

world [1, 2].

1



Chapter 1. Introduction

The first direct evidence of nuclear magnetism was given by Stern and Gerlach in

1922 [3]. The Stern-Gerlach experiment involves sending a beam of particles through an

inhomogeneous magnetic field and observing their deflection [3]. Much to the astonish-

ment of classical physics, the beam splits into only two parts depending on the parallel

and anti parallel alignment of their respective magnetic moment in the magnetic field.

The exact measure of proton’s magnetic moment was done by a series of experiments

performed by Frisch, Estermenn, and Stern during 1933-1937 [4, 5, 6]. Almost around

the same time Isidor Rabi was working on the nuclear magnetism using the extended

version of the Stern-Gerlach apparatus. Rabi and co-workers showed the first indication

of ‘nuclear magnetic resonance’ in molecular beams [7]. Soon after, this resonance ef-

fect achieved its spectroscopic importance after Bloch [8, 9, 10] and Purcell [11, 12, 13]

independently observed nuclear magnetization in a bulk matter in 1946.

Since then, NMR has been studied extensively and has found wide field of applica-

tions in physical, chemical, biological, medical and material sciences. In this section,

we give a brief overview of the basic principles of NMR. Later sections will describe

the field of quantum information processing and its physical realization through NMR.

1.1.1 A nuclear spin under a static magnetic field

Let us consider the simplest situation where we have a single nucleus (an isolated spin)

placed in an external magnetic field B0. The magnetic nuclei will have a characteris-

tic ‘Larmor’ frequency of ω0 = −γB0. Here γ represents gyromagnetic ratio of the

particular nuclear isotope. The Zeeman Hamiltonian can be written as

Hz = −µ ·B

= −~IzγB0 = ~ω0Iz, (1.1)

where µ is the nuclear magnetic moment operator and the external magnetic field B0 is

taken along ẑ direction. Iz denoting the z component of the nuclear spin operator and the

2
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relation between the spin operator and magnetic moment can be written as µ = γ~Iz.

Below is a table showing comparative study of different properties relevant in NMR for

various nuclei [2].

Nucleus Spin Natural Gyromagnetic ratio NMR frequency at 11.7 T

abundance(%) γ/106 rad s−1T−1 (ω0/2π) in MHZ

1H 1/2 ∼100 267.522 -500.000
13C 1/2 1.1 67.283 -125.725
19F 1/2 ∼100 251.815 -470.470
31P 1/2 ∼100 10.394 -202.606

Table 1.1: Table of most commonly used nuclear isotopes in NMR

The eigenvalues of the Zeeman Hamiltonian (Eq. 1.1) represent the energy levels of

the nucleus and are given by

Em = −m~ω0. (1.2)

Here m represents the magnetic quantum number and it can take certain discrete values

m = −I,−I + 1, ....., I − 1, I, where I can be integer or half-integer and is known as the

spin quantum number. I(I + 1)~2 is the eigenvalues of total spin operator I2.

While Iz represents a stationary state under the Zeeman Hamiltonian, 〈Ix〉 and 〈Iy〉

show out of phase oscillations at Larmor frequency (ω0). In the case of nuclei with

positive gyromagnetic ratios, higher (positive) m values have lower energy state (Eq.

1.2) and thus the ground state is the state with m = I. In a semiclassical picture, it

can be seen as the nuclear spin that is aligned along the static magnetic field direction.

On the other hand, highest excited state corresponds to a spin-alignment against the

magnetic field. The situation alters for the nuclei with negative gyromagnetic ratios.

For an ensemble of nuclear spins at thermal equilibrium , the population distribution

can be represented by Boltzmann statistics. For spin-1/2 ensemble, there will be only

two possible energy levels with m = −1/2 and m = +1/2. The population ratio of these

3
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two levels is determined by Boltzmann distribution

p−
p+
= e−~ω0/kBT , (1.3)

where kB is the Boltzmann constant and T is the absolute temperature of the ensemble.

In the case of 1H nuclei at a 10 T magnetic field strength, ~ω0 ≈ 10−6eV . Whereas

at room temperature kBT ≈ 2.5 × 10−2eV , hence the ratio ~ω0/kBT ≈ 10−5. So the

Boltzmann factor e−~ω0/kBT is almost close to unity. This can naively be interpreted as,

there are slightly more spins in the parallel direction (lower state) than in the anti-parallel

direction (upper state) and this slight imbalance in the populations is responsible for the

‘net’ nuclear magnetization along the z-direction. This also reveals the fact that, NMR

is a very low sensitive technique.

The nuclear magnetization for an ensemble of spin-1/2 nuclei at thermal equilibrium

is given by [14]

M0 =
n0γ

2
~

2B0

4kBT
, (1.4)

where n0 is the number of nuclei per unit volume. From above equation it is clearly

seen that the magnetization increases linearly with the external field strength, whereas it

is inversely proportional to the temperature. Hence nuclear magnetism is paramagnetic

in nature and follows Curie’s law [14]. Also, the demand for higher field strength can

be understood from the above equation. However, the temperature of the ensemble can

not be reduced as per wish, since it is related to the ‘state’ of the matter and hence

on its dynamics. Here it can be noted that, electrons also posses paramagnetism and

the magnitude of electron paramagnetism is three order of magnitude higher than the

nuclear magnetism.

1.1.2 Radiofrequency field

The application of static magnetic field will create a Zeeman splitting according to the

Eq. 1.1. Now the transitions between the energy levels can be induced by the application
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of suitable oscillatory magnetic fields with appropriate frequencies. From the Table

1.1, it is seen that the Larmor frequencies are of the order of MHz in present days’

magnet of a few Tesla and resonance can be achieved by the application of RF fields. In

comparison, typical electron Larmor frequencies are of the order of GHz range.

The dynamics of nuclear spin excitation due to the application of oscillatory mag-

netic field can be well understood by considering a time dependent magnetic field, B1(t)

applied perpendicular to the static magnetic field B0. The RF interaction Hamiltonian

(HRF), can be written in a similar way as the Zeeman Hamiltonian.

HRF = −µ.B1(t) = −γ~Ix[2B1 cos(Ωt + φ)] (1.5)

where, B1(t) = 2B1 cos(Ωt + φ)x̂ (1.6)

Here Ω and φ are respectively the frequency and phase of the RF field which is along

the x̂ direction. The strength of the oscillatory magnetic field (B1(t)) is much smaller

than the Zeeman field strength (B0) an hence it is reasonable to treat the RF Hamilto-

nian (HRF) as a perturbation to the Zeeman Hamiltonian (Hz). The dynamics can be

described by the standard time dependent perturbation theory [15]. The result shows

that, at resonance condition (Ω � ω0), there will be induced transitions between the

eigenstates ofHz with a transition rate given by the Fermi golden rule [16]

pm1→m2
= pm2→m1

∝ γ2
~

2B2
1

∣∣∣∣〈m1|Ix|m2〉
∣∣∣∣
2

, (1.7)

where m1 and m2 are two energy eigenstates of the system. It can be seen from the

above equation that, the transition probability on either way depends on square of gyro-

magnetic ratio of the nucleus and the magnitude of RF field. The selection rule for the

allowed transition should be, ∆m = ±1.

Now we will discuss the logic behind choosing the RF magnetic field similar to

Eq. 1.6. We can think of a linearly polarized magnetic field B1(t) as composed of two

circularly polarized fields with same frequency and amplitude but precessing in opposite

5
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directions about z-axis.

B1(t) = 2B1 cos(Ωt + φ)x̂ = B+1 (t) +B−1 (t) (1.8)

where, B+1 (t) = B1

[
cos(Ωt + φ)x̂ + sin(Ωt + φ)ŷ

]
(1.9)

B−1 (t) = B1

[
cos(Ωt + φ)x̂ − sin(Ωt + φ)ŷ

]
(1.10)

The RF field interactions can be better described in rotating frame formalism. At res-

onance condition, (i. e. Ω = ω0) the field B−1 (t) rotates coherently with the nuclear

Larmor precession along z-axis. Whereas, the field B+
1

(t) rotates exactly in opposite

sense. In a frame which is rotating along with the Larmor frequency, the field B−
1

(t)

is stationary along with nuclear spin, whereas the field B+1 (t) rotates with a frequency

twice the Larmor frequency. Therefore, at high static fields it can safely be assumed that

only the field B−1 (t) has effect on the nuclear spins.

Let us assume the on-resonance condition i.e., Ω = ω0. In a frame that is rotating

with B−
1

(t) with same frequency and direction, the magnetic moment sees a static field,

say along direction x̂′, and precesses about it. In the case of off-resonance conditions

(i.e. Ω , ω0), the precession of magnetic moments in the rotating frame is around an

axis defined by an effective magnetic field given by,

Be f f =

(
B0 −

Ω

γ

)
ẑ + B1 x̂′. (1.11)

The relation between laboratory frame and rotating frame is given by,

x̂′ = cos(Ωt + φ)x̂ − sin(Ωt + φ)ŷ (1.12)

At on-resonance condition, the precession frequency about Be f f is also known as nu-

tation frequency ωnut = −γBe f f in analogy with the Larmor frequency. Application

of an RF pulse for the time duration tP, makes the magnetization shift from its initial

6
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z-direction by a nutation angle given by,

θp = γB1tp. (1.13)

Hence, a π/2 pulse is defined as a pulse which can take the magnetization from longi-

tudinal direction to transverse plane. One must remember that in laboratory frame the

magnetization is always precessing around the z- axis in addition to nutating about the

RF axis.

1.1.3 Nuclear spin interactions

So far we have described the nuclear spins in isolated situation without any kind of

interactions. In practice, nuclear spins are interacting with each other as well as with

the environment. The interaction of nuclear spins with each other makes NMR a very

sophisticated tool with versatile applications. However interaction of nuclear spins with

environment remains a challenge in the field of NMR-QIP and we will discuss this case

in detail in a later chapter. Here we describe the main interactions involving in the

nuclear spins under normal conditions [17, 16].

The total nuclear Hamiltonian is given by

Htotal = HRF +Hint, (1.14)

where Hint represents the internal interactions of the nuclei. Here we will concentrate

on the Hint part of the total Hamiltonian. There are several contributors to the internal

Hamiltonian part based on its physical and chemical characters. In most of the case the

material in study under NMR is a diamagnetic insulating substance. For this the internal

Hamiltonian is given by

Hint = HCS +HD +HJ +HQ (1.15)
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where, HCS is the chemical shift interaction,HD is the direct dipolar interaction,HJ is

the indirect spin-spin interaction, andHQ is the quadrupolar interaction.

Chemical Shift

Though the external magnetic field applied is same for all the nuclei, it is not even

exactly same for a same type of nuclei in a molecule. The slight change in the mag-

netic field is due to the modified chemical environment created by the electron density

surrounding it. The modified magnetic field is given by

Bloc = (1 − σ̃)B0, (1.16)

where σ̃ is known as chemical shielding tensor allied to that particular nuclear site.

Hence the chemical shift Hamiltonian can be written as,

HCS = −µ . (−σ̃B0) � γ~σzz(θ, φ)B0Iz. (1.17)

The approximation is known as secular approximation. Now,

σzz(θ, φ) = σ11 sin2 θ cos2 φ + σ22 sin2 θ sin2 φ + σ33 cos2 θ, (1.18)

where, σ11, σ22, and σ33 are the principle values of the chemical shielding tensor σ̃.

Here θ and φ are the azimuthal and polar angle respectively, describing the magnetic

field B0 in the principle axis system. In isotropic liquid, due to rapid molecular motions,

shielding tensor get averaged. Hence, the time averaged shielding constant for isotropic

liquid can be written as,

σiso =
1

3

(
σxx + σyy + σzz

)
. (1.19)

The consequence of the above calculation is the introduction of a shift in resonance

frequency,

ω = ω0(1 − σiso). (1.20)
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For a monocrystalline material, the above equation will be modified just by replacing

σiso with σzz. In the case of polycrystalline material or powder samples, the continuous

distribution of orientations of the several crystallites causes an anisotropic broadening,

known as chemical shift anisotropy (CSA)[2],

∆σ = σzz −
1

2
(σxx + σyy). (1.21)

The resonance frequency is conventionally expressed by the relative shift from the ref-

erence resonance frequency (ωre f ),

δ =
ω − ωre f

ωre f
. (1.22)

Here δ represents the chemical shift of the resonance lines and normally expressed in

terms of parts per million (ppm).

Direct dipolar coupling

Any two magnetic dipole moments interact directly with each other through the mag-

netic fields created by each one for the others. It provides rich structural information

about the materials. The dipolar Hamiltonian is defined as,

HD =
∑

k<l

IkD̃klIl (1.23)

=
∑

k<l

µ0

4π

γkγl~
2

r3
kl

[
Ik . Il − 3

1

r2
kl

(Ik . rkl)(Il . rkl)

]
, (1.24)

where D̃kl is the dipole-dipole interaction tensor, rkl is the radius vector connecting the

two spins. Under secular approximation, the Hamiltonian can be rewritten as,

H trunc
D = −

∑

k<l

µ0

4π

γkγl~
2

r3
kl

1

2

(
3 cos2 θkl − 1

) [
3IkzIlz − Ik . Il

]
, (1.25)
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where θkl is the angle between rkl and ẑ. In case of heteronuclear spin systems (i.e.

γk , γl), further simplification is possible,

H IS
D =

µ0

4π

γkγl~
2

r3
kl

(
1 − 3 cos2 θkl

)
IkzIlz. (1.26)

Indirect spin-spin coupling

Indirect spin-spin coupling (also called J-coupling or scalar coupling) is also an interac-

tion between the nuclear magnetic dipole moments. This type of coupling is not direct

and being mediated by the electron cloud involved in the chemical bonds between the

atoms. The J-coupling Hamiltonian is defined as,

HJ = 2π~
∑

k<l

IkJ̃Il, (1.27)

where J̃ is the J-coupling tensor. J-coupling posses an isotropic part which survives

under random molecular motion in an isotropic substance (e.g. liquid samples), whereas

direct dipolar coupling is averaged out under similar situation. In the case of solid

samples, the J-coupling is generally overwhelmed by the strong direct dipolar couplings.

Under secular approximation, the simplified J-coupling term is written as,

Hkl
J = 2π~JklIkzIlz. (1.28)

The approximation can be carried out when |2πJi j| << |ωi − ω j|. It can be seen that this

approximation holds for all heteronuclear pairs.

Quadrupolar coupling

All the nuclei with spin, I > 1/2 are subjected to electrostatic interaction with the neigh-

boring electrons, ions due to the non-spherical charge distribution of nuclei [18]. The
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Hamiltonian form of quadrupolar interaction is defined as,

HQ =

N∑

k=1

IkQ̃kIk, (1.29)

where, Q̃k is the quadrupolar coupling tensor and it can be expressed in terms of electric

field gradient tensor Vk at the kth nuclear site,

Qk =
eQk

2Ik(2Ik − 1)
Vk. (1.30)

Here Qk is the nuclear quadrupolar moment of the kth nucleus. In the partial axis coor-

dinate system, the quadrupolar Hamiltonian for the kth nucleus can be written as,

HQ =
3e2qkQk

4Ik(2Ik − 1)

[(
I2
kz −

1

3
I2

k

)
+
η

3

(
I2
kx − I2

ky

)]
, (1.31)

where eqk = Vkzz and ηk defines the assymetry parameter,

ηk =
Vkxx − Vkyy

Vkzz
. (1.32)

1.1.4 Systems of spin-1/2 nuclei

The Hamiltonian for N coupled spin-1/2 nuclear spins in an isotropic medium is given

by,

H =
N∑

k=1

ωkIkz +
∑

k<l

2πJklIk.Il, (1.33)

where ωk is the chemical shift for the kth nucleus and Jkl is the J-coupling constant

between the two spins. Considering weak coupling condition i.e. |2πJkl| << |ωk − ωl|,

the Hamiltonian can be written as,

H =
N∑

k=1

ωkIkz +
∑

k<l

2πJklIkzIlz. (1.34)
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The coupling part of the above equation actually commutes with the Zeeman part and

hence both the part will share common eigenbasis. All the 2N eigenstates of H can be

expressed as tensor products of the single spin eigenstates, namely |αα . . . α〉, |αα . . . β〉,

. . . , |ββ . . . β〉. Here |α〉 and |β〉 denote |+1/2〉 and |−1/2〉 single-spin eigenstates, which

are labeled as |0〉 and |1〉 in QIP terminology. The NMR spectrum displays N set of 2N−1

spectral lines of equal intensity.

The Hamiltonian for a pair of spin-1/2 system in an isotropic liquid environment can

be written as,

Hkl = ωkIkz + ωlIlz + 2πJklIkIl, (1.35)

where we have considered the weak coupling condition. This Hamiltonian will have

four eigenstates and corresponding four eigenenergy values. The four probable transi-

tion will reflect as four transition line in an NMR spectra. The eigenstates and eigenen-

ergy are:

|00〉 :: E00 = − (−ωk − ωl + πJ) /2

|01〉 :: E01 = − (−ωk + ωl − πJ) /2

|10〉 :: E10 = − (ωk − ωl − πJ) /2

|11〉 :: E11 = − (ωk + ωl + πJ) /2

(1.36)

1.1.5 NMR Relaxation

In equilibrium, the population distribution of the spins follow Boltzmann statistics with

off diagonal elements are zero for the density matrix of the system. The NMR mecha-

nism depends on the perturbation of the system from equilibrium situation. For example,

application of a single π/2 pulse on equilibrium equalizes the populations and also cre-

ates the coherences. Now, this is clearly a non-equilibrium situation and the disturbed

state tends to go back to the original equilibrium state through relaxation mechanism of

the spins. There are two different processes, occurring simultaneously but in general in-

dependently that can be identified for this relaxation. These two relaxation mechanisms

known as transverse relaxation and longitudinal relaxation [19, 16].

12



1.1. Nuclear Magnetic Resonance

Just after the RF pulse, the magnetization is on the transverse plane perpendicular

to the static magnetic field B0. The transverse relaxation mechanism makes the mag-

netization along transverse plane to disappear. The result of the transverse relaxation

is the loss of coherences among the spins. This happens due to the spread in nuclear

precession frequencies of the spin ensemble. As shown earlier, the Larmor frequency

of each spin depends on the external magnetic field as well as locally created magnetic

field for various reasons. Hence due to this slight variance in the Larmor frequency,

after some time these spins are oriented in a complete random direction on transverse

plane and the vector sum of all this magnetization will be zero. The decay of coherences

due to the inhomogeneous fields is one part of the transverse relaxation process. The

other important part occurs due to the fluctuations in the local magnetic field [2].

Under normal conditions, the decaying of the transverse component of the mag-

netization of the nuclear spins ensemble in the rotating frame can be described by a

phenomenological differential equation given by Bloch [9, 2].

dMx,y

dt
= −

Mx,y

T2

, (1.37)

where T2 is known as transverse or spin-spin relaxation constant. The solution of the

above equation is simple and can be written as,

Mx,y = M0e−t/T2 , (1.38)

where M0 represents the initial value of the transverse magnetization. Hence from the

above equation it is seen that the transverse magnetization decays with time in exponen-

tial fashion. The exact value of T2 depends on the detail of each particular nuclear spin

system and its environment.

The longitudinal part of the nuclear magnetization also goes under relaxation simul-

taneously with transverse relaxation. The mechanism can be understood as follows. Just

after the π/2 pulse, the longitudinal magnetization, Mz = 0 and the population of a two
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level system is equalized. Since this condition is non-equilibrium, the system will tend

to go back to its equilibrium condition that is supported by Boltzmann distribution. The

preferable way towards the equilibrium is by giving up its excess populations in upper

to lower energy level till the Boltzmann distribution is reestablished. Since this mecha-

nism involves energy exchange and that happens with the lattice part of the system, this

relaxation mechanism is also termed as spin-lattice relaxation process [2].

Similar to the transverse case, the longitudinal relaxation mechanism is also de-

scribed by a phenomenological differential equation given by Bloch [9, 2].

dMz

dt
=

M0 − Mz

T1

, (1.39)

where T1 representing the longitudinal or spin-lattice relaxation constant. The solution

of the above equation is given by,

Mz = M0

(
1 − e−t/T1

)
. (1.40)

As it can be seen from the above solution, the longitudinal magnetization is gaining

with time beginning from zero and reaches to the stable magnetization M0 after certain

time. The exact values of T1 and T2 time constants depend on various factors such

as physical state of matter (liquid or solid), temperature, molecular mobility, viscosity,

concentration, external magnetic field etc [2]. It is found that T1 ≥ T2. In case of liquids,

T2 values are comparable with T1 and in many cases both are almost equal. However in

case of solids, T1 is much larger than T2.

It is worth noting that the above simplistic approach of relaxation formalism in nu-

clear spins is not straightforward in many complicated situations. The relaxation phe-

nomenon can be best understood by the elaborative mechanism of Redfield theory [14].
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1.2 Quantum Information Processing

Quantum information processing (QIP) is the study of the information processing tasks

that can be accomplished using quantum mechanical systems [20]. The idea of utilizing

quantum systems for the information processing was first introduced by Benioff in early

1980s [21, 22]. The exponential time required for simulating the dynamics of quantum

systems using classical computers inspired Feynman to propose exploiting quantum

systems for such purpose [23]. He was rather skeptical whether a classical computer

is capable enough to simulate a quantum system and advocated for building a quantum

computer for this purpose. In 1985 Deutsch gave a decisively important step towards

quantum computers by presenting the first example of quantum algorithm which utilizes

the fact of quantum superposition in speeding up computational process [24]. He is also

the pioneer of quantum computer history for introducing the notion of quantum logic

gate in 1989 [25]. Since then there has been a good theoretical progress in the field of

quantum computation and quantum information. Classically intractable problems were

reduced to tractable regime by treating it in quantum way. It was 1994, when a major

breakthrough happened, calling the attention of scientific community for the potential

practical importance of quantum computation and its direct consequence on our society.

Peter Shor discovered a quantum algorithm which is capable of factorization of prime

numbers in polynomial time instead of exponential time [26, 27]. Prime factorization

being the heart of computational security, draws tremendous attention from computer

scientists and cryptographers as well. A few years after that, in 1997, another important

discovery had been made by Lov Grover by introducing a quantum search algorithm for

searching an unsorted database [29]. Grover’s algorithm makes use of quantum super-

position and quantum phase interference to find an item in an unsorted database, faster

than any other classical algorithms. Various schemes on error correction has also being

developed to counter the faulty outcomes [30]. In the meantime, other branches of QIP,

namely quantum teleportation, quantum key distribution and quantum cryptography are

also being developed. Many of these techniques have actually making commercial suc-
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cess and continue to be better [31]. Considering the extreme difficulty in controlling

a quantum system, there has been modest development towards a practical quantum

computer. Nonetheless, commercialization of quantum computer has been taken very

seriously and till date it has already arrived (arguably) in the markets [32]. This section

intend to give a brief theoretical understanding on QIP and later its physical realization

by various experimental schemes.

1.2.1 Computational science

Today, we can not even think a society without the machine called computer. The im-

pact of a computer is such that, there hardly any field left where we are not using a

computer directly or indirectly. There is a long history of development of computers

and the theoretical notion of computation. As put by David Deutsch [33], ‘Computers

are physical objects, and computations are physical processes. What computers can or

cannot compute is determined by the laws of physics alone, and not by pure mathe-

matics’. Computation is carried out through a procedure called algorithm and it needs

three basic resources (space, time, energy) for it [20]. Space refers to the the computer

hardware, i.e. the number of logic gates used. Time refers to the computational time

required and energy refers to the energy spent for the computational work. The basic

model of a modern day computer was mainly given by Alonzo Church and Alan Turing

in early 20th century. Later it became famous as Turing machine [34]. A Turing ma-

chine is a hypothetical, idealized theoretical model of an actual computer. There is not a

single computation work which can be done by an actual computer but not by a Turing

machine. In that sense, a real computer is a physical realization of a Turing machine. It

consisted of a program, a finite state of control, a memory tape, and a read-write head

[20]. The Church-Turing thesis calls a problem ‘computable’ only if it can be done by

a Turing machine. Quantum computation also obeys the ideology of the Church-Turing

thesis and hence the notion of ‘computable’ has not changed, only efficient algorithms

could be possible. The efficiency of an algorithm is studied by its asymptotic behavior
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as the size of the input increases [20]. Consider the time taken by an algorithm varies

as f (N), where N is the size of input bits. Now, if f (N) is polynomial, then the highest

power in f (N), say g(N) is known as order of algorithm denoted by O (g(N)). Depend-

ing on these requirements, computational problems are classified into various classes

known as ‘complexity classes’ as shown in table 1.2. A simple addition or multiplica-

Class Time Space

EXP exponential unlimited

PSPACE unlimited polynomial

NP exponential polynomial

P polynomial polynomial

L logarithmic polynomial

Table 1.2: Complexity classes in computational science. These classes are related as :

L ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

tion are in class L. Prime factorization is believed to be a class NP problem, however

not proven till date. Many of the complexity classes are unclear even today. In fact it

is a great source of debate whether P = NP or P , NP and nobody has come up with a

concrete prove so far.

The relationship of energy with information processing has an important physical

significance [30]. Erasure of information is a dissipative process, as pointed out by Rolf

Landauer in 1961 [35]. Erasure of each bit increases the amount of entropy by k ln 2 and

the energy dissipates at least by an amount kT ln 2. However, this amount is negligible

compared with the energy dissipated in a modern computer which is of the order of

500kT ln 2. All the irreversible gates involve in loss of information and hence dissipates

energy. Interestingly in 1973, it was found by Charles Bennett that the dissipation of

energy can be made vanishingly small by making all the gates reversible [36].
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1.2.2 Quantum Information

Information always exists as encoded with an physical system and therefore it should

obey the physical laws. In other words, ‘Information is Physical’ [30, 35] and physi-

cal systems obey quantum mechanics. Hence the information encoded in such system

is ‘Quantum Information’. Treating some problems in quantum mechanical way can

actually make it much more efficient than classical way. For example, prime factoriza-

tion is a ‘NP’ class problem classically (require exponential time), whereas solving it in

quantum mechanical way can make it a ‘P’ class problem (require polynomial time).

1.2.3 Quantum Bits

The unit of information in quantum computation and quantum information is known

as quantum bit or ‘qubit’. A qubit can assume a logical values ‘0’ and ‘1’ along with

a state that is a linear combination of them. Physically a qubit can be represented by

any well defined distinct eigenstates. For example, qubits can be the polarization states

of a photon or nuclear spins inside a static magnetic field. Let us consider a two level

quantum system, where the eigenstates are represented by |0〉 and |1〉. The general form

of a quantum state under this condition can be written as,

|ψ〉 = cos

(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉 (1.41)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π, neglecting the global phase factor. On measurement in

|0〉, |1〉 basis, the probability of getting the state |0〉 is cos2(θ/2) and for |1〉 it is sin2(θ/2).

Also this kind of representation allows one to visualize this complex quantum state

geometrically. The qubit states are designated as some geometrical point on the surface

of a ‘Bloch sphere’ (Fig. 1.1). Any surface point on the Bloch sphere is a ‘pure’ state

while any non-surface point represents a ‘mixed’ state. A more detailed description

about pure and mixed states is given in chapter 3. The power of quantum computation

comes from the quantum mechanical laws such as superposition of states of qubits and
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Figure 1.1: Bloch sphere representation of a two level quantum system.

the ability to manipulate the quantum states through unitary transformations as will be

seen in next subsections.

1.2.4 Quantum Gates

A classical gate can transform a string of n bits into a string of m bits,

f : {0, 1}n
f
−→ {0, 1}m. (1.42)

Now for f to be a reversible classical gate, it should be one to one (each input is mapped

to a unique output). In general n and m are not equal and hence a classical gate is a

irreversible gate. Quantum gates on the other hand transform a state of quantum system

from one point in the Hilbert space to another point. A single qubit can be expressed

by |ψ〉 = a|0〉 + b|1〉, where a and b are coefficients having a relationship |a|2 + |b|2 = 1.

Quantum gates on a qubit must preserve this normalization condition and thus can be

described by a 2 × 2 unitary matrices [20]. Since all the quantum operations are unitary

operators, quantum gates must also be reversible.
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Some important unitary transformations for one qubit are the Pauli matrices,

σx =


0 1

1 0

 ; σy =


0 −i

i 0

 ; σz =


1 0

0 −1

 . (1.43)

These three Pauli matrices along with the 2× 2 identity matrix form a 2× 2 basis matrix

space. Hence any one qubit operation can be decomposed as a linear combination of

the four matrices. A NOT gate is nothing but the Pauli-x matrix and it flips the |0〉 to |1〉

and vice versa.

UNOT =


0 1

1 0

 ; (1.44)

UNOT |0〉 =


0 1

1 0




1

0

 =


0

1

 = |1〉; (1.45)

UNOT |1〉 =


0 1

1 0




0

1

 =


1

0

 = |0〉. (1.46)

Another very important one qubit gate is Hadamard gate which has no classical analogue

and it is used for the creation of superposition states as shown below. One important

property of Hadamard operator is its self-reversibility, i.e. H2 = 1.

UH =
1
√

2


1 1

1 −1

 ; (1.47)

|0〉 H−→ 1
√

2

(
|0〉 + |1〉

)
; (1.48)

|1〉 H−→ 1
√

2

(
|0〉 − |1〉

)
. (1.49)
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A phase shift gate P introdues an extra phase factor to either of the qubit,

UP =


1 0

0 eiφ

 ; (1.50)

(
a|0〉 + b|1〉

) P−→
(
a|0〉 + b.eiφ|1〉

)
. (1.51)

For a two qubit system the dimension of Hilbert space is 4 × 4 and can be realized by

tensor products among the one qubit states,

{|0〉, |1〉} ⊗ {|0〉, |1〉} = {|00〉, |01〉, |10〉, |11〉}, (1.52)

where,

|00〉 =



1

0

0

0



; |01〉 =



0

1

0

0



; |10〉 =



0

0

1

0



; |11〉 =



0

0

0

1



. (1.53)

The matrix representation for operators that act only on one of the qubits of a system

of two qubit can be constructed by tensor product between one qubit operator and 2 × 2

identity operator.

Oa = O ⊗ 1; Ob = 1 ⊗ O (1.54)

Here O denoting the Pauli matrix operators. The above given scheme can be worked

out for any number of qubits in a similar fashion. The most important two qubit gate

is definitely the CNOT (or controlled not) gate. It can be proved that all the quantum

operations necessary for quantum computation can be achieved using only CNOT and

set of one qubit gates [20]. In that sense CNOT is a universal quantum gate similar to

NAND gate in classical counterpart. A CNOT gate has a control qubit and a target qubit.

Depending on the state of control qubit, the status of target qubit get flipped while the
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Figure 1.2: Quantum gates. (i) Hadamard gate acting on |0〉 qubit, (ii) CNOT gate, (iii)

A general two qubit controlled- gate, where U can be any one qubit operator, and (iv)

Toffoli gate. In the above circuits, the inputs are assumed to be individual basis states.

If on the otherhand, inputs are in superposition, output may be entangled.

control qubit remaining same. The operator form of CNOT gate whose control is ‘a’

and target is ‘b’ (and vice versa) can be written as,

CNOTa =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



; CNOTb =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



; (1.55)

CNOT can also be represented by binary addition of two qubits, i.e. CNOTa|a, b〉 =

|a, a ⊕ b〉 and CNOTb|a, b〉 = |a ⊕ b, b〉. Here the symbol ⊕ represents the addition

modulo 2, for which 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, and 1 ⊕ 1 = 0. The application of

CNOT gate on two qubit states has the following results,

CNOTa|00〉 = |00〉, CNOTa |01〉 = |01〉, (1.56)

CNOTa|10〉 = |11〉, CNOTa|11〉 = |10〉. (1.57)

The circuit diagram of a CNOT gate is shown in Fig. 1.2. For a three qubit system,

TOFFOLI gate is a universal gate which is nothing but a controlled-CNOT gate.
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1.2. Quantum Information Processing

1.2.5 Quantum Algorithms

Quantum algorithm solves problems by exploiting the properties of quantum mechan-

ics. An efficient algorithm will require minimum resources. Many quantum algorithms

are much more efficient than any classical algorithms by exploiting the features like su-

perposition and entanglement. The first quantum algorithm was given by David Deutsch

and is known as Deutsch algorithm. This algorithm is capable of finding out whether

a binary function of one qubit is ‘constant’ or ‘balanced’ in one go [24]. The most

powerful quantum algorithm till date is the prime factorization given by Peter Shor.

Shor’s algorithm can factor a number by exponentially faster than its classical version.

Grover’s search algorithm can search an unsorted database in polynomially faster than

classical algorithm.

Adiabatic quantum algorithm gains much attention due to its universality[37]. In

most cases a quantum algorithm begins with a uniform superposition and ends with an

eigenstate which is the desired result. Often it is found that the ground state of the final

Hamiltonian (H f ) is the desired answer, however it is not easy to find the answer. Now

suppose we have a Hamiltonian Hi whose ground state can easily be found. Hence by

evolving the system adiabatically from Hi to H f , one can reach the ground state ofH f

and hence the desired result. One has to make sure that there is no crossover of the

ground state with any other state and the evolution process is slow enough that there

won’t be any possible transition.

1.2.6 Experimental implementations of QIP

While there is a good amount of progress in the theoretical understanding of QIP, the

physical realization of a quantum computer is proving extremely challenging. DiVin-

cenzo laid out five criteria which must be fulfilled for a successful quantum computer

architecture [38].

1. Well defined qubits

2. Ability to initialize
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3. Universal set of quantum gates

4. Qubit-specific measurement

5. Long coherence time

Also there are two more criteria that will be needed for quantum communication. Meet-

ing all these criteria in a single experimental setup is a highly challenging task. Nonethe-

less, various techniques have been proposed and is being explored for QIP tasks. All the

techniques have their own advantages and some disadvantages. The major techniques

available today are :

1. Nuclear spins in NMR

2. Trapped ions / atoms

3. Photons

4. Quantum dots

5. NV centers in diamond

6. Superconducting circuits

The first two techniques deal with the mutual interaction of quantum particles (atomic

nucleus, atoms, ions) and controlled by electromagnetic field. Polarization of photons

can be treated as qubits and it is controlled by optical means. Quantum dots technique

utilizes the much developed semiconductor field in miniaturization scale. The NV cen-

ters in diamond is another promising technology where electron spins are controlled

with an electromagnetic field. The well defined ‘phase’ and ‘flux’ parameters can serve

as qubits in a superconducting circuits. Apart from these techniques, there are few more

interesting techniques which might get much attention in future due to its hybrid ap-

proach. These methods are exploiting the best features among the available techniques

and intend to make out a optimized experimental setup. For example, nuclear spins

have much larger coherence time, but nuclear magnetization is very faint. By trans-

ferring magnetization from electrons to nuclei, the above problem can be solved and

thus integrating the NMR with the ESR technique [39]. Another approach is integrating

NMR with Atomic Force Microscopy (AFM) which is capable of measuring a single
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atom compare to bulk sample measurement done by NMR [40]. A comparative study

of all the key techniques is given in Table 1.3 [41, 42, 43, 44].

1.3 NMR QIP

Application of NMR for the physical realization of QIP adds one more feather to the

much colorful NMR application field. Implementation of QIP by NMR was indepen-

dently proposed by Cory et al [45] and Gershenfeld et al [46] in 1997. Since the criteria

laid by DiVincenzo was fulfilled more or less by NMR, it became an automatic choice

whilst all other techniques were slowly coming up. One more thing fueled the NMR-

QIP initiative was the fact that many of the QIP experimental basics are routinely done

in conventional NMR experiments [47]. For example, the selective inversion of popula-

tions achieved in 1973 is described as a CNOT gate [48]. The inversion of zero quantum

coherence takes the name as SWAP gate [49, 50]. However, NMR-QIP gains much of its

attention after Cory et al showed the preparation of ‘pseudopure state’ in a liquid state

NMR at room temperature [45]. NMR-QIP in liquids containing small number of spins

(preferably spin-1/2) have been studied extensively and its proven to be an excellent

testbed for a small scale quantum information processor. Many complicated algorithms

have been tested and verified. For example, Shor’s factorizing algorithm has been tested

till date only by liquid state NMR [28]. However, scalability of liquid state NMR is an

issue which hurdling the possibility of being an ‘useful’ quantum information proces-

sor in long-run. It is unlikely to get more than 15-20 qubits unless some technological

breakthrough occurs [47]. On the other hand solid state NMR has the potential to be-

come a reliable QIP architecture in future, since scalability issue and preparing ‘true’

ground state seems more realistic. Some aspects of NMR-QIP are discussed in the fol-

lowing.
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NMR Trapped ions Photons Semiconductors Superconductors

System Nucleus Atom Photon Atom, Vacancy Phase, Flux,

Charge

Maximum Qubits

demonstrated

12 (entangled) in liq-

uids, >100 (correlated)

in solids

10-103 stored, 14

(entangled)

10 (entangled) 1 (QDs), 3(NV

centers)

128 (fabricated),

3 (entangled)

Coherence time >1s (liquids), ∼100ms

(solids)

>1s ∼ 100µs 1-10 µs (QDs), 1-

10 ms (NV)

∼ 10µs

Two qubit gates

(highest fidelity)

CNOT (>99%) CNOT (>99%) CNOT

(>94%)

∼90% (NV cen-

ters)

>90%

Measurement Bulk magnetization Fluorescence:

‘quantum jump’

technique

Optical Electric, optical SQUID

Controls RF pulses Optical, MW,

electrical

Optical RF, electrical, op-

tical pulses

MW, voltages,

currents

Table 1.3: Comparison of main features for different available techniques in QIP

2
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1.3.1 NMR- A suitable candidate for QIP

A small scale NMR system is an attractive candidate for QIP for several reasons.

• The fast reorientation of nuclear spins in liquids makes them fairly well isolated

from the environment and therefore provide a good source of qubits. Since they

are weakly coupled with the environment, nuclear spins have long coherence

times of the order of seconds.

• Nuclear spins can easily be manipulated and controlled using RF pulses. It is

fairly simple to construct quantum logic gates using RF pulses and evolution of

couplings.

• The development of NMR over half a century itself makes huge difference in

developing and optimizing so many experiments. NMR is a perfect experimental

tool for a quantum mechanical theorist.

• Modern NMR spectrometers are well developed. Though they are extremely so-

phisticated, they can be easily controlled.

1.3.2 NMR Qubits

A spin-1/2 nuclei (1H, 13C, 19F, 31P) in an external magnetic field will be placed either

‘parallel’ or ‘antiparallel’ to the applied magnetic field. These two orthogonal states can

be labeled as |0〉 and |1〉 state of a qubit. A spin-1/2 nuclei is most preferable since it

is naturally equivalent to a qubit. A multi qubit system should have the individual ad-

dressing capability and strong enough coupling constant with the farthest qubit. Since

NMR is an ensemble system, it can address qubits separately depending on the slight

variance in Larmor frequencies. Coupling is provided by J-interaction (in liquids) or

dipole-dipole interaction or both (in liquid crystals, solids). A stronger coupling con-

stant is always welcome since it reduces the time duration of gates operation. Nuclei

with spin> 1/2 has both advantages and disadvantages. Each nucleus can be treated
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as multiple qubits. Quadrupolar nuclei having spin I = (2N − 1)/2 (for N ≥ 2) will

have 2N states. Thus, a spin 3/2 nucleus has 4 states and can be treated as a 2-qubit

system provided individual transitions are selectively addressable. This can be achieved

by introducing first order quadrupolar coupling. Quadrupole systems partially oriented

in liquid crystals can form an ideal multiqubit system.

Another possibility is that, one can take advantage of higher number of ‘base’ (N ,

2) into computation work. For example, a spin-1 system has three orthogonal states,

which makes a ‘qutrit’ system [20].

1.3.3 Initialization of NMR Qubits

NMR is an ensemble system which deals with a large number (1018) of identical spin-

systems. At room temperature the nuclear energy levels are overwhelmed by the Boltz-

mann energy distribution. In order to achieve a state like |000...0〉, all the spins should

be brought to the ground state which needs extremely low temperatures or extremely

high magnetic fields. It is almost a impossible task to prepare a ‘pure’ initial state at

room temperature NMR. On the other hand for high resolution NMR, we need to have

the systems to be in solution state. It is however pointed out by Cory et al [45] and

Chuang et al [46] that the problem of preparing a pure initial state can be alleviated by

preparing a pseudopure state which is a specially ‘mixed’ state mimicking a pure state.

We will have thorough discussions on preparing pseudopure states by various methods

in Chapter 3.

1.3.4 NMR Quantum Gates

Single qubit gates can be thought of as a rotation in a Bloch sphere and can be imple-

mented by the simple RF pulses [51, 52, 53]. In NMR, it is convenient to understand

the effect of RF pulses in rotating frame.
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The NOT gate as given in expression (1.44) can be realized by a π pulse.

[
πx

]
= e−iπIx = −i


0 1

1 0

 = U′NOT . (1.58)

The factor −i can be ignored since it produces an undetectable global phase [20]. Here

the π rotation is achieved by using a RF pulse of power ωp for duration τ and phase x

such that ωpτ = π. Similarly a Hadamard gate (see expression 1.47) can be realized by

applying two RF pulses.

[
(π/2)y .πx

]
= e−iπIx e−i(π/2)Iy =

−i
√

2


1 1

1 −1

 = U′H. (1.59)

A phase shift gate (Eq. 1.50) is equivalent to rotation by an angle φ about z-axis and can

be realized as follows.

[
φz

]
=

[
(π/2)−x .φy .(π/2)x

]
(1.60)

= e−i(π/2)Ix e−iφIy ei(π/2)Ix = e−iφ/2


1 0

0 eiφ

 = U′P(φ). (1.61)

Construction of multiqubit gates (e.g. CNOT) is achieved mainly by the proper exploita-

tion of evolution of coupling and qubit specific RF pulses. The Hamiltonian for a pair

of weakly coupled system in an isotropic medium is given by

Hweak = ω1I1
z + ω2I2

z + 2πJI1
z I2

z , (1.62)

where J is the coupling constant and ω1 and ω2 are Larmor frequencies of two spins.

Now these J-coupling constant and Larmor frequencies are time independent fixed quan-

tities and can not be turned off. But little tricks with the refocusing scheme can make it

possible to overcome the problem. Historically most of the NMR experiments rely on

this same refocusing technique. Consider at time t = 0, the density matrix of the system
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is given by I1
x + I2

x , then The density matrix after time t = τ is given by

I1
x + I2

x

ω1I1
z+ω2 I2

z

−−−−−−−−→ I1
x cos(ω1τ) + I1

y sin(ω1τ) + I2
x cos(ω2τ) + I2

y sin(ω2τ) (1.63)

2πJI1
z I2

z

−−−−−−−−→ I1
x cos(ω1τ) cos πJτ + 2I1

y I2
z cos(ω1τ) sinπJτ

+I1
y sin(ω1τ) cos πJτ − 2I1

x I2
z sin(ω1τ) sin πJτ

+I2
x cos(ω2τ) cos πJτ + 2I1

z I2
y cos(ω2τ) sin πJτ

+I2
y sin(ω2τ) cos πJτ − 2I1

z I2
x sin(ω2τ) sin πJτ (1.64)

This generalized calculations can be simplified for many practical situations. For ex-

ample, a π pulse on spin 2 at the middle of τ period refocuses the J-coupling as well as

chemical shift evolution of the spin 2 (see Fig 1.3a),

I1
x + I2

x

[ τ
2
−π(2)− τ

2
]

−−−−−−−−→ I1
x cos(ω1τ) + I1

y sin(ω1τ) + I2
x . (1.65)

Similarly, a π pulse applied on both the spins in the middle of τ period refocuses the

chemical shift while retaining the J-coupling evolution (see Fig. 1.3b)

I1
x + I2

x

[ τ2−π(1,2)− τ2 ]

−−−−−−−−−−−→ I1
x cos(πJτ)+2I1

y I2
z sin(πJτ)+ I2

x cos(πJτ)+2I1
z I2

y sin(πJτ). (1.66)

Both J-coupling and chemical shift can be refocused over a time τ by the pulse program

shown in Fig. 1.3c.

I1
x + I2

x

[ τ
4
−π(2)− τ

4
−π(1)− τ

4
−π(2)− τ

4
−π(1)]

−−−−−−−−−−−−−−−−−−−−−−−→ I1
x + I2

x (1.67)

A general method for refocusing has been described by Linden et. al. [54, 55]. A CNOT
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Figure 1.3: Switching ON and OFF of interactions for the first qubit (I1) over a time

τ. (a) Chemical shift ON, J-coupling OFF, (b) chemical shift OFF, J-coupling ON, (c)

both chemical shift and J-coupling OFF. (d) CNOT gate (τ = 1/2J). Filled rectangles

indicates π/2 pulses and rest are representing a π pulses with phase mentioning on each

pulse.

gate can be achieved by the pulse sequence shown in Fig. 1.3d.

[ (
π

2

)2

−y

(
π

2

)1,2

−z

τ

2
(π)1,2

y

τ

2
(π)1

y

(
π

2

)2

−y

]
= −(1 + i)

√
2



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



, (1.68)

where τ = 1
2J

. Various gates and corresponding unitary operators has been studied in

this context [51, 52, 56].

1.3.5 Numerically optimized quantum gates

Apart from the above described methods of preparing quantum gates using ordinary

‘hard’ RF pulses, there are more robust ways to synthesize any desired gate with high

fidelity. These kind of pulses are often called ‘strongly modulated pulses’ (SMPs).

SMPs are made up with suitable sequences of RF pulses whose amplitude, frequency,

and phase are made time-dependent in such a way that it produces the best sequence

of pulses with maximum robustness against RF inhomogeneity [57, 58, 59]. There are

few techniques available to find suitable SMPs for a given target operation [57, 58, 60].

Most of the techniques rely on the numerical optimization of the overall transformation
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by searching the available parameter space. Fortunato et al used the stochastic search

methods to construct SMPs [57], while Khaneja et al described the gradient ascent pulse

engineering (GRAPE) technique [60]. Designing an SMP for a given target operator re-

duces the numerical search problem to set the control parameters that maximizes the

fidelity [59]. In this thesis we have used SMPs in many cases in later chapters. Our

SMPs are synthesized by the stochastic search methods powered by genetic search al-

gorithm [58].

1.3.6 Measurement

NMR being an ensemble technique, the measurement of a quantity (say D) is done by

measuring its expectation value [18],

s(t) ∝
∑

k

pk(t)〈ψk(t)|D|ψk(t)〉

=
∑

k

pk(t)
∑

r,s

ck∗
r (t)ck

s(t)〈r|D|s〉

= tr{Dρ(t)}, (1.69)

where ρ is the density matrix and D is the detection operator. The free evolution of

spin system under Zeeman and coupling Hamiltonian is detected over a time scale. The

detection period is normally decided by the relaxation rate and it is recorded in the time

domain. By Fourier transform, the NMR spectra can be transformed into frequency

domain.

The quantum algorithms are designed such that the final output state is an eigenstate

in the computational basis [20]. In NMR, the computational basis is generally same as

Zeeman basis (product basis). The eigenstates of product basis (diagonal elements of

density matrix) correspond to the population distribution of a pseudopure state. For a

two spin system, the general population distribution can be written as,

ρ = c1I1
z + c2I2

z + c32I1
z I2

z , (1.70)
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1.3. NMR QIP

where c1, c2, c3 are real constants. However, the traceless density matrix ρ character-

ized by {c1, c2, c3} does not give rise to any signal, since it corresponds to longitudinal

magnetization. Applying a π/2 pulse results,

ρ′ = c1I1
x + c2I2

x + c32I1
x I2

x . (1.71)

From the above equation one can get the values of c1 and c2 but not c3 since the last

term does not contain any single quantum coherences. The signal received for the above

applied π/2 pulse will be,

s(t) = tr
{
e−iH tρ′eiH t

(
I1
+ + I2

+

)}
(1.72)

= tr
{
e−iH t

(
c1I1

x + c2I2
x

)
eiH t

(
I1
+ + I2

+

)}
(1.73)

where the c3 term won’t produce any signal since ‘multiple quantum’ under such a

evolution remains ‘multiple quantum’. Here
(
I1
+ + I2

+

)
represents the detection operator

andH is the evolution Hamiltonian as given in Eq. 1.62.

The complete procedure of characterizing a quantum state is through density matrix

tomography. By this method all the coherence orders can be measured by a series of

experiments. A detailed analysis of density matrix tomography is given in Appendix A

and B and its explicit application in practical situations is given in later part of Chapter

2.

1.3.7 Coherence order

Decoherence time in NMR quantum computers is generally related to the spin-spin

relaxation time (T2), although this is a simplification [47]. T2 generally represents the

decoherence time of a single spin coherences and the decoherence times for a multiqubit

systems can be quite different. However T2 gives a rough estimation of the decoherence

time of the system and in most of the cases it is of the order of multiple seconds in a

liquid state system. The decoherence time in NMR is one of the best among all the
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available QC techniques. The coherence time can be prolonged by applying specific

dynamical decoupling sequences. A thorough discussion is given in Chapter 4.

1.3.8 Limitations of NMR-QIP

There are multiple issues which posses serious challenge to NMR-QIP tasks.

1. Scalability of liquid state NMR is a big challenge that we need to be overcome.

Indeed, going beyond 10 qubits is a very difficult task. High resolution liquid

state NMR-QIP relies on weakly coupled systems. For a large order qubit sys-

tem (say 10), the J-coupling constants between two farthest spins are very small.

Hence the situation becomes very tricky where we need all the couplings to be in

account. Lower coupling constant means lack of well resolved spectra and more

time consuming ‘quantum gates’. This problem can partly be resolved by tak-

ing partially orienting spin systems in liquid crystal solvents and thus introducing

dipolar couplings along with J-couplings. Solid state NMR qubits has the poten-

tial for becoming the scalable qubits. However, at the moment solid state NMR

system produces complicated spectra and allows lesser controlling technique.

2. Lack of creating a ‘pure’ state is another limitation in NMR-QIP. In liquid state

NMR, spins are in a highly mixed initial state and preparation of a ‘pure’ state

needs extreme experimental conditions. However, one can prepare a ‘pseudopure’

state (PPS) which mimics a ‘pure’ state and effectively able to perform as a ‘pure’

state. PPS can be written as,

ρpps =
1

2N
(1 − ǫ)1 + ǫ |ψ〉〈ψ|, (1.74)

where ǫ denoting the purity factor and at high temperature limit it can be written

as,

ǫ ∼ Nhν

2NkT
, (1.75)
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ǫ is of the order of 10−5 for small number of qubits under normal conditions.

Hence it can be seen that the amount of magnetization (signal) decreases expo-

nentially with the number of qubits. However for 15-20 qubits, the magnetization

may not be enough to carry out QIP tasks. Many ideas come forward to tackle this

issue. Carrying out quantum computation in mixed state is one of them [61]. ‘One

clean qubit’ protocol needs only one ‘pure’ qubit having rest of them in ‘mixed’

state [62].

3. One of the major requirement to perform some algorithm is to create an entangled

state. Many believe that the power of quantum computers is largely depend on its

entangling phenomena. But it is proved by Braunstein et. al. that, small scale

liquid state system at normal conditions lacks any kind of ‘entanglement’. But

still NMR is the only technique which implements the Shor’s factoring algorithm

till date and this algorithm needs an entangling state. These two contradictory

aspects, led many people to think that ‘entanglement’ might not the necessary

condition to be fulfilled to perform QIP tasks. A new measure of calculating

non-classical correlations known as ‘discord’ is introduced recently [63, 64, 65].

4. Crowding of frequency space is another challenge as the number of qubits in-

creased. A weakly coupled spin system of N spin-1/2 nuclei gives rise to N2N−1

resonance lines. Thus, a 10 qubit system would have 10 sets of 512 lines. Resolv-

ing spectra is a daunting task for this kind of situation. This can partly be resolved

by synthesizing special molecules and using sophisticated spectrometers.

5. Decoherence can be a potential problem for large scale qubit and also for solid

state qubits. However, the relevant parameter is not the decoherence time itself

but the ratio of decoherence time to the gate-time.
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1.4 NMR - An ideal platform for studying quantum me-

chanical phenomena

Although ‘nature prefers quantum mechanics’ and it is the most fundamental physics,

capable of explaining almost everything starting from photosynthesis effect to blackhole

formation, it is rather a challenging job to ‘feel’ it in our daily life [66, 67, 68, 69,

70]. The lack of experimental proof of quantum mechanical phenomena in the early

days of its introduction led many eminent scientists commenting on its ‘utility’ and

‘completeness’ [71, 72]. Due to its very nature, even today it is highly challenging to

perform quantum mechanical experiments in laboratory [72].

The nuclear spins in an NMR provides an excellent test bed for performing various

kind of quantum mechanical experiments in a highly controlled way [73]. The principles

of an NMR can only be fully understood by quantum theory [1]. In return, NMR can

be used as a prototype quantum mechanical testbed. The outcome of the quantum me-

chanical probabilistic calculations mostly produces counter intuitive results which are

difficult to ‘digest’. Nonetheless, NMR has proven to be one of the leading architecture

in performing various quantum mechanical phenomena experimentally [74, 75].

In this thesis we have shown some important experimental implementations of quan-

tum mechanical phenomena which earlier thought to be intractable. There are various

examples where a quantum mechanical phenomenon does not have a classical analogue

and in this kind of situation it is rather difficult to ‘understand’ it [76]. For example,

quantum contextuality is a kind of quantum mechanical phenomenon which has been

proved by various quantum platform including NMR recently [77]. The experimental

results clearly shows quantum mechanically expected values which are counter intuitive

to our macrorealistic world [77].

Quantum objects behave differently than a macrorealistic object and there are certain

inequalities (e.g. Bell’s inequality) which can only be violated by quantum objects [78,

79]. To prove this kind of violation one needs to have an excellent quantum platform.

36



1.4. NMR - An ideal platform for studying quantum mechanical phenomena

In Chapter 5, we have shown the violation of Leggett-Garg inequality for nuclear spins

as predicted by quantum theory [75].

Bohr’s complementary principle is another famous description regarding quantum

mechanical objects. A consequence of the complementary principle is that one can

not observe both ‘wave’ and ‘particle’ nature of a quantum object simultaneously [80].

However, recently it was proposed that, by using certain special experimental setups,

one can simultaneously observe wave and particle nature of a quantum system [81].

This requires a reinterpretation of Bohr’s complementary principle. In Chapter 6, we

have shown a detailed experimental study of this new experimental proposal and our

results clearly suggest that there is indeed a necessity of revisiting Bohr’s principle [74].

Many new fields related to experimental quantum mechanics are coming up due to

the fact that now we have some excellent quantum platform which are capable of car-

rying out experimental work in a highly controlled way. Quantum chemistry and quan-

tum biology are such two emerging fields which are making lot of progresses [69, 82].

Understanding all these phenomena experimentally is vital in pursuit of understanding

quantum mechanics and its practical applications at large.
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Chapter 2

Density Matrix Tomography of Long

Lived Singlet States

The lifetime of nuclear singlet states can be much longer than any other non-equilibrium

states under suitable conditions. In section 2.2, we introduced long-lived singlet (LLS)

states and it’s preparation by standard methods. In section 2.3, we introduced a robust

density matrix tomography scheme which is particularly suited to study homonuclear

spin systems with small chemical shift differences. In section 2.4, we have applied

the tomography scheme to characterize the singlet states under various experimental

conditions, revealing interesting features of LLS. This chapter ends with a conclusion

given in section 2.5.

2.1 Introduction

The long lifetimes of nuclear spin coherence enables NMR spectroscopists to carry

out a variety of spin choreography [2, 18]. Nuclear spin coherences decay over time

mainly due to spin-spin relaxation and magnetic field inhomogeneity. Often, coherences

are converted into longitudinal nuclear spin orders to study slow dynamical processes.

But even the longitudinal spin orders decay toward equilibrium state due to spin-lattice
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Chapter 2. Density Matrix Tomography of Long Lived Singlet States

relaxation. Hence for a typical NMR experiment consisting of preparing and measuring

certain correlated spin states, the ultimate time barrier was assumed to be defined by the

spin-lattice relaxation time constant T1 [1].

It has recently been demonstrated that there exist certain ‘long-lived states’ which

decay slower than the T1 values of individual spins [83, 84, 85, 86, 87, 88, 89, 90]. The

long lived singlet states (LLS) has found wide range of applications ever since it was

discovered by Carravetta, Johannessen, and Levitt in 2004 [83]. Overcoming the T1

barrier has led to several exciting applications in studying slow molecular dynamics and

transport processes [91, 92], precise measurements of NMR interactions [93], and the

transport and storage of hyperpolarized nuclear spin orders [94, 95, 96, 97, 98, 99].

Bodenhausen and co-workers have demonstrated that the singlet spin-lock can also

be achieved by RF modulations which are used in heteronuclear spin-decoupling [100].

Detailed theoretical analysis of zero-field singlet states as well as singlet spin-lock have

already been provided by Levitt and co-workers [85, 101] and by Karthik et al [86].

Recently, long-lived states in multiple-spin systems are also being explored [94, 102].

2.2 Long-lived singlet states

Let us begin with a simplest model consisting of a pair of spin-1/2 nuclei. These two

spins are labeled as I1 and I2. The free-precession Hamiltonian of this system at labo-

ratory frame can be written as,

H = ω1I1
z + ω2I2

z + 2πJ12I1 · I2, (2.1)

where ω1 and ω2 are denoting the resonant frequency of the two spins respectively,

whereas J12 denotes the spin-spin coupling (J-coupling) between the two spins.

The quantum states of the system can always be expressed with the combination of

superposition of Zeeman states, namely |00〉, |01〉, |10〉, |11〉. Here |0〉 denotes the angu-

lar momentum of ~/2 along the magnetic field direction (‘up’ direction) and |1〉 denotes
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2.2. Long-lived singlet states

the angular momentum of −~/2 along the exact opposite direction of the magnetic field

(‘down’ direction). The four Zeeman product states together lead to one singlet state

and three triplet states,

|S 0〉 =
|01〉 − |10〉
√

2
,

|T+1〉 = |00〉,

|T0〉 =
|01〉 + |10〉
√

2
,

|T−1〉 = |11〉.

(2.2)

Singlet states have many different properties compared to its triplet counterparts. Two

most important properties are:

(a) Singlet state is anti-symmetric with respect to spin-exchange, whereas triplet

states are symmetric.

(b) Singlet state has a zero total nuclear spin angular momentum quantum number

[I2|S 0〉 = 0], whereas triplet states have non-zero total nuclear spin angular momentum

quantum number [I2|TM〉 = 2|TM〉].

In the case of magnetically equivalent nuclear pair [2], the singlet state and the triplet

states form an orthonormal eigenbasis of the internal Hamiltonian HJ = 2πJI1 · I2.

Singlet states can be prepared between two assymetric spins by imposing equivalence

condition (either by lifting the sample out of Zeeman field or by applying suitable RF

field acting as ‘spin-lock’). But, being a zero-quantum coherence, singlet state itself is

inaccessible to macroscopic observable directly. The traditional methods by Caravetta et

al [83], described the way to access the singlet states by breaking its magnetic symmetry

to convert into observable single quantum coherences. In this context we may note that,

protons in Hydrogen molecule or in water is already in magnetic equivalence, but there

is still no way to break the symmetry. However, recently it has been shown that the

symmetry in para-hydrogens can be broken by chemical reactions. This point has been

discussed later.
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Chapter 2. Density Matrix Tomography of Long Lived Singlet States

2.2.1 Why singlet state is long lived ?

Any quantum state, deviating from its thermal equilibrium conditions, will return to

its stable thermal equilibrium state through a mechanism known as relaxation. Hence

it is needless to say that in NMR any observable quantum state is in non-equilibrium

condition and that is the reason each state has its own lifetime. There are two major

factors behind relaxation, (i) spin-lattice relaxation (T1) and (ii) spin-spin relaxation

(T2). In majority of the cases T2 relaxation is much faster than T1. So the upper limit

of the nuclear spin memory is bounded by the T1 irrespective of any experimental safe

guard. However, there are some specialized cases where exceptions can be found, such

as in the case of ‘parahydrogen’, where the spin state isomers lived much longer than

T1 [103]. Though the major reasons behind T1, T2 relaxation depend on individual

molecular property, other controllable parameters such as magnetic field inhomogeneity,

temperature fluctuations, sample concentration etc. also contributes to the relaxation

mechanism.

Levitt and co-workers have successfully demonstrated [83, 84] that the singlet state

lifetime can be made many times longer than T1 for ‘ordinary’ molecules in solution

state of homonuclear system. Now we will discuss some physics behind this astonishing

long-lifetime of singlet states [104]. The Hamiltonian for a pair of spins in magnetically

equivalent environment is written as bellow:

H = ω0

(
I1
z + I2

z

)
+ 2πJI1 · I2, (2.3)

where, ω0 = γB0 denotes the Larmor frequency of both (equivalent) the spins and B0

is the applied static magnetic field. The matrix representation of the Hamiltonian in
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2.2. Long-lived singlet states

singlet-triplet basis can be written [104] as follows:

H =



|S 0〉 |T+1〉 |T0〉 |T−1〉

〈S 0| −3
2
πJ 0 0 0

〈T+1| 0 ω0 +
1
2
πJ 0 0

〈T0| 0 0 1
2
πJ 0

〈T−1| 0 0 0 −ω0 +
1
2
πJ



. (2.4)

From the earlier equation it is seen that at zero field (ω0 = 0), the triplet states are

degenerate with same energy eigenvalues (1
2
πJ). The energy difference between the

singlet and the triplet sates is 2πJ which is independent of the field. Since the Hamil-

tonian is diagonal, there will not be any mix-up of singlet state population with triplet

states’ populations [104]. However, triplet states among themselves equilibrate quickly.

Eventually there will be a singlet-triplet transition resulting in the re-establishment of

thermal equilibrium much slower than T1 relaxation time scale. The time constant for

singlet-triplet equilibration is loosely termed as ‘singlet lifetime’ (TS ) [104].

We already know that singlet states are ‘antisymmetric’ with respect to spin ex-

change, whereas triplet states are ‘symmetric’ with respect to the spin exchanges. The

major relaxation processes, including intra-molecular dipolar relaxation mechanism, are

‘symmetry preserving’ in nature. Hence these relaxation mechanisms will not affect the

singlet-triplet conversion which requires symmetry transformations. These conditions

make singlet states as a ‘special’ state which is immune to intra-molecular dipolar re-

laxation, though it is the major reason behind T1 relaxation [104].

Previous discussion shows how necessary it is to get a magnetically equivalent pair

of nuclear spins to realize the LLS. We need to create such a magnetically equivalent

condition to create and persist in singlet states, but to get signal out of singlet states we

need to break the symmetry. In the next paragraphs we will discuss about the techniques

for magnetically inequivalent pair of nuclear spins. The Hamiltonian for a pair of
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chemically inequivalent nuclei in present of Zeeman field can be written as follows:

H = ω1I1
z + ω2I2

z + 2πJI1 · I2

= ω0(1 + δ1)I1
z + ω0(1 + δ2)I2

z + 2πJI1 · I2, (2.5)

where δ1 and δ2 are the two chemical shifts of the two spins. The matrix representation

of this Hamiltonian in singlet-triplet basis can be expressed as [104]:

H =



|S 0〉 |T+1〉 |T0〉 |T−1〉

〈S 0| −3
2
πJ 0 1

2
ω0∆δ 0

〈T+1| 0 ω0(1 + 1
2

∑
δ) + 1

2
πJ 0 0

〈T0| 1
2
ω0∆δ 0 1

2
πJ 0

〈T−1| 0 0 0 −ω0(1 + 1
2

∑
δ) + 1

2
πJ



, (2.6)

where,
∑

δ = δ1 + δ2, ∆δ = δ1 − δ2. (2.7)

In this case, the matrix is not a diagonal matrix, hence the singlet and triplet states

are not the eigenstates of this Hamiltonian. The off-diagonal term in the matrix (1
2
ω0∆δ)

represents the possible conversion of singlet-triplet transition. This transition is directly

dependent on the chemical shift difference between the two spins. Hence, even if we are

able to prepare singlet states in an inequivalent pair of nuclei, it will not be long lived

as it has some dependency on the chemical shift differences. Still, it gives us a clue

to experience long-lived singlet states if somehow the chemical shift difference (∆δ) is

suppressed [104]. In the next subsection we will discuss this method of chemical shift

suppression in detail.

2.2.2 Singlet Preparation in NMR

Although, it is possible to prepare the singlet states, they do not produce any observable

NMR signal. Again, for magnetically inequivalent spin pairs, singlet state are not an
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eigenstates and hence can not be long-lived.

The key to LLS revelation is to switch the magnetic equivalence ‘on’ and ‘off’ by

some experimental manipulations [104]. There are at least two well established proce-

dures to do so - (i) field cycling and (ii) radiofrequency spin-locking [83, 84]. By field

cycling method, we can switch-off the magnetic field manually so that magnetic equiv-

alence is established and then once again switch-on the magnetic field to convert into

single quantum coherences. The other method (radiofrequency spin-locking) is more

practical with least manual work. We will discuss this method in detail.

Getting pure singlet states may be seen as a three step procedure:

(i) Building singlet population.

(ii) Applying spin-lock.

(iii) Singlet detection.

Building singlet population

With the application of suitable rf pulses and delays it is possible to create a density

matrix operator which represents a part of singlet states in it. The density matrix for a

singlet population can be represented by the Cartesian product operator formalism as

follows:

|S 0〉〈S 0| =
1

2
(|01〉 − |10〉)(〈01| − 〈10|)

=
1

2
(|01〉〈01| − |10〉〈01| − |01〉〈10| + |10〉〈10|)

=
1

2

(
I1
|0〉I

2
|1〉 − I1

+I2
− − I1

−I2
+ + I1

|1〉I
2
|0〉
)

= −1

2

(
I1
+I2
− + I1

−I2
+

)
− I1

z I2
z +

1

4
1. (2.8)

The earlier equation shows that singlet populations can be constructed from zero

quantum coherences and longitudinal magnetization of both the spins. Hence a little

trick with the excitation of zero quantum coherences with appropriate phase can leads

us to the singlet populations [104]. The following pulse sequence is found [83] suitable
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to create singlet state populations starting from equilibrium condition.

900 − τ1 − 1800 − (τ1 + τ2) − 9090 − τ3, (2.9)

where τ1 = 1/4J, τ2 = 1/2∆ν and τ3 = 1/4∆ν. J and ν are denoting the spin-spin

coupling constant and chemical shift difference in Hz respectively. The ‘offset’ should

be placed at the middle of the two spins for simplification. The above written pulse

sequence works as follows :

Initial 900 pulse brings the longitudinal magnetization to transverse plane.

I1
z + I2

z

900

−−−−−→ −I1
y − I2

y ,

followed by the spin-echo with only J evolution for the duration of 1/2J :

−I1
y − I2

y

τ1−1800−τ1

−−−−−−−−→ 2I1
x I2

z + 2I1
z I2

x .

During the subsequent τ2 interval, there will be evolution under the isotropic chemical

shifts. This delay (τ2 = 1/2∆ν) is relatively shorter and can be ignored for any signifi-

cant J-evolution during this time. The product operator formalism goes as follows:

2I1
x I2

z + 2I1
z I2

x

τ2

−−−−−→ 2I1
y I2

z − 2I1
z I2

y .

Now a 90 degree y pulse will bring the density operator into zero quantum coherences.

2I1
y I2

z − 2I1
z I2

y

9090

−−−−−→ 2I1
y I2

x − 2I1
x I2

y = −i(I1
+I2
− − I1

−I2
+).

A further chemical shift evolution required for a phase corrected zero quantum coher-

ence.

2I1
y I2

x − 2I1
x I2

y

τ3

−−−−−→ −2I1
x I2

x − 2I1
y I2

y = −(I1
+I2
− + I1

−I2
+).

This may be rewritten as follows:

−I1
+I2
− − I1

−I2
+ = −|01〉〈10| − |10〉〈01|

= |S 0〉〈S 0| − |T0〉〈T0|.
(2.10)
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Hence from the above calculations it is seen that the resulting density operator is in

fact combination of the singlet state and one of the triplet states’ population. Now our

aim is to filter out the singlet state from the singlet-triplet population distribution. This

can be done by radio frequency spin locking as discussed below in detail.

Radio frequency spin-lock

A spin-lock is a low power on-resonant continuous radio frequency pulse along the spin

magnetization in transverse plane. This low frequency rf pulse keeps the magnetization

from precessing in transverse plane. Hence this pulse can be used as a possible way

to suppress the chemical shift differences. It is popularly known as a ‘spin-lock’ as it

arrests the spin precession.

The duration of the spin-lock may last for several minutes, triggering the possibility

of severe probe damage. Hence one must be careful to select the rf spin-lock power and

duration. There are two basic kinds of spin-lock. (i) Unmodulated spin-lock, and (ii)

modulated spin-lock.

(i) Unmodulated rf field is commonly known as ‘continuous wave’ (CW) irradia-

tion. CW irradiation has constant amplitude and has no phase modulation over time.

CW has shorter bandwidth and hence not useful for large chemical shift differences.

Theoretically it is possible to apply more power for higher chemical shift difference

systems, but that may cause serious damage to rf probes.

(ii) Modulated lock can be realized by using CPD (composite pulse decoupling)

pulses. As the name suggests, it is a phase modulated composite pulse, routinely used

as a decoupling pulse sequence. In many cases it can outperform CW pulses as a spin-

lock sequence. The bandwidth of CPD pulses are much larger compared to CW pulses

and hence useful for larger chemical shift difference singlets. Commonly used CPD

pulses are WALTZ-16, GARP etc.

During spin-lock the three triplet states’ populations equilibrate rapidly under nor-

mal relaxation procedure, whereas singlet population being itself immune to rf spin-
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lock, decays much slowly. After the fast decay of triplet states, singlet state achieve

its maximum purity (singlet correlation may reach upto 0.997). Eventually singlet state

also decays despite rf spin-lock shielding, but with much slower rate than any other

states.

Now here we can recap the fact that singlet state itself is a zero quantum coherences

and can not be directly accessible. Hence we must transfer the zero-quantum coherences

to a observable single-quantum coherences to detect it. The following section describes

the method in detail.

It is worth noting at this point that the spin-lock method can be seen as a superior

‘twirling’ method for the purification scheme [105] as mentioned above.

Singlet detection

The simplest method to detect singlet is to evolve it for a 1/(4∆ν) chemical shift evolu-

tion and followed by a strong 90◦ pulse. The transformation of density matrix operator

are as follows:

|S 0〉〈S 0| = −1
2
(I1
+I2
− + I1

−I2
+) − I1

z I2
z +

1
4
1

↓τ3

− 1
2i (I

1
+I2
− − I1

−I2
+) − I1

z I2
z +

1
4
1.

This can also be written in terms of Cartesian product operator formalism:

− 1
2i (I

1
+I2
− − I1

−I2
+) − I1

z I2
z +

1
4
1 = 1

2
(2I1

x I2
y + I1

y I2
x ) − I1

z I2
z +

1
4
1.

Now a simple 900 pulse brings the magnetization into observable single quantum

coherence.

1

2
(2I1

x I2
y + I1

y I2
x ) − I1

z I2
z +

1

4
1 900
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These shows the antiphase transverse magnetization for the spin pair. The character-

istic spectra for this kind of antiphase magnetization shows a typical “up-down-down-

up” pattern in the NMR peaks.

Here it can be mentioned that a similar technique is employed in the case of NMR

detection of parahydrogens. After chemically implanting the two hydrogen atoms of

a parahydrogen on to two distinct chemical sites of a molecule, a selective 90y pulse

prepares the detectable antiphase magnetization [106].

However one might notice that this way of detecting singlet states has less qualitative

information. A better quantitative study can be carried out through tomographic method.

In this context we have developed a robust density matrix tomographic technique which

is particularly suitable for this problem. In the following section we will discuss the

‘density matrix tomography’ scheme in detail. Later we will apply this tomography

sequence on singlets for its characterization in various experimental conditions.

2.3 Density Matrix Tomography

The delicate nature of ‘quantum states’ makes it vulnerable to macroscopic-world. The

inevitable last step for most of the quantum information processing and quantum simula-

tion is the measurement of derived quantum states. In the case of an ensemble quantum

system, the states are presented by density matrix. In order to measure these density ma-

trices, many sophisticated schemes have been envisaged. ‘Density matrix tomography’

technique has proven its utility for mapping any quantum states with high accuracy. It

enables us to measure all the elements of a general density matrix at any time point. The

knowledge of the full density matrix of any quantum state is important for many reason

e.g. (i) one can find the error in the experiment, since we already have the knowledge

about theoretical density matrix. (ii) Measuring density matrix at different time points

of a dynamic quantum algorithm gives the pattern of population and coherence trans-

fers. In the following section we have presented a robust tomographic scheme in the

context of NMR [108].
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Chapter 2. Density Matrix Tomography of Long Lived Singlet States

Earlier schemes of tomography were designed in the context of quantum information

processing [109, 110]. They required spin-selective rotations and transition selective in-

tegrations of spectra. In homonuclear spin systems, particularly in 1H spin systems,

it is hard to design high fidelity spin-selective rotations owing to the small differences

in chemical shifts (on the other hand, the heteronuclear singlet state is predicted to be

short-lived [101]). These spin selective pulses generally tend to be long in duration,

still introduce significant errors. Integration of individual transitions is also problem-

atic since the transitions, particularly those with mixed line shapes corresponding to a

general density matrix, may severely overlap. Tomography based on two-dimensional

NMR spectroscopy had also been proposed [111]. This is a general method in the sense

only one 2D experiment is needed to be carried out irrespective of the size of the spin

system. However, the 2D method is time consuming. Also since it relies on fitting the

2D cross-sections (along the indirect dimension) to mixed Lorentzian, the accuracy is

limited by the quality of the fit that is achieved. In the following we present a robust

density matrix tomography for a homonuclear weakly coupled two spins-1/2 system

which needs only non-selective RF pulses and integrations over each spin instead of

individual transitions [108].

The general traceless deviation density matrix consists of 15 independent real num-

bers:

ρ =



p0 r3 + is3 r1 + is1 r5 + is5

p1 r6 + is6 r2 + is2

p2 r4 + is4

−∑2
i=0 pi



. (2.12)

Here real elements pk are populations and the complex elements rk + isk correspond to

single (k = 1 to 4), double (k = 5), and zero (k = 6) quantum coherences. The elements

below the diagonal are determined by the Hermitian condition ρ jk = ρ∗k j. Since only

single quantum coherences are directly observable, four combinations R1 ≔ (r1 + r2),
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2.3. Density Matrix Tomography

S 1 ≔ (s1 + s2), R2 ≔ (r3 + r4), and S 2 ≔ (s3 + s4) can be obtained from the integration

of complex line shapes of spins 1 and 2 respectively. Now consider an RF sequence

with propagator U, that transforms the original density matrix ρ into ρ′ = UρU†. Single

quantum coherences of ρ′ will lead to different linear combinations of various elements

in ρ. Thus, by applying different propagators on ρ, we can measure the values of differ-

ent linear combinations of various elements of ρ. The real and imaginary values of the

integration of jth spin in kth experiment will be labeled as Rk
j and S k

j respectively. Fol-

lowing six one-dimensional NMR experiments were found to be sufficient to tomograph

a two-spin density matrix:

1. 1
2. 90x

3. 1
4J
· 180x · 1

4J

4. 45x
1

4J · 180x · 1
4J

5. 45y
1

4J · 180x · 1
4J

6. 1
2∆ν
· 45y

1
4J · 180x · 1

4J

Here 1 is the identity i.e., direct observation without applying any extra pulses. ∆ν and

J are the chemical shift difference and the scalar coupling respectively (both in Hz).

The offset is assumed to be at the center of the two doublets and the RF amplitudes are

assumed to be much stronger than ∆ν. By calculating the propagator for each of these

experiments, 24 linear equations are achieved. Solving these equations, gives the all

unknown parameters of the density matrix. A detailed analysis of the density matrix

tomography scheme is given in Appendix A.

Now we will use this tomographic scheme on long-lived singlet states [108].
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Chapter 2. Density Matrix Tomography of Long Lived Singlet States

Figure 2.1: Part of the 1H spectrum of 5-bromothiophene-2-carbaldehyde (inset),

displaying the doublets corresponding to the two 1H spins used to study the singlet

state. The sample was dissolved in dimethyl sulphoxide-D6 and all the experiments

are carried out at 300 K. The difference ∆ν in chemical shifts is 192.04 Hz and the

scalar coupling J is 4.02 Hz. Scalar coupling to aldehyde proton was too weak to be

observed. The spin lattice relaxation time constants (T1) for the two spins obtained

from inversion recovery experiment are 5.2 s and 6.2 s respectively for the spins 1 and

2.

2.4 Singlet State Characterization

The sample 5-bromothiophene-2-carbaldehyde was dissolved in dimethyl sulphoxide-

D6 (DMSO). The two protons of the solute molecule differ in the Larmor frequency by

∆ν = 192.04 Hz and have an J-coupling constant of 4.02 Hz. All the experiments was

carried out in a Bruker 500 MHz NMR spectromter at the room temperature of 300 K.

2.4.1 Observing through antiphase magnetization

The singlet state was prepared by the RF spin-lock method and converted into antiphase

magnetizations as described by Carravetta and Levitt [84] using the pulse sequence

shown in Figure 2.2a. The RF spin-lock was achieved by either CW irradiation or by

WALTZ-16 modulations. The RF offset was set to the center of the two chemical shifts

in these experiments. The total magnitude of the antiphase magnetizations decays at

different rates depending on the spin-lock conditions (Figures 2.3 and 2.4). The decay
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Tomography
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Figure 2.2: The pulse sequences for the preparation of singlet states and detection

via (a) converting to antiphase single quantum magnetization and (b) tomography of

singlet states. Here τ1 = 1/(4J), τ2 = 1/(4J) + 1/(2∆ν), and τ3 = 1/(4∆ν), with ∆ν

and J being the chemical shift difference (in Hz) and the scalar coupling respectively.

τ4 is the duration of spin-lock.

constants with CW spin-lock are 16.6 s (Figure 2.3a) and 13.4 s (Figure 2.3h) respec-

tively at RF amplitudes of 2 kHz and 500 Hz. Under WALTZ-16 spin-lock, the decay

constants are slightly smaller, 16.2 s (Figure 2.4a) and 12.8 s (Figure 2.4h) respectively

at 2 kHz and 500 Hz. Nevertheless, these values are about 2 to 3 times the T1 values of

the individual spins implying the preparation of long-lived singlet state.

In this scheme, the integrated magnitude spectrum is usually monitored as a func-

tion of spin-lock time. The contributions from the spurious coherences may not be

eliminated in this process. Further, the double quantum coherences, if any, are not ob-

served at all. Our interest is to quantify the singlet content in the instantaneous state ρ(t)

during the spin-lock. One might guess that the singlet content is maximum in the begin-

ning and exponentially decays with the spin-lock time. Further, one may also guess that

CW spin-lock is superior to WALTZ-16 spin-lock at all timescales. But the following

tomography results provide a different picture [108].
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Chapter 2. Density Matrix Tomography of Long Lived Singlet States

2.4.2 Tomography under varying spin-lock duration

The pulse sequence for the tomography of singlet states is shown in Figure 2.2b. The

density matrix of the singlet state is |S 0〉〈S 0| = 1
4
1+ρs, with the traceless part ρs = −I1·I2

being the product of spin angular momentum operators of spins 1 and 2. The correlation

of the theoretical singlet state operator ρs in the instantaneous experimental density

matrix ρ(t) (obtained from tomography),

〈ρs〉(t) =
trace

[
ρ(t) · ρs

]
√

trace
[
ρ(t)2

] · trace
[
ρ2

s

] , (2.13)

gives a measure of singlet content in ρ(t). The normalization used in the above ex-

pression disregards the attenuation of ρ(t) itself. Similar definitions can be applied to

calculate the correlations 〈I1
x〉, 〈|T0〉〈T0|〉, etc. We monitored the correlations as a func-

tion of spin-lock time τ4 from 0 s to 30 s in steps of 0.5 s under different spin-lock

conditions using the sequence shown in Figure 2.2b. The results are shown in Figures

2.3 and 2.4. 3D bar plots of full density matrices at two particular spin-lock conditions

are shown in Figure 2.5.

The Figures 2.3b, 2.3i, 2.4b, and 2.4i indicate correlation 〈ρs〉 as a function of spin-

lock time under various spin-lock conditions. In all the cases, the initial correlation is

about 0.8. This is expected, since the initial state prepared by the pulse sequences in

Figure 2.2 just before the spin-lock is actually

ρ(0) = |S 0〉〈S 0| − |T0〉〈T0|. (2.14)

With CW spin-lock at a high RF amplitude of 2 kHz (Figure 2.3b - 2.3g), the singlet

correlation 〈ρs〉 quickly reaches to 0.95 in 0.5 s of spin-lock time (Figure 2.3b). Most

of the spurious coherences and the residual longitudinal magnetizations created during

the preparation are destroyed by the RF inhomogeneity during spin-lock. Figures 2.3g

and 2.3n reveal that the initial correlation 〈|T0〉〈T0|〉(0) is −0.7 ∼ 1/
√

2 which is just

expected . Within 0.5 s, the |T0〉〈T0| content is rapidly reduced. But complete equili-
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Figure 2.3: Data characterizing the singlet state under CW spin-lock at an RF ampli-

tude of 2 kHz (a to g) and of 500 Hz (h to n). The spin-lock duration τ4 was varied

from 0 s to 30 s in steps of 0.5 s in each case. Dots in (a) and (h) correspond to the

total magnitude of antiphase magnetization obtained from the pulse sequence in Figure

2.2a. Singlet decay constant Ts was obtained by using an exponential fit (smooth lines

in (a) and (h)). During each fit, first two data points were omitted in view of strong

spurious coherences created by the imperfections in the pulses. Remaining graphs are

the results obtained from tomography using the pulse sequence shown in Figure 2.2b.

They correspond to the correlations: 〈ρs〉 (b and i), 〈Ip
x 〉 (c and j), 〈Ip

y 〉 (d and k), 〈Ip
z 〉

(e and l), 〈I1
+I2
+ + I1

−I2
−〉 (f and m), and cq = 〈|Tq〉〈Tq|〉 (g and n), with spin numbers

p = {1, 2} and triplet subscripts q = {−1, 0,+1}.55
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Figure 2.4: Similar data as in Figure 2.3, but under WALTZ-16 spin-lock at an RF

amplitude of 2 kHz (a to g) and of 500 Hz (h to n). The graphs correspond to total

magnitude of antiphase magnetization (a and h), 〈ρs〉 (b and i), 〈Ip
x 〉 (c and j), 〈Ip

y 〉 (d

and k), 〈Ip
z 〉 (e and l), 〈I1

+I2
+ + I1

−I2
−〉 (f and m), and cq = 〈|Tq〉〈Tq|〉 (g and n), with spin

numbers p = {1, 2} and triplet subscripts q = {−1, 0,+1}.
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bration of triplet levels takes about 5 s. Interestingly, there is a sudden build-up and

gradual fall of double quantum coherence as seen in Figures 2.3f and Figures 2.3m. As

the singlet state gets purified, 〈ρs〉 exceeds 0.99 in 6 seconds and reaches a maximum

value of 0.994 at 9.5 s. After about 18 s, 〈ρs〉 starts decaying below 0.99, probably due

to the gradual conversion of singlet state to other magnetization modes via the triplet

states by relaxation mechanisms. On the other hand, there is a gradual build up of y-

and z-magnetizations (Figures 2.3d and 2.3e) in a similar way as that of a steady state

experiment [1, 113]. Nevertheless, the singlet correlation remained above 0.95 till 30

s. The x-magnetization and the double quantum coherence (Figures 2.3c and 2.3f) re-

mained small during the period of high correlation. After the initial differences, the

triplet states equilibrate in about 6s, and remain steady then onwards (Figures 2.3g and

2.3n).

With CW spin-lock at 500 Hz , the singlet correlation reaches only up to 0.94 again

at about 9 s and then steadily drops to 0.71 at 30 s (Figure 2.3i). The increased buildup

of x-, y-, and z- magnetizations with the reduction of the spin-lock power can also be

noticed (Figure 2.3j - 2.3l).

Under WALTZ-16 spin-lock (Figure 2.4), all the graphs are characterized by oscil-

lations that are either in-phase or anti-phase. The origin of oscillations probably lies in

the cyclic nature of WALTZ-16 modulation.

At an RF amplitude of 2 kHz, the maximum singlet correlation of 0.997 was reached

at 15 s(Figure 2.4b). The 3D bar plot of the density matrix corresponding to this case

is shown in Figure 2.5b. More interestingly, 〈ρs〉 peaks seem to maintain above 0.99

till τ4 = 28.5 s, i.e., about 10 s longer than the CW case! Thus, for certain values of

spin-lock durations, WALTZ-16 provides purer singlet states than that of CW.

The singlet correlation under WALTZ-16 spin-lock at 500 Hz displays stronger os-

cillations (Figure 2.4i). Despite the oscillations, the singlet correlation reaches as high

as 0.96 at 13.5 s. Again it can be noticed that good singlet content is held for longer

periods by WALTZ-16 than the CW of same amplitude. For example at 500 Hz RF
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Figure 2.5: Bar plots showing (a) traceless part ρs of the theoretical singlet state

density matrix, (b) experimental state after 15 s of WALTZ-16 spin-lock at an RF am-

plitude of 2 kHz, and (c) experimental state after 14 s of WALTZ-16 spin-lock at an

RF amplitude of 500 Hz. The upper and lower traces correspond to the real and imag-

inary parts respectively. The singlet correlations in (b) and (c) are respectively 0.997

and 0.547. The density matrix in (b) shows significant decay, but still has high singlet

content! The real part of the density matrix in (c) shows significant double quantum

artifact.

amplitude, WALTZ-16 gives a singlet correlation of 0.94 at τ4 = 27 s, while that for

CW it is only 0.79.

2.4.3 Offset dependence

Theoretical and numerical investigations on the offset dependence of singlet spin-lock

has been have been carried out by Karthik and Bodenhausen [86] and by Pileio and

Levitt [101]. Robustness of various modulation schemes with regard to offset of sin-

glet spin-lock have been demonstrated by Bodenhausen and co-workers [100]. Here we

probe the offset dependence of singlet evolution using tomography [108]. Figure 2.6
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Figure 2.6: Correlations calculated using the density matrix tomography of singlet

states prepared with different spin-lock conditions: [1st column] CW spin-lock at 2

kHz for 15s (a to f), [2nd column] CW spin-lock at 2 kHz for 28.5s (g to l), [3rd

column] WALTZ-16 spin-lock at 2 kHz for 15s (m to r), and, [4th column] WALTZ-16

spin-lock at 2 kHz for 28.5s (s to x). In each case, the horizontal axis indicates the

RF offset ∆ν during the spin-lock. The offset is measured from the center of the two

chemical shifts. The rows correspond to : 〈ρs〉 (b and i), 〈Ip
x 〉 (c and j), 〈Ip

y 〉 (d and

k), 〈Ip
z 〉 (e and l), 〈I1

+I2
+ + I1

−I2
−〉 (f and m), and cq = 〈|Tq〉〈Tq|〉 (g and n), where spin

numbers p = {1 (pluses), 2 (×’s)} and triplet subscripts q = {−1 (dots), 0 (circles), +1

(pluses)

.
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shows the experimental data obtained from a series of singlet state tomography exper-

iments, each time varying the RF offset of the spin-lock. The RF offset was measured

from the center of the two chemical shifts. Again the experiments were carried out

under the following spin-lock conditions:

(i) CW for 15s (Figure 2.6a-2.6f),

(ii) CW for 28.5s (Figure 2.6g-2.6l),

(iii) WALTZ-16 for 15s (Figure 2.6m-2.6r), and

(iv) WALTZ-16 for 28.5s (Figure 2.6s-2.6x).

The graphs indicate that the WALTZ-16 scheme is far superior compared to CW in

preserving the singlet correlation at high RF offsets. The singlet correlations with 2 kHz

CW drops below 0.5 for an offset of 50 Hz. However, WALTZ-16 at 2 kHz amplitude

maintains a high correlation of 0.97 at 28.5s, even with an offset of 2.1 kHz. In the case

of CW spin-lock, rapid build up of y-magnetizations can be noticed with the increase of

the RF offset [108].

2.5 Long lived singlet states in multi-spin systems

2.5.1 Long lived singlet states in a 3-spin system

In this subsection we will describe the methods for preparing long lived singlet states

in a 3-spin system (AMX). We have extended the procedure of the 2-spin system as

described in the previous sections. The singlet population distribution between any two

spins can be prepared in presence of a third spin. The pulse sequence relies on the

refocusing of the unnecessary couplings. The NMR pulse sequence is shown in Fig.

2.7. In this particular example we have prepared the singlet population between spin-1

and spin-2. Singlet population is accessed by transferring the magnetization into spin-3.

A small power CW pulse of RF amplitude of 2 KHz is used for the spin-locking purpose.

60



2.5. Long lived singlet states in multi-spin systems

Figure 2.7: Pulse sequence for the creation of long lived singlet states in a 3 spin

system (AMX). (a) Anti-phase singlet magnetization to be accessed via spin-3, (b)

qualitative measure of singlet correlation is done by state tomography. τ1 and τ2 are

optimized delays in a way that both J13, J23 get a π/2 J- evolution, τ3 =
1

4∆ν12
, and τ4

is the spin-lock duration.

The quantitative measure of singlet magnetization is done by the pulse sequence shown

in Fig. 2.7a. The extensive tomographic method of accessing singlet correlation has

also been performed. The experimental results are shown in Fig. 2.8. The decay of

antiphase magnetization and tomographic correlation is shown in Fig. 2.8e. The T1

time for all the three spins are roughly 6 sec, while the LLS time (TLLS ) is found to be

17.9 sec. Hence the ratio TLLS /T1 ≈ 3. The nature of this plot is similar to the spin-2

system and the reason for this is given in previous section. The 3-spin density matrix

tomography scheme is described in detail in Appendix B.

2.5.2 Long lived singlet states in a 4-spin system

We have prepared two pair of singlet states in a 4 spin AMXY system. The exact pulse

sequence is shown in Fig. 2.9. We were able to prepare simultaneous singlet states in

between spin-1 and spin-2 and also in between spin-3 and spin-4. The J-evolution delays

(τ1 and τ2) are calculated in an optimized way. The traditional method of accessing

singlet states is by converting it into single quantum coherences. The antiphase spectra
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Figure 2.8: Experimental results of 3-spin LLS. (a) Acrylonitrile dissolved in CDCl3,

where 3 protons acting as a three spin homonuclear system. (b) The 1H reference

spectra of Acrylonitrile in a 500 MHz spectrometer. (c) and (d) showing the antiphase

spectra of spin-3 after a spin lock duration of 5 s and 40 s respectively. (e) The solid

curve showing the antiphase magnetization decay and dotted curve showing the singlet

correlations obtained from tomography over a duration of spin-lock (τ4) time.
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Figure 2.9: Pulse sequence for the creation of long lived singlet states in a 4 spin

system (AMXY). (a) Singlet states accessed by transferring it into anti-phase magneti-

zation, (b) qualitative measure of singlet correlation is done by state tomography. τ1,

τ2 are optimized delays and τ4 is the spin-lock duration. 90ph denoting a optimized

phase π/2 non-selective pulse.

of aspirin are shown in Fig. 2.10c. We have done density matrix tomography to calculate

the correlation at various spin-lock duration. A small power CW pulse of RF amplitude

of 2 KHz is used for the spin-locking purpose. The nature of antiphase decay and singlet

correlation profile matches with the previous cases (2-spin and 3-spin) and hence got the

similar explanation. We have found T1 ≈ 3s and TLLS ≈ 6s, hence the ratio TLLS /T1 ≈ 2.

This also proves the long lived nature of the prepared singlet states. One should note

that the selection among the pair in which the singlet has been prepared is completely

depends on the pulse sequence. One can easily find out a different pulse sequence where

the singlet pairs are between 2 & 3 and 1 & 4

2.6 Conclusions

Study of singlet state is important not only because of the interesting Physics that makes

it long-lived, but also because of its potential for a number of applications. We have
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Figure 2.10: Experimental results of 4-spin LLS. (a) Aspirin dissolved in CD3OD,

where 4 protons acting as a four spin homonuclear system. (b) The chemical shifts and

J-coupling constants in Hz are shown in a table format. (c) The 1H reference spectra

of Aspirin is at the bottom trace. The antiphase spectra are shown in upper trace after

a spin lock duration of 3 s and 10 s respectively. (d) The solid curve showing the

antiphase magnetization decay and dotted curve showing the 1-2 singlet correlations

obtained from tomography over a duration of spin-lock (τ4) time.
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studied the singlet state directly and quantitatively using density matrix tomography.

A new set of tomography sequences have been introduced for this purpose. The den-

sity matrix tomography provides a tool not only for characterizing various spin-lock

schemes but also for understanding the spin dynamics during the spin-lock period.

The singlet state is preserved with CW spin-lock as well as with WALTZ-16 spin-

lock at two different RF amplitudes: 2 kHz and 500 Hz. The results indicate that at high

RF amplitudes, both CW and WALTZ-16 achieve high singlet content. An important

feature of singlet state is that it gets purified by itself during the spin-lock, simply be-

cause of its longer life time compared to the spurious coherences. There exist optimum

spin-lock values at which the singlet correlations are maximum. While WALTZ-16

shows significant oscillations in the singlet purity, for certain intervals of spin-lock it

gives better performance than CW and holds the singlet content for longer intervals of

time. The dependence of correlations with the RF offset during the spin-lock are also

studied under both CW and WALTZ-16 schemes. It is found that WALTZ-16 is far

superior in preserving the singlet state at large RF offsets.
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Chapter 3

Preparation of Pseudopure States

Using Long Lived Singlet States

An introduction to pseudopure states (PPS) is given in section 3.1. In section 3.2, a gen-

eral review of various methods proposed for preparation of pseudopure states in NMR

have been described. In section 3.3, a new method for creating pseudopure states from

long-lived singlet states is presented. In this context, we have developed a robust, scal-

able quantum circuit for creating PPS for any number of qubits. Experimental results

are shown and discussed for multi-qubit systems in the later part of the section 3.3.

3.1 Introduction

3.1.1 A pure state and a mixed state

A ‘pure state’ is a quantum state which can be represented by a single ket |i〉. A quantum

state which can not be represented by a single ket format in any of the basis is termed as

‘mixed state’. In a mixed state system, we are only able to say that the system has certain

probabilities (say p1, p2... ) of being in different states (say |1〉, |2〉... ). For example,

let us consider a two level system of energy difference ∆E of about 2eV (e.g. electronic

levels of sodium). At room temperature of 300 K, the ratio between ground and excited
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states population is of the order of 1 : e−∆E/kT ∼ 1 : 10−34. For all practical purposes,

we can assume that such a state exists in a pure ground state at thermal equilibrium. In

another case, if we consider a much shorter energy gap difference of the order of 2µeV

(such as the case of nuclear spin’s energy gap for hydrogen at 10T external magnetic

field), then the populations of the two states are roughly in the order of 1 : 0.9999. The

later case described a perfect mixed state condition.

While a pure classical state is represented by a single moving point in phase space

having definite spatial (qi, ...q f ) and momentum coordinates (pi, ...p f ), a classical mixed

state is described by a non-negative density function ρ(qi, ...q f , pi, ...p f ), such that the

probability that a system is found in the interval dqi...dp f at time t is ρdqi...dp f . The

‘quantum analog’ of the classical pure state is represented by a single state vector, while

the quantum analog of a classical mixed state is represented by the density matrix [114].

An ensemble is in an idealized pure state if all of its members are in state |ψ(t)〉. The

density operator of a pure state |ψ(t)〉 = ∑
i ci(t)|i〉 is given by,

ρpure = |ψ〉〈ψ| =
∑

i

∑

j

ci(t)c
∗
j(t)|i〉〈 j|. (3.1)

A pure state density matrix, P|n〉 = |n〉〈n| is a projection operator since,

P|n〉
∑

i

ci|i〉 = cn|n〉, and
∑

n

P|n〉 = 1. (3.2)

Since all the subsystems behave identically, one has complete knowledge of all parts of

the system. Pure states are also known as the ‘states of maximum information’. A pure

state has two basic properties :

ρ2
pure = ρ, and tr(ρ2

pure) = 1. (3.3)
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Figure 3.1: Bloch sphere: All the surface points represent a pure states, any non-

surface points are mixed states. The origin corresponds the maximally mixed state.

The density matrix of an ensemble in a mixed state is obtained by ensemble average :

ρmix =
∑

i

∑

j

ci(t)c∗j(t)|i〉〈 j| =
∑

k

pk|ψk〉〈ψk |, (3.4)

where pk denotes the probability of the system of being in state ψk with
∑

k pk = 1 and

the bar denotes the ensemble average. ρmix is not a projection operator and is also known

as state with ‘less than maximum information’. It holds the property of :

ρ2
mix , ρ, and tr(ρ2

mix) < 1. (3.5)

Another way to represent a wave function and hence a density matrix is through the

‘Bloch sphere’. A pure state |ψ〉 is a geometrical point on the Bloch surface. For a single

qubit, |ψ〉 can be written as :

|ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉, (3.6)

with 0 ≤ θ ≤ π and 0 ≤ φ < 2π. Here |0〉 and |1〉 are two orthonormal basis vectors of

the two-level system (single qubit). Any arbitrary density matrix ρ can be expanded in
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terms of Pauli operators σi:

ρ =
1

2
(1 + ~r.~σ), (3.7)

where ~r is called as Bloch vector, the radius vector of the state from the origin. The

eigenvalues of ρ are 1
2
(1 ± |~r|). As density operator must be positive, we get |~r| ≤ 1. The

purity of the density matrix can be measured by squaring it,

tr(ρ2) =tr

(
1

4
(1 + 2~r.~σ + (~r.~σ)(~r.~σ))

)

=
1

2
(1 + |~r|2).

(3.8)

For a pure state tr(ρ2) = 1, i.e., |~r| = 1 and for a mixed state |~r| < 1. Hence a pure state

represents a point on the surface of a Bloch sphere, whereas any point other than on the

surface represents a mixed state. The origin of the Bloch sphere (|~r| = 0) represents the

maximally mixed state with tr(ρ2) = 1
2
.

3.1.2 Necessity of Pure states in QIP

In order to carrying out information processing, a quantum register must satisfy a set of

criteria laid out by DiVincenzo [126]. An important criterion is the ability to precisely

initialize the register to a desired ket of the computational basis. It has been shown that

highly mixed state may not be used to create an entanglement [115] in QIP. Again, a

mixed input state leads to a mixed output state which are generally difficult for analysis

[30]. In one particular case it can be show that a mixed state input gives wrong out-

put results. Grover search algorithm for a two-qubit system starting from a pure state

gives the desired answer with full probability. While starting from a mixed state, in-

stead of getting a definite state, one gets a result with probabilities of different states.

On the otherhand, we can find some algorithms which have no requirement of starting

from pure initial state, e.g. Deutsch-Josza algorithm [116]. Deutsch-Josza algorithm

decides whether the function is ‘balanced’ or ‘constant’ in one iteration. If the initial
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Figure 3.2: Simulations of Grover’s search algorithm for a two qubit system starting

from pure-state and mixed-state condition. The state being selectively flipped is |01〉.
(a) Pure input state |00〉〈00|, (b) output state |10〉〈10| with full probability, (c) a random

mixed state population input, (d) the answer of the Grover’s search algorithm with no

definite result.

state is a pure state, then the in-phase output signal denotes it as a balanced and the

anti-phase output signal denotes it as a constant function [117]. In other case, when the

initial state is a mixed state, the output signal consists of all possible transitions for a

constant function, whereas for a balanced function, at least one of the transition will be

missing [50, 118, 119, 116]. Since the Deutsch-Josza algorithm is used only to distin-

guish between a balanced function and a constant function, mixed initial state should

be sufficient for this purpose. Again there are some algorithms that take advantage of

the mixed nature of an ensemble systems [120, 121, 122]. These algorithms utilize the

power of parallel processing of the identical quantum registers. In a broad overview,

however, initialization of quantum registers remain an important requisite for a large

scale quantum computer.

3.1.3 Pure states in NMR

The density operator of an ensemble system characterized by the Hamiltonian H at

thermal equilibrium is given by :

ρ =
e−H/kT

Z
, (3.9)

where k is the Boltzmann constant and T is the temperature of the system. Z represents

the partition function and is given by Z = tr
[
e−H/kT

]
. For a N-spin homonuclear system
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at room temperature, the eigenvalues of H are much smaller than kT value, hence the

equilibrium density operator can be approximated to,

ρeq =
1

2N

1 + ~γB0

kT

N∑

j=1

I j
z



=
1

2N
(1 + ǫρdev),

(3.10)

where γ is the gyromagnetic ratio, B0 is the strength of the Zeeman field, I j
z is the

longitudinal component of spin operator for jth spin, and ρdev is the trace-less ‘deviation

density matrix’. The coefficient ǫ = ~γB0/kT is normally very small; ǫ ∼ 10−5 for

hydrogen nuclei in a Zeeman field of 10 T, at room temperature (300 K). Thus a normal

NMR system represents a highly mixed state [1, 2, 127]. However, only the deviation

density matrix contributes to the NMR signal, which is smaller by a factor of ǫ compared

to the system which is in a pure state, i.e., if all the spins were in one state. It seems

from the Eq. 3.10 that the only way of preparing a pure state in NMR is by using

extremely high magnetic fields at extremely low temperatures. While achieving higher

magnetic fields than a few tens of Tesla, is still a technological challenge, carrying out

experiments at low temperatures is associated with many technical problems including

among others, liquid to solid phase transition. However, in Eq. 3.10, we should notice

that we have taken only the nuclear spin part. Efforts have been made to bring-in other

interactions which will enable preparing pure states without the requirement of using

unrealistically high magnetic fields or undesirable low temperatures. One technique

is optical pumping, wherein one tries to transfer electron polarization into the nuclear

spin system. This includes for example, a polarization transfer from a laser polarized

noble gas atoms like 129Xe to molecule of interest. While this technique is widely used

in magnetic resonance imaging (MRI), it is expected to be relatively inefficient with

regard to preparing a pure state [123].

The spin temperature can nevertheless be reduced by using parahydrogen [128] or

by using Dynamic Nuclear Polarization (DNP)[129]. In future, either or both of these
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techniques may be available for preparing NMR quantum registers into almost pure

states [124]. The existing approach for initializing NMR registers is however based on

specially prepared mixed states known as pseudopure states (PPS).

3.1.4 Pseudopure states

In 1997 it was suggested independently by Cory et al [45] and Chuang et al [46] that

a specially prepared mixed state can be prepared, known as pseudopure state (PPS),

that can simulate a pure state in NMR. PPS are isomorphic to pure states for several

computational problems [45, 46]. From Eq. 3.10, it is seen that the equilibrium density

operator (ρ) can be split into two parts, the identity part (1) and the deviation part (ρdev).

The identity part comes as a uniform background and does not give any kind of NMR

signals. The NMR signal solely depends on the deviational part of the density operator

(ρdev). Although preparation of pure states in NMR is a very difficult and technically

challenging task, preparing a pure deviational density operator is rather a easy one.

Hence a pseudopure state (PPS) is an ensemble with a pure deviational density operator.

It is also known as ‘effective pure state’ since it mimics a ‘pure state’. Fig. 3.3 shows

representative population distributions of a two-spin system in equilibrium (Fig. 3.3a),

the deviation part distribution (Fig. 3.3b), and the pure deviational distribution (Fig.

3.3c). Fig. 3.3c represents the ‘pseudopure state’. Equation 3.10 can be rewritten as

follows :

ρeq =
1

2N
(1 + ǫρdev)

=
1

2N
(1 − ǫ)1 + ǫ |ψ〉〈ψ| = ρpps,

(3.11)

where ǫ is a measure of the magnetization retained in the pseudopure state and it usually

gets halved with every additional qubit [130]. The unit background is invariant under

the Hamiltonian evolution, does not lead to NMR signal and is ignored [45] :

UρppsU
† =

1

2N
(1 − ǫ)1 + ǫU |ψ〉〈ψ|U†. (3.12)
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Figure 3.3: Representative population distribution of a two-spin system at room tem-

perature when the system is in equilibrium (a), the deviation distribution (b), and the

deviation distribution corresponding to |00〉 pseudopure state.

Thus the equilibrium density matrix of a single spin-1/2 nucleus is always in a pseu-

dopure state. Initializing a multi-spin system into a pseudopure state however is es-

sentially a non unitary process [59]. So far, PPS remains as the leading technique to

simulate a pure state in NMR QIP.

3.2 Methods for preparing pseudopure state

Several methods have earlier been proposed for the preparation of pseudopure states.

These methods involved in averaging the magnetization modes over the sample space

(called ‘spatial averaging’ [131]), or over spin space (called ‘logical labeling’ [46, 50]),

or over several transients (called ‘temporal averaging’ [132]). In some cases subsystem

pseudopure states are easier to prepare either by transition selective pulses [137] or by

coherence selection using pulsed field gradients [130], but these methods invariably

result in loss of a qubit for further computation.

Implementation of a bulk quantum computation can be described in a general way

as the transformation of an initial density matrix ρ0 into a final density matrix ρout ac-

cording to [132],

ρout =
∑

i, j

RiCP jρ0P†jC
†R†i , (3.13)

where P j is the preparation operator, C is the unitary transformation corresponding to
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Figure 3.4: Preparation of |00〉 pseudopure state by using temporal averaging method.

(a) Representative deviation population distribution at thermal equilibrium. (b) Modi-

fied deviation populations after inverting populations between |01〉 , |11〉 and (c) |10〉,
|11〉. (d) The population distribution of |00〉 PPS is obtained by temporal averaging

technique i.e. by adding (a), (b), and (c).

the computation to be performed, and Ri is the post-processing unitary operator, usually

the identity.

It can be noticed that for a single spin-1/2 system in thermal equilibrium, only two

energy levels are possible. Hence, with an excess population in the lower energy level

than higher energy level, the system is in a pseudopure state by default. However, for

higher order spin systems (more than one) one has to suitably manipulate the spin order

to achieve the desired pseudopure state. In the following, we will describe a few of the

most successful methods for preparing pseudopure states in NMR. In section 3.3 we

will introduce a new method for preparing pseudopure states by exploiting long-lived

nature of singlet states.

3.2.1 Temporal averaging

Temporal averaging method is one of the earlier techniques that was proposed by Knill

et. al. [132]. This method is based on the randomization of the probabilities of other

states by adding multiple experiments. By averaging out all this experiments, we can re-

tain the desired component whereas other undesirable terms cancel out. The basic idea

of this method is quite similar to phase-cycling technique, routinely used in NMR. For a

N-qubit system, the exhaustive averaging involves cyclically permuting the non-ground

states in 2N −1 different ways. This permutation achieved by CNOT gates which can be
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implemented by using spin-selective pulses and evolution of couplings or by transition

selective pulses.

The method for preparing |00〉 PPS for a 2 qubit system is described here (Fig. 3.4).

Figure 3.4a shows the deviational part of the equilibrium population distribution. After

permuting the populations of |01〉 and |11〉 by applying a transition selective π pulse,

we obtain the population distribution similar to Figure 3.4b. Similarly, a permutation of

populations of |10〉 and |11〉 can also be obtained as shown in Figure 3.4c. Now adding

these three population distributions, we can obtain the |00〉 PPS as shown in Figure 3.4d.

Though this method is useful for smaller number of qubits, it becomes quite labo-

rious for higher number of spin systems. The number of experiment (cyclic permu-

tations) increases exponentially with the number of qubits. For example, preparing a

4-qubit PPS, would require 15 cyclic permutations. Because of this limitations var-

ious improvements on this method have been proposed such as by using non-cyclic

permutations and applying unequal weightings to different permutations. Utilizing this

improvements, one can find out the 4-qubit PPS by only 5 experiments [133]. Choosing

random permutations may turn out effective for very large spin systems [132].

3.2.2 Logical labeling

The logical labeling technique [46, 109] can be used to prepare conditional (or subsys-

tem) pseudopure states. It exploits the fact that in an N-spin homonuclear system , there

are NCN/2 levels having equal population distributions. The basic idea of this approach is

to find the subset having similar kind of pattern of a pseudopure state and then ‘relabel’

these states.

Let us consider a case for a three-spin homonuclear system with the equilibrium

deviation populations as shown in Figure 3.5a). By permuting the states |001〉 and |010〉

with |101〉 and |110〉 respectively, we obtain the population distribution similar to the
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Figure 3.5: Preparation of pseudopure state by using logical labeling technique in a

three qubit system. (a) Representative deviation population at thermal equilibrium (b)

The three qubit system can be thought of consisting two subsystems corresponding to 0

and 1 state of the first qubit. After inverting the transitions 001↔ 101 and 010↔ 110,

0 subsystem is in |00〉 pseudopure state and the 1 subsystem is in -|11〉 pseudopure state.

Figure 3.5b. Now these states correspond to the deviation density matrix,

ρ = |0〉〈0| ⊗ (2|00〉〈00| + 2I) + |1〉〈1| ⊗ (3I − 2|11〉〈11|). (3.14)

From the above equation it is clearly visible that depending on the state of the first

qubit, we can have |00〉 and |11〉 pseudopure state of the remaining qubit. Again, the

permutations can be carried out by spin-selective pulses and evolution of couplings or

by transition selective pulses. Here the first qubit is acting as a ancilla qubit and this

should not be disturbed during the computation. The two subsystems (two circles in

Fig. 3.5b) undergo independent and parallel evolution.

For higher number of qubits, more labeling qubits may be required. However, it is

not necessary that all the subsystems are in pseudopure states. One clear disadvantage

of this technique is the requirement of one ‘extra’ qubit as ancilla.
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Figure 3.6: Pulse sequence for preparing |00〉 pseudopure state by using spatial aver-

aging method in a two qubit system (I1, I2). θ representing particular pulse angles and

subscript denoting phase of the pulses. J is the spin-spin coupling constant between

two spins and GZ denoting pulse field gradient pulses.

3.2.3 Spatial averaging

Spatial averaging technique relies on the application of suitable selective pulses and

magnetic field gradients [45]. This method was proposed by Cory et. al. and since

then it is proven to be one of the popular techniques to prepare pseudopure states.

Our aim is to prepare the state I1
z + I2

z + 2I1
z I2

z from the state γ1I1
z + γ2I1

z . Depend-

ing on the situation whether γ1 is greater, less, or equal to γ2, we will have exact

values for θs. For a homonuclear system (γ1 = γ2) or |γ1/2γ2| ≤ 1, we will have:

(θ1, θ2, θ3) = (π/3, π/4, π/4). On the other hand, suppose |γ1/2γ2| ≥ 1 e.g., 1H −13 C

system, we will have the θ values as (θ1, θ2, θ3) = (0, π/12, 5π/12).

A particular case for a homonuclear spin system for the preparation of |00〉 pseudop-

ure state is described below by product operator formalism.
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The pulse sequence for three spin homonuclear weakly coupled system is also de-

scribed [51, 134, 135]. Generalization of spatial averaging method for N-qubits is given

by sakaguchi et. al. [136].

In addition to these three main approaches , there are few other methods also avail-

able to prepare pseudopure states such as spatially averaged logical labeling technique

(SALLT) [137], using ‘cat states’, etc [138].

In the next section we propose a different approach that exploits long life-times of

certain special states called ‘singlet states’ [83, 84]. We don’t need an extra qubit in this

method as it was required in logical labeling technique [139]. The following section

gives a detail description of the theory and pulse sequence required for the preparation

of pseudopure state by this new approach. Later, experimental demonstrations on model
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systems consisting of two, three and four-qubit NMR registers are also described.

3.3 Preparation of pseudopure states using Long-Lived

Singlet States

Consider an ensemble of identical molecules each having n spin-1/2 nuclei in a magnetic

field. The Zeeman HamiltonianHz = h
∑

j ν
j
0
I j
z , is characterized by the frequency ν

j
0

of

Larmor precession, and the z-component of the spin angular momentum operator I j
z of

spins j = 1 · · · n [2]. The eigenstates | ± 1/2〉 of H j
z are labeled as |0〉 and |1〉 states

of a qubit, and the multi-spin eigenbasis {|00 · · ·00〉, |00 · · ·01〉, · · · } is treated as the

computational basis.

3.3.1 preparation of singlet states

The Hamiltonian for an ensemble of spin-1/2 nuclear pairs of same isotope, in the RF

interaction frame, can be expressed as

Heff = h

[
∆ν

2
I1
z −
∆ν

2
I2
z + JI1 · I2 + ν12I1,2

x

]
. (3.16)

Here the RF frequency is assumed to be at the mean of the two Larmor frequencies, and

∆ν, J and ν12 correspond respectively to the difference in Larmor frequencies (chemical

shift difference), the scalar coupling constant and the RF amplitude (all in Hz).

The detail version of singlet state preparation is shown in Chapter 2.2. The standard

pulse sequence for the preparation of singlet state is shown in Fig. 3.7.

The propagator form of this pulse sequence upto spin-lock can be written as follow

:

U1,2
1
= e−i π

4
(I1

z−I2
z )e−i π

2
I1,2
y e−i π

2
(I1

z−I2
z )e−iπI1

z I2
z e−i π

2
I1,2
x . (3.17)
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Figure 3.7: Pulse sequence for the preparation and detection of singlet states. All

the pulses are non-selective pulses. Here τ1 = 1/(4J), τ2 = 1/(4J) + 1/(2∆ν), and

τ3 = 1/(4∆ν), with ∆ν and J being the chemical shift difference (in Hz) and the scalar

coupling respectively. τ4 is the duration of spin-lock.

The singlet states by themselves are inaccessible to macroscopic observables, but

can be indirectly detected by removing the equivalence and transforming to observable

single quantum coherence using the following propagator (see Fig. 3.7) [83, 84].

U1,2
D = e−i π

2
I1,2
x · ei π

4
(I1

z−I2
z ). (3.18)

A more detailed and quantitative analysis of singlet states was carried out using den-

sity matrix tomography in Chapter 2.3. In the next section we described the preparation

of pseudopure states starting from this pure singlet states.

3.3.2 Initializing NMR Registers

2-qubit register

The pulse sequence for initializing a 2-qubit NMR register via singlet states is shown in

Fig.3.8. An initially imperfect singlet density matrix gets purified during the spin-lock

period as a result of the long life time, while the artifact coherences are destroyed by

relaxation process as well as the inhomogeneities in the spin-lock itself. There exist

optimal spin-lock conditions at which one obtains singlet states with high fidelity [108,

139].

Once the singlet state is prepared with high fidelity, the conversion |S 1,2
0
〉 → |01〉 can
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Figure 3.8: Pulse sequence for the creation of |01〉 pseudopure state. ∆ν and J being

the chemical shift difference (in Hz) and the scalar coupling respectively. A pulse field

gradient (Gz) used to destroy the unwanted coherences at the end of pulse sequence.

be easily achieved by the propagator U1,2
2

described by

U1,2
2
= ei π

2
I1,2
x · e−iπI1

z I2
z · e−i π

2
I1,2
x · ei π

4
(I1

z −I2
z ). (3.19)

This propagator work as follows:

|S 0〉〈S 0| = 1
4
1 − 2I1

x I2
x − 2I1

y I2
y − 2I1

z I2
z

↓ 1
4∆ν

2I1
x I2

y − 2I1
y I2

x − 2I1
z I2

z

↓900

2I1
x I2

z − 2I1
z I2

x − 2I1
y I2

y

↓
[

1
4J − 1800 − 1

4J

]

−I1
y + I2

y − 2I1
y I2

y

↓90180

I1
z − I2

z − 2I1
z I2

z = |01〉〈01| (3.20)

Finally a pulsed field gradient Gz can be used to destroy the residual single and

multiple quantum coherences generated due to pulse imperfections. If necessary, other

pseudopure states can be obtained simply by applying NOT gates.
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Figure 3.9: Circuit diagram for the preparation of a 3 qubit pseudopure state. U1,2
1

(see Eq. 3.17) and U1,2
2

(see Eq. 3.19) are unitary propagator as described previously.

the C’NOT gates with open circles correspond to NOT operation if the control is 0 and

identity if the control is 1 Gz denoting a pulse field gradient.

3-qubit register

For a 3-qubit system (see Fig.3.11c), we first prepare a two-qubit singlet and apply

CNOT(2,3), i.e., a NOT gate on qubit-2 controlled by qubit-3. Subsequent spin-lock

and U1,2
2

gate on qubits 1 and 2 initializes a three qubit system into |010〉 state [139].

The circuit can be understood as follows. After preparing the singlet on qubits 1 and

2 (at time point 2 in Fig. 3.9), the third qubit remains in a mixed state with a probability

p0 of being in state |0〉 and a probability p1 of being in state |1〉. Since,

|01〉 − |10〉
√

2
⊗ |0〉 CNOT(2,3)−−−−−−−→ |01〉 − |10〉

√
2

⊗ |0〉, and

|01〉 − |10〉
√

2
⊗ |1〉 CNOT(2,3)−−−−−−−→ |00〉 − |11〉

√
2

⊗ |1〉, (3.21)

the CNOT(2,3) gate transforms the mixed state according to (at time point 3 in Fig. 3.9):

|S 1,2
0
〉〈S 1,2

0
| ⊗ (p0|0〉〈0| + p1|1〉〈1|)

CNOT(2,3)−−−−−−−→

p0|S 1,2
0
〉〈S 1,2

0
| ⊗ |0〉〈0| + p1|φ1,2

− 〉〈φ1,2
− | ⊗ |1〉〈1|. (3.22)

During the second spin-lock applied on qubits 1 and 2, the singlet part survives,
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where as the second term consisting of the Bell state |φ1,2
− 〉 = (|00〉 − |11〉)/

√
2 decays

fast (at time point 4 in Fig. 3.9). The singlet |S 1,2
0
〉 is ultimately transformed into |01〉

by U1,2
2

and thus we obtain |010〉 pseudopure state with a good approximation (at time

point 5 in Fig. 3.9). As mentioned in the introduction, at ordinary NMR conditions

p0 ≈ p1, and therefore discarding the second term means a loss of magnetization by a

factor of 2. Thus the magnetization is halved with every additional qubit in the register.

This scaling behavior is similar to that of other traditional methods [144].

4-qubit register

Let us now analyze a 4-qubit register (see Fig. 3.10). After the first spin-lock, we have

the singlet state |S 1,2
0
〉 on 1 and 2. The third and fourth qubits are still in mixed states. As

seen before, if the third qubit is |1〉, the CNOT(3,2) converts |S 1,2
0
〉 into |φ1,2

− 〉, which will

be eventually dephased out during the second spin-lock. Therefore we shall consider the

third spin to be in state |0〉. Now if the fourth qubit is in state |0〉, the pseudo-Hadamard

h(3) gate followed by C’NOT(4,3) (which applies NOT on qubit-4 only if qubit-3 is in

state |0〉) will lead to a correlated state of singlet pairs:

|S 1,2
0
〉 ⊗ |0〉 ⊗ |0〉 h(3)−−→ |S 1,2

0
〉 ⊗ |0〉−|1〉√

2
⊗ |0〉

↓ C′NOT(4, 3)

|S 1,2
0
〉 ⊗ |S 3,4

0
〉. (3.23)

By similar analysis one obtains |S 1,2
0
〉⊗|φ3,4

− 〉 if the 4th qubit is originally in state |1〉. This

latter spin-order decays fast due to the shorter life-time of |φ3,4
− 〉. Finally the long-lived

spin-order |S 1,2
0
〉⊗|S 3,4

0
〉 can be converted into |0101〉 pseudopure state by the propagators

U1,2
2

and U3,4
2

.

The fact that only nearest-neighbor interactions are used is highly advantageous in

practice [139]. Experimentally, the spin-lock of multiple singlet pairs can be achieved

using sophisticated modulated RF sequences as described in the next section.
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Figure 3.10: Circuit diagram for the preparation of a 4 qubit pseudopure state. U1,2
1

(see Eq. 3.17), U1,2
2

(see Eq. 3.19), and U3,4
2

are unitary propagators. U3,4
2

is a similar

propagator as U1,2
2

, acting on qubit 3 and 4. Gz denoting a pulse field gradient to

destroy unwanted coherences. the C’NOT gates with open circles correspond to NOT

operation if the control is 0 and identity if the control is 1. The h-gate corresponds to

pseudo-Hadamard: |0〉 h→ (|0〉 − |1〉)/
√

2 and |1〉 h→ (|0〉 + |1〉)/
√

2.

Initialization for any number of qubits

Initialization of NMR qubits through long-lived singlet states can be extended to any

number of qubit in principle [139]. The circuits for initialization of registers with odd

and even number of qubits are shown in Fig.3.11b and 3.11c respectively. The basic

idea is to divide the register into qubit-pairs and prepare a correlated state of singlets.

Each pair must consist of two qubits of same nuclear species (homonuclear), but dif-

ferent pairs may be made up of different species (heteronuclear). The correlated singlet

states can be prepared by using CNOT gates and pseudo-Hadamard gates as shown in

Fig.3.11(b-c). As each pair is converted into a singlet, an RF spin-lock is applied on all

the singlet pairs. Under the RF spin-lock all the states except the singlet states decay

rapidly. The circuits in Fig.3.11b and 3.11c differ only at the last qubit which is unpaired

in the odd register. If two or more qubit-pairs are made up of same nuclear species, then

it might be difficult to selectively spin-lock some of them leaving out others. However,

as described by the optional spin-locks shown by the dashed boxes in Fig.3.11, apply-

ing spin-locks on pairs which are not yet singlets has little effect on the overall scheme.

Only exception is for the final spin-lock on an odd-qubit register, which must be applied

such that the last unpaired qubit is left undisturbed. It may be possible in some cases
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Figure 3.11: The circuit diagrams for initializing (a) even-qubit register, and (b) odd-

qubit register. Here SL and Gz denote spin-lock and the pulsed field gradient. U1 and

U2 are gates as described the text. In (a) and (b) the C’NOT gates with open circles

correspond to NOT operation if the control is 0 and identity if the control is 1. The h-

gate corresponds to pseudo-Hadamard: |0〉 h→ (|0〉 − |1〉)/
√

2 and |1〉 h→ (|0〉 + |1〉)/
√

2.

The dashed boxes indicate optional spin-locks.
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to overcome even this requirement (see 3-qubit experiment). Nevertheless it may be

desirable to have the unpaired qubit in an odd-qubit register to be of different nuclear

species than all others.

3.4 Experiments

Strongly modulated pulses are used for designing high fidelity local gates as well as

CNOT gates [57, 58]. The spin-lock was achieved by WALTZ-16 - a phase modulated

RF sequence, which is routinely used in broadband spin decoupling [108]. Spectra

corresponding to pseudopure states are obtained by linear detection scheme using small

flip angle RF pulses. Since the diagonal pseudopure states have one energy level more

populated than the equal distribution in all others, the spectrum should consist ideally

of only one transition per qubit in each case. Quantitative analysis of the pseudopure

states are carried out using extended versions of density matrix tomography described

in chapter 1 (Appendix A) [108]. Finally, the success of the experimental state ρ in

achieving a target pseudopure state ρpps is measured by calculating the correlation [57],

〈ρpps〉 =
trace

[
ρ · ρpps

]

√
trace

[
ρ2

] · trace
[
ρ2

pps

] . (3.24)

Often only the diagonal elements of the density matrices are relevant and in such cases,

the ‘diagonal correlation’ can be expressed by replacing all the operators in the above

expression by their diagonal parts [58]. In the following we describe the individual

cases of two-, three- and four-qubit registers [139].

3.4.1 2-qubit register

The two-qubit system, Hamiltonian parameters, and the corresponding pseudopure and

the reference spectra are shown in Fig.3.12(a-d). As shown in Fig.3.8, the experiment

involved preparing singlet using U1,2
1

, followed by RF spin-lock with amplitude 2 kHz
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Figure 3.12: The molecular structure (a) and Hamiltonian parameters (b) of 5 -

bromothiophene-2-carbaldehyde (5 mg dissolved in 0.5 ml of dimethyl sulphoxide-d6),

forming a homonuclear two-qubit register. In (b) diagonal and off-diagonal elements

correspond to the chemical shifts and the scalar coupling constant respectively (in Hz).

The 1H spectra correspond to the pseudopure state (c) and the equilibrium mixed state

(d). The barplots (e-h) correspond to the real (e,g) and imaginary (f,h) parts of theoret-

ical (e,f) and experimental (g,h) pseudopure |01〉 state.

88



3.4. Experiments

and duration 12.4 s, which are optimized for high singlet content [108]. The decay

constant for singlet state was 16.2 s approximately three times the T1 values of the

two spins. The singlet is then converted into |01〉 pseudopure state using U1,2
2

. A final

gradient pulse served to destroy the artifact coherences. The bar plots showing the real

and imaginary parts of the theoretical and experimental density matrix are shown in

Fig.3.12(e-h). A very high correlation of 0.995 is obtained with |01〉 pseudopure state

[139].

3.4.2 3-qubit register

The three-qubit system, Hamiltonian parameters and the corresponding pseudopure and

the reference spectra are shown in Fig.3.13(a-d). The decay constant for singlet state

of spins 1 and 2 was about 18 s, approximately three times of their T1 values. The

pseudopure state was prepared using the circuit shown in Fig.3.9. The off-set of the

spin-lock was at the center of spins 1 and 2. As described in section II-C, the second

spin-lock is to be applied ideally on qubits 1 and 2 only (without disturbing 3rd qubit),

which was harder to achieve in this homonuclear system. However, we found that by

carefully tuning the durations of the spin-locks, we can obtain identical result to that

of a no spin-lock on the 3rd spin. This was possible due to (i) the cyclic nature of

the WALTZ-16 spin-lock, and (ii) the slower decay of |03〉 state during the off-resonant

spin-lock compared to that of artifact coherences. The two spin-locks consisted of 500

Hz WALTZ-16 modulations whose durations were optimized to about 6.3 s. The CNOT

gate was implemented using a 14 segment strongly modulated RF pulse of duration

approximately 60 ms and of fidelity 0.96. The bar plots showing the real and imaginary

parts of the theoretical and experimental density matrix are shown in Fig.3.13(e-h). The

3-spin tomography is an extension of the technique described in reference [108] and is

described in appendix B. The correlation of the experimental density matrix with the

theoretical pseudopure state is |010〉 is 0.952. The correlation is smaller compared to

the two-qubit case, mainly due to the errors in the CNOT gate and the non-selectivity
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Figure 3.13: The molecular structure (a) and Hamiltonian parameters (b) of acryloni-

trile (5 mg dissolved in 0.5 ml of CDCl3), forming a homonuclear 3-qubit register. In

(b) diagonal elements are chemical shifts (in Hz) and the off-diagonal elements are the

scalar coupling constants (in Hz). The 1H spectra correspond to the pseudopure state

(c) and the equilibrium mixed state (d). The bar plots are showing the real (e,g) and

imaginary (f,h) parts of theoretical (e,f) and experimental (g,h) pseudopure |010〉〈010|
state.
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Figure 3.14: The molecular structure (a) and Hamiltonian parameters (b) of aspirin

(5 mg dissolved in 0.5 ml of CD3OD), forming a homonuclear 4-qubit register. In (b)

diagonal elements are chemical shifts (in Hz) and the off-diagonal elements are the

scalar coupling constants (in Hz). The barplot in (c) displays the diagonal elements

of the density matrix obtained by tomography of the pseudopure |1001〉 state. The 1H

spectra correspond to the pseudopure state (d) and the equilibrium mixed state (e).

of the second spin-lock. Nevertheless, the diagonal correlation is achieved as high as

0.983 [139].

3.4.3 4-qubit register

The four-qubit system, Hamiltonian parameters and the corresponding pseudopure and

the reference spectra are shown in Fig.3.14. The pseudopure state was prepared using

the circuit shown in Fig.3.10. The singlet decay constants were about 6 s, approximately

twice the T1 values of the individual spins. We were able to carry out simultaneous spin-

lock of two singlet pairs and initialize a four-qubit register. The two spin-locks were
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Figure 3.15: Pictorial description of the evolution of PPS over time. At beginning

(t=0), all the states are possible. After some time (t ≥ T2), most of the states other than

singlet-PPS decay considerably. After a time period when t ≫ T2, only singlet-PPS

remains while all other states decay close to zero.

achieved by 2 kHz WALTZ-16 modulations of durations 2 s and 4.5 s each. The two

CNOT gates were made of 20 segments, approximately 61 ms duration and of fidelities

about 0.94. The 10 segment h-gate was about 8.2 s long and of fidelity 0.98. Complete

tomography of a 4-qubit density matrix is a laborious task. After the preparation of the

pseudopure state, the non-zero quantum off-diagonal elements are efficiently destroyed

by the final gradient pulse. Since only the diagonal elements are of main interest, we

have carried out the four-qubit diagonal tomography [58]. The bar plot showing the

diagonal part of the experimental density matrix is shown in Fig.3.14. The diagonal

correlation is estimated to be approximately 0.97 ± 0.01 with |1001〉 pseudopure state.

The first pair has collapsed to |10〉 state instead of |01〉, due to an additional 180 degree

pulse that was applied on qubits 1 and 2 for refocusing purposes during U3,4
2

[139].

3.5 Conclusions

An ensemble of nuclear spin-pairs under certain conditions is known to exhibit singlet

state life-times much longer than other non-equilibrium states. This property of sin-

glet state can be exploited in quantum information processing for efficient initialization

of quantum registers. Here we have described a general method of initialization and

experimentally demonstrate it with two-, three-, and four-qubit nuclear spin registers.
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The basic idea is to prepare correlated state of singlets which lives longer than other

coherences and then convert this long-lived state into a desired diagonal pseudopure

state (see Fig. 3.15) It is hard to initialize proton-based NMR registers using traditional

methods for higher order qubits. On the other hand, it is easier to prepare the PPS

state for a heteronuclear system using the traditional method. The proposed method

[139] of using long-lived is useful since only the nearest neighbor interactions are used,

the present method may facilitate initialization of larger registers with weak long range

interactions. Molecules are of interest where in the inter pair dipolar couplings are suf-

ficiently weak to keep the singlet states long-lived, while the covalent bond mediated

scalar interactions among the nearest neighbor spins are sufficiently strong. The method

may also be applicable to registers based on parahydrogens which naturally exist in sin-

glet states. Similar techniques may be used for multi-qubit initialization in non-NMR

systems exhibiting long-lived states.
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Chapter 4

Storing Entanglement Via Dynamical

Decoupling

In this chapter, we have described the experimental study of dynamical decouplings

in preserving two-qubit entangled states using an ensemble of spin-1/2 nuclear pairs in

solution state. A brief introduction of decoherence and dynamical decouplings are given

in section 4.1. In section 4.2, we have described Uhrig’s dynamical decoupling and its

usefulness in preserving coherence orders. In section 4.3, we have shown the creation of

Bell states from long-lived singlet state. In section 4.4, experimental results are shown

for storing coherence orders in Bell states including singlet state. We found that the

performance of odd-order Uhrig sequences in preserving entanglement is superior to

both even-order Uhrig sequences and periodic spin-flip sequences. We also found that

there exists an optimal order of the Uhrig sequence using which the singlet state can be

stored at high correlation for about 30 seconds.

4.1 Introduction

Harnessing the quantum properties of physical systems have several potential applica-

tions, particularly in information processing, secure data communications, and quantum
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simulators [20]. It is believed that such quantum devices may play an important role in

future technology [145]. But their physical realization is challenging mainly because of

decoherence - the decay of the coherent states due to interaction with the surrounding

environment [146, 147]. Therefore it is important to minimize the effects of decoher-

ence using suitable perturbation on the quantum system [148]. A technique, known

as ‘dynamical decoupling’ involves protecting the quantum states from decoherence by

driving the system in a systematic manner such that the effective interactions with the

environment at different instants of time cancel one another.

In the following subsections we will describe the effect of decoherence and saving

coherence through dynamical decouplings.

4.1.1 Decoherence

As the name suggests, decoherence means loss of coherence order in a system which

comprises with more than one entities. The idea of decoherence in quantum mechanics

came much earlier in 1952 [149] in the context of hidden variable model. It was first

developed due to the possible explanation of the appearance of wave function collapse

[149, 150]. Decoherence based explanation started getting acceptance in early 1980

[151, 152]. However, decoherence became inevitable tool of understanding quantum

mechanical interactions in the context of quantum information processing later. Soon it

became clear that, decoherence is one of the biggest challenges to be overcome in order

to realize a practical quantum computer.

Let us consider an isolated 2-level quantum system (a single spin-1/2 system). The

wave function can be represented by following :

|ψ〉 = c0|0〉 + c1|1〉, (4.1)

with, |c0|2 + |c1|2 = 1.
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The system can be best represented by the density matrix formalism :

ρs = |ψ〉〈ψ|

= c0c∗0|0〉〈0| + c1c∗1|1〉〈1| + c0c∗1|0〉〈1| + c1c∗0|1〉〈0|,

=



|0〉 |1〉

〈0| c0c∗
0

c0c∗
1

〈1| c1c∗0 c1c∗1

 (4.2)

The diagonal elements are representing the population distribution of the system in

two states. The off-diagonal elements are the coherence terms. Here, we are interested

in the evolution of the coherence terms once the system is no more an isolated quantum

system and is interacting with the environment. The interaction of system-environment

is a non-unitary process and hence irreversible. Below we see the effect of environment

on the 2-level super-positioned state.

|ψ〉|E〉 = (c0|0〉 + c1|1〉)|E〉
U(τ)−→ (c0|0〉|E0〉 + c1|1〉|E1〉). (4.3)

Now it can be noticed that the output state is an entangled state and can not be written as

system and environment separately (unless |E0〉 = eiφ|E1〉). In terms of density matrix,

the situation can be represented as below :

ρs = |ψ〉|E〉〈ψ|〈E|

= c0c∗0|0〉〈0| ⊗ |E0〉〈E0| + c1c∗1|1〉〈1| ⊗ |E1〉〈E1|

+c0c∗1|0〉〈1| ⊗ |E0〉〈E1| + c1c∗0|1〉〈0| ⊗ |E1〉〈E0|. (4.4)

Now tracing out the environment from the system gives the necessary information about
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the system and can be written as :

ρ′s = traceE[ρS E]

= c0c∗0|0〉〈0| + c1c∗1|1〉〈1| + 〈E1|E0〉c0c∗1|0〉〈1| + 〈E0|E1〉c1c∗0|1〉〈0|

=



|0〉 |1〉

〈0| |c0|2 〈E1|E0〉c0c∗
1

〈1| 〈E0|E1〉c1c∗0 |c1|2

. (4.5)

The above equation shows that the coherence terms obtains extra coefficients. Usu-

ally, when the environment has a large degree of freedom, these coefficients decay ex-

ponentially with time:

|〈E1(t)|E0(t)〉| = e−Λ(t). (4.6)

Hence, after a certain time duration, the coherence terms decay to zero.

4.1.2 Dynamical decoupling

Dynamical decoupling is a technique by which it is possible to suppress, at least to some

extent, the environmental effect on a open quantum system under study. The idea of

dynamical decoupling has connections to the routinely used NMR decoupling sequences

where unwanted couplings are averaged out with the applications of suitable modulated

or unmodulated RF pulse sequences. The dynamical decoupling scheme relies on the

application of π pulses at certain intervals. Preserving nuclear spin coherences by spin

flips at regular intervals was long been known in NMR as the famous Carr-Purcell-

Meiboom-Gill (CPMG) sequence [153, 154]. The CPMG sequence is widely used in

NMR to measure the transverse relaxation time constants in the presence of spatial

inhomogeneity of the static magnetic field and temporal fluctuations in the local fields

arising due to the molecular motion [2]. The sequence involves a set of N number

of π pulses uniformly distributed in a duration [0, T ] at time instants {t1, t2, · · · , tN}.
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Assuming instantaneous π pulses, jth time instant is linear in j,

tCPMG
j = T

(
2 j − 1

2N

)
. (4.7)

Of course, in practice the π pulses do have finite duration owing to the limited power of

electromagnetic irradiation generated by a given hardware. Further, the constant time

period between these spin flips should ideally be shorter than the correlation time of

the spin-bath interaction. Even, this delay is limited by the maximum duty-cycle that is

allowed for the hardware. Dynamical decoupling with such bounded controls have also

been suggested [155, 156, 157, 158]. For instance Hao et al. have been able to calculate,

using a particular type of atomic systems, the maximum delay between spin-flips in

order to efficiently suppress decoherence due to a bath with a finite cut-off frequency

[159]. By studying the efficiency of the decoupling as a function of the CPMG period

often it is possible to extract valuable informations about molecular dynamics and such

studies are broadly categorized under ‘CPMG dispersion’ experiments [160].

Recently in 2007, Uhrig generalized the CPMG sequence by considering an optimal

distribution {t1, t2, · · · , tN} of N spin flips in a given duration [0, T ] of time that provides

most efficient dynamical decoupling [161]. Using a simple dephasing model, Uhrig

proved that the time instants should vary as a squared sine bell:

t j = T sin2
(

π j

2N + 2

)
. (4.8)

UDD works well in systems having a high-frequency dominated bath with a sharp

cutoff [162, 163, 164]. On the other hand, when the spectral density of the bath has a

soft cutoff (such as a broad Gaussian or Lorentzian), the CPMG sequence was found

to outperform the UDD sequence [165, 166, 167, 168, 169, 170, 171]. Suter and co-

workers have studied these different regimes and arrived at optimal conditions for the

dynamical decoupling [172].

Recently Agarwal has shown using theoretical and numerical calculations that even
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Chapter 4. Storing Entanglement Via Dynamical Decoupling

entangled states of two-spin systems can be stored more efficiently using UDD [173].

Since entangled states play a central role in QIP, teleportation, data encryption, and

so on, saving entanglement is crucial for the efficient physical realization of quantum

devices [20]. More recently dynamical decoupling on an electron-nuclear spin-pair in a

solid state system has been shown to prolong the pseudoentanglement lifetime by two

orders of magnitude [174].

While much of the experimental efforts have been on testing the loss of coherence

due to T2 processes, here in this chapter, we presented the first experiments where we

study not only the loss of coherences, but also the loss of entanglement due to both T1

and T2 processes. Though newer sequences have been suggested to decouple both of

these processes, these are yet to be studied experimentally [175, 176]. We have devel-

oped experimental techniques where we can prepare Bell states with high fidelity and

characterize these states with high precision [108, 139]. we explore the utility of differ-

ent dynamical decoupling sequences on systems wherein both T1 and T2 relaxations are

significant.

4.2 Uhrig dynamical decoupling

Uhrig dynamical decoupling (UDD) claims to be more efficient than the CPMG se-

quence (which serves as the most popular decoupling sequence for decades) in preserv-

ing coherence orders. The efficiency of UDD over CPMG can be understood by various

mathematical approaches. Uhrig [161] explained the efficiency of UDD by considering

the standard spin-boson model in ohmic bath. This model predicts the noise-spectrum

with a sharp cut-off. Here we describe the ‘filter function analysis’ in brief for the study

of UDD’s efficiency [163].
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4.2. Uhrig dynamical decoupling

4.2.1 Efficiency of UDD over CPMG

We can write the Hamiltonian of a system interacting with an environment as[163, 177],

H = ~
2

[
Ω + β(t)

]
σ̂z (4.9)

where Ω is the unperturbed part representing the system and β(t) is the time dependent

fluctuating part due to environmental interaction. As in ref [177], the time evolution of

a superposition state initially oriented along Ŷ under the affect of this Hamiltonian can

be written as

|ψ(t) =
1
√

2

(
e−iΩt/2e−

1
2

∫ t

0
β(t′)dt′ |0〉 + eiΩt/2e

1
2

∫ t

0
β(t′)dt′ |1〉

)
(4.10)

where |0〉 and |1〉 representing the basis states and β(t′) adding the random phase errors.

Accumulation of such phases lead towards decoherence. A fundamental technique for

preserving coherence in NMR is ‘Spin-echo’ given by Hahn [178]. Spin-echo works

as a refocusing technique by applying a π pulse in between two exact delays. Hahn

echo became indispensable tool for coherence reorder and soon it was realized that the

application of series of π pulses at regular interval would be most effective in order

to reduce dephasing [153, 154]. Hahn echo acts as a high pass filter for an arbitrary

noise spectrum S β(ω) and it neutralize the phase errors by slow Fourier components of

β. Now this one π pulse logic can be extended to multiple π pulses technique as well.

Application of multiple pulses on a qubit system, leads to coherence state as,

W(τ) =
∣∣∣∣〈σY〉(τ′)

∣∣∣∣ = e−χ(τ),

where, χ =
2

π

∫ ∞

0

S β(ω)

ω2
F(ωt)dω. (4.11)

Here, the filter function F(ωτ) contains all the necessary information regarding the ef-

ficiency of pulse sequence for preserving coherence against the environment influence
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S β(τ). Now, F(ωτ) can be calculated from

F(ωτ) = |ỹn(ωτ)|2 , (4.12)

where |ỹn(ωτ)| is the Fourier transform of time domain filter function yn(t). Any mod-

ification of filter function will give different efficiency power of that particular pulse

sequence. CPMG sequence having π pulses at regular interval was modified by Uhrig

by repositioning the π pulses at unequal but optimized intervals. Noise reduction is

shown to be much more efficient for Uhrig sequence than CPMG [161, 163].

Later, Agarwal has shown that this results of efficient UDD can be generalized for

an entangled system as well [173]. Here our work mainly focuses on the experimental

studies of UDD and CPMG on such an entangled states as well as on non-entangled

states.

4.3 Preparation of Entanglement

We study storage of entanglement by dynamic decoupling on a pair of spin-1/2 nuclei

using liquid state NMR techniques. The sample consisted of 5 mg of 5-chlorothiophene-

2-carbonitrile dissolved in 0.75 ml of dimethyl sulphoxide (see Figure 4.1). The two

protons of the solute molecule differ in the Larmor frequency by ∆ν = 270.4 Hz and

have an indirect spin-spin coupling constant of J = 4.1 Hz. The T2 relaxation time

constants for the two protons are about 2.3 s and the T1 relaxation time constants are

about 6.3 s.

4.3.1 Preparation of singlet states

High fidelity entangled states are prepared via long lived singlet states in a procedure

described in chapter 2.

The long-lived nature of singlet states under the equivalence Hamiltonian can be

used to prepare high-fidelity Bell states. The experiment involves preparing an incoher-
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1 21 2

(   )

Figure 4.1: The 1H NMR spectrum and the molecular structure of 5-chlorothiophene-

2-carbonitrile.

TomographyUDD-NSpin-lock

π/2x πx π/2y

|S0 |ψ+

|S0 |φ±

(optional)

4J
1

4J
1

2Δν
1

+
4Δν
1

Iz
1 + Iz

2 |S0|S0 , |T0

Figure 4.2: NMR pulse sequence to study dynamical decoupling on Bell states. An in-

coherent mixture of singlet and triplet states is prepared which under spin-lock purifies

to singlet state. The resulting singlet state can be converted to other Bell states. Then

dynamical decoupling sequence can be applied and the performance of the sequence

can be studied by characterizing the residual state using density matrix tomography.
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ent mixture of singlet and triplet states,

ρ(0) = −I1 · I2 ≡ |S 0〉〈S 0| − |T0〉〈T0| (4.13)

from the equilibrium state I1
z + I2

z by using the pulse sequence shown in Figure 4.2 [87].

During the spin-lock |T0〉 state rapidly equilibrates with the other triplet states. On the

other hand, the decay constant of singlet state |S 0〉 during the spin-lock is much longer

than the spin-lattice relaxation time constant (T1) (and hence the singlet state is known

as a long-lived state) [83, 84]. Hence at the end of suitable spin-lock we left out with

high fidelity singlet states. The goodness of the prepared singlet state is measured by

the tomographic method as described in Chapter 2.3. The correlation of the singlet state

is given by,

〈ρs〉(t) =
trace

[
ρ(t) · ρs

]
√

trace
[
ρ(t)2

] · trace
[
ρ2

s

] , (4.14)

In the following we describe preparation of other Bell states from the singlet state in a

two-qubit NMR system.

4.3.2 Preparation of other Bell states from singlet states

Other Bell states can be obtained easily from the singlet state:

|S 0〉
eiπI1

z

−−−→ |ψ+〉 =
1
√

2
(|01〉 + |10〉),

|S 0〉
eiπI1

x

−−−→ |φ−〉 =
1
√

2
(|00〉 − |11〉),

|S 0〉
eiπI1

x ·eiπI1
z

−−−−−−→ |φ+〉 =
1
√

2
(|00〉 + |11〉). (4.15)

The z-rotation in the above propagators can be implemented by using chemical shift

evolution for a period of 1/(2∆ν), and qubit selective x-rotation can be implemented by
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4.3. Preparation of Entanglement

Figure 4.3: Density matrix tomography of Bell states : Real part of (a) singlet state

|S 0〉 = 1√
2
(|01〉 − |10〉 with correlation 0.99, (b) |ψ+〉 = 1√

2
(|01〉 + |10〉) with correlation

0.99, (c) |φ−〉 = 1√
2
(|00〉 − |11〉) with correlation 0.98, and (d) |φ+〉 = 1√

2
(|00〉 + |11〉)

with correlation 0.97
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using radio frequency pulses[139]. Details of dynamical decoupling on the Bell states

will be described in the next sections. In order to investigate the decoupling perfor-

mance, it is necessary to quantify the decay of Bell states with decoupling duration.

The Bell states by themselves are inaccessible to macroscopic observables, but can in-

directly be detected transforming to observable single quantum coherences [83, 84].

Alternatively, a more detailed and quantitative analysis of Bell states may be carried out

using density matrix tomography as described in Chapter2.3. [108]. We have utilized

the density matrix formalism for the characterization of the Bell states. The goodness

of prepared Bell states can be evaluated from the definition of correlation using expres-

sions similar to (4.14). The density matrices for all the four Bell-state have been shown

in figure 4.3. We achieved high fidelity Bell states with correlation around 0.99. In the

following we have shown the experimental implementations of dynamical decoupling

on such entangled states.

4.4 Storage of entanglement by UDD

4.4.1 Different orders of UDD

As described earlier, the UDD scheme consists of a sequence of spin flips placed at time

instants given by the expression (4.8). Instead of applying the Uhrig’s formula for the

entire duration of decoupling, we have applied the formula for a short time interval (T )

consisting of a small number (N) of pulses and then repeating the sequence. Figure 4.4

shows pulse sequences for various orders of Uhrig Dynamical Decoupling (we refer to

an N-pulse UDD sequence as UDD-N). Note that UDD-1 (and UDD-2) are equivalent

to CPMG sequences, in which repeating segment consists of [τCPMG−π−τCPMG]. In our

experiments, τCPMG was set to 2 ms and the duration τπ of the π pulse was 27.2 µs. The

total duration of UDD-N was set to T = N(2τCPMG+τπ), such that for an extended period

of time, the total number of π pulses remain same irrespective of the order of UDD. Only

the distribution of π pulses varies according to the order of UDD. For example, in one
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Figure 4.4: Pulse sequences for various orders of Uhrig Dynamical Decoupling. Note

that both UDD-1 and UDD-2 are equivalent to CPMG. The time instants are calculated

according to the expression (4.8), with N being the order of UDD and the total period

T = N × 4.0272 ms.
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second of decoupling, there will be about 250 π pulses in all UDD-N. Our investigation

thus helps in studying the efficiency of decoupling over a fixed duration of time for a

given number of π pulses dispersed according to different orders of UDD.

4.4.2 Performance of UDD over CPMG sequence

Now we describe the performances of UDD-N on the singlet state which was prepared

as explained before (see Figure 4.2). After applying UDD-N for a fixed duration of time,

we carried out density matrix tomography and evaluated the correlation of the preserved

state with theoretical singlet density matrix. The correlations for various orders of UDD

are displayed in Figure 4.5. As can be seen from the figure, the singlet state can be

preserved for longer durations by UDD-1 (CPMG) than no-decoupling. It is also clear

that all even-order UDD sequences result in significant fluctuations in the correlation

of the singlet state. However, the odd order UDD preserve the singlet state for tens of

seconds. For example, the correlation of the singlet state under UDD-7 at all the sampled

time points till 20 seconds is above 0.96. This rather surprising even-odd behavior is

likely due to the differences in the performances of the even and odd ordered sequences

against the spatial inhmongeneity of the RF pulses.

One way to quantify the efficiency of dynamical decoupling under various orders of

UDD in figure 4.5, is by counting the number of time instants in which the correlation

of the preserved state exceeds a given threshold. The bar plot in Figure 4.6 compares

the number of time instants during decoupling under various orders of UDD in which

the correlation of the singlet state exceeded 0.9. It can be seen that there exists an

optimal order of UDD (for a given τCPMG and τπ), which performs the most efficient

decoupling. The optimality may be because of the finite width of the π pulse. In a

CPMG sequence the π pulses are uniformly dispersed, while in Uhrig sequence the π

pulses are more crowded at the terminals (beginning and ending) of the sequence. For

example, if there are too many π pulses, Uhrig’s formula will lead to an overlap of

pulses. Experimentally, the overcrowding of π pulses may also lead to RF heating of
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Figure 4.5: Experimental correlations (circles) of singlet state as a function of de-

coupling duration of various orders of UDD. Also shown in the top-left figure is the

correlation decay under no dynamical decoupling (squares).
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Figure 4.6: The number of time instants at which the correlation exceeded 0.9 for

various orders of UDD-N.

the sample and the probe. Thus the performance of the UDD sequence does not grow

indefinitely with the order of the sequence, but instead will fall beyond a certain order.

In our experimental setting, we find that UDD-7 is the optimal sequence for storing the

singlet state. There are recent suggestions for decoupling using finite pulses, however

these are yet to be studied experimentally [180, 181].

4.4.3 Decay of magnetization during various dynamical decouplings

It can be noticed that the attenuated correlation (expression (4.14)) is insensitive to

the decay of the overall magnetization (ǫ in (3.10)), but simply measures the overlap

between ρ∆ and the theoretical density matrix |ψ〉〈ψ|. An alternate method is to monitor

the decay of magnetization (i.e., ǫ) under dynamical decoupling.

As already mentioned in Chapter 2, singlet state itself can not be measured directly,

but can be converted to observable magnetization by using a chemical shift evolution

for a duration 1/(4∆ν) followed by a
(
π
2

)
x(y)

pulse. Intensity of the resulting signal as
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Figure 4.7: The decay of the singlet spin-order measured by converting it into observ-

able single quantum magnetizations. The decay was studied under CPMG sequence

(squares) as well as under Uhrig sequence (filled circles). The dashed and the solid line

correspond to the exponential fits for CPMG and UDD-7 data points respectively.

a function of the duration of dynamical decoupling is shown in Figure 4.7. As can be

seen, UDD-7 is no better than CPMG in preserving the overall spin-order. In fact the

decay constant for CPMG and UDD-7 are 6.1 s and 5.9 s respectively.

4.4.4 Efficiency of UDD over CPMG for a non-entangled state and

various Bell states

Now we compare the efficiency of the optimal sequence UDD-7 with UDD-1 (CPMG)

for preserving product state (σ1
x + σ

2
x) and other Bell states. Figure 4.8 shows the vari-

ation of correlation of product states and the Bell states as a function of the decoupling

duration [179]. Here, after preparing each of the initial state, the dynamical decoupling

was applied for a fixed duration of time. To monitor the correlation, we have carried out

the density matrix tomography as described earlier [108]. In the case of no decoupling,

we observe a rapid decay of the correlation. The UDD-1 (CPMG) sequence shows some

improvement in the storage time. However, UDD-7 clearly exhibits much longer stor-
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age times than the CPMG sequence. The superior performance of UDD-7 on the singlet

state compared to other Bell states is presumably because of its antisymmetric property

described in section II.

4.5 Conclusions

In this chapter, we have described the effect of decoherence on the quantum system

and shows a method to tackle it in practical situations. Dynamical decoupling is a

method by which we can reduce the effect of environment on the system and ultimately

increase the coherence time scale of the system [179]. CPMG is known to be the best

known dynamical decoupling sequence both theoretically and experimentally for more

than 50 years until 2007. In 2007, Uhrig introduced a new sequence where instead

of applying the π pulses at regular intervals, one needs to apply π pulses at irregular

intervals synchronizing with a sine-square bell. Theoretically it has been well proved

that Uhrig dynamical sequence (UDD) performs better than CPMG sequence for saving

coherence orders of a quantum system. The coherence order for an entangled state is

also proved to be elongated by the application of UUD sequence compared to CPMG

sequence. Stroboscopic spin flips have already been shown to prolong the coherence

times of quantum systems under noisy environments. Uhrig’s dynamical decoupling

scheme provides an optimal sequence for a quantum system interacting with a dephasing

bath. Several experimental demonstrations have already been verified the efficiency of

such dynamical decoupling schemes in preserving single qubit coherences.

Here we have shown the first experimental study of UDD sequence on an NMR sys-

tem. We have studied the efficiencies of CPMG and UDD sequences on 2-qubit Bell

states both in terms of magnetization as well as in terms of correlation decay [179].

While the Uhrig sequence is no better than CPMG sequence in terms of preserving the

overall magnetization (or spin order), it clearly outperforms the CPMG sequence in pre-

serving the correlation of the entangled as well as non-entangled states. We summarize

three important features:

112



4.5. Conclusions

0 5 10 15 20 25 30 35
0

0.5

1

〈S
0〉

0 5 10 15 20 25 30 35
0

0.5

1

〈φ
−
〉

 

 

0 5 10 15 20 25 30 35
0

0.5

1

〈ψ
+
〉

 

 

0 5 10 15 20 25 30 35
0

0.5

1

Time (s)

〈φ
+
〉

 

 

0 5 10 15 20 25 30 35
0

0.5

1

〈σ
x1 +

 σ
x2 〉

 

 

Figure 4.8: Experimental correlations of the product state and various Bell states as

a function of duration under (i) no decoupling (open squares), (ii) CPMG sequence

(filled circles), and (iii) UDD-7 (open circles).
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(i) The even-order UDD sequences result is fluctuations in correlations.

(ii) The odd-order UDD sequences out-perform the CPMG sequence.

(iii) There exists an optimal length for the odd order UDD sequence which exhibits the

most efficient decoupling.

In our case, UDD-7 of 28.2 ms duration appeared to outperform all other sequences of

both lower and higher orders. Further understanding on the subject can be achieved by

carrying out investigations into the effects of other experimental issues like RF inho-

mogeneity, resonance off-set, errors in calibration of pulse angle etc. These considera-

tions may help in the theoretical and practical understanding of the optimal decoupling

schemes.
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Chapter 5

Violation of Leggett-Garg Inequality

In this chapter, we have performed experimental implementation of a protocol for testing

the Leggett-Garg inequality (LGI) for nuclear spins in a NMR setup. The motivation and

importance of this work is given in the introduction section 5.1. In section 5.2, we have

laid out the mathematical formulation of Leggett-Garg inequality for a spin-1/2 nucleus

in external magnetic field. In section 5.3, we have presented the Moussa protocol for

evaluating the expectation values of a target operator using an ancilla qubit. Section 5.4

shows the experimental results for the 3-qubit and 4-qubit measurements respectively.

The conclusion is given in section 5.5.

5.1 Introduction

Distinguishing quantum from classical behavior has been an important issue since the

development of quantum theory [71, 78, 182, 183, 205]. This issue is also at the heart

of physical realizations of quantum information processing (QIP) [20]. Experimental

tests for confirming quantumness in physical systems are usually guided by the Bell-

type inequalities (BI) [78] and the Leggett-Garg inequality (LGI) [205]. BI places

bounds on certain combinations of correlation coefficients corresponding to measure-

ment outcomes for space-like separated systems which are assumed unable to influ-
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ence one another (local realism). LGI, on the other hand, places bounds on combi-

nations of temporal correlation coefficients between successive measurement outcomes

for a system. Here the system at any instant of time is assumed to be in one or the

other of many possible states, and each measurement is assumed to be perfectly non-

invasive, in the sense that it has no effect on system’s subsequent dynamics (macro-

realism). In other words, violation of LGI indicates that the system’s dynamics can-

not be understood in classical terms. In recent years various protocols for implement-

ing LGI and its refined versions have been proposed and experimentally demonstrated

[184, 185, 186, 187, 188, 189, 190].

Here we have implemented the LGI protocol for individual spin-1/2 nuclei (from a

liquid NMR sample) precessing in magnetic field and interacting with their local envi-

ronments. A typical spin-1/2 system is genuinely ‘microscopic’ and exhibits quantum

behavior. However, it is well-known that, due to decoherence, microscopic quantum

systems appear to behave classically and as a consequence QIP tasks relying on such

candidate systems tend to fail [147]. Nuclear spins from an NMR sample are exam-

ples of microscopic quantum systems that are in constant interaction with their local

environment and are also candidate systems for QIP tasks. The interactions such as

dipole-dipole and chemical-shift anisotropy are known to be leading to decoherence,

dissipation and relaxation processes within the spin ensemble [191]. In experimental

set-ups such as NMR, successful QIP implementation therefore demands confirmation

of ‘survival’ of and determination of ‘durability’ of quantumness in candidate systems.

While an LGI test was originally proposed for addressing the fundamental question

about the ability of a macroscopic system to behave quantum mechanically, consider-

ing its basic mathematical framework, we extend such a test to investigate survival and

durability of quantumness within individual nuclear spins interacting with their environ-

ments. The investigation also sheds light on the possible consistency of the assumptions

of macrorealism with the ‘decoherence perspective’ [192].
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Although individual nuclear spins from an NMR sample are not directly addressable,

the sample provides an easily accessible ensemble of nuclear spins from a large number

of molecules. Therefore the experimental evaluation of a particular temporal correlation

involves simultaneous implementations of the LGI protocol on a large number of nuclei

(identical ‘targets’). Further, an NMR read-out is an ‘ensemble average’ obtained in

terms of magnetization signal. One thus needs to relate the required temporal correlation

from an LG string with the NMR signal. A quantum network for encoding correlation

between measurement outcomes of a target system in the phase of a probe system has

recently been proposed by Moussa et al [77]. With this network they were able to

demonstrate quantum contextuality using nuclear spins from a solid state NMR sample.

In this chapter, we exploit this network for testing LGI.

Experimental results shown for values of LG-strings containing three and four tem-

poral correlations as functions of delay between successive measurements [75]. We have

found good agreement between the quantum mechanically expected and experimentally

observed values of the strings for short timescales over which the decay in correlations

due to typical NMR relaxation processes are ineffective. Further, to demonstrate effect

of decoherence on the state of individual target nuclei which leads to relaxation of the

entire ensemble, we have also measured the values of LG strings over longer timescales

and found that the LG strings gradually decay and ultimately fall within the classical

bounds.

5.2 Leggett-Garg inequality

Consider a system (the ‘target’) whose state-evolution in time is governed by a particu-

lar Hamiltonian. To perform an LGI test for the system, a particular system-observable

(say Q) that can be taken as ‘dichotomic’, i.e. having two possible states with measure-

ment outcomes Q = ±1, requires to be identified. Next, from a set of ‘n’ measurement

instants {t1, t2, t3, ..., tn}, pairs of instants ti and t j, such that j = i+1, and a pair containing

the first (i = 1) and the last ( j = n) instants are to be chosen. For each such pair, one is
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then required to perform measurements of Q on the target system at the corresponding

two instants and obtain outcomes Q(ti) and Q(t j). After repeating these two-time mea-

surements over a large number of trials (say, N), one can obtain the two-time correlation

coefficient (TTCC) Ci j for each pair given by the formula:

Ci j =
1

N

N∑

r=1

Qr (ti) · Qr

(
t j

)
. (5.1)

where, r is the trial number. Finally, the values of these coefficients are to be substituted

in the n-measurement LG string given by:

Kn = C12 + C23 +C34 + .... +C(n−1)n − C1n. (5.2)

Each coefficient from the r.h.s. of the above LG string would have a maximum value

of +1 corresponding to perfect correlation, a minimum value of −1 corresponding to

perfect anti-correlation, and 0 for no correlation. Thus, the upper bound for Kn con-

sistent with macrorealism comes out to be (n − 2), the lower bound is −n for odd

n, and −(n − 2) for even n. With these considerations the LGI reads −n ≤ Kn ≤

(n − 2) for odd n, and − (n − 2) ≤ Kn ≤ (n − 2) for even n. For example, −3 ≤ K3 ≤ 1

and −2 ≤ K4 ≤ 2.

5.2.1 Spin-1/2 precession

The Zeeman Hamiltonian for the precession of a spin-1/2 nucleus in a magnetic field

about z-axis, is given by Ĥ = 1
2
ωσ̂z, with ω being the angular precession frequency

and σ̂z the Pauli-z operator. For the present work we choose the Pauli-x operator, i.e.

σ̂x, as the dichotomic observable. The quantum mechanical expression of Ci j for σ̂x

measurements on the nucleus is given by [192]

Ci j =
〈
σ̂x (ti) σ̂x

(
t j

)〉
≈ cos

{
ω(t j − ti)

}
. (5.3)
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(a) C12

C23

C13

tt1 t2 t3

(b) C12

C23

C34

C14

t
t1 t2 t3 t4

Figure 5.1: The protocols for evaluating K3 = C12 + C23 − C13 (a) and K4 = C12 +

C23+C34−C14 (b). In (a) three independent pairs of measurements are used to evaluate

TTCCs C12, C23, and C13. Similarly (b) uses four pairs of independent measurements

to evaluate C12, C23, C34, and C14.

In Heisenberg representation one can obtain this relation from:

Ci j ≈
1

2

∑

k

[
z〈k|σ̂x(ti)σ̂x(t j)|k〉z

]
. (5.4)

Here, |k〉z ∈ {|0〉, |1〉}, is an eigenstate of the Pauli-z operator. If we divide the total

duration from t1 to tn into (n − 1) equal intervals of duration ∆t, we can express the LG

string consistent with equation (3) as

Kn = (n − 1) cos{ω∆t} − cos{(n − 1)ω∆t}. (5.5)

The protocols for evaluating K3 and K4 are illustrated in Fig. 5.1. It can be seen that the

quantum bounds for K3 and K4 are [−3,+1.5] and [−2
√

2,+2
√

2] respectively.

5.3 Evaluating TTCCs using network proposed by Moussa

et al

Suppose that we wish to evaluate correlations between the outcomes of repeated mea-

surements of two commuting dichotomic unitary observables S 1 and S 2 for a target
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system (T). Consider an ancilla qubit (called ‘probe’ P) and a unitary transformation for

the joint system ‘T + P’ ,

US = IP ⊗ (P+)T + (σ̂z)P ⊗ (P−)T. (5.6)

Here P+ and P− are the projectors onto the eigenspace of S ∈ {S 1, S 2}, such that S =

(P+)T − (P−)T.

Using equation 5.6, it can be shown that the ensemble measurement of the ‘probe’

gives correlation between successively measured commuting observables of the ‘target’.

For evaluating TTCC’s from an LG string, the observable-set for the target qubit is
{
σ̂x(ti), σ̂x(t j)

}
and the corresponding unitaries to be applied to the joint (P + T) system

at different time instants ti < t j are

Uσ̂x(tq) = IP ⊗ P+(tq) + (σ̂z)P ⊗ P−(tq). (5.7)

Here σ̂x(tq) = P+(tq) − P−(tq) and q = i, j for time instants ti and t j. The quantum

network for implementing these unitaries is shown in Fig. 5.2(a).

Let the target qubit ‘T’ be initially prepared according to ρ. If the probe qubit ‘P’ is

initially in one of the eigenstates of the σ̂x operator, say |+〉 = (|0〉+ |1〉)/
√

2, the density

matrix of the joint system is given by

(ρ)P+T = (|+〉〈+|)P ⊗ (ρ)T . (5.8)

Due to the application of the unitaries (7) the joint density matrix evolves according to:

(ρ)P+T −→ U(t j, ti)(ρ)P+TU†(ti, t j) = (ρ′)P+T, (5.9)

where U(t j, ti) = Uσ̂x(t j)Uσ̂x(ti). In terms of the evolved joint density matrix, the

probabilities of obtaining ±1 outcomes for the Pauli-x measurements on the probe are
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ti tj

σx σx
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+Target
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Figure 5.2: Quantum network for the evaluation of TTCCs (a) and the corresponding

NMR pulse sequence (b). The ensemble was initially prepared according to (ρ)P⊗ (ρ)T,

where (ρ)P = (1 − ǫP)I/2 + ǫP|+〉〈+|, and (ρ)T = (1 − ǫT )I/2 + ǫT |+〉〈+|. Here ǫP/T is a

dimensionless quantity which represents the purity of the initial states.

given by:

p(±1) = trP+T[(ρ′)P+T{(|±〉〈±|)P ⊗ IT}]. (5.10)

By tracing over the probe states and using eqns. (5.7 - 5.9) in eqn. 5.10, one obtains:

p(±1) = trT[
{
P+(ti)P±(t j) + P−(ti)P∓(t j)

}
(ρ)T ]. (5.11)

The ensemble average of the measurement outcome of joint (P + T) observable is given

by:

〈(σ̂x)P ⊗ IT〉 = +p(+1) − p(−1). (5.12)
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Substitution of results 5.11 in equation 5.12 gives:

〈(σ̂x)P ⊗ IT〉 = trT[σ̂x(ti)σ̂x(t j)(ρ)T ]

=
〈
σ̂x(ti)σ̂x(t j)

〉
= Ci j. (5.13)

Comparing equations 5.1 and 5.13, it is clear that each TTCC in an LG string can be

evaluated by applying unitaries (7) to the joint (probe + target) system followed by an

ensemble measurement of Pauli-x operator on the probe.

5.4 Experiment

NMR sample consisted of 2 mg of 13C labeled chloroform (13CHCl3) dissolved in 0.7

ml of deuterated dimethyl sulphoxide (DMSO). To implement the protocol described

above, the spin-1/2 nuclei of 13C and 1H atoms are treated as the target spin and the

probe spin respectively. All the experiments are carried out on a Bruker 500 MHz

spectrometer at an ambient temperature of 300 K. The carbon RF offset was chosen

such that the 13C spin precesses at an angular frequency of ω = 2π × 100 rad/s under

the effective longitudinal field in the rotating frame of the RF. The proton RF offset was

chosen at the resonance frequency of 1H spin. The indirect spin-spin coupling constant

(J) for these two spins is 217.6 Hz. The spin-lattice (T1) and spin-spin (T2) relaxation

time constants for 1H spin are respectively 4.1s and 4.0 s. The corresponding time

constants for 13C are 5.5 s and 0.8 s.

The NMR pulse sequence for evaluating TTCCs is described in Fig. 5.2(b). Initial

90 degree y-pulses on both probe and target prepares them in σ̂x states. All the spin ma-

nipulations including the C-NOT gates corresponding to Uσ̂x operation are realized by

specially designed strongly modulated pulses [57, 58] having Hilbert-Schmidt fidelity

of over 0.995. These RF pulses are designed to be robust against the RF field inhomo-

geneity in the range of 90% to 110% and static field inhomogeneity in the range of −5

Hz to +5 Hz. The evolution of J-coupling during the intervals between the measure-
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ments are refocused using π pulses on 1H spin. Collective transverse magnetization of

the probe spins induce an observable emf on a resonant Helmholtz-type coil which is

amplified, digitized and stored as the probe signal. Quadrature detection of the probe

signal enables us to measure the x-component of the probe magnetization as the real

part of the complex signal. After Fourier transform, the probe signal is fitted to a mixed

Lorentzian line shape to extract the absorptive content. A reference signal was obtained

by an identical experiment with ∆t = 0. The correlation Ci j(∆t) was measured at each

value of ∆t by normalizing the real part of the probe signal with the reference signal.

Below, first we will prove the dichotomic nature of nuclear spin observable which is a

requisite for the experimental verification of LGI violation. Later subsections shows the

experimental results corresponding to LGI violations.

5.4.1 Confirmation of dichotomic nature of x-component of nuclear

spin observable

As the first step towards the implementation of any LGI protocol, one needs to identify

a dichotomic observable for the target system - i.e. having only two possible outcomes

scalable as ±1 - for measurements of which temporal correlations are to be evaluated.

Although Pauli-spin operators (relevant to systems such as spin-1/2 nuclei) are routinely

taken as dichotomic observables in NMR-QIP implementations, LGI test requires en-

suring that this indeed is the case experimentally, despite the presence of dominant

couplings of the target nucleus with its environment.

The 1H and 13C spins in chloroform are coupled by indirect spin-spin interaction (J)

with a strength of 217 Hz. The Hamiltonian for such a two-spin system in a doubly

rotating interaction frame can be written as

H = hνHσ
H
z /2 + hνCσ

C
z /2 + hJσH

z σ
C
z /4,

where νH and νC are the precession frequencies of the two nuclei [2]. In the present
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Figure 5.3: The energy level diagram of 1H-13C system (a) displaying four levels

corresponding to two coupled spin-1/2 particles, NMR spectra of 1H (b) and 13C (c)

nuclei showing splitting due to mutual interactions. The energy levels of 13C spin

system after decoupling 1H spin (d), and the corresponding 13C spectrum (e).

experiment νH = 0 Hz and νC = 100 Hz. The energy level diagram of such a system

is shown in Figure 5.3a. The experimental spectrum of 1H spin consists of two lines

corresponding to the two eigenstates of the 13C spin (and vice-versa) (Figure 5.3b-c).

The effect of the probe spin (i.e., 1H) on 13C can be removed by spin-decoupling. Under

decoupling, the 13C spectrum displays just a single line (Figure 5.3e) corresponding to

a two-level system (Figure 5.3d).

We have also recorded the real part of the intensity of signal corresponding to x-

magnetization of 13C spin (proportional to 〈σC
x 〉), under 1H decoupling, as a function of

precession duration (Figure 5.4). The data clearly fits to a cosine oscillation of single

frequency.

Thus, given the above confirmations that 13C spin is indeed a two-level system and
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Figure 5.4: Amplitude of 1H decoupled 13C spectrum as a function of time. Offsets

of the rotating frame are adjusted such that 1H has zero precession frequency and 13C

has a precession frequency of 100 Hz. The continuous line is the cosine fit to the

experimental data points (dots).

the intensity of its signal corresponding x-magnetization has a cosine oscillation with a

single frequency, we can say that σx observable used for testing LGI in the present work

is dichotomic.

5.4.2 Violation of LGI for 3 measurement case

The 3-measurement LG string K3 = C12+C23−C13 was evaluated for ω∆t varying from

0 to 60π, with ∆t incremented from 0 to 300 ms in 360 equal steps. The results of the

experiment are shown in Fig. 5.5. The maximum random errors in these experiments

were found to be about 0.5%. It is clearly seen that the experimental K3 data points

violate the classical limit and hence macrorealism. Fig. 5.5e shows the K3 plot for an

extended duration consisting of 30 periods. It can be observed that the experimental

values of K3 gradually decay at a time constant of about 288 ms predominantly due to

T1 and T2 relaxations and due to inhomogeneities in the magnetic field, thus eventually
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Figure 5.5: Correlations versus ∆t: C12 (a), C23 (b), and C13 (c). K3 is plotted for

the range ω∆t ∈ [0, 4π] (d). Continuous lines are theoretically expecting plots with an

exponential decay constant and crosses are experimentally achieved results at various

time points. The horizontal line in (d) demarcate the boundary between the classical

and the quantum regimes.

falling within the classical limit for ω∆t > 26π (≈ 42 ms).

5.4.3 Violation of LGI for 4 measurement case

Similarly, the 4-measurement LG string K4 was measured for ω∆t varying from 0 to

16π (i.e., for 8 periods), with ∆t varying from 0 to 80 ms. The results of the experiment

are shown in Fig. 5.7. Unlike the 3-measurement case, where the classical and quantum

mechanical lower limits for K3 values match (i.e., −3), the 4-measurement case displays

violation of the classical limit both in the positive as well as in the negative sides. Similar

to the previous case, we observe an exponential decay of K4 with a time constant of
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Figure 5.6: Decay of K3 w. r. t. time: K3 is plotted for the range ω∆t ∈ [0, 60π]

. Continuous lines and crosses are used for theoretical (K3 with decay) and experi-

mental values respectively. The theoretical line was obtained by numerically fitting

the K3 function given in (5.5) with an exponential decay to the experimental data. The

horizontal line demarcate the boundary between the classical and the quantum regimes.

about 324 ms. Decay of LG strings is faster than the measured T2 values of either spins

mainly because T2’s have been measured using CPMG sequences which suppress the

effects of static field inhomogeneity and local fluctuating fields.

5.5 Conclusion

The present investigation of LGI employs an ensemble of nuclear spins and alleviates

the need for repeated experiments on single isolated systems [77]. Simultaneous imple-

mentation of controlled operations on target-probe pairs enables evaluation of TTCCs

and hence plotting of LG strings as functions of two-time measurement delays. The

plots exhibit both violation and satisfaction of LGI respectively for delays shorter than

and comparable to the relaxation timescales [75]. we qualitatively interpret them as fol-

lows: For time scales, over which environmental effects on spin states are negligible,

individual target spins can be taken as isolated quantum systems. The plots do reflect

this fact in terms of violation of LGI. However, the spin-environment interaction tends

to destroy phase relationship characterizing superposition of quantum states of the target

nuclear spin. As a result, each member from the ensemble, with its respective environ-
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Figure 5.7: The individual correlations C12, C23, C34, and C14 are plotted in (a-d) and

K4 = C12 + C23 + C34 − C14 is plotted in (e) for the range ω∆t ∈ [0, 16π]. Continu-

ous lines and crosses are used for theoretical (K4 with decay) and experimental values

respectively. The theoretical line was obtained by numerically fitting the K4 function

given in (5.5) with an exponential decay to the experimental data. The horizontal line

demarcate the boundary between the classical and the quantum regimes.
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ment traced out, begins to appear as if pre-existing in either one of the two states (of

a spin observable chosen for performing measurements, which is Pauli-x in the present

work) but not in their superposition. Such a gradual transition from quantum to macro-

realistic behavior of individual microscopic systems manifests itself in terms of decay of

TTCCs. This ultimately leads to the satisfaction of LGI. Our experimental results thus

not only demonstrate initial macrorealism-violating dynamics in genuine microscopic

systems such as individual nuclear spins, but also bring forward their environment-

induced emergent macrorealistic behavior, captured in terms of satisfaction of LGI and

consistent with decoherence mechanism.
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Chapter 6

Quantum Delayed-Choice Experiment

In this chapter, we have discussed Bohr’s complementarity principle and its implication

on light quanta and subsequently on quantum systems. After giving a short introduction

of wave-particle duality in section 6.1, we discussed the various interferometer that is

been used to study this strange property in section 6.2. Then we described the theory

of recently proposed quantum delayed choice experiment in section 6.3. In section 6.4,

we have shown the experimental approach for the implementation of quantum delayed

choice circuit in an NMR quantum information processor. The conclusion is given in

section 6.5.

6.1 Introduction

“Is light made up of waves or particles?" has been an intriguing question over past

many centuries, and the answer remains a mystery even today. The first comprehensive

wave theory of light was advanced by Huygens [193]. He demonstrated how waves

might interfere to form a wavefront propagating in a straight line, and he could also

explain reflection and refraction of light. Soon Newton could explain these properties

of light using corpuscular theory, in which light was made up of discrete particles [194].

The corpuscular theory held over a century till the much celebrated Young’s double slit
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experiment clearly established the wave theory of light [195]. In the Young’s exper-

iment, a monochromatic beam of light passing through an obstacle with two closely

separated narrow slits produced an interference pattern with troughs and crests just like

one would expect if waves from two different sources would interfere. Other properties

of light like diffraction and polarization could also be explained easily using the wave

theory. The 20th century developments such as Plank’s theory of black-body radiation

and Einstein’s theory of photoelectric effects required quantization of light into pho-

tons [196, 197]. But the question remained whether individual photons are waves or

particles. Subsequent development of quantum mechanics was based on the notion of

wave-particle duality [198], which was essential to explain the behavior not only of the

light quanta, but also of atomic and sub-atomic entities [80].

6.2 Studying wave-particle duality by interferometers

6.2.1 Mach-Zehnder Interferometer

The wave-particle duality of quantum systems is nicely illustrated by a Mach-Zehnder

interferometer (MZI) (see Fig. 6.1) [199, 200]. The intensity of the incident light is kept

sufficiently weak so that photons enter the interferometer one by one. In the open-setup

(Fig. 6.1a), it consists of a beam-splitter BS1, providing each incoming photon with two

possible paths, named 0 and 1. A phase-shifter in path-1 introduces a relative phase φ

between the two paths. The two detectors D0 and D1 help to identify the path traveled

by the incident photon. Experimental results show that only one of the detectors clicks

at a time [201]. Each click can then be correlated with one of the two possible paths

by attributing particle nature to the photons. Here the phase-shifter has no effect on the

intensity of the photons measured by either detector, and therefore no interference is

observed in this setup.

In the closed-setup (Fig. 6.1b), the interferometer consists of a second beam-splitter

BS2, which allows the two paths to meet before the detection. Experimental results
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again show that only one detector clicks at a time. But much to the astonishment of

common intuition, the results after many clicks do show an interference pattern, i.e.,

the intensities recorded by each detector oscillates with φ [201]. Since only one photon

is present inside the interferometer at a time, each photon must have taken both paths

in the interferometer and therefore this setup clearly establishes the wave property of

photons.

The naive question by the classical mindset is “whether the photon entering the

interferometer decides to take one of the paths or both the paths depending on the ex-

perimental setup?". Scientists who believed in a deterministic nature had proposed that,

unknown to the current experimentalist, there exists some extra information about state

of the quantum system, which in principle dictates whether the photon should take either

path, or both the paths [202]. In other words, they assumed some hidden information

availed by the photon coming out of BS1 about the existence or non-existence of BS2.

6.2.2 Wheeler’s delayed-choice experiments

In order to break this causal link between the two beam-splitters, Wheeler proposed

a modification in the MZI setup (Fig. 6.1c), in which the decision to introduce or

not to introduce BS2 is to be made after the photon has already passed through BS1

[203, 204, 205]. This way, there is no causal connection between the selection of

the paths by the photon and the presence of BS2. Although initially considered as a

‘thought-experiment’, this proposal has recently been demonstrated by Jacques et al

[206]. In their experimental setup, the second beam-splitter (RBS) was controlled by a

random number generator (RNG), that choose to switch the beam-splitter ON or OFF

after the photon has already passed through BS1. The results of this delayed-choice

experiment was in agreement with Bohr’s complementarity principle [80]. That is, the

behavior of the photon in the interferometer depends on the choice of the observable

that is measured, even when that choice is made at a position and a time such that it is

separated from the entrance of the photon into the interferometer by a space-like inter-
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Figure 6.1: Different types of Mach-Zehnder interferometer setups (a-d) and equiva-

lent quantum circuits (e-h). BS1 and BS2 are beam splitters, φ is phase shifter, D0 and

D1 are detectors. RBS is a beam-splitter switched ON or OFF by a random number

generator (RNG) and QBS is a beam-splitter which is controlled by a quantum system

in superposition. In the quantum circuits, H is the Hadamard gate and Yα = e−iασy is

used to prepare the state of ancilla qubit.

134



6.3. Theory

val. Breaking the causal link had no effect on the results of the wave-particle duality,

thus ruling out the existence of hidden information [206].

6.2.3 Quantum delayed-choice experiments

Recently, Ionicioiu and Terno have proposed a modified version (Fig. 6.1d) of the

Wheeler’s experiment which not only demonstrates the intrinsic duality, but also shows

that a photon can have a morphing behavior between particle and wave [81]. In their

setup, BS2 is replaced with a beam splitter which is switched OFF or ON depending on

|0〉 or |1〉 state of a two-level quantum system. Using this modification, Ionicioiu and

Terno have been able to discard hidden variable theories which attempt to assign in-

trinsic wave or particle nature to individual photons even before the final measurement.

This proposed experiment is named as ‘Quantum Delayed-Choice Experiment’ [81].

Using nuclear magnetic resonance (NMR) techniques we study the behavior of a tar-

get spin-1/2 nucleus going through a similar situation as that of a photon going through

an interferometer [74]. Another spin-1/2 nucleus acts as an ancilla controlling the sec-

ond beam-splitter. In section 6.3 we briefly explain the theory and in section 6.4 we

describe the experimental results.

6.3 Theory

In the following we shall use the terminology of quantum information. The two possi-

ble paths of the interferometer are assigned with the orthogonal states |0〉 and |1〉 of a

quantum bit. The equivalent quantum circuits for the different setups of MZI are shown

in Figs. 6.1(e-h). Similar circuits have previously been used in ‘duality computers’

[207, 208, 209]. In these circuits the Hadamard operator H has the function of the beam

splitter BS1. It transforms the initial state |0〉 to the superposition (|0〉 + |1〉)/
√

2 such

that both |0〉 and |1〉 states are now equally probable. The detection operators for the two

detectors are D0 = |0〉〈0| and D1 = |1〉〈1|.
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In the open setup (Fig. 6.1e), the state after the phase shift becomes, |ψp〉 = (|0〉 +

eiφ|1〉)/
√

2. The intensities recorded by the two detectors are given by the expectation

values,

S p,0 = 〈ψp|D0|ψp〉 =
1

2
and

S p,1 = 〈ψp|D1|ψp〉 =
1

2
, (6.1)

independent of the phase introduced. Therefore no interference can be observed and

accordingly this setup demonstrates the particle nature of the quantum system. The

visibility of the interference

ν =
max(S ) −min(S )

max(S ) +min(S )
, (6.2)

is zero in this case.

The equivalent quantum circuit for the closed interferometer is shown in Fig. 6.1f.

After the second Hadamard one obtains the state, |ψw〉 = cos
φ

2
|0〉 − i sin

φ

2
|1〉, up to a

global phase. The intensities recorded by the two detectors are now,

S w,0 = 〈ψw|D0|ψw〉 = cos2 φ

2
and

S w,1 = 〈ψw|D1|ψw〉 = sin2 φ

2
. (6.3)

Thus as a function of φ, each detector obtains an interference pattern with visibility

ν = 1. This setup clearly demonstrates the wave nature of the target qubit.

In the circuit corresponding to the Wheeler’s experiment (Fig. 6.1g), the decision to

insert or not to insert the second Hadamard gate is to be made after the first Hadamard

gate has been applied.

Here, we focus on the next modification, that is the quantum delayed-choice experi-

ment [81]. In the equivalent quantum circuit (Fig. 6.1h), the second Hadamard gate is to

be decided in a quantum way. This involves an ancilla spin prepared in a superposition
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state cosα|0〉 + sinα|1〉. This state can be prepared by rotating the initial |0〉 state of

ancilla by an angle 2α about y-axis (using operator Yα = e−iασy ). The second Hadamard

gate is set to be controlled by the ancilla qubit. If the ancilla is in state |0〉, no Hadamard

gate is applied, else if the ancilla is in state |1〉, Hadamard gate is applied. The combined

state of the two-qubit system after the control-Hadamard gate is

|ψwp,α〉 = cosα|ψp〉|0〉 + sinα|ψw〉|1〉, (6.4)

wherein the second ket denotes the state of ancilla. After tracing out the ancilla, the

reduced density operator for the system becomes,

ρwp = cos2 α|ψp〉〈ψp| + sin2 α|ψw〉〈ψw|. (6.5)

Again, the intensity recorded by each detector can be obtained by calculating the expec-

tation values. For example, the intensity at the detector D0 is,

S wp,0(α, φ) = tr[D0 ρwp]

= tr[D0|ψp〉〈ψp|] cos2 α +

tr[D0|ψw〉〈ψw|] sin2 α

= S p,0 cos2 α + S w,0 sin2 α

=
1

2
cos2 α + cos2 φ

2
sin2 α. (6.6)

It can be immediately seen that the visibility ν for the above interference varies as sin2 α.

When α = 0, the quantum system has a particle nature and when α = π/2, it has a wave

nature. In the intermediate values of α, the quantum system is morphed in between

the particle and the wave nature. In the following section we describe the experimental

demonstration of morphing of a quantum system between wave and particle behaviors.
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6.4 Experiment

The sample consisted of 13CHCl3 (Fig. 6.2a) dissolved in CDCl3. Here 1H and 13C spins

are used as the target and the ancilla qubits respectively. The two spins are coupled by

indirect spin-spin interaction with a coupling constant of J = 209 Hz. All the experi-

ments were carried out at an ambient temperature of 300 K in a 500 MHz Bruker NMR

spectrometer.

6.4.1 Open and closed interferometers

The pulse-sequences corresponding to open and closed setups of MZI are shown in Fig.

6.2(b-c). In these cases, the circuits (Fig. 6.1(e-f)) need only a single target qubit and no

ancilla qubit. Here 1H spin is used as the target qubit, and its interaction with 13C spin

is refocused during the MZI experiments. Ideally both of these setups need initializing

the target qubit to |0〉 state. In thermal equilibrium at temperature T and magnetic field

B0, an ensemble of isolated spin-1/2 nuclei exists in a Boltzmann mixture,

ρeq =
1

2
eǫ/2|0〉〈0| + 1

2
e−ǫ/2|1〉〈1|, (6.7)

ǫ = γ~B0/kT is a dimensionless constant which depends on the magnetogyric ratio γ

of the spin. At ordinary NMR conditions ǫ ∼ 10−5 and therefore ρeq is a highly mixed

state. Since preparing a pure |0〉 state requires extreme conditions, one can alleviate this

problem by rewriting the equilibrium state as the pseudopure state

ρeq = |0〉〈0|pps ≈
1

2

(
1 − ǫ

2

)1 + ǫ
2
|0〉〈0|. (6.8)

The identity part does neither evolve under the Hamiltonians, nor does it give raise to

NMR signals, and is therefore ignored. Thus the single qubit equilibrium state effec-

tively mimics the state |0〉.

In all the cases (Fig. 6.2(b-d)), the first Hadamard gate on the target qubit is followed
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Figure 6.2: Molecular structure of chloroform (a) and pulse-sequences (b-d) for differ-

ent setups of MZI. Figs. (b) and (c) correspond to the open and closed setups respec-

tively, and (d) corresponds to the quantum delayed-choice experiment. The unfilled

rectangles are π pulses. Shaped pulses are strongly modulated pulses corresponding to

Hadamard gate (H), Yα gate, and control-Hadamard (cH) gate. π/2 detection pulses

are shown in dotted rectangles. J is the coupling constant and τ is the phase-shifting

delay. G1 and G2 are two pulsed-field-gradients for destroying coherences. In (d) two

separate experiments for 1H and 13C are recorded after applying respective π/2 detec-

tion pulses. ρeq, ρp = |ψp〉〈ψp|, ρw = |ψw〉〈ψw|, and ρwp = |ψwp〉〈ψwp| represent the

states at different time instants.
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by the phase shift. A 100 Hz resonance off-set of 1H spin was used to introduce the

desired phase shift φ(τ) = 200πτ, with the net free-precession delay τ. Experiments

were carried out at 21 linearly spaced values of φ in the range [0, 2π]. The 13C spin was

set on-resonance and the J-evolution during τ was refocused with a π pulse on 13C.

Unlike the open interferometer (Fig. 6.2b), the closed interferometer (Fig. 6.2c)

has a second Hadamard gate. In both of these cases, the intensity recorded by D1

detector corresponds to the expectation value of D0 = |0〉〈0| operator, which is a di-

agonal element of the density operator. To measure this element, we destroy all the

off-diagonal elements (coherences) using a pulsed field gradient (PFG) G1, followed by

a (π/2)y detection pulse. The most general diagonal density operator for a single qubit

is ρ = 1
2
1 + cσz, where c is the unknown constant to be determined. After applying the

(π/2)y detection pulse, we obtain 1
2
1 + cσx. The corresponding NMR signal is propor-

tional to c. The experimental NMR spectra for the open and closed setups are shown

in Fig. 6.3. These spectra are normalized w.r.t. equilibrium detection. Since both the

pathways created by BS1 are equally probable in the open MZI, c = 0 and therefore

spectrum vanishes. On the other hand, because of the second beam-splitter (BS2) in

closed MZI, c becomes φ dependent, and hence the interference pattern.

The corresponding intensities S p(w),0 = c+1/2 are shown in Fig. 6.4. The theoretical

values from expressions (6.1) and (6.3) are also shown in solid lines. The experimental

visibility of interference in the particle case is 0.02 and that in the wave case is 0.97. As

explained in the previous section, the open setup demonstrates the particle nature and

the closed setup demonstrates the wave nature.

6.4.2 Quantum delayed-choice experiment

The circuit for quantum delayed-choice experiment is shown in Fig. 6.1h and the cor-

responding NMR pulse-sequence is shown in Fig. 6.2d. This circuit requires one target

qubit (1H) and one ancilla qubit (13C). The equilibrium state of the two-qubit system

does not correspond to a pseudopure state and therefore it is necessary to redistribute
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particle

wave

Figure 6.3: The experimental spectra obtained after the open (top trace) and closed

(bottom trace) setups of MZI. Each spectrum (pair of lines) corresponds to one of the

21 linearly spaced values of φ in the range [0, 2π].

the populations to achieve the desired pseudopure state. We used spatial averaging tech-

nique to prepare the pseudopure state [131]

ρpps =
1 − ǫ′

4
1 + ǫ′|00〉〈00|, (6.9)

where ǫ′ is the residual purity.

All the gates on the target and the ancilla were realized using strongly modulated

pulses (SMPs) [57, 58]. The SMPs were constructed to be robust against RF amplitude

inhomogeneities, which normally have a distribution of about 10 % about the mean.

Robust pulses were achieved by calculating the Hilbert-Schmidt fidelity between the

desired operator and the experimental operator for different possible RF amplitude dis-

tributions, and then maximizing the average fidelity [59]. An average fidelity of over

0.995 was achieved for each gate. After the control-Hadamard gate, the state of the

two-qubit system is expressed by the density operator ρwp (eqn. 6.5) up to the unit
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Figure 6.4: The experimental intensities S p,0 (particle) and S w,0 (wave) at various

values of φ.

background.

The interference S wp,0 (in eqn. 6.6) due to the detection operator D0 = |00〉〈00| can

be obtained by measuring the first diagonal element of the density matrix, and hence

complete density matrix tomography is not necessary [108]. As in the single qubit case,

we apply a PFG G2 which averages out all the coherences and retains only the diagonal

part of the density matrix. The most general diagonal density matrix of a two-qubit

system is of the form

ρ =
1

4
1 ⊗ 1 + c1σz ⊗ 1 + c21 ⊗ σz + c3σz ⊗ σz, (6.10)

with the unknown constants c1, c2, and c3.

Recording the target spectrum after a (π/2)y pulse on the above state gives two sig-
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π/8

α = 0

π/2

3π/8

π/4

Figure 6.5: The experimental spectra obtained after the quantum delayed choice ex-

periment with (π/2)y detection pulse on target (1H) qubit. These spectra are recorded

with 21 equally spaced values of φ ∈ [0, 2π] and at different α values (as indicated). In

each spectrum, only one line is expected due to the preparation of pseduopure state.
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nals proportional to c1 + c3 and c1 − c3. The spectra of the target qubit at various values

of φ and α are shown in Fig. 6.5. The signals obtained after applying a (π/2)y pulse

on either qubit after preparing the |00〉 pseudopure state are used to normalize these

intensities. In each spectrum, the left transition (corresponding to the |0〉 state of an-

cilla), vanishes because of the particle nature (similar to the top trace of Fig. 6.3) and

the right transition (corresponding to the |1〉 state of ancilla) displays the interference

pattern because of the wave nature (similar to the bottom trace of Fig. 6.3).

Similarly, recording the ancilla spectrum after a (π/2)y pulse gives two signals pro-

portional to c2 + c3 and c2 − c3. From these four transitions one can precisely determine

all the three unknowns c1, c2, and c3, and obtain the population S wp,0 = 1/4+c1+c2+c3.

Calculated experimental intensities S wp,0 are shown in Fig. 6.6a. The intensities were

measured for five values of α in the range [0, π/2], and for 21 values of φ in the range

[0, 2π]. The theoretical values from expression (6.6) are also shown in solid lines. The

experimental values were found to have small random errors with a standard deviation

less than 0.01. The significant systematic errors are due to experimental limitations such

as radio-frequency inhomogeneity and spectrometer non-linearities.

The visibility ν calculated at different values of α are plotted in Fig. 6.6b. The

theoretical visibility varies as sin2 α as explained in the section II. There appears a gen-

eral agreement between the quantum mechanical predication (solid-line) and the exper-

iments (symbols).

6.5 Conclusions

In this chapter, we have studied the open and closed setups of Mach-Zehnder inter-

ferometer using nuclear spin qubits, and demonstrated the particle-like and wave-like

behaviors of the target qubit. Previously NMR interferometer has been used to study

dipolar oscillations in solid state NMR [210] and to measure geometric phases in multi-

level systems [211, 212, 213]. We have reported the first experimental demonstration of

the quantum delayed-choice experiment using NMR interferometry.
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Figure 6.6: The intensities S wp,0(α, φ) versus phase φ for different values of α (a) and

the visibility ν versus α (b). The theoretical values are shown in solid lines and the

experimental results are shown by symbols.
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Bohr’s complementarity principle is based on mutually exclusive experimental ar-

rangements. However, the quantum delayed-choice experiment proposed by Ionicioiu

and Terno [81], suggests that we can study the complementary properties like particle

and wave behavior of a quantum system in a single experimental setup if the ancilla is

prepared in a quantum superposition. This experiment is the quantum version of the

Wheeler’s delayed-choice experiment. The quantum delayed-choice experiment sug-

gests a reinterpretation of complementarity principle: instead of complementary exper-

imental setups, the new proposal suggests complementarity in the experimental data.

The NMR systems provide perfect platforms for studying such phenomena [74]. In

our experiments we found a general agreement between the intensities and the visibil-

ities of the interference with the theoretically expected values. These experiments not

only confirm the intrinsic wave-particle duality of quantum systems, but also demon-

strates continuous morphing of quantum systems between wave and particle behavior

of the target qubit depending on the quantum state of the ancilla qubit.
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Appendix A

Density Matrix tomography for a pair

of spin-1/2 homonuclear system

A density matrix describes the statistical state of a quantum system and is considered to

be the most profound way of representing a quantum state. A pair of spin-1/2 system can

be expressed fully by a density martix of 4 × 4 order. In general the size of the density

matrix depends on the number of spins, such as a n-spin system can be represented fully

by a 2n × 2n density matrix. The density matrix of any quantum state is a Hermitian

matrix with trace 1. In a NMR spin system, the diagonal elements of the density matrix

represent populations, whereas the off-diagonal elements represent coherence orders.

The density matrix for a typical two spin-1/2 system is given below:



|00〉 |01〉 |10〉 |11〉

〈00| P00 S Q S Q DQ

〈01| P01 ZQ S Q

〈10| P10 S Q

〈11| P11



(A.1)

Here, P00, P01, P10, and P11 are representing the populations in |00〉, |01〉, |10〉, |11〉

states respectively. Single, double, and zero-quantum coherences are denoted by S Q,
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DQ, and ZQ respectively. In NMR only single quantum coherences are directly observ-

able. Hence to determine all these elements, we need to perform some unitary transfor-

mations by which we can effectivle transfer other non-SQ terms into a SQ coherence

and hence can be readout from the output signal.

The general traceless deviation density matrix consists of 15 independent real num-

bers:

ρ =



p0 r3 + is3 r1 + is1 r5 + is5

p1 r6 + is6 r2 + is2

p2 r4 + is4

−∑2
i=0 pi



. (A.2)

Each coherence element has a real (r) and a imaginary (s) part in it. The elements below

the diagonal are determined by Hermitian condition : ρ jk = ρ
∗
k j. Since, 1H spin systems

have smaller coupling constants, often it is difficult to readout each of the line seperately

incase of a dispersive spectra. Here, we devoloped the tomographic technique where we

need to do total integratation for one spin. This way integration errors for a dispersive

spectra can be reduced significantly. Four combinations of different readout elements

can be obtained from the integration of complex line shapes of spin 1 and 2 respectively.

• Real part of spin 1 : R1 = (r1+r2)

• Imaginary part of spin 1 : S1 = (s1+s2)

• Real part of spin 2 : R2 = (r3+r4)

• Imaginary part of spin 2 : S2 = (s3+s4)

Now consider an RF sequence with propagator representing by U, that transforms

the original density matrix ρ into ρ′ = UρU†. Single quantum coherences of ρ′ will lead

to different linear combinations of various elements in ρ. Thus, by applying different

propagators on ρ, we can measure the values of different linear combinations of various
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elements of ρ. The real and imaginary values of the integration of jth spin in kth exper-

iment will be labeled as Rk
j and S k

j respectively. Following six one-dimensional NMR

experiments were found to be sufficient to tomograph a two-spin density matrix:

1. 1
2. 90x

3. 1
4J
· 180x · 1

4J

4. 45x
1

4J · 180x · 1
4J

5. 45y
1

4J · 180x · 1
4J

6. 1
2∆ν
· 45y

1
4J
· 180x · 1

4J

Here 1 is the identity i.e., direct observation without applying any extra pulses. ∆ν and

J are the chemical shift difference and the scalar coupling respectively (both in Hz).

The offset is assumed to be at the center of the two doublets and the RF amplitudes are

assumed to be much stronger than ∆ν.

Now, we will operate each of this propagator one by one and read out the four

detectable element orders. We will follow the spin-operator formalism for mathemical

treatments. Ik
j defines as spin-operator, j can be x, y, or z depending on the phase of a

particular pulse and k can be either 1 or 2 depending on the spin, which is going through

the evolution. E. g. I1
x denotes evolution of spin-1 w. r. t. x axis. The single spin

operator can be written as:

Ix = σx/2 =
1

2


0 1

1 0

 ; Iy = σy/2 =
1

2


0 −i

i 0

 ; Iz = σz/2 =
1

2


1 0

0 −1

 . (A.3)

Where σx, σy, σz are Pauli matrices. Now, for a two spin system matrix operator is of

the order of 4 × 4. Hence I1
x = Ix ⊗ Id, where Id denotes identity matrix of 2 × 2. Again

149



Appendix A. Density Matrix tomography for a pair of spin-1/2 homonuclear system

I2
x = Id ⊗ Ix. Similarly I1

y , I2
y , I1

z , I2
z can be written. Obviously for a two-spin system

Ix = I1
x + I2

x , Iy = I1
y + I2

y , Iz = I1
z + I2

z

The spin-operator formalism for the 6 tomographic experiments described in detail.

I.

The first experiment is the identity operator and hence the density matrix will be same

and the readout elements are as written above:

R1
1 = (r1 + r2), R1

2 = (r3 + r4), S 1
1 = (s1 + s2), S 1

2 = (s1 + s2). (A.4)

The left hand side of each of these equations are known values (achieved by integrating

the spectra) and righ hand side are unknowns to be determined.

II.

The second unitary operator is a 90x pulse. The matrix form of this operator can be

written as:

U2 = e(−i. π
2
.Ix) =

1

2



0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0



.

Now operating U2 on ρ can be written as: ρ2 = U2 · ρ · U†2 . The readout elements

from ρ2 are :

R2
1 = (r1 + r2), R2

2 = (r3 + r4), S 2
1 = (p0 + p1), S 2

2 = (p0 + p2). (A.5)
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III.

The third experiment is a 1/2J evolution of J-coupling, whereas chemical shift is refo-

cussed since the offset is set in between the spins. Mathematically the operator form for

this unitary evolution can be written as:

U3 = e(−i. π
4
.2.I1

z I2
z ).e(−i.π.Ix).e(−i. π

4
.2.I1

z I2
z ) =

1
√

2



0 0 0 −1 + i

0 0 −1 − i 0

0 −1 − i 0 0

−1 + i 0 0 0



.

Similarly as above, ρ3 = U3 · ρ · U†3 . The readout elements from ρ3 are :

R3
1 = (s1 − s2), R3

2 = (s3 − s4), S 3
1 = (r1 − r2), S 3

2 = (r3 − r4). (A.6)

IV.

The fourth experiment comprises of a 45x pulse and a 1/2J evolution similar to the

previous one. Mathematically, the operator can be writen in a similar way as shown

previously. U4 = e(−i. π
4
.2.I1

z I2
z ).e(−i.π.Ix).e(−i. π

4
.2.I1

z I2
z ).e(−i.π/4.Ix). Then, ρ4 = U4 · ρ · U†4 . The

readout elements from ρ4 are:

R4
1 =

1

4
(p0 − p1 − p2) +

1

2
(r5 − r6 + s1 − s2 − s3 + s4),

R4
2 =

1

4
(p0 − p1 − p2) +

1

2
(r5 − r6 − s1 + s2 + s3 − s4),

S 4
1 =

1
√

2
(r1 − r2 − s5 + s6),

S 4
2 =

1
√

2
(r3 − r4 − s5 − s6). (A.7)
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V.

The operator form of the fifth experiment can be written as, U5 = e(−i. π
4
.2.I1

z I2
z ).e(−i.π.Ix).e(−i. π

4
.2.I1

z I2
z ).e(−i.π/4.Iy).

Then, ρ5 = U5 · ρ · U†5 . The readout elements from ρ5 are:

R5
1 =

1
√

2
(s1 − s2 − s5 − s6),

R5
2 =

1
√

2
(s3 − s4 − s5 + s6),

S 5
1 =

1

4
(p0 − p1 − p2) +

1

2
(r1 − r2 − r3 + r4 − r5 − r6),

S 5
2 =

1

4
(p0 − p1 − p2) +

1

2
(−r1 + r2 + r3 − r4 − r5 − r6). (A.8)

VI.

The operator form of the sixth and last experiment can be written as, U6 = e(−i. π
4
.2.I1

z I2
z ).e(−i.π.Ix).e(−i. π

4
.2.I1

z I2
z ).e(−i.π/4.Ix)

Then, ρ6 = U6 · ρ · U†6 . The readout elements from ρ6 are:

R6
1 =

1

4
(p0 − p1 − p2) +

1

2
(r1 − r2 + r3 − r4 + r5 + r6),

R6
2 =

1

4
(p0 − p1 − p2) +

1

2
(−r1 + r2 − r3 + r4 + r5 + r6),

S 6
1 =

1
√

2
(−s1 + s2 − s5 + s6),

S 6
2 =

1
√

2
(s3 − s4 − s5 + s6). (A.9)

So, at the end of these 6 experiments, one should have a total 24 linear equations

(Eqs. A.3-A.8) with 15 unknowns. All these equations can be written together in a

matrix format, as written below: (see Eq. A.10) (AX = Y , where A is a constant matrix,

X is an unknown matrix to be calculated and Y is a known matrix).
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0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
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.(A.10)

Certainly, this is a over-determined problem since 24 linear equations are to be used

for 15 unknowns. This redundancy however works to increase the precision of the solu-
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tion by reducing the condition number of the constraint matrix. For the 24 × 15 matrix

in equation A.10, condition number is about 3.7, meaning the solutions are precise to

5 significant digits. The equation A.10 can be solved either by singular value decom-

position (SVD) or by Gaussian elimination method (both of which are implemented in

MATLAB).
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Density Matrix tomography for a three

spin-1/2 homonuclear system

The method for three-spin tomography is similar to one that we have described for a two-

spin system. Since the number of unknowns here for three-spin system is much higher

(63 unknowns) than two-spin (15 unknowns) system, we need to have more number of

experiments in order to find out all the unknowns faithfully. The 8 × 8 general density

matrix (ρ) for a three-spin system can be written as follows:



|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

〈000| P0 r9 + is9 r5 + is5 r13 + is13 r1 + is1 r14 + is14 r15 + is15 r25 + is25

〈001| P1 r16 + is16 r6 + is6 r17 + is17 r2 + is2 r26 + is26 r18 + is18

〈010| P2 r10 + is10 r19 + is19 r27 + is27 r3 + is3 r20 + is20

〈011| P3 r28 + is28 r21 + is21 r22 + is22 r4 + is4

〈100| P4 r11 + is11 r7 + is7 r23 + is23

〈101| P5 r24 + is24 r8 + is8

〈110| P6 r12 + is12

〈111| ∑6
j=0 −P j


(B.1)
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Appendix B. Density Matrix tomography for a three spin-1/2 homonuclear system

The lower triangle of the density matrix can be filled by applying the Hermitian

property of it (ρ jk = ρ
∗
k j). The diagonal elements (P j, j = 0 → 6) are representing pop-

ulation distributions of the density matrix. Applying the traceless property (or identity

trace property), one of the unknowns can be reduced. All other off-diagonal elements

are representing the various coherence orders. Each coherence elements has a real (r)

and imaginary (s) part in it. Elements r j and s j, with j = 1 → 12 representing the real

and imaginary part of single quantum coherences. Whereas r j and s j, with j = 13→ 28

representing the real and imaginary part of double, triple, or zero quantum coherences.

Only single quantum coherences are directly accessible in NMR. As described in the

2-spin tomography method, we have to find suitable unitary transformations which can

transfer the double, triple, zero, and population orders into single quantum coherences.

Consider a propagator U, that transforms the original density matrix ρ into ρ′ = UρU†.

Following 13 unitary transformations were found to be sufficient to tomograph a three-

spin homonuclear system.

(1). 1
(2). 1

J13

(3). 1
2J13

(4). 1
J23

(5). 1
2J13
· 6090

(6). 1
J13
· 9045

(7). 1
2J13
· 90135

(8). 1
2J13
· 450

(9). 1
J23
· 6045

(10). 1
J13
· 45135
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(11). 1
2J13
· 3045

(12). 1
J13
· 900 · 1

2J13
· 900

(13). 1
2J13
· 6090 · 1

J13
· 90135

Here 1 represents the identity operator i.e., direct observation without applying any

extra pulses. J12, J23, and J13 are the scalar couplings between spin 1 & 2, spin 2 &

3, and spin 1 & 3 respectively (in Hz). The offset is assumed to be at the center of

the spin-1 and spin-2 and the RF amplitudes are assumed to be much stronger than ∆ν.

Hence, all the pulses used are non-selective RF pulses. For this particular case J12 is not

used since it has very small coupling constant (a small coupling constant leads to larger

duration of evolution which inturn makes the result more error prone).

Interms of unitary operator the delays ( 1
J13

or 1
J23

) can be written as bellow. For

example, let us take the 2nd experiment ( 1
J13

),

U2 = e−i(H j+Hcs). 1
J13 , (B.2)

where, Hcs and H j denoting Hamiltonian due to chemical shifts and J-couplings.

Hcs =

3∑

i=1

νiI
i
z; H j =

3∑

i=1

3∑

j=1

i, j

2πJi jI
i
zI

j
z . (B.3)

A combination of pulses and delays can also be seen as a required tomographic experi-

ments. A pulse can be easily be written as a unitary transformation as shown in detail in

previous appendix. For example, we can take the experiment named 6090 (experiment

no. 5). The unitary operator for this pulse can be written as,

U5 = e−i π
3

(I1
x+I2

x+I3
x ). (B.4)

We need to apply this unitary operator one by one on the primitive density matrix

(B. 1). By doing individual integration on each of the transition (12 transition for each
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experiment) and taking the imaginary values as well, we can get a total 312 linearly

dependent equations. These equations can be solved by singular value decomposition

(SVD) method and all the 63 unknowns can be find out.
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