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Abstract 

 

We propose a non-empirical, pairwise-dispersion-corrected, optimally-tuned 

range-separated hybrid functional. This functional retains the advantages of the 

optimal-tuning approach in the prediction of the electronic structure. At the same 

time, it gains accuracy in the prediction of binding energies for dispersively-

bound systems, as demonstrated on the S22 and S66 benchmark sets of weakly-

bound dimers.  
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1. Introduction 
 
1.1 Density Functional Theory 

Density-functional theory (DFT) is an approach to the many-electron problem, 

in which the electron density, rather than the many-electron wave function, plays 

the central role.1,2 In recent years, DFT has become the method of choice for 

electronic-structure calculations across an unusually wide variety of disciplines,3 

from organic chemistry4 to condensed matter physics,5 as it allows for fully 

quantum-mechanical calculations at a relatively modest computational cost. 

Practical applications of DFT are usually achieved by solving the Kohn-Sham 

equation (in either original6 or generalized form7), which maps the original many-

electron problem into an equivalent single-electron Hamiltonian. Although exact 

in principle, this mapping is approximate in practice. Its practical success 

depends critically on the nature of the approximate density functional employed 

for describing the energy and potential associated with electron exchange and 

correlation.8,9 

 

1.2 Range-Separated Hybrid Functional 

One class of approximate density functionals which has gained considerable 

interest recently is that of the range-separated hybrid (RSH) functionals.10 In the 

simplest realization of this idea, the repulsive Coulomb potential is split into a 

long-range (LR) and short-range (SR) term, e.g., via 

 
 

   
  

            

   
  

          

   
, (1) 

where γ is the range-separation parameter and          is the relative 

electron coordinate. The LR exchange is then treated via an “explicit” or “exact” 

Fock-like term, whereas the SR part is treated using a semi-local approximation. 

Together with a semi-local expression for correlation, this leads to the following 

equation: 
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where VH is the Hartree potential,   
   is the semilocal correlation,   F

lr,γ is the 

long-range Fock-like operator  

    
    

      ∑   
      ∫       ( |    |)

|    |
  

         
   (3) 

and vx
sr,γ([n];r) is the SR, semilocal exchange potential. The RSH approach is 

useful because on the one hand RSH functionals employ 100% Fock exchange 

in the long range of the interaction, leading to the correct form of the asymptotic 

potential, which is not obtained in conventional semi-local or hybrid functionals. 

On the other hand, they maintain the delicate balance of exchange and 

correlation in the short-range, thereby retaining the advantages of conventional 

functionals in the description of chemical bonding.8,11,12 

 

1.3 Optimal γ Tuning 

Usually, the range-separation parameter, γ, which provides a characteristic 

length scale for the transition from the short range to the long range, is 

determined semi-empirically.13-18 Recently, it was suggested that γ can be tuned 

from first principles instead.11-13,19 This can be achieved by insisting that the 

ionization potential theorem20-23 (sometimes known as the “DFT version of 

Koopmans’ theorem) be fulfilled. This means that  

         (4) 

i.e., the highest occupied eigenvalue,    is equal and opposite to the ionization 

potential obtained from total energy differences, I. It was further shown that if the 

above condition is demanded for both neutral and anion systems, e.g., in the 

form  

        [                   ]    [                       ]   (5) 

then one can identify the HOMO and LUMO of the DFT calculation with the 

ionization potential and electron affinity, respectively, thereby mimicking 

successfully, within DFT, the quasi-particle picture of many-body perturbation 

theory.24 The same approach was found to be useful for the prediction of optical 

gaps from time-dependent DFT,25 notably for cases that are typically beyond the 

reach of conventional functionals, including full19, partial26,27, or implicit28 charge 
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transfer excitations. Similar and related approaches were also found to be 

beneficial for a variety of electron and optical spectroscopies (see, e.g. (29-34)).  

 

1.4 Motivation of Study and Dispersion Correction 

One important issue which RSH functionals (with or without a tunable range 

parameter) fail to address is the description of dispersive interactions. Such 

interactions result from density fluctuations and dominate in regions where there 

is no or little overlap of electron densities.35,36Although they are significantly 

weaker than a typical covalent bond, they still play an important and often crucial 

role in determining the structure and properties of large variety of systems. From 

the DFT point of view, dispersive interactions require non-local correlation 

expressions,37-39 which are trivially missing from all standard functionals, 

including the RSH expression of Eq. (2).  

Advanced DFT approaches that can capture dispersive interactions are a 

highly active field of research.38-39 A simple strategy, which is one of the most 

exploited ones in practice, is to add pair-wise dispersion corrections in the form 

           ∑   
        (       

 )       
   (6)                                                                 

where C6 is the dispersion coefficient,    
  is the sum of equilibrium vdW radii for 

the pair and R is the interatomic distance, to the total energy obtained from the 

DFT calculation. These correction terms are damped in the short range, so that 

the successful description of strong chemical bonds is retained, but at the same 

time the long range attraction essential to dispersive interactions is explicitly 

enforced. Several useful forms of such corrections have been put forth40-45 and 

have found widespread use. Moreover, several forms for dispersive corrections 

of RSH functionals have also been presented.46-49 

An additional advantage of pair-wise dispersive corrections is that they allow 

one to overcome the thorny problem of obtaining a reliable description of both 

geometry and electronic structure, by decoupling the two issues.50 First, one 

chooses a functional that is appropriate to the electronic structure, but does not 

include a good description of dispersive interactions. Then, one augments it with 

first principles corrections for the leading terms of the dispersion interaction. 
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Ideally, one would therefore like to augment optimally-tuned RSH functionals with 

dispersive corrections and enjoy their superior electronic structure without 

sacrificing their applicability to systems where dispersive interactions are 

important. However, because the range-separation parameter is system-

dependent, and because the pair-wise correction depends on the details of the 

underlying functional, it is not clear how or even whether a suitable dispersive 

correction can be obtained. 

To examine this question, we focus here on a specific form of pair-wise 

corrections, known as the Tkatchenko-Scheffler van der Waals (TS-vdW) 

correction.45 We have chosen this form for two reasons: First, distinctly from other 

pair-wise corrections schemes, in the TS-vdW scheme, the C6 coefficients are 

determined from first principles. The only parameter which is empirical is 

introduced in the Fermi-Dirac-like damping function,  

      (       
 )    [      (   (

   

     
   )) ]

  

 (7) 

where d and sR are the free parameters. The value of d is kept as a constant 20, 

which was found suitable for the non-covalent interaction and adjusts the 

steepness of the damping function. The only empirical parameter remaining is sR, 

which is determined on the basis of the vdW correction needed for a particular 

xc-functional. This way, the first principles aspect of the optimally-tuned RSH 

approach is retained in as much as possible. Second, the TS-vdW correction has 

previously been shown to yield results of useful and uniform accuracy for a wide 

range of underlying density functionals.50,51  

Here, we apply TS-vdW corrections to optimally-tuned RSH calculations for 

the well-known S2252 and S66 sets53 of benchmark data for dispersive 

interactions. We find that, despite strong variations in the optimal value of the 

exchange range-separation, parameter, γ, a level of accuracy that is comparable 

and even slightly better than that achieved with conventional semi-local or hybrid 

functionals is obtained. Furthermore, it was found that seeking an optimal relation 

between the two range separation parameters, γ and sR, does not increase the 

accuracy further. Therefore, we find TS-vdW corrections to be inherently suitable 
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to optimally-tuned RSH calculations and to allow for their reliable extension to 

dispersively-bound systems.  

 

2. Methodological and Computational Details 

All DFT calculations presented in this article were performed using version 

6.0 of the NWChem package.54 We used an optimally-tuned RSH functional, of 

the form given in Eq. (1) based on the LC-ωPBE functional55 which employs a 

short-range version of the Perdew-Burke-Ernzerhof (PBE) semi-local exchange 

functional56 and semi-local PBE correlation. The aug-cc-pvtz basis set was used 

throughout. Optimal γ values were deduced for the each dimer structure using 

Eq. (5).  

Subsequently, dispersion corrections of the form given in Eq. (6) were added to 

the total energy. The binding energy of each dimer was then obtained from the 

total energy difference of the dimer and the isolated monomers. Note that the 

optimal tuning parameter of the monomer is not necessarily the same as that of 

the dimer. However, subtracting energies obtained from different γ values may 

introduce severe size-consistency errors.13,57 Therefore, for calculating binding 

energies, the optimal γ value determined for the dimer was also used for the 

monomer species.  

 

3. Results and Discussions 

Optimal γ values for all dimers studies are given in the table 1 and 2. Optimal 

gamma values were found to vary between 0.25 and 0.5 for dimers in both the 

S22 and S66 sets, underscoring the importance of a non-universal value for γ. 

Mean absolute errors (MAE) for the binding energies, obtained from the 

optimally-tuned RSH in the absence of dispersion corrections, are given in Table 

I and II for the S22 and S66 sets, respectively. For comparison, the same tables 

also reproduce previously published51 binding energies obtained from the semi-

local PBE functional,56 as well as from the conventional hybrid functional based 

on PBE,58 which we denote here as PBEh. It is readily observed that for van-der-

Waals bonded systems, the performance of the RSH functional is similar to that 
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of PBE and PBEh, whereas for the hydrogen-bonded complexes it is somewhat 

worse. In any case, and as expected, the performance of any of those functionals 

in the absence of dispersive corrections is unacceptable.  

 

Table 1.  Optimal-tuned gamma value for all monomers of S22 set. 

Ammonia_dimer 
 

0.428 
water_dimer 

 
0.498 

formicacid_dimer 
 

0.395 
formamide_dimer 

 
0.370 

uracil_dimer 
 

0.291 
2_pyrodoxine_aminopyridine 

 
0.258 

adenine_thymine WC 
 

0.253 
methane dimer 

 
0.462 

ethene dimer 
 

0.343 
benzene_methane 

 
0.275 

benzene dimer 
 

0.248 
pyrazine dimer 

 
0.292 

uracil dimer 
 

0.260 
indole benzene 

 
0.245 

adenine thymine stack 
 

0.245 
ethene_ethyne 

 
0.335 

benzene_water 
 

0.280 
benzene_ammonia 

 
0.300 

benzene_HCN 
 

0.273 
benzene_dimer 

 
0.262 

indole_benzene_tshape 
 

0.255 
phenol dimer 

 
0.264 
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Table 2.  Optimal-tuned gamma value for all dimers of S66 set. 

Water-Water 0.495 
 

Uracil-Pentane 0.262 

Water-MeOH 0.430 
 

Uracil-Cyclopentane 0.263 

Water-MeNH2 0.375 
 

Uracil-Neopentane 0.267 

Water-Peptide 0.318 
 

Ethene-Pentane 0.330 

MeOH-MeOH 0.405 
 

Ethyne-Pentane 0.355 

MeOH-MeNH2 0.457 
 

Peptide-Pentane 0.283 

MeOH-Peptide 0.376 
 

Benzene-Benzene_TS 0.262 

MeOH-Water 0.415 
 

Pyridine-Pyridine_TS 0.296 

MeNH2-MeOH 0.375 
 

Benzene-Pyridine_TS 0.313 

MeNH2-MeNH2 0.364 
 

Benzene-Ethyne_CH-pi 0.269 

MeNH2-Peptide 0.455 
 

Ethyne-Ethyne_TS 0.380 

MeNH2-Water 0.375 
 

Benzene-AcOH_OH 0.284 

Peptide-MeOH 0.338 
 

Benzene-AcNH2_NH-pi 0.314 

Peptide-MeNH2 0.329 
 

Benzene-Water_OH-pi 0.287 

Peptide-Peptide 0.312 
 

Benzene-MeOH_OH-pi 0.291 

Peptide-Water 0.330 
 

Benzene-MeNH2_NH-pi 0.340 

Uracil-Uracil_BP 0.291 
 

Benzene-Peptide_NH-pi 0.300 

Water-Pyridine 0.296 
 

Pyridine-Pyridine_CH-N 0.320 

MeOH-Pyridine 0.350 
 

Ethyne-Water_CH-O 0.391 

AcOH-AcOH 0.336 
 

Ethyne-AcOH_OH-pi 0.360 

AcNH2-AcNH2 0.324 
 

Pentane-AcOH 0.356 

AcOH-Uracil 0.271 
 

Pentane-AcNH2 0.340 

AcNH2-Uracil 0.268 
 

Benzene-AcOH 0.272 

Benzene-Benzene_pi-pi 0.250 
 

Peptide-Ethene 0.330 

Pyridine-Pyridine_pi-pi 0.270 
 

Pyridine-Ethyne 0.321 

Uracil-Uracil_pi-pi 0.250 
 

MeNH2-Pyridine 0.335 

Benzene-Pyridine_pi-pi 0.252 
   Benzene-Uracil_pi-pi 0.267 
   Pyridine-Uracil_pi-pi 0.265 
   Benzene-Ethene 0.270 
   Uracil-Ethene 0.273 
   Uracil-Ethyne 0.276 
   Pyridine-Ethene 0.306 
   Pentane-Pentane 0.253 
   Neopentane-Pentane 0.312 
   Neopentane-Neopentane 0.288 
   Cyclopentane-Neopentane 0.305 
   Cyclopentane-Cyclopentane 0.319 
   Benzene-Cyclopentane 0.258 
   Benzene-Neopentane 0.260 
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Table 3.  Mean absolute error (in meV) for the S22 set of dimers, for binding 
energy before and after TS-vdW correction with optimal γ value, for the overall 
optimal sR of the set (sR = 0.95) and optimal sR for each dimer. 
 

functional TS-vdW correction Hbond vdW mixed Total 

tuned LC-γPBE without correction 80 196 92 126 

tuned LC-γPBE with correction sR =0.95 24 8 7 13 

tuned LC-γPBE with sR  per γ 24 8 6 12 

PBE without correction 53 208 87 118 

PBE with correction sR =0.94 16 14 7 12 

PBEh without correction  41 191 78 107 

PBEh with correction sR =0.96 22 10 7 17 

 
 
 
Table 4.  Mean absolute error (in meV) for the S66 set of dimers, for binding 
energy before and after TS-vdW correction with optimal γ value, for the overall 
optimal sR of the set (sR = 0.95) and optimal sR for each dimer. 
 

functional TS-vdW correction Hbond vdW mixed Total 

tuned LC-γPBE without correction 62 168 101 110 

tuned LC-γPBE with correction sR =0.95 11 13 7 11 

tuned LC-γPBE with sR per γ 12 14 8 11 

PBE without correction 37 159 93 96 

PBE with correction 20 26 12 19 

PBEh Without correction 32 156 87 91 

PBEh with correction 21 20 11 17 

 
 

For the conventional functionals, an optimal value of the damping range 

parameter, sR, was obtained previously by determining the value that minimizes 

errors with respect to the reference data across the S22 set. As a first step, the 

same procedure was employed for the optimally-tuned RSH calculations, despite 

the system-dependent value of γ. The value obtained was sR=0.95, a value that 

compares very well with the previously determined sR values of 0.94 and 0.96 for 

PBE and PBEh, respectively.51 The same parameter was then used, as is, for the 

S66 set, without further optimization. This allows us to ascertain that the quality 

of the results is not merely a trivial outcome of the fitting procedure and that it 

persists outside of the original training set. 
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Results obtained with these dispersive corrections for both the S22 and the 

S66 set are also given in Tables 3 and 4, respectively. As already known, a 

significant improvement is obtained with dispersion correction using either PBE 

or PBEh. In particular, the MAEs drop from the order of ~100 meV to 10-20 meV. 

Satisfyingly, the errors obtained from the PBE-based RSH functional are as good 

for the S22 set and even somewhat better for the larger and more diverse S66 

set.  

Table 5. Mean absolute error (in me ) for the S22 set at different values of ω, 

with and without TS-vdw corrections with respect to CCSD(T) reference 

values. 

    Before TS-vdW Correction   After TS-vdW correction 

ω SR Hbond vdW mixed Total   Hbond vdW mixed Total 

0.05 0.95 48.22 190.16 82.53 110.75   14.43 14.86 5.59 11.76 

0.10 0.95 55.69 194.69 86.42 116.02   12.12 11.69 6.29 10.11 

0.20 0.94 76.79 202.70 93.17 127.79   14.92 7.77 6.68 10.11 

0.30 0.95 87.70 196.64 89.54 127.90   25.95 7.48 5.33 12.67 

0.40 0.97 82.35 183.13 79.42 118.06   27.70 7.44 6.44 13.57 

0.50 0.99 65.78 169.88 68.33 104.44   21.80 7.36 10.32 12.91 

0.60 1.01 53.23 159.66 58.81 93.71   14.10 6.97 13.24 11.23 

0.70 1.03 42.14 152.50 51.44 85.24   23.47 9.70 14.72 15.68 

0.80 1.04 35.42 147.77 46.22 79.71   38.09 10.64 17.47 21.55 

0.90 1.04 37.69 144.65 44.05 78.61   51.33 8.73 21.38 26.31 

1.00 1.05 41.70 142.62 42.50 78.67   59.77 11.60 21.86 30.19 

1.50 1.05 50.80 139.41 39.85 79.54   120.60 11.20 21.86 50.94 

optimal 0.95 80.17 196.47 91.59 126.09   23.35 8.35 7.17 12.95 

optimal sR per γ 80.17 196.47 91.59 126.09   23.97 8.64 6.79 12.93 
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Fig 1:  Mean absolute error in (me ) for the S22 set at different values of γ, with 
(b) and without (a) TS-vdW corrections with respect to CCSD(T) reference 
values. 

 

To examine whether further accuracy can be obtained by allowing sR to 

depend on γ, rather than being a universal parameter, we performed the 

following additional calculations. First, binding energies were obtained across a 

range of (non-tuned) γ values for each of the dimers in the S22 set. Specifically, 

γ was varied from 0 to 1 in steps of 0.1. MAEs obtained from this procedure are 

shown in Fig. 1 and values are tabulated in table 5. While there is some 

dependence of the results on the value of γ, the general picture is the same one 

reported above. Following this, the sR parameter of the TS-vdW approach was 
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optimized separately for each value of γ. The dispersion-corrected results are 

shown in Fig. 1b, with the dependence of sR on γ given in Fig. 2. As expected, 

errors are diminished considerably for any choice of γ. The calculations of Tables 

I and II were then revisited, with the sR (γ) curve of Fig. 2 used to select sR per 

each value of optimally-tuned γ.  These results are also reported in the tables 

and are essentially of the same quality as that obtained with a fixed sR.  

 

 
 
Fig 2: Optimal van der Waals range separation parameter, sR, as a function of 
the hybrid functional range separation parameter, γ. 

 

The following picture emerges from the detailed comparison between the 

various uncorrected and dispersion-corrected results: (1) The dispersion-

corrected optimally-tuned RSH functional performs at least as well, if not better, 

than the dispersion-corrected conventional functionals. (2) It does so with a 

damping parameter that is very close to that of its ancestor functionals PBE and 

PBEh. (3) Further tuning of the damping parameter, per tuning of the RSH 

functional, is neither helpful nor harmful, which makes it redundant in practice.  

What are the physical origins of this behavior? A key observation here is that 

PBE, PBEh, and LC-ωPBE only differ in the partition between semi-local and 

non-local exchange. However, as mentioned above, dispersion is primarily a 
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non-local correlation phenomenon from a DFT point of view. Therefore, the same 

correction should be of similar value to all of them. Possibly the range-splitting in 

the RSH functional assists some of the mid-range correlation and therefore 

slightly improves performance for the S66 set, although it is too soon to tell 

whether this is systematic or particular to this benchmark data set.  

 

4. Conclusions 

In this study, we have shown that the optimally-tuned tuned RSH functional 

approach can be combined successfully with Tkatchenko-Scheffler dispersive 

corrections. Therefore, one can use the optimal-tuning idea, with all its 

associated benefits in the description of the electronic structure, without 

sacrificing the ability to treat weakly-bound systems, in particular their geometry 

and binding energy. Furthermore, this is achieved with the same form of 

correction as for simpler functionals and with the optimal tuning introducing no 

complication whatsoever as far as the damping function of the dispersive 

corrections is concerned. We expect this combined approach to be useful in 

future studies of the electronic structure and optical properties of weakly bound 

systems.  
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