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Abstract 

 

Type 2 diabetes mellitus (T2DM) is believed to be irreversible although no component 

of the pathophysiology is irreversible. We show here with a network model that the 

apparent irreversibility is contributed by the structure of the network of inter-organ 

signalling. A network model comprising all known inter-organ signals in T2DM showed 

bi-stability with one insulin sensitive and one insulin resistant attractor. The bi-stability 

was made robust by multiple positive feedback loops suggesting an evolved allostatic 

system rather than a homeostatic system. Certain evolutionary hypotheses do suggest 

existence of multiple stable states in a population which are adapted to different 

environmental conditions and social roles. Similarly, the bi-stability in this case and the 

preponderance of positive feedbacks in the network suggest co-existence of the diabetic 

state and the healthy state. The robustness was unlikely to have arisen due to one or a 

few nodes or links since deleting individual nodes and randomly adding links to the 

network did not disturb the bi-stability. Sensitivity analysis showed that this result 

wasn’t due to chance alone or due to any of the assumptions or contradictions. In the 

absence of the complete network, impaired insulin signalling alone failed to give a 

stable insulin resistant or hyperglycaemic state. The model made a number of 

correlational predictions, many of which were validated by empirical data. The current 

treatment practice targeting obesity, insulin resistance, beta cell function and 

normalization of plasma glucose failed to reverse T2DM in the model. However certain 

behavioural and neuro-endocrine interventions like up-regulations of dopamine, 

ghrelin, oestrogen and osteocalcin ensured a reversal. These results suggest novel 

prevention and treatment approaches which need to be tested empirically. The model 

also shows a difference in steady-state and perturbed-state causality and suggests that 

making steady-state predictions from perturbed-state data might have led to a confused 

cause-effect relationship in the field. Finally, a design of a network-level clinical study 

has been suggested with the kind of analysis used to interpret such a dataset. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 

 

Type 2 diabetes (T2DM) research: 

Has it hit a wall? 
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1.1 Demography 

With over 415 million people affected, diabetes needs no formal introduction. This 

number is estimated to rise up to 642 million by 2040 (Mathers and Loncar, 2006). Out 

of the 415 million, 91% are affected by Type 2 Diabetes Mellitus. Another 318 million 

people are estimated to have impaired glucose tolerance which may lead to T2DM. The 

global expenditure on treating diabetes is more than 650 billion USD per year (majority 

of the countries spend between 5% and 20% of their health expenditure on treating 

diabetes). India ranks second with about 69.2 million adults affected with diabetes 

which indicates that every sixth diabetic is an Indian. But more importantly, she ranks 

first in the number of people having impaired glucose tolerance (36.5 million people) 

indicating the highest rate of potential increase in the number of diabetics 

(International Diabetes Federation, 2015). 

The number of people affected with diabetes was about 151 million in the year 2000 

with a prevalence of 4.6% (International Diabetes Federation, 2000). The emergency is 

evident with this increase in prevalence to up to 8.8% in the year 2015 (International 

Diabetes Federation, 2015). This apparent increase may be partly contributed by 

increase in the number of health check-ups, at least in the lower economy group. 

Nonetheless, a state of emergency persists and effective strategies to halt and more 

optimistically cure diabetes are warranted. 

 

1.2 Pathophysiology of T2DM 

Classification of diabetes was attempted way before the formal classification (since 

1880) was accepted world-wide. A broad division of fat versus thin diabetics is found in 

ancient Indian literature (Sushruta Samhita) (Tattersall, 2010). Later in 1936, diabetes 

was classified as insulin sensitive and insulin insensitive (Himsworth and Lond, 1936). 

What became known as type 2 diabetes was often referred to as mild diabetes (Cook 

and Sepinwall, 1975). For a few decades between 1970s and 1990s diabetes was 

classified as insulin-dependent and non-insulin-dependent. Two major types of diabetes 

were globally recognized after the World Health Organisation (WHO) published its 

second report in 1981 (Bajaj et al., 1980); with type 1 being the former Insulin-

Dependent Diabetes Mellitus and type 2 being Non-Insulin Dependent Diabetes Mellitus 
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characterized by central obesity and insulin resistance (Bajaj et al., 1980; Dobretsov et 

al., 2007). Today, we know that T1DM is characterized by an auto-immune reaction, 

wherein body’s own defence mechanism destroys the pancreatic β-cells leading to 

deficit of the hormone insulin. Thereby, the body cannot produce the amount of insulin 

it needs. A daily supply of insulin is vital in this case. A third transient type of diabetes 

called the Gestational Diabetes was also recognized by the WHO in 1981 (Bajaj et al., 

1980). It is diagnosed during pregnancy, usually after the 24th week and normally 

disappears after the birth of the child. Women with gestational diabetes have elevated 

blood glucose levels as compared to healthy pregnant women. Although the blood sugar 

returns to normal after pregnancy, women with gestational diabetes have a higher 

probability of developing T2DM later in life (Kim et al., 2002). The focus of the thesis is 

on T2DM, which is the most common type of diabetes observed world-wide. 

Pathophysiology of T2DM is believed to comprise 5 main steps: 

a. Genetic, environmental and dietary factors lead to obesity 

b. Obesity causes insulin resistance in the body 

c. To overcome the insulin resistance, pancreatic β-cells produce more insulin 

d. This chronic overproduction leads to failure of β-cells and thereby, insulin 

insufficiency 

e. This leads to overt hyperglycaemia and chronic hyperglycaemia then leads to the 

complications of T2DM (Defronzo et al., 2015; Watve, 2013) 

The pathology of T2DM includes microvascular (Retinopathy, Neuropathy and 

Nephropathy) and macrovascular (Atherosclerosis, Cardiovascular and 

Cerebrovascular) complications (Fowler, 2008). Retinopathy is observed in 34.6% of 

the diabetics. This includes patients with proliferative Diabetic Retinopathy, Diabetic 

Macular Oedema and Vision-threatening Diabetic Retinopathy (Yau et al., 2012). A study 

in India concluded that 19.1% of the diabetics show Diabetic Neuropathy. Diabetic 

autonomic neuropathy may lead to silent myocardial infarction resulting in death in 

25% to 50% patients within 10 years of development of the disease (Bansal et al., 

2006). Worldwide, 25% to 50% of the diabetics also develop Diabetic nephropathy 

(Tang, 2010). In UKPDS (UK Prospective Diabetes Study, 1998), 2% patients showed 
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microalbuminurea at diagnosis which elevated to 25% at the end of 10 year follow-up 

(Adler et al., 2003). 

The main mechanism in case of the macrovascular complications is atherosclerosis; it 

leads to either cardiovascular diseases or cerebrovascular complications (Fowler, 

2008). The risk of Coronary Heart Disease is increased 2 to 4 fold if the individual has 

T2DM. In a 7-year long population-level study, the per cent incidence of Myocardial 

Infarction with T2DM was 20% as compared to 3.5% for non-diabetics. Similarly, the 

frequency of a diabetic having a stroke is 3 times higher than a non-diabetic. This was 

even observed in the Multiple Risk Factor Intervention Trial of 347978 men (Beckman 

et al., 2002). 

 

1.3 Treatment options 

The diagnosis and treatment of diabetes dates back to 600 B.C. when Sushruta, an 

Indian physician recognized this disease and suggested a treatment regime based on 

diet changes and exercise (Tipton, 2008). The next major breakthrough for diabetes 

treatment came in 1921, after the discovery of insulin by Frederick Banting, John 

Macleod and their team (Karamitsos, 2011). The current treatment options for T2DM 

are based on the above noted pathophysiology (Table 1.1). Usually, the treatment 

includes one or more of these drugs in combination depending upon the requirement of 

the patient, his/her risk factors and the proven contra-indications for the drugs. 

Table 1.1: Lines of pharmacological treatment for T2DM 

Line of Treatment Drug classes used 

Suppression of liver 

gluconeogenesis 

Biguanides (Cheng and Fantus, 2005) 

Increasing insulin sensitivity Biguanides (Cheng and Fantus, 2005); 

Thiazolidinediones (Cheng and Fantus, 2005) 

Enhancement of insulin 

production 

Sulphonylureas (Cheng and Fantus, 2005); 

Glucagon Like Peptide-1 (GLP-1) analogues 

(Cernea and Raz, 2011); Dipeptidyl Peptidase – 4 



C h a p t e r  1  | 11 

 

(DPP-4) inhibitors (Cernea and Raz, 2011) 

Insulin supplementation Insulin 

Reduction in obesity Intestinal lipase inhibitors (Cheng and Fantus, 

2005); α-glucosidase inhibitors (Cheng and 

Fantus, 2005) 

Reduction in free fatty acids Thiazolidinediones (Cheng and Fantus, 2005); 

Intestinal lipase inhibitors (Cheng and Fantus, 

2005);  

Other means of normalizing 

blood glucose 

Alpha glucosidase inhibitors (Cheng and Fantus, 

2005); Sodium Glucose Co-Transporter – 2 

(SGLT-2) Inhibitors (Inzucchi et al., 2015) 

 

1.3.1 Non-pharmacological treatment options that are usually prescribed alongside drugs: 

a. Diet: Suggestive guidelines have been published by World Health Organization 

and other international organizations for diabetics. Differences in the guidelines 

arise based on a person’s race, geographic location, etc. Indian Council of Medical 

Research (ICMR) also has a set of dietary guidelines for the management of 

T2DM (Indian Council of Medical Research, 2005). 

b. Exercise: The ICMR and WHO guidelines suggest physical activities like yoga, 

brisk walking or any other equivalent forms of exercise (Bajaj et al., 1980; Indian 

Council of Medical Research, 2005). 

c. Bariatric surgery: Bariatric surgery has shown promising results in decreasing 

body weight as well as increasing insulin sensitivity and thereby, glycaemic 

control (Madsbad et al., 2014). But it is not advised to non-obese patients due to 

surgical risks. 

d. Stress management: Psychological intervention to develop a positive attitude 

and lead a healthy life is also part of the treatment in some cases. This also 

includes development of family support and creation of a healthy environment 

for the patient (Indian Council of Medical Research, 2005). 
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1.3.2 Prospective treatment options: 

a. β-cell regeneration and replacement: β-cell loss is observed in T1DM as well as 

T2DM patients. β-cell regeneration has shown great promise in T1DM patients 

and the same lines of treatment can be applied to T2DM patients with severe β-

cell loss. Serpin B1 has recently shown β-cell proliferation in a mouse model of 

insulin resistance (Ouaamari et al., 2016). On the other hand, replacement 

strategies that exploit reprogramming of cells to induce pluripotency (for T2DM 

patients) are gaining impetus (Ohmine et al., 2012). 

b. Other investigational drug therapies: Other upcoming therapies that target a 

range of parameters associated with metabolic syndrome have shown some 

promise in reducing the Haemoglobin A1c (HbA1c) levels in patients during 

preliminary clinical trials. Some mentionable ones include Colesevelam, a bile 

sequesterant which was used to treat hyperlipidemia, led to a reduction in HbA1c 

levels by 1% over 12 weeks (Zieve et al., 2007); Ranolazine, a sodium potassium 

channel inhibitor, which was used in the treatment of angina has shown to 

reduce the HbA1c levels by 0.6% over 4 months (Morrow et al., 2009); Salsalate, 

an anti-inflammatory agent has shown to reduce the fasting glucose by 13% as 

compared to placebo over a month of treatment (Fleischman et al., 2008); and 

bromocriptine, a dopamine agonist has been shown to reduce the HbA1c levels by 

0.6% over an year and free fatty acids and plasma triglycerides levels by 30% 

(Scranton et al., 2007). 

c. Behavioural intervention: A new regime of specific behaviours to combat T2DM 

is recently gaining impetus. It is based on the behavioural pattern adapted by our 

ancestral hunter-gatherer society. Lack of such behaviours that were a part of 

the ancestral society may have a negative effect on the physiology. A series of 

games and aggressive exercises developed to mimic these behaviours enhance 

not only muscle mass and bone strength, but a plethora of neuro-endocrinal 

parameters that have a cumulative effect on the correlates of T2DM (Watve, 

2013). This work is also backed by a pilot volunteer trial which shows 

improvement in insulin sensitivity in participants following this behavioural 

therapy (Belsare et al., 2010). Boxing is considered one such aggressive exercise 

and the effect of that on blood pressure parameters was shown in a trial in 
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Sydney (Cheema et al., 2015). Another trial conducted in the University of 

Glasgow has shown similar beneficial effects of aggressive exercises on insulin 

sensitivity indices over non-aggressive ones (Rashid, 2010). 

 

1.4 Challenges to the classical pathophysiology of T2DM 

1.4.1 Gaps, flaws and paradoxes in the classical theory: A number of recent studies have 

exposed many gaps, flaws and paradoxes in the classical thinking of the 

pathophysiology of T2DM. Some examples of the experiments that cast serious doubt on 

the mainstream theory are: 

a. The muscle tissue is responsible for majority of insulin dependent glucose 

uptake in the body. If insulin receptors in the muscle are specifically knocked out 

in mice (MIRKO mice) making the muscle tissue maximally insulin resistant, 

insulin levels are expected to increase to compensate the insulin resistance as 

explained by the mainstream theory. But in MIRKO mice insulin levels remain 

surprisingly normal (Kim et al., 2000). If the main insulin dependent tissue, i.e. 

muscle, is insulin resistant and there is no compensatory insulin rise, the plasma 

sugar level should go up according to the mainstream theory. However, fasting 

plasma glucose remains unaltered in MIRKO mice. Similarly, fat-cell specific 

insulin receptor knockout (FIRKO) mice are lean, non-diabetic and have a longer 

lifespan. So muscle and fat cell insulin resistance in experimental animals and 

lack of compensatory insulin response are not sufficient to cause diabetic 

hyperglycaemia (Blüher et al., 2002, 2003; Kim et al., 2000). 

b. In the liver-specific insulin receptor knockout (LIRKO) mice, both insulin and 

glucose levels are increased early in life but after a few weeks, the fasting sugar 

levels return to normal although liver insulin resistance remains high and there 

is no further rise in insulin levels (Johnson et al., 1972; Michael et al., 2000). 

Therefore, extreme liver insulin resistance does not seem to sustain a long-term 

rise in plasma glucose. 

c. If reduced glucose uptake is responsible for increased plasma glucose, 

hyperglycaemia should be accompanied by subnormal intracellular glucose 

concentrations in insulin-dependent tissues. However, in diabetes, 
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hyperglycaemia has been shown to be associated with increased total glucose 

transport and raised levels of glucose in muscle cells (Farrace and Rossetti, 1992; 

Nolte et al., 1995). 

d. In the mainstream thinking, it is noted that compensatory hyperinsulinemia 

exerts extra insulin production ‘load’ on β-cells, which is believed to lead to β-cell 

dysfunction. However, the β-cell number is known to increase associating with 

insulin resistance (Bernal-mizrachi et al., 2001; Brüning et al., 1997; Devedjian et 

al., 2000; Hardikar et al., 2015). Until it is demonstrated that the fold increase in 

insulin levels is substantially greater than the fold increase in β-cell number, it 

cannot be assumed that an average β-cell has an extra load. In some of the rat 

models, the fold increase in β-cell number is greater than the fold increase in 

fasting insulin (Bernal-mizrachi et al., 2001; Devedjian et al., 2000). In some 

other models, fold increase in fasting insulin is not greater than 20 % of the fold 

increase in β-cell mass (Brüning et al., 1997). Insulin transcription in β-cells is 

actually reduced rather than increased in the hyperinsulinemic state (Hardikar 

et al., 2015). In humans, although data on β-cell number in insulin resistance 

state are scanty, the picture is similar (Van Assche et al., 1978; Butler et al., 

2010). Greater rise in insulin production as compared to increase in β-cell 

number has never been clearly demonstrated in humans. Therefore, there is no 

evidence that β-cell dysfunction is induced by compensatory insulin response. 

e. Although evidence suggests that Glucose transporter – 4 (GLUT-4) is the major 

insulin-dependent glucose transporter in muscle (Abel et al., 2001; Stenbit et al., 

1997), mice deficient in GLUT-4, have normal blood glucose level demonstrating 

that if insulin-dependent glucose uptake is impaired, alternative pathways 

compensate for the loss so that the total glucose uptake by muscle is hardly 

affected (Fam et al., 2012; Katz et al., 1995; Ryder et al., 1999). 

f. There is increasing evidence, from human as well as animal models of early life 

insulin resistance, that rise in insulin levels precede insulin resistance 

(Chakravarthy et al., 2008). A number of mechanisms exist by which a rise in 

insulin secretion can decrease insulin sensitivity but no mechanism is known by 

which insulin resistance can give rise to increased insulin response in a 

normoglycaemic state. A number of researchers have shown with a variety of 
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evidence that hyperinsulinemia is primary, and insulin resistance appears to 

compensate for hyperinsulinemia, contrary to the mainstream thinking (Corkey, 

2012; Dubuc, 1976; Garvey et al., 1986; Nankervis et al., 1985; Pories and Dohm, 

2012; Shanik et al., 2008; Watve, 2013; Weyer et al., 2000). If hyperinsulinemia is 

not a compensatory response to insulin resistance, the hypothesis of inadequate 

insulin compensation leading to hyperglycaemia also gets undermined. 

g. If insulin secretion is experimentally suppressed in an insulin-resistant state, it 

should lead to increased plasma glucose according to the mainstream thinking. A 

number of independent experiments in rodents and humans using different 

means such as diazoxide (Alemzadeh et al., 1993, 1996, 2002, 2004, 2008; 

Schreuder et al., 2005), octreotide (Velasquez-Mieyer et al., 2003), a SUR1/Kir 

6.2 K+ adenosine triphosphate channel opener (Alemzadeh et al., 2004), a 

combination of insulin-siRNA and human insulin degrading enzyme (Hwang et 

al., 2007) and dietary means (protein deficiency)(Schteingart et al., 1979) have 

shown that whenever insulin production is suppressed, insulin sensitivity 

increases and blood sugar remains normal. This demonstrates that insulin 

resistance and inadequate compensation are unlikely to be necessary and 

sufficient to cause hyperglycaemia in T2DM. 

h. Hyperglycaemia is believed to be the cause of diabetic complications according 

to the mainstream thinking. However, apart from correlations, there is no other 

evidence for the causal role of glucose in the pathogenesis of complications. Early 

signs of vascular endothelial dysfunction (Hadi and Suwaidi, 2007), autonomic 

neuropathy (Dobretsov et al., 2007) and retinopathy (Nguyen et al., 2007) are 

now shown to often precede hyperglycaemia and hence, the cause-effect 

relationship appears to be confused in the mainstream thinking. Also, aggressive 

normalization of glucose did not reduce the risk of macrovascular complications 

in many large scale clinical trials (Max Miller et al., 1976; Stratton et al., 2000; 

Turner et al., 1998) and marginal reductions in the risk of complications with 

treatment were independent of the glucose levels (Holman et al., 2008). 

The central question raised by the collection of experimental results outlined above is 

whether the classical theory of T2DM stands falsified. Some have clearly claimed 

falsification (Pories and Dohm, 2012; Watve, 2013) and wondered why the treatment is 
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still based on a theory which is clearly falsified (Watve, 2017). Among the community of 

clinical diabetologists there is a slow response to falsifying evidence, but certain 

changes have started happening. For example, the American Diabetes Association 

relaxed the HbA1C targets for T2DM treatment and advocated not to aim for tight 

glycaemic control in elder patients and people prone to hypoglycaemic episodes 

(American Diabetes Association, 2018). However, any major qualitative change in 

clinical thinking in response to the experimental falsification is conspicuously absent.  

1.4.2 The success and failure of treatment: Since the mainstream thinking forms the basis 

of the treatment for T2DM, it is no surprise why the latter has yielded only modest 

results. The mainstream thinking mainly revolves around fat tissue, muscle, pancreas 

and liver, and ignores almost every other tissue and organ of the body including the 

brain. This gluco-insulinocentric thinking may have been gained the central importance 

due to the burden of history. The dramatic discovery of insulin and early success in 

saving lives of T1DM patients portrayed insulin as the only relevant factor in glucose 

regulation and all other factors were ignored in spite of experimental demonstrations of 

their importance. The same treatment when applied to patients with T2DM has not 

shown similar dramatic results. On the contrary, some of them have aggravated the 

disease parameters in the participating patients (see details below). 

The other possible reason of failure is too much emphasis on obesity as the causal 

factor. Although obesity and insulin resistance are consistently correlated across 

studies, the correlations are weak and the modal variance explained is less than 10% 

(Vidwans and Watve, 2017). Trials apparently “successful” in remission of T2DM (Lean 

et al., 2018) start with a set of patients with high Body Mass Index (BMI) only. The 

success claimed in this trial may not be applicable for the large number of normal 

weight and thin type 2 diabetics. The large number of factors other than fat that 

contribute to insulin resistance are largely ignored by the mainstream clinical thinking. 

Hypoglycaemia is a major cause of clinical trial dropouts and even mortality in some 

cases. Hypoglycaemia was seen to increase in the ACCORD (The Action to Control 

Cardiovascular Risk in Diabetes Study Group), the ADVANCE  (Action in Diabetes and 

Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation) as 

well as the VADT (Veterans Affairs Diabetes Trials) studies after insulin therapy 

(Duckworth et al., 2009; Skyler et al., 2009; The Action to Control Cardiovascular Risk in 
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Diabetes Study, 2008). The hazards ratios for severe hypoglycaemia were 3.00, 1.86 and 

3.52 in ACCORD, ADVANCE and VADT, respectively (Boussageon et al., 2017). 

Insulin plays two different types of roles in the body – metabolic and mitogenic. In 

T2DM, the metabolic function seems to be affected while mitogenic functions appear to 

remain normal. Hence, exogenously injected insulin may pose greater problems with 

respect to the mitogenic activity of insulin (Lebovitz, 2011). Implications of this can be 

seen in a retrospective analysis study which found an odds ratio of 2.99 (CI 1.34-6.65, P 

= 0.007) for hepatocellular carcinoma in patients treated with sulphonylureas (insulin 

secretagogues) as against an odds ratio of 0.33 (CI 0.1 – 0.7, P = 0.006) for patients 

treated with metformin (Donadon et al., 2009). A retrospective case controlled study 

associating insulin therapy with risk of pancreatic cancer shows that after adjusting for 

age, sex, BMI, race, alcohol consumption, smoking, duration of diabetes and family 

history of cancer, the odds ratio of developing pancreatic cancer was 4.99 (P < 0.001) in 

patients having insulin therapy against those without insulin therapy (Li et al., 2009). 

Another analysis showed that the odds ratio of developing pancreatic cancer associated 

with sulphonylurea use was 1.3 (95% CI 1.1 - 1.6, P = 0.012) and 1.9 (95% CI 1.5 – 2.4. P 

< 0.0001) associated with insulin use (Bowker et al., 2006). The hazards ratio of tobacco 

smoking lung cancer was observed to be 4.9 (Osaki et al., 2007) and that of daily alcohol 

consumption and liver cancer was 1.52 (Schwartz et al., 2013). Compared to these, odds 

ratios observed for insulin treatment and cancer seem grave. 

Studies analysing the effectiveness of insulin therapy have also identified that intensive 

insulin therapy designed to attain normal glucose levels led to a 90 – day mortality that 

was increased to 14% compared to individuals with moderate insulin therapy (The 

NICE-SUGAR Study, 2009). Another study showed similar results with increase in 

mortality as HbA1C decreased from 7.5% to 6.4% (Currie et al., 2010). In the ACCORD 

study, the hazards ratios for all-cause mortality and cardiovascular mortality were 1.14 

and 1.35, respectively per decrease in HbA1C of only 1.1% (Boussageon et al., 2017). 

Weight gain is another problem associated with insulin therapy with the ACCORD study 

reporting more than 10 kg weight gain in 28% of the intensively treated patients and 

14% in the moderately treated patients during the mean treatment period of about 3.5 

years (The Action to Control Cardiovascular Risk in Diabetes Study, 2008). 
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Also, no long term randomized controlled trials indicate improved outcomes in insulin-

treated T2DM patients in comparison with other treatments (Lebovitz, 2011). In the 

UKPDS 10 year follow-up study, it was observed that HbA1C progressively rose from 

~6.3% to 8.0% (Turner et al., 1998). The percentage of patients maintaining HbA1C < 

7% after 3 years was 47%, after 6 years was 37%, after 9 years was 28% and did not 

differ from the individuals treated with sulphonylureas at the end of the study (Turner 

et al., 1999). 

1.4.3 Why T2DM is irreversible? Currently, T2DM is believed to be incurable. There can 

be three possible reasons for irreversibility of a condition. 

1. There is something in the pathophysiology that is irreversible by itself: Except 

for advanced stages of complications, nothing in the baseline pathophysiology of 

T2DM is irreversible. Earlier β-cell loss was believed to be irreversible, but later 

studies showed good regeneration capacity in vitro as well as in vivo (Ouaamari 

et al., 2016). A concept that emerged to explain the failure of glycaemic control to 

reduce diabetic complications is ‘hyperglycaemic memory’ (Lee et al., 2016). Past 

hyperglycaemia somehow keeps a ‘memory’ which is sufficient to maintain the 

processes leading to complications even after glucose target has been met. This 

is used to explain why large scale clinical trials have failed to reduce the 

complications. However, none of the components of downstream pathways of 

hyperglycaemia are shown to be irreversible. Evidence to show that 

complications arise even before hyperglycaemia sets in exists (Dobretsov et al., 

2007; Hadi and Suwaidi, 2007; Nguyen et al., 2007) suggesting other possible 

explanations for the apparent irreversibility. 

2. The condition is reversible but we don’t have the technology to reverse it: If 

insulin resistance and inadequate insulin production were the causes, we have 

technologies for both. There are insulin sensitizing drugs, there are insulin 

secretagogues and there is insulin supplementation. There also exists extreme 

sophistication in programmable insulin pumps and β-cell transplants. But 

nothing works in the long run, although they show beneficial short term effects. 

So this reason for irreversibility doesn’t appear to be satisfactory. 
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3. Our understanding of the pathophysiology is either incomplete or utterly wrong, 

so that the current lines of treatment are equivalent to ‘barking up the wrong 

tree’. Since the first two are weak, this possibility needs to be explored more 

seriously. 

 

1.5 Relationship between T2DM and lesser known bodily parameters 

As mentioned earlier, there are other players in the body which have a substantial role 

in the functioning of insulin and plasma glucose. Though their interactions with insulin 

and their possible role in T2DM and also its treatment have been worked upon in 

parallel, it has not been included in the mainstream hypothesis. Some of them have been 

noted here. 

a. Brain: Role of brain in the regulation of glucose homeostasis was recognized 

since 1854 when a French physiologist, Claude Bernard, showed increased blood 

sugar levels after puncturing the floor of the fourth ventricle in the rabbit brain 

(Tups et al., 2017). The importance of brain got side-lined after the discovery of 

insulin in 1921. Other experiments that highlight the central role on glucose 

homeostasis are the ones showing that vagotomy (removing the vagus nerve) 

leads to increased endogenous glucose production by the liver (Matsuhisa et al., 

2000) and the autonomic control of the pancreas where sympathetic stimulation 

decreases and parasympathetic stimulation increases the secretion of insulin 

(Ahrén, 2000). The cross talk between the sympathetic and the parasympathetic 

systems has been well documented (Campfield and Smith, 1983). Role of the 

brain is dependent on sensing of glucose levels in the surrounding fluid; and 

modulating food intake and glucose production based on that (Tups et al., 2017).  

b. Adiponectin: Adiponectin is a hormone secreted by the adipose tissue. It has 

been shown to carry out many protective functions against T2DM including its 

direct role in maintaining insulin sensitivity (Kubota et al., 2002). It promotes β-

cell survival in the pancreas and decreases glucose output and lipogenesis in the 

liver. In the adipose tissue, it enhances the adipocyte number, activates the lipid 

metabolism genes and shows anti-inflammatory effects (Turer and Scherer, 

2012). It is associated with a reduced risk of myocardial infarction in men 
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(Pischon et al., 2004). In mouse models of renal dysfunction (which is usually 

associated with overt T2DM), treatment with adiponectin has shown to improve 

it by correcting the albuminurea and the podocyte foot process effacement 

(Ohashi et al., 2007; Sharma et al., 2008). When infused centrally for a long-term, 

adiponectin improved peripheral insulin sensitivity, β-cell mass, lipid 

metabolism; increased energy expenditure and decreased visceral fat in 90% 

pancreatectomised rats (Park et al., 2011). 

c. Glucagon: Glucagon, a hormone produced by the pancreas, functions majorly to 

increase liver glucose production to maintain the plasma glucose content. It was 

shown that although there was β-cell destruction, glucagon receptor knockout 

mice did not become diabetic; whereas hyperglycaemia was observed in the wild 

type mice with equivalent β-cell destruction (Lee et al., 2011). In diabetic 

patients, glucagon suppression led to correction of diabetic symptoms like 

ketoacidosis, even after insulin treatment was stopped (Gerich et al., 1975; 

Raskin and Unger, 1978). The glucagon suppression has gained importance to 

the point that Roger Unger et al (Unger and Cherrington, 2012), in a review, 

urged this technique to be transformed in to a therapy and also suggested a 

glucagonocentric makeover to the pathophysiology of diabetes. On the contrary, 

glucagon is also suggested as a treatment option accompanying the other anti-

hyperglycaemic agents due to its function in reducing hypoglycaemic episodes, 

which are common in patients on anti-hyperglycaemic therapy (Kedia, 2011). 

d. Leptin: Similar to adiponectin, leptin is a hormone secreted by the adipose tissue. 

It is known to act centrally and reduce food intake (Schulz et al., 2012). It also 

decreases the amount of adipose tissue and loss of leptin action leads to diet-

induced obesity. Centrally injected leptin decreases glucose-stimulated insulin 

secretion and this decrease is dose dependent. It also induces uptake of glucose 

by muscles and heart (Morton and Meek, 2012). Even subcutaneous injection of 

leptin normalizes the fasting glucose levels in T2DM rats (Cummings et al., 

2011). Taken together, leptin treatment ameliorates the symptoms of T2DM in 

many animal models (Kalra, 2012). 

e. Testosterone: Testosterone is intricately involved with the diabetic parameters, 

which is evident, since hypogonadal men show symptoms of T2DM. Testosterone 
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therapy in hypogonadal men led to reduction in HbA1c from 8.08% to 6.14% and 

also reduced the fasting glucose levels from 128 mg/dl to 101 mg/dl (Haider et 

al., 2014). 

f. Dopamine: Dopamine has receptors on the pancreatic β-cells which when 

activated leads to inhibition of insulin release (Rubí et al., 2005). Dopamine 

injections also lead to reduction in food intake and fasting glucose levels in rats 

with diet-induced obesity (de Leeuw van Weenen et al., 2011). 

g. Osteocalcin: Osteocalcin increases insulin-dependent glucose uptake in wild type 

mice and long term osteocalcin treatment significantly improved body mass and 

glucose homeostasis (Ferron et al., 2008; Rached et al., 2010). It maintains β-cell 

proliferation and insulin sensitivity too (Lee et al., 2007). 

h.  Physical fitness: The cardiorespiratory fitness and several other measures of 

physical fitness are good predictors of T2DM, independent of obesity (Patil et al, 

manuscript under preparation). However, this is not integrated in mainstream 

clinical thinking. 

i. Behaviour-metabolism links: There are over 70 neuroendocrine, metabolic and 

other mechanisms that link behaviour with the pathophysiology of T2DM 

(Watve, 2013). However, behaviour is not a part of mainstream clinical thinking. 

This is certainly an incomplete list. A large number of genetic, epigenetic, neuronal, 

behavioural, hormonal and metabolic factors are associated with T2DM and their 

interrelationships and causal roles are grossly underexplored. It is possible that 

studying the inter-relationship between the large number of inter-related factors might 

be the key towards a new understanding of T2DM. 

 

1.6 Research approaches for T2DM 

Most biology before the turn of 19th century was observational. A strong foundation of 

experimental biology was laid by the turn of the century. The second half of the 20th 

century added a number of novel tools. Today, a given question in biomedicine can be 

addressed with multiple tools that complement each other. 
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a. Morphology and anatomy: Earlier research mostly comprised of morphological 

and anatomical studies in animals or in human cadavers. Even today, post-

mortem analysis of T2DM patients is quite common (Clark et al., 1988). The fact 

that β-cell population was never completely destroyed in type 2 diabetes was 

revealed by post mortem histology of the pancreas. Newer micro-imaging 

techniques have led to identification of intricate differences between healthy and 

diseased cells (Costes et al., 2011). 

b. Cell and molecular biology: Elucidation of specific pathways, signalling and 

determining functional roles of genes is achieved through cell and molecular 

biology. Different gene manipulation techniques have enabled the loss of 

function and gain of function mutations which can be used to determine the 

exact functions / effects of that particular gene. 

c. In vivo animal experiments: In vivo experiments were also common earlier. This 

trend continues even today. In vivo animal experiments are considered next to 

actual human trials. 

d. Clinical trials: Clinical trials are an essential part of any new treatment option. 

They also feedback research to improve the treatment strategy. 

e. Theoretical work: Hypothesis building is a prelude to all experiments. 

Theoretical work also helps inter-disciplinary research where scientists from 

one field can apply their experience to problems in other fields. Theories make a 

logically coherent picture from experimental and observational facts using 

joining-the-dots approach. Theories also help designing experimental work 

further. It also comes to the rescue when actual experimental work is not 

possible in that particular setting. 

f. Statistical tools: Use of statistical tools is not limited to calculating t-test and p 

values, but to develop new tools that can answer questions in biology where 

experimental data are limited. 

g. Mathematical modelling: Mathematical models can give a predictive vision in 

biology. At times models have predicted phenomena or principles ahead of 

experiments. Models are often more important in falsifying hypotheses than 

supporting them. This is because a process that is mathematically possible need 
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not be true in real life but something that is mathematically impossible cannot 

exist in real life. Biological experiments are usually backed by a model which 

demonstrates working of the experimental phenomenon or its role in a bigger 

system. 

h. Omics: More recent omics tools including genomics, transcriptomics, proteomics 

and metabolomics give extensive data. These high-throughput analysis 

techniques are cost and time effective. Obesity and T2DM were believed to have 

a strong genetic component earlier. Genomic studies have now revealed the 

limited role of genetics in both (Boehnke et al., 2010; Morris et al., 2012). 

Network models: In the field of diabetes research, these tools have been used 

extensively. The inquiry started with the view that defect in a single organ, gene, 

molecule or pathway is responsible for a disorder. Glucose was the first molecule to be 

associated with diabetes. Insulin was the second. Over decades, a realization that it is a 

multi-organ multi-system phenomenon became stronger. Still glucose and insulin were 

believed to be the central molecules and others the consequences of their dys-

regulation. However, the demonstration that a large number of molecules, cells and 

signals are altered in T2DM and some of the changes precede glucose dys-regulation, 

have raised more possibilities. With the increasing number of systems and signals 

involved, the classical simpler hypotheses-driven approaches are proving inadequate. 

Network modelling is a relatively recent promising tool that can integrate a large 

number of players interacting with each other. Therefore, it is likely to be a tool to get 

new insights in to type 2 diabetes. With the increase in computational power, handling 

larger datasets has become easier. Network models provide a bird’s eye view of the 

underlying problem. Inferences made from such models can be experimentally tested. 

Our approach in this thesis belongs to the network modelling category. Since much of 

the thinking regarding T2DM has revolved around insulin and its action, there is 

extensive work on the intracellular insulin signalling pathways (Defronzo, 2004). A 

sound understanding of the orchestration of organs is required to understand the 

disease. We need to be open to the possibility that insulin and glucose are not central 

players but only two of the links in a complex network of signals. In order to get a good 

understanding of T2DM, we need to consider all demonstrated interactions between 
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molecules and other signals involved in T2DM without any prejudice and construct a 

comprehensive model.  

In this thesis, we constructed a multi-organ multi-signal interactive network model to 

study its behaviour. We focus on the relatively neglected network of inter-organ 

signalling in an attempt to throw light on how the organ cross-talk shapes the 

pathophysiology of T2DM. The intended outcome is to come up with alternative 

possibilities for the treatment approach that can suggest new lines of work for 

experimental and translational research. 
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This chapter summarizes the network studies from the literature, laying out a 

foundation for the work in the thesis. As mentioned in the previous chapter, network 

modelling is extensively used by researchers to get an idea how a complex system might 

work. The results of the model may suggest novel experimental approaches or help 

interpret the results. Classically, experimental designs address specific systems or 

pathways. For extrapolating the effects of an intervention to other systems or the 

organism as a whole, network model is a useful tool. This review discusses the network 

approaches used in this field so far and identifies gaps and unaddressed questions 

where greater inputs of efforts are needed. 

 

2.1 Literature search 

I systematically searched the Pubmed database using the search term – ‘type 2 diabetes 

AND network [title/abstract]’. I selected research papers that were available online as 

full articles or at least the abstracts on or before 30th June, 2017. The details of the 

search are presented in Table 2.1.  

Table 2.1: Search and selection details of ‘type 2 diabetes network models’ search 

Search details ("diabetes mellitus, type 2"[MeSH Terms] OR "type 2 

diabetes mellitus"[title/abstract] OR "type 2 

diabetes"[title/abstract]) AND network[title/abstract] 

Hit obtained after first round 1200 

Second round selection details Deleted papers – 

- Had words like ‘capillary network’, ‘….affected by a 

network of transcription factors’, social network’, 

‘actin network’, ‘microtubule network’, ‘fibrin 

network’ actual cell connectivity network 

- Were reviews, book chapters, commentaries or 

poster presentations 

- ‘Network’ was in the name of a cohort group or trial 

or a database 
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- Had used artificial neural networks as a method for 

analysis 

shortlisted after second round 298 

 

 

2.2 Classification of networks 

The concept of networks and their applications was pioneered in 1969 (Bachman, 

1969), but its use in the field of diabetes appears to begin by 1996. My search ended by 

end of June, 2017. I then classified these publications based on 3 different criteria.  

2.2.1 Causal or correlational networks (see Table 2.2): Most of the curated networks were 

correlational. Only 9% of the networks were causal (had causal interactions between its 

nodes). Out of the causal networks, about 74% were constructed based on predicted 

causality. Here, causal relations are inferred using tools like Ingenuity Pathway Analysis 

(Padilla et al., 2014) or Causal Reasoning (Enayetallah et al., 2011), but are not 

empirically demonstrated. Demonstrated causal networks were only a few and will be 

discussed later in this chapter. 

2.2.2 Qualitative or quantitative networks (see Table 2.2): Again, majority of the 

networks were qualitative (97.4 %). The small number of quantitative networks were 

built of DNA microarray data (Nogiec et al., 2015) or were simulations assuming a range 

of parameter values (Banerjee and Bose, 2008). 

2.2.3 Classification based on data source (see Table 2.2): These classification types and 

the proportion of publications per type are presented in Figure 2.1. Maximum hits were 

papers involving gene- gene interactions followed by drug meta-analyses. Some notable 

experiments are discussed in brief later in this chapter. 
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Figure 2.1: Types of T2DM network models. Types of T2DM network models and 

their proportions amongst selected publications based on the source of data used for 

the study. 

 

Table 2.2: Networks observed in the literature classified according to their 

causality and their quantitative or qualitative nature 

Classification 

according to 

the data 

source 

Classification 

according to the data 

type 

If causal 
Qualitative or 

Quantitative 

Causal Correlational 
Predicted 

Causal 

Demonstrated 

Causal 

Boolean or 

Qualitative 
Quantitative 

Gene-Gene 

interactions 
1 73 1 0 73 1 

Gene, 

Protein, 

Metabolite 

Combinations 

12 47 12 0 59 0 

Gene-Gene interactions

Gene, Protein, Metabolite Combinations

Drug Meta-analyses

Protein-Protein interactions

Morphometry / Anatomy

Brain Network

Metabolite-Metabolite interations

Social Networks

Disease-Disease interaction

Dietery substances

Physical training and lifestyle

Gut Microbiome interactions network

Treatment options interactions

Pathway Network
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Drug Meta-

analyses 
0 59 0 0 59 0 

Protein-

Protein 

interactions 

6 44 6 0 49 1 

Morphometry 

or Anatomy 
1 1 1 0 1 1 

Brain 

Network 
0 15 0 0 15 0 

Metabolite-

Metabolite 

interations 

1 9 1 0 9 1 

Social 

Networks 
2 7 2 0 9 0 

Disease-

Disease 

interaction 

0 3 0 0 4 0 

Dietery 

substances 
0 5 0 0 5 0 

Physical 

training and 

lifestyle 

1 2 1 0 3 1 

Gut 

Microbiome 

interactions 

network 

0 3 0 0 3 0 

Treatment 

options 

interactions 

3 0 0 3 0 3 
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Pathway 

Network 
0 1 0 0 1 0 

 

2.2.4 Classification based on purpose: The use of the network model was considered to 

classify the publications. These 7 types of purposes and respective examples of network 

models are explained here in brief. 

1. Identifying novel disease markers: 

Most of the shortlisted network models were based on gene-gene interactions 

and most of these gene-gene interaction network models were developed in 

order to make GWAS studies more useful in identifying important disease 

markers (Hale et al., 2012) and drug targets (Vaquero et al., 2012) for T2DM.  

On similar lines, several protein-protein interaction studies were devoted to 

identify proteins whose expression is altered in T2DM and related diseases 

(Padilla et al., 2014) or potential targets for treatment (Wang et al., 2015b). The 

gene-gene interaction networks focussed on identifying genes that are linked to 

more than one diseases (Dong et al., 2014). Even protein-protein interactions 

were used to identify genes common to two different diseases with T2DM being 

one of them (Lepedda et al., 2016). 

2. Prioritizing Disease genes: 

Gene identification was started with the hope of finding a handful of genes that 

individually or in combination regulate the salient features of T2DM. This turned 

out to be another problem in itself with more and more GWASs identifying a 

growing number of genes. This propelled studies that built methods to prioritize 

these genes based on their importance in being associated with T2DM. Along 

with gene-gene interaction and protein-protein interaction data, gene-protein-

metabolite composite networks were also used in prioritizing candidate target 

genes (Chen et al., 2013). 

An attempt at prioritizing genes was done using Differential Expression 

Networks (DENs). Instead of the traditional use of differentially expressed genes, 

Sun and colleagues (Sun et al., 2013) used differentially expressed interactions 
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(or edges in a network). Their network was composed of the interactions 

between the differentially expressed genes as well as the corresponding genes. 

The traditional method picks out differential genes individually and hence 

ignores their interactions and dependencies. The new method does not have that 

shortcoming. The authors compared DENs across three different tissues – 

adipose, muscle and liver and found that metabolic dysfunction is maximally 

observed in liver. Furthermore, they compared the DENs in the three tissues 

across 4, 8, 12, 16, 20 week time points in rats. They compared the expression 

patterns of genes involved in the insulin resistance pathway and found that 

insulin hyper-secretion precedes insulin resistance. The question whether 

hyperinsulinemia is a cause or a consequence is debated for long in T2DM 

research (Corkey, 2012) and recent experiments hint towards hyperinsulinemia 

being the cause rather than the consequence (Shanik et al., 2008) thus fortifying 

the results by Sun and colleagues. 

Using the STRING repository, Vitali and colleagues (Vitali et al., 2013)  

constructed a T2DM protein-protein network and designed a method to rank the 

potential drug targets. The ranking is based on the reachability of the node, its 

global effect (i.e. the effect that node has on the other potential drug targets in 

the network) and its synergistic effect (i.e. the effect of that target on the 

network in synergy with 2 other drug targets). Using this ranking method, they 

identified potential drug targets from the network. Insulin-like growth factor 1 

receptor ranked first and the other targets’ scores were not even close. 

A more sophisticated model to enrich or prioritize disease genes was developed 

by Wang and colleagues (Wang et al., 2015a). The model used the KEGG database 

to construct directed regulatory biological networks. The network contains all 

the genes that were previously known to be associated with the disease of 

interest (T2DM is one of their case-studies). The authors defined control paths, 

which are chains of interactions of nodes that can lead the network system to a 

diseased state in a time dependent manner. They calculated the perturbation 

influence of the disease genes which depends on the number of downstream 

nodes affected by perturbing the gene of interest. This index was then used to 

enrich the genes associated with the disease phenotype. 



44    |    C h a p t e r  2  

 

3. Understanding interactions: 

In one of the initial attempts to study gene-gene interactions, Banerjee and Bose 

(Banerjee and Bose, 2008) proposed a minimalistic two-gene network model 

where the two genes activate each other’s synthesis processes and one of them 

also has an auto-repression loop. Using kinetic equations, the authors ran 

simulations with these two genes which form the core beta-cell transcriptional 

network. They also mimicked situations where one of these genes has a mutation 

and explain the development of Maturity Onset Diabetes of the Young (MODY). 

The model is useful in isolated systems and forms the basis for modelling more 

complex cases. With only two genes involved, this model does not consider the 

interactions of these two genes with the others, which might play an influential 

role in determining the outcome of the two-gene interaction. 

A pathway network includes relationships between different pathways. It gives a 

broader image of the dialogue within a tissue or multiple tissues. With this in 

view, Gao and colleagues (Gao et al., 2012) combined multiple gene expression 

and quantitative trait measurements to determine the state of a pathway in each 

tissue. After doing this for all the pathways considered in the study, they 

constructed a pathway co-expression network. After doing topological analysis, 

they identified gluconeogenesis / glycolysis in the liver and insulin signalling 

pathway in the muscles to be the most important pathways since they showed 

the highest degrees and the betweenness centralities. Two more variables, age 

and strain (obese or lean), were added to the study (gene expression data were 

taken at 4 weeks and 10 weeks of age from both the strains). They found that 

along with pathways involved in metabolism, oxidative stress interacts with 

many other pathways in all the different groups. In case of 10 week diabetic mice 

(mice that became diabetic at or before 10 weeks), inflammation pathways were 

relatively more interactive. This study highlighted the role inflammation and 

oxidative stress pathways in T2DM. 

Do and colleagues (Do et al., 2015) tried to identify the trans-boundary 

relationships between the metabolites present in saliva, blood and urine. They 

listed out metabolites of interest and calculated the partial correlations between 

them. Then they overlaid the 3 networks (the 3 biofluids) of partial correlations 
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and observed the similarities. They also calculated the partial correlations 

between the same metabolite across the 3 fluids. They found higher overlap of 

within-fluid correlations between plasma and urine than plasma and saliva and 

saliva and urine. Also, more plasma-urine correlations were observed than the 

other two combinations. 

Considering that only metabolite related information of a patient is insufficient, 

Qiu and colleagues (Qiu et al., 2016) constructed an ancestry-specific (from 

information on ancestry) human phenotypic network which was centred on 

T2DM. They believed that analysis on the all-inclusive human ancestral 

information can be misleading. What they finally showed is that different 

populations have different phenotypes associated with T2DM and thereby the 

pathways involved in the pathogenesis of this disease are different for these 

different populations. 

4. Identifying components of medicines and their effects: 

Of particular interest is the study where Luo and colleagues (Luo et al., 2013) 

constructed a directed (causal) T2DM network with proteins, metabolites and 

their associated drugs using the STITCH database. The algorithm they used links 

proteins to each other based on the directed edges. The edges are of two types – 

positive and negative and hence the downstream node is either up-regulated or 

down-regulated. They have T2DM as a node in the network. Based on the up- or 

down-regulation of that node, they pick out targets that lead to T2DM and 

highlight the drugs that affect these targets. The signal transduction process in 

this network is not time dependent – all the nodes are linked at the same time 

and hence, there is no transduction of signals, per se. Another drawback of the 

method is that they have not considered feedbacks in the network. Feedbacks 

are extremely important components of physiology, which if ignored may give 

highly misleading picture. If a node has a feedback loop, the algorithm ignores it 

leading to loss of perturbation information. Using this method, the authors 

identify important components of a traditional Chinese medicine and their 

underlying mechanisms. Later in 2016, another similar study was conducted 

using pure protein-protein interactions (Gong et al., 2016). 
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Using the STRING (protein-protein interaction) database, Perez-Lopez and 

colleagues (Perez-lopez et al., 2015) constructed a human interactome for T2DM. 

They measured the propagation of perturbations in this interactome and also 

listed the side-effects of the various drugs used to treat T2DM. Their results 

show that drug targets were better propagators of perturbations than other non-

target proteins. Moreover, drugs that had side-effects were better propagators of 

perturbations than those having no side-effects. This also reflected in the 

centrality of nodes. The nodes in T2DM network had lesser centrality when 

compared to protein-protein interactions for other diseases. This study does not 

pin-point any specific targets for treatment of T2DM but gives features of the 

networks that have higher chances of identifying such targets within them. 

Further studies included use of gene-gene interactions to observe a network-

wide effect of certain dietary substances (Wang et al., 2015c) and traditional 

medicines (Yang et al., 2015). 

5.  Association of T2DM with non-bodily chemicals: 

Studies based on diets and their meta-analyses were included in this class. Some 

of these papers said that the results are inconclusive with the current data 

available and hint at the requirement of more studies (Carter et al., 2013) and 

some others were just study protocols without actual data (Schwingshackl et al., 

2016). Recently, gene-protein-metabolite interactions were used in identifying 

converging mechanisms that link some common organic pollutants to T2DM 

(Ruiz et al., 2016). 

A different approach using non-bodily chemicals was used by Taboureau and 

colleagues (Taboureau and Audouze, 2017) to identify associated diseases. They 

listed chemical contaminants and their associated diseases from The Distributed 

Database. They constructed a network out of those associations. Based on the 

contaminants shared by two different diseases, they assigned a score for the 

disease pair. A minimal network was then constructed consisting of only the 

significant disease-disease associations. They claimed that such a network can 

highlight uncharacterized associations between different diseases. 
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6. Diagnosis of T2DM: 

Li and colleagues (Li et al., 2016) tried to further subtype T2DM patients based 

on medical records and genotypic similarities. They constructed a network with 

associations between different genetic variants and different diabetes-related 

disease phenotypes. They could identify 3 different subtypes – 1) characterized 

by diabetic retinopathy and neuropathy; 2) cardiovascular diseases and cancer 

malignancy and 3) neurological diseases, cardiovascular diseases, HIV infections 

and allergies. They also identified SNP markers for these 3 subtypes. 

As gut microbiome studies started showing differences in diabetics and non-

diabetics, they were incorporated in diagnostic assays too. In a classical study by 

Mahana and colleagues (Mahana et al., 2016), gut bacterial association networks 

were used to identify differences between control and mice fed with antibiotics. 

They showed a difference in network topology between the two groups. The 

control mice gut microbiome network was more robust in the sense that the 

clusters in the network resembled the naturally occurring microbial phyla. The 

antibiotic treatment disrupted these clusters and new ones were formed. They 

identified specific developments like predominance of a certain taxon after 

antibiotic treatment. Another variable was introducing high fat diet (HFD) to 

both these groups. Even HFD led to disruption of the clusters observed in the 

control group but the level of disruption was not as great as that of the antibiotic 

group. The authors then mapped these clusters to different metabolic diseases 

(insulin resistance and non-alcoholic fatty liver disease) the host could develop 

and tried to determine if the network structures could help predict the 

development of those diseases before-hand. 

Apart from using metabolite-metabolite networks for metabolite and ionic 

profiling of T2DM subjects (Sun et al., 2012), they have been used to make better 

and earlier diagnosis of T2DM (Carter et al., 2016). 

Brain network does not necessarily imply neuronal connections but it is more of 

an association network of different regions in the brain. The association is based 

on the regions of the brain that are active simultaneously in a given brain state. 

The default state of the brain is called the wakeful resting state. The associations 
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between the different regions of the brain in this default state together forms the 

Default Mode Network (DMN). Most of the studies here compared the DMNs of 

healthy and diabetic individuals and they found topological differences between 

the two (Chen et al., 2016; Yang et al., 2016a). Some studies showed differences 

in networks other than DMN like left frontal parietal network, sensorimotor 

network (Chen et al., 2015) and cortical white matter network (Zhang et al., 

2016) between healthy and diabetic individuals. It is also noted that there is loss 

of small-world architecture of the brain network in diabetic patients (Zeng et al., 

2015). Moreover, diabetics with poor glycaemic control had lower network 

efficiency and longer path lengths in the brain network (Kim et al., 2016) and the 

loss of functional connectivity in several DMN regions was associated with 

insulin resistance too (Xia et al., 2015a). Impaired connectivity is associated with 

duration of T2DM too (Yang et al., 2016b). 

Although most of these studies propose that disruptions in the brain network 

can be the reason behind cognitive impairment in T2DM, another recent study 

has shown altered connectivity in the brain network of diabetics even without 

cognitive impairment (Yang et al., 2016b).  Cross –sectional data alone cannot 

explain what leads to what. Is T2DM causing the disruptions in the brain 

network or is it the other way around. Bussel and colleagues (van Bussel et al., 

2016) studied brain functional networks of diabetics as well as pre-diabetics and 

had an interesting result. The brain functional network is mildly disrupted in 

pre-diabetics and to a relatively greater extent in diabetics. But the clustering 

coefficient and the local efficiency were seen to be increased in the both diabetics 

and pre-diabetics. They hypothesize that this particular re-organization of the 

network is a compensatory mechanism for the brain to make up for the cognitive 

losses. Another group that looked at brain connectivity differences in obese 

(glucose tolerant and non-glucose tolerant alike) and lean subjects during fasting 

and fed states found that the fasting brain hypothalamus connectivity with the 

pre-frontal cortex was stronger in obese versus lean individuals. Feeding 

dampened the connectivity in the lean subjects while there was no effect in the 

obese ones. Moreover, there wasn’t any difference in the connectivity between 

glucose tolerant and non-tolerant obese subjects (Lips et al., 2014). 
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Cerebral blood flow (CBF) is associated with cognitive scores. A decrease in CBF 

was observed in T2DM patients and more so in patients with poorly controlled 

blood pressure in the regions of DMN (Xia et al., 2015b). The authors also 

mention that hypertension is associated with decreased CBF and low blood 

pressure with increased CBF. One can hypothesize that increase in blood 

pressure is a mechanism of the brain to increase the CBF to make up for the 

cognitive impairment. Longitudinal and brain region-specific studies need to be 

conducted to convert the associations into causal relationships.   

7. Management of T2DM: 

Management of T2DM works at different levels like prevention, treatment 

through drugs, sharing information and experiences and studying demographics. 

The basic therapy for both prevention and treatment is physical training. This 

includes meta-analyses trying to determine the relative importance of certain 

physical training regimes and behaviours. Pillay and colleagues (Pillay et al., 

2015) looked at about 161 different behavioural programme studies for T2DM 

and concluded that different self-management education programmes were 

ineffective in lowering the HbA1C levels (≥ 0.4%) on their own, but could do that 

in combination with support programmes (clinical, behavioural, psychosocial or 

educational programmes). 

A meta-analysis gives the association between different parameters under study. 

A network is constructed with these parameters as nodes and their correlations 

with each other as links. Such a network meta-analysis (of 14 trials including 915 

participants) focusing on physical training regimes (resistance training and 

aerobic exercises) concluded that a combination of both gave the best results 

with respect to reduction in HbA1C levels (Schwingshackl et al., 2014). 

In case of treatment of T2DM, Goede and colleagues (Goede et al., 2016) helped 

determine exact dosage of insulin for a patient based on the patient’s diet, blood 

glucose, etc. The authors argued that the plasma glucose measurement time 

intervals of 15 to 60 min do not provide an adequate resolution to visualize the 

detailed dynamic events. They built an electric circuit model which mimics the 

physiological process of glucose homeostasis starting from meal ingestion, 
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absorption to the cross-talk between the liver, pancreatic alpha and beta cells. 5 

min interval glucose measurements were used as input data for the model. The 

model could accurately determine the insulin dosage needed for the particular 

patient. Another effort to construct a similar model to determine insulin dosage 

was developed using a causal probabilistic network (Tudor et al., 1998). 

Although some studies concluded that there was no significant difference 

between the efficacies of various anti-hyperglycaemic classes (Gross et al., 2011), 

most of the others hint at combination therapy being better off than single drug 

treatment (Man et al., 2016; Orme et al., 2014) or in combination with diet and 

exercise (Stevens et al., 2015). This might also be due to the failure of one drug 

after a certain period of time (DeFronzo et al., 2013). Some papers studied the 

effect of certain specific drugs (Fahrbach et al., 2016) and others compared the 

adverse effects of drugs and their efficacy (Sun et al., 2015) and also their cost-

effectiveness (Schubert et al., 2017). Lastly, a few papers are actually protocols 

suggested to conduct such network meta-analyses (Schubert et al., 2017). 

Publications with just the term ‘social network’ were deleted in the second round 

of selection but the ones which involved social network models were considered 

and are discussed here in detail. Ninomiya and colleagues (Ninomiya et al., 2017) 

demonstrated for the first time an association between psychosocial factors and 

diabetic nephropathy. They measured psychosocial condition of diabetic patients 

using different indicators and concluded that high level of social support was 

associated with lower risk of diabetic nephropathy. Using a network approach, 

they found out that out of the different indicators they measured, two 

associations were the strongest – happiness score and social support; and 

happiness score and optimism score. In general, social support is crucial in 

patient health care. 

Other studies involved a novel data mining approach, where Akay and colleagues 

(Akay et al., 2015) collected information, from a public forum of diabetic 

patients, of the use and experience of the drug sitagliptin. The forum had users 

sharing their experiences (both positive and negative) about the drug and 

authors constructed a network of the flow of information among the different 

users. They identified influential users and proposed that such studies can help 
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gather better healthcare information. Another study looked at socio-spatial 

knowledge networks in a multi-ethnic rural society. The authors collected 

geographical information regarding a patient’s clinic, healthcare providers, social 

gatherings, etc. and where healthcare knowledge can be improved for different 

target ethnic communities (Cravey et al., 2001). 

 

2.3 Limitations of network models so far 

1. Causality: The network models so far have used data based on correlations to 

extract the links for the network. If causal links are used, they are mostly 

predicted causal. Very few studies have used demonstrated causal links (Goede 

et al., 2016; Tudor et al., 1998). 

2. Data restriction: Different levels that show a cross-talk amongst them are genes, 

transcription factors, proteins, lipids, hormones, enzymes, tissues, organs, 

neurons, behaviours and mental states. Interactions among these different levels 

might be important in the pathophysiology of a disease. But network models 

commonly use a single level. Malpique and colleagues (Malpique et al., 2014) 

used three levels namely genes, proteins and metabolites which is the upper 

limit so far. In the case of complex diseases, where a single gene, protein or organ 

cannot be said to be the unique cause of the disease, a multilevel approach might 

give greater insights. 

3. Although some of the network models attempt to evaluate targets or treatments, 

they stop at glucose control as the only end point. It has been already 

demonstrated that controlling glucose levels does not reduce the complications 

of T2DM (Max Miller et al., 1976; Stratton et al., 2000; Turner et al., 1998). 

Therefore, this marker is inadequate and better system-level indicators of 

reversal are required. 

4. Do not explain the flaws and paradoxes of T2DM: The studies are focussed on 

finding novel targets for treatment, but do not address the primary concern, i. e. 

the flaws and paradoxes in the classical theory of T2DM. Every new approach 

should be able to address these flaws and adequately explain them. 

Understanding the underlying mechanism of T2DM itself could be the best 
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objective of a model. Once the disease process is better understood, potential 

treatment options will surface soon. 

 

2.4 Objectives of this thesis 

1. Explain the irreversibility: Even though none of the individual processes in the 

pathophysiology of T2DM are irreversible, T2DM is considered to be irreversible 

(Watve, 2013). A good model of T2DM should provide adequate explanation for 

the irreversibility. 

2. Explain flaws and paradoxes: The flaws and paradoxes are mentioned in Chapter 

1: Section 1.4.1. A new approach should be able to explain these flaws and come 

up with an alternative theory. 

3. Examine whether reversal is possible: After understanding why T2DM seems 

irreversible, we need to find if it can be permanently or durably reversed by 

using an effective approach. 

4. Identify novel promising treatment options: If reversal is possible, novel targets 

need to be identified that can do so. New approaches to prevent, control or 

potentially ‘cure’ T2DM is a desirable outcome of a comprehensive model. These 

targets have a better chance of proving useful since they have been extracted 

using a new approach that satisfactorily escapes the prevalent flaws and 

paradoxes. 

Since T2DM involves multiple organs of the body, it is necessary to include them in the 

model. They are classically considered effects, but may actually have a causal role in the 

process.  

As we saw in this chapter, networks have been used in various aspects associated with 

T2DM starting from the basic understanding of the disease initiation and progression to 

its efficient diagnosis, treatment and management. In each of these aspects described 

above, there is consistent growth in the gain of knowledge and thereby, the 

understanding of T2DM. Networks, with their capacity to integrate a huge number of 

components and their interactions have now become a crucial part of analysis of any 

study. The literature studied here has only a few demonstrated causal models while a 
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large percentage is the predictive causal models. Such models do carry an advantage 

when the kind of input data you require is not present in the literature. But in case of 

T2DM, after decades of research, a large number of interactions are already studied and 

these demonstrated links can give better results than the ones based purely on 

predictive causality. 

We know that neurotransmitters (Thoa et al., 1972) and hormones (Calcagnoli et al., 

2013) affect behaviours on one hand and also interact with enzymes (Rubí et al., 2005) 

and metabolites (Cincotta et al., 1997) in the body. The interactions known today are 

beyond the conventional gene-gene and protein-protein interactions and many other 

types of parameters affect and are affected by them. In this regard, networks comprising 

behavioural, endocrine, neuronal and metabolite factors together hold a better promise 

in understanding the underlying problem. In light of serious challenges posed against 

the classical theory, such broad-level networks may give rise to interpretations which 

are at a substantial deviation from the classical theory. 
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This chapter gives a detailed rational and methodology for the construction of the T2DM 

network and an algorithm which helped make perturbations to the constructed 

network. This chapter also deals with the sensitivity analysis done to figure out under 

what conditions the major result of the model, i.e. the network bi-stability, is robust and 

thereby appreciate the limitations of the model too. The possible applications of the 

network model and their results are explained in Chapter 4. 

 

3.1 The need of a holistic network 

The network literature study in Chapter 2 showed that there are very few demonstrated 

causal networks. Most of the networks use bioinformatics tools or databases which 

either give associations between the components or a predicted causality between 

them. Moreover, these networks usually consider only a single level, for example, a 

gene-gene interaction. Data acquisition is comparatively easier in this case given the 

vast range of bioinformatics databases and efficient tools for data extraction. We know 

today that multiple levels come into play to establish a well-orchestrated regulation of 

any system in the body. Even in case of a disease, this co-ordination is disrupted, but 

nonetheless, it still exists. Trying to understand a disease with all these levels together 

gives better promise of predicting its cause and finding ways to treat it. What has not 

been shown earlier is a network of demonstrated causality between the nodes across 

multiple such levels such as hormones, enzymes, neurotransmitters, tissues, 

behaviours, cytokines, etc. Data acquisition in such a case is not easy since no single 

database exists where all these nodes and their demonstrated interactions have been 

listed. Data needs to be gathered using generalized search tools and evaluated and 

compiled manually. 

The understanding of T2DM appears to have hit a wall. T2DM as a condition is 

classically considered irreversible although all of its individual component processes 

are reversible. Many new genes and alleles associated with T2DM are discovered 

everyday adding intricate details to the already vast and complex picture but a 

comprehensive understanding of the pathophysiology of T2DM still remains remote 

(Watve, 2013). 
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I have tried to approach this situation with a network based on demonstrated causality 

and consisting nodes from multiple levels including hormones, enzymes, 

neurotransmitters, tissues, behaviours, cytokines, etc. The main aim of this thesis is to 

address the anomalies and missing links in the field. Identification of novel targets and 

approaches to prevent, control and reverse T2DM is a secondary aim. Networks can be 

more appreciable if we can find these answers here. 

 

3.2 Identifying nodes and links of the network 

3.2.1 Identification of nodes: I started with the classical theory of T2DM involving the 3 

main variables classically believed to be central to T2DM namely plasma insulin levels, 

insulin resistance and plasma glucose levels. I then searched literature for signals that 

affected or were directly affected by one or more of the three (direct effectors) and further 

for signals that affected or were directly affected by the direct effector signals (indirect 

effectors). Since specific behaviours are also known to trigger certain hormones and 

growth factors among the direct effectors, behaviours were also included in the list of 

signals. Thus, my definition of signals includes nutrients, metabolites, hormones, growth 

factors, cell populations, behaviours and neuronal signals (Figure 3.1). 
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Figure 3.1: Signals in their respective tiers. First tier (innermost circle) includes 

players classically believed to be central to T2DM. Second tier (intermediate whorl) 

includes the players that directly affected or were directly affected by the players in the 

first tier. The third tier (outermost whorl) included players that affected those in the 

second tier or were affected by them. Reproduced from (Kulkarni et al., 2017). 

3.2.2 Inclusion and Exclusion criteria: After listing a large number of possible 

interactions, I applied the following inclusion and exclusion criteria and redundancy 

filters. 

1. Since the focus was on signalling between cell types and organs, I excluded 

strictly intracellular pathways. I treated the cells and organs as black boxes but 

accounted for all signals going in and out. Complex signals and pathways do exist 

within a cell but their net outcome is reflected in the cell’s interaction with rest 

of the system. It is this part of the system that the model addresses. 

2. If two or more signals shared the same upstream signal/s and the downstream 

effect/s, they were merged into one. From a known linear signalling pathway, 

only one molecule was listed. Components of inflammation like macrophage 

accumulation and reactive oxygen species were merged into one due to similar 

effects they show on the rest of the molecules in the network. Gonadotropin-

releasing hormone is responsible for the release of Leutinizing hormone and 

Follicle stimulating hormone and hence they were grouped under the former. 

Growth factors were grouped together with the exceptions of Nerve growth 

factor (NGF), Insulin-like growth factor 1(IGF-1) and Epidermal growth factor 

(EGF) who deemed a different node. All these exceptions have a set of specific 

interactions, not displayed by other growth factors in the network. NGF up-

regulates Brain Derived Neurotrophic Factor (BDNF) (Tirassa et al., 2003) and 

nociception (Gearing et al., 2013). IGF-1, along with the other classical growth 

factor-related interactions, has a positive effect on muscle mass (Barton-Davis et 

al., 1998), bone strength (Yakar et al., 2002) and a negative effect on growth 

hormone (Yamashita and Melmed, 1987). EGF has a positive effect on BDNF 

(Tirassa et al., 2003) and fertility (Tsutsumi et al., 1993a) and a negative effect 

on nociception (Andres et al., 2010). Myokines were grouped under cytokines 

except for BDNF, Secreted Frizzled Related Protein 5 (SFRP-5) and Interleukin 6 
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(IL-6). BDNF is involved in improving cognitive functions (Gray et al., 2006). 

SFRP5, unlike the other cytokines, decreases inflammation (Ouchi et al., 2010). 

IL6 plays an additional role in up-regulating glucagon-like peptide 1 (Kahles et 

al., 2014) and reducing aggression (Alleva et al., 1998). However, if there was a 

branching point in a pathway, it was listed as a signal. BDNF, SFRP5 and IL6 are 

branching points since they show some effects not shown by the other cytokines. 

3. Only the signals having both upstream and downstream effects from other nodes 

of the network were included with the exception of a few important ones. Signals 

β-adrenergeic receptors, leptin action, melatonin, vitamin D3, exercise and 

vitamin B12 have downstream effects in the network but do not have an 

upstream link reaching them from the network. These nodes were deemed 

important either because of their involvement in the classical theory as in the 

case of β-adrenergeic receptors and exercise, or their significant effects on 

insulin sensitivity as in the case of vitamin D3 (Borissova et al., 2003) and 

melatonin (de Oliveira et al., 2012). Leptin resistance is argued by a few to be an 

important player in obesity and metabolic syndrome and hence, it was included 

in the model (Zhou and Rui, 2013). 

4. The receptors of all the hormones included in the network were grouped along 

with their respective hormones expect for insulin and leptin. Insulin resistance 

and leptin resistance are observed in T2DM and they are phenomena that 

happen at the receptor level and not at the hormone production level. Hence, 

insulin action and leptin action are separate nodes and require a discrete place in 

the network. 

5. If a given signal had different actions in different organs they were considered 

different nodes. For example, glucose in blood and that in the brain were treated 

as separate nodes. GABA in pancreas and in CNS has different effects on the other 

nodes in the network. Hence, they were considered are two separate nodes. 

 

3.2.3 Identification of links: All the signals have a functional meaning. So, a down-

regulation means loss or decrease in the signal. Whether it is because of structural 

change or any other change is considered irrelevant. The source data to extract possible 
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interactions amongst the listed signals were publications reporting interventional 

studies giving causal evidence for a positive effect (up-regulation) or a negative effect 

(down-regulation) of a given signal on another signal of interest. All searches were 

made in ‘Google Scholar’ and ‘BioMedNet’ using the name(s) of the target nodes and 

“regulation of”, “expression of” and “affected by” as key words. Correlations and 

associations were not considered as evidence for an interaction. All published 

interactions were treated with equal weighting. No weighting of interactions was done 

by number of studies / publications, validation, reliability, impact factor or level of 

current acceptance. Since most of the interventional data comes from non-human 

species, I included all experiments with humans, rodents or other mammalian hosts 

(see Appendix I for model organisms used in the reference for each link). 

Finally, 330 interactions among 72 signals were identified from 493 publications and 

incorporated in the model. A network was constructed using these signals and 

interactions (Figure 3.2). All signals were treated as organ-specific nodes and the 

interactions formed the directional links (in the network) between these nodes. 
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Figure 3.2: The inter-organ signalling network involved in the pathogenesis of 

T2DM. Each organ (coloured rectangles) displays the signals it produces. The outbound 

(white rectangle) and inbound (black rectangle) portals for each signal are shown. Red 
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arrows indicate up-regulation interactions and cyan, down-regulation interactions. 

Three letter codes for the node as in Table 3.2. Reproduced from (Kulkarni et al., 2017). 

3.2.4 Inclusion of behaviour in the network: As stated in chapter 2, most networks 

include genes or molecules as nodes. During data generation as described above, it was 

realized that there are certain links to behaviour. For example, insulin decreases risk 

taking or increases memory and cognitive function (Benedict et al., 2007; Kern et al., 

2011). Although it may be uncommon to include behavioural characteristics as nodes in 

a physiological network, it is not unexpected for T2DM, since there are hypotheses 

relating behavioural and reproductive strategies to insulin resistance (Corbett et al., 

2009; Watve, 2013; Watve and Yajnik, 2007). The following nodes related to 

reproductive and behavioural syndromes were incorporated in the model.   

1. Physical exercise versus physical aggression: I differentiated the two nodes 

exercise and physical aggression for the following reasons. The node exercise, 

here, refers to calorie consumption aspect of exercise. This is the classical 

concept of exercise which is generally prescribed to counter T2DM. However, 

exercise also has a number of direct neuroendocrine effects which are less 

appreciated. Most active sports include components mimicking hunter-fighter 

behaviour including hitting, kicking, chasing, attacking, defending, etc. Apart 

from calorie burning, such exercises have many behavioural components that 

trigger specific neuro-endocrine signals. For example, running and chasing may 

be energetically the same but behaviourally and endocrinologically different. A 

number of studies show that insulin sensitivity can increase substantially by 

exercise even without loss of weight or total fat which demonstrates that 

exercise has direct effects on insulin sensitivity independent of weight loss 

(Belsare et al., 2010; Duncan et al., 2003; Heijden et al., 2010; Ross, 2003). Since 

the question whether the beneficial effects of exercise are through the energy 

pathway or through the behavioural pathway is important, I segregated the 

energy component and behavioural components of exercise as two different 

nodes namely ‘exercise’ and ‘aggression’. These two nodes were treated as 

separate and independent nodes with exercise having links to energy pathway 

and aggression having links to behavioural pathways. 
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2. Diplomat behaviour: Diplomat behaviour refers to social manipulation and the 

ability to do so. Physical aggression and diplomat behaviour play diametrically 

opposite roles in the pathophysiology of Type 2 Diabetes and related disorders 

(Watve, 2013; Watve and Yajnik, 2007). Insulin is shown to affect social 

behaviour in humans independent of glucose (Kern et al., 2001). 

3. Fertility: Both male and female sex hormones and reproductive processes have 

links with insulin sensitivity. Since both oogenesis and spermatogenesis have 

similar links to insulin resistance syndrome, I included a single node fertility to 

make the model gender neutral. The node fertility refers to differences during 

gestation and otherwise (Barkley et al., 1979; Kurachi and Oka, 1985; Tsutsumi 

et al., 1993a)/ differences during lactation and otherwise (Neumann et al., 

1993)/ proliferation of granulosa cells (Maillard et al., 2010)/ number of healthy 

embryos (Čikoš et al., 2010)/ oocyte quality (Kuro-o et al., 1997; Richards et al., 

2012)/ embryonic development (Richards et al., 2012)/ litter size (Gill-Sharma 

et al., 1993)/ rate of abortion (Tsutsumi et al., 1993a)/ number of implantation 

sites (Gill-Sharma et al., 1993; Tsutsumi et al., 1993b, 1993a)/ uterine weight 

(Tsutsumi et al., 1993b, 1993a)/ ovarian atrophy (Kuro-o et al., 1997; Ohnishi 

and Razzaque, 2010)/ mammary gland size (Okamoto and Oka, 1984) or amount 

of milk produced (Okamoto and Oka, 1984) in females; and genital atrophy 

(Kuro-o et al., 1997; Ohnishi and Razzaque, 2010)/ testis size (Gill-Sharma et al., 

1993)/ histology of testes (Gill-Sharma et al., 1993; Kuro-o et al., 1997)/ sperm 

count (Noguchi et al., 1990) or sperm motility (Breier et al., 1996) in males. 

Infertility is significantly associated with T2DM and a number of components of 

fertility are affected by insulin resistance and vice versa (Bener et al., 2009; Conn 

et al., 2000). 

4. Insulin action and leptin action are two nodes in the network which represent 

the action of insulin and leptin at the receptor level. When the state value of 

these nodes is +1, they represent the insulin sensitive or the leptin sensitive state 

and when their state value is -1, they represent the insulin resistant or the leptin 

resistant states, respectively. Since there are different signals affecting the levels 

of these hormones and the resistant or sensitive state, both the hormone level 

and their action are considered different nodes. Both insulin and leptin 



70    |    C h a p t e r  3  

 

resistance are known phenomena in T2DM. Thus, the action node represents the 

resistance-sensitivity axis. This was not considered necessary for all other 

hormones. 

5. Logical interactions – Some interactions were added which did not have a 

specific reference, but were obvious, logical or evident. For example, food intake 

increases plasma glucose, plasma free fatty acids, muscle energy, or fat storage 

are such obvious links. It is also logical that increased capillary density would 

increase the transport surface and thereby increase glucose transport. There 

were nine such logical interactions in the model for which references are not 

cited. 

 

3.3 Topological properties of the network 

Basic terminologies used to describe a network (Barabási and Pósfai, 2016) – 

- Directed network: A network in which the links have a direction associated with 

them. The T2DM network is a directed one. 

- Undirected network: A network in which the links have no direction, that is, they 

just show an association between the two corresponding nodes. 

- Degree: The number of links connected to a node. 

- Indegree: The number of links directed towards a node. 

- Outdegree: The number of links originating from an individual node. 

- Density: Density of a network is the ratio of the number of links to the number of 

possible links in the network (Wasserman and Faust, 1994). 

- Path length: The number of links on a path between two nodes. 

- Shortest path length: The path between two nodes with the fewest number of 

links. 

- Diameter: The longest shortest path length in the network is called the diameter. 

- Clustering coefficient: Clustering coefficient is defined as the ratio of the number 

of links between the node of interest and its neighbours and the total number of 

possible links (Aparicio et al., 2015). 
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- Closeness centrality: the mean geodesic (i.e., shortest path) distance between the 

node and all the other nodes reachable from it (Newman, 2005). 

- Betweenness centrality: Betweenness centrality of a node is the sum of the 

fraction of all-pairs shortest paths that pass through it (Brandes, 2001). 

Cytoscape (version 3.5.1) was used to calculate the network characteristics (Table 3.2). 

Cytoscape is widely used to construct and analyse biological networks (Su et al., 2014). 

Before the analysis of the network, one needs to clearly indicate whether the analysis 

should be done considering the network as a directed one or an undirected one. The 

kind of analysis used differs in both these settings. For the T2DM network, I used the 

settings used to analyse a directed network. Individual node characteristics and the 

inferences thereby are discussed in detail in Chapter 4: Section 4.3.1. This network is a 

single component which means that all the nodes are connected to each other, directly 

or indirectly. The average path length gives the speed of information travel in the 

network. More than 90% of the nodes are connected to each other directly, which 

means that the information travels pretty fast (within 101 time steps). A typical node in 

the network is connected to approximately 8 other nodes (irrespective of the direction 

of the link). There also exist multi-edge node pairs in the network which form a direct 

feedback loop. 

The topological properties do not take into consideration the directionality of the 

network and hence are a snapshot of the network architecture. I focus more on the 

translational outcomes of the network which I get by making perturbations to this 

directional network. The perturbations will help me get a timely series of the changes in 

the network. This will be more useful in understanding the pathophysiology of the 

disease and identifying novel target nodes. I have used these topological properties to 

find out if any of these explain the results from perturbation simulations or at least 

correlate with them. This issue is discussed in Chapter 4 Section 4.3.1. Also, these 

properties give a sense of the complexity of the model to the reader. 

Table 3.1 Topological properties of the network. 

Characteristic Value 

Clustering coefficient 0.162 
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Network diameter 7 

Shortest path length 1 

Shortest paths 4615 (90.27%) 

Average path length 2.989 

Average degree 8.5 

Network density 0.0645 

Multi-edge node pairs 24 

 

 

3.4 Perturbation simulations 

I developed a perturbation algorithm for the network. The algorithm enabled me to 

select a specific node from the network and perturb it, i.e. change its levels in the 

network. This perturbation mimics the change in the concentration or mass or any 

other measure of the node in an organism. Once the levels of the selected node are 

changed, the effects of this perturbation are passed on to the downstream nodes. Their 

levels change in turn and the cycle continues. This algorithm was developed to study the 

possible causes of T2DM and also possible effective lines of treatment. 

A combination of Microsoft Excel 2007 for data input (addition of links to the network) 

and output (network perturbation results) and Visual Basic Application for executing 

the links was used to construct a network perturbation model (See Appendix II for 

code). The signals were treated as nodes that can have one of three states namely 0 or 

baseline, +1 or up-regulated and -1 or down-regulated. Also, the directional links were 

of three different kinds namely up-regulatory or positive (which increased the state of 

the downstream node by 1), down-regulatory or negative (which decreased the state of 

the downstream node by 1) and basal level (which did not change the state of the 

downstream node). A zero signal here does not mean that there is no signal; it rather 

denotes that there is basal level signalling going on between the two nodes. Although 

the model considers only discrete states, it does not indicate extreme states. For 

example, -1 state of β-cell mass does not mean complete destruction of β-cells. In T2DM, 
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a substantial proportion of β-cells survives lifelong (Maclean and Ogilvie, 1955). 

Therefore, even in the -1 state of β-cells, insulin-producing capacity is not assumed to be 

completely lost; instead, it is subnormal. 

After constructing the network, I studied the effects of different kinds of perturbations 

in the network. At the beginning, all nodes were at a default state of zero. Whenever a 

node was manually up or down-regulated, the state of that node changed to +1 or -1, 

respectively. All the directional links starting from that node were activated to change 

the states of the recipient nodes (first generation nodes). Subsequently, directional links 

from these first generation nodes were activated to change the states of nodes further 

downstream (second generation nodes). The event of activation of one generation of 

nodes was termed as a ‘cycle’. Whenever a node received activated signals from more 

than one other node, the signals were added arithmetically to give a net signal strength. 

Based on the net positive or negative value of the signal strength, the state of the node 

was changed by +1 or -1, respectively; but without exceeding the state limits of -1 to +1. 

If the net signal strength was zero or normal in a given cycle, then the node returned to 

its normal default state. Thus, at any given time, the direction of change in the state of a 

node was solely determined by the net input signal. However, the step length for any 

change was restricted to unity, i.e. the state -1 could not become +1 in a single step. 

Mathematically, the function of each node in every cycle can be explained as follows. 

If        then the downstream nodes of ‘i’ get activated. 

    ∑         where ‘S’ is the state of the node ‘i’, ‘s’ is the cumulative signal it 

received and ‘eji’ is the link pointing from node j to i. 

Depending upon the cumulative signal, the node is assigned a state. 

If        ( )    (   )    

If        ( )    

If         ( )    (   )   ; where ‘t’ is the cycle number 

The state is then bound to limits -1 to +1 

If   ( )        ( )     

If   ( )       ( )    
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For example, to simulate the effects of primary hyperinsulinemia, the state of insulin in 

the starting cycle was made 1 where all the other nodes had a state of zero to mimic the 

basal level signalling across the remaining network. In the first cycle, the direct effects 

of insulin were executed. Hence, only those nodes that were immediate downstream of 

insulin altered their state to +1 or -1 depending upon whether they received up-

regulation or down-regulation link, respectively, from the insulin node. In the current 

example, β-cells, leptin, klotho, EGF, cognitive functions, endothelin-1, gonadotropin - 

releasing hormone, nitric oxides and gut motility were up-regulated (state changed to 

+1); and keto acids and adiponectin were down-regulated (state changed to -1). In the 

second cycle, the immediate effects of these first generation nodes were executed. Thus 

in every cycle, the effects radiated, and because all the nodes lay in a network, in a few 

cycles, every node was affected in some way or the other. The recorded output was the 

state of each node after each cycle. 

A stable state of a node was described as a consistent resultant state of the node which 

remained so throughout further cycles. Also, any perturbation from the state should 

lead back to the same stable state. If a node changed its state with a repeated cyclic 

pattern of a fixed periodicity throughout the cycles, it was termed as a node in stable 

oscillation. If a node changed its states with unpredictably altering periodicity, it was 

termed as a node in a chaotic state. The stable state of the system was defined as a state 

in which every node was in a stable state or in short term deterministic oscillations. 

Further, for the definition of a stable state, it was necessary that if the system was point 

perturbed starting with that particular state, it returned to the same state. If an 

apparently stable state obtained after one perturbation did not return to it after any 

other point perturbation, it was called pseudo-stable state. A chaotic state of the system 

was defined by one or more nodes being in a chaotic state. Whenever there were stable 

oscillations or chaos, the average of the last hundred cycles was taken as the ‘mean final 

state’ for a node. 

3.4.1 Kinds of Perturbations: The time duration (in cycles) of a perturbation was set to 

unity, also called as a point perturbation. Here, I modified the perturbation algorithm to 

accommodate another perturbation time variant, a sustained perturbation. I used these 

two types of perturbations separately or in combination. 
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a. Point perturbations: After the perturbation was made in the starting cycle, 

the perturbed node came back to basal state after the first cycle; and then its 

state was allowed to be decided by the links it received eventually from other 

nodes. 

b. Sustained perturbations: The state of a starting perturbation node was 

changed and the changed state was maintained independent of any link it 

received subsequently. 

3.4.2 Null model simulation: A null model was constructed as a control to check if the 

results I get are an artefact of the perturbation algorithm. The null model had the same 

algorithm as that of the perturbation simulations and same number of nodes and links 

in the original model but the links placement was completely randomized. Every node 

received a random number of outgoing links form the range zero to ten. The 

downstream node for every link was randomized and could be any of the 71 other 

nodes. The positive or negative effect on the downstream node was also randomized 

between zero (down-regulation) and one (up-regulation). 

 

3.5 Perturbation simulation results 

3.5.1 Bi-stability after point perturbations: For all point perturbations, after 20 – 25 

cycles, the system invariably reached a stable state. The changes in states of all the 

nodes after a point perturbation (up-regulation in insulin node) are shown in Figure 3.3. 

Simulations were run for 5000 cycles but those only up to 30 cycles are shown here. A 

stable state was achieved in less than 20 cycles and none of the nodes changed their 

states after this point. Additionally, this can be appreciated in Figure 3.4, where, after 

cycle number 20, there is no change in the network. Furthermore, there were only two 

observed stable states that the system reached. Either chaos or a homeostatic return to 

the starting (all zero) state was never observed in the system. The two stable states did 

not drift further after any point perturbation and were thus true stable states by 

definition. If instead of zero, starting states of all nodes were randomly assigned, the 

same two stable system states were obtained. 
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Figure 3.3: States of the nodes after a perturbation. The states of all the 72 nodes are 

plotted across time (in cycles). 
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Figure 3.4: Perturbation of the network. Node insulin is up-regulated (manually 

perturbed) and its effect on the overall network is shown in terms of up-regulations and 

down-regulations of the different nodes and links. Every cycle shows the activated 

generation of nodes at that point in time. Perturbation is made in cycle zero, and the 

model was run up to 5000 cycles. Up-regulated nodes and links are shown in red, down-

regulated in blue and basal level in green. NodeXL Basic (version 1.0.1.380) was used to 

construct these network diagrams. 
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In the two alternative stable system states, the states of all nodes including insulin 

action were stable, consistent and exactly opposite (in terms of +1 or up-regulated and -

1 or down-regulated) to each other. For example, the state of any node A was +1 

(positive) in one of the stable states and -1 (negative) in the other. Some of the nodes 

had a state of zero in both the stable states. This can be because those nodes received 

exactly equal number of positive and negative links in every cycle or because, as 

mentioned earlier, they did not have an upstream link from the network. Even then, 

these nodes which do not have an upstream link reaching them from the network, their 

contribution to the results is important since their own perturbation leads to either of 

the two stable states through their downstream nodes. Since insulin resistance is 

conventionally believed to be central to T2DM, I called the two stable states as insulin 

sensitive and insulin resistant attractors. The former was characterized by low 

adiposity, cholesterol, glucose levels and inflammatory markers; and high adiponectin. 

The latter had a diametrically opposite picture (Table 1). The nodes which, when up-

regulated, led to the insulin sensitive attractor were collectively called the insulin 

sensitive basin of attraction and those which led to the insulin resistant attractor, when 

up-regulated, were collectively called the insulin resistant basin of attraction. 

Table 3.2: Attractors for the point perturbations. 

Serial 

Number 

Signals/ Nodes Three Letter 

Code 

State in the 

insulin 

resistant 

attractor 

State in the 

insulin 

sensitive 

attractor 

1. Activin A ata 1 -1 

2. Adiponectin and -1 1 

3. Adipose Tissue adp 1 -1 

4. Aggression agr -1 1 

5. α-Melanocyte Stimulating 

Hormone (α-MSH) 

msh 1 -1 

6. Angiogenesis ang -1 1 
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7. Anti-oxidants aox -1 1 

8. Arginine Vasopressin avp 0 0 

9. β-Adrenergic Receptors bar 0 0 

10. β Cells btc -1 1 

11. Bone Strength/ Bone Mass ost -1 1 

12. Brain-Derived Neurotrophic 

Factor (BDNF) 

bdn -1 1 

13. Brain Glucose bgl -1 1 

14. Cholecystokinin cck -1 1 

15. Cholesterol chl 1 -1 

16. Cocaine and Amphetamine 

Regulated Transcript 

(CART) 

car 1 -1 

17. Cognitive Functions cfn 1 -1 

18. Cortico-Releasing Hormone 

(CRH) 

crh -1 1 

19. Corticosteroids cts -1 1 

20. Cytokines ctk 0 0 

21. Diplomat Behaviour dip 1 -1 

22. Dopamine dop -1 1 

23. Endorphins edp -1 1 

24. Endothelin-1 et1 1 -1 

25. Epidermal Growth Factor 

(EGF) 

egf -1 1 

26. Erythropoeitin epo -1 1 

27. Exercise exe 0 0 



80    |    C h a p t e r  3  

 

28. Fertility fty -1 1 

29. Food Intake fdi 1 -1 

30. Free Fatty Acids ffa 1 -1 

31. γ-Aminobutyric acid (GABA) 

pancreas 

gap -1 1 

32. γ-Aminobutyric acid (GABA) 

brain 

gab 0 0 

33. Gastrin gst 1 -1 

34. Ghrelin ghr 0 0 

35. Glucagon glg -1 1 

36. Glucagon-Like Peptide-1 

(GLP-1) 

glp 0 0 

37. Gluconeogenesis gng -1 1 

38. Glucose Transporter-1 

(GLUT-1) 

gt1 -1 1 

39. Gonadotropin-Releasing 

Hormone (GnRH) 

grh 1 -1 

40. Growth Hormone hgh 0 0 

41. Gut Motility gmo 1 -1 

42. Histamine hst -1 1 

43. Inflammatory Response inr 1 1 

44. Injury (Growth Factors) inj -1 1 

45. Insulin ins 1 -1 

46. Insulin Action ina -1 1 

47. Insulin-like Growth Factor 

(IGF-1) 

igf -1 1 
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48. Interleukin-6 il6 0 0 

49. Keto Acids ktg -1 1 

50. Klotho klt 0 0 

51. Leptin lep 1 -1 

52. Leptin Action lpa 0 0 

53. Melatonin mlt 0 0 

54. Muscle Strength/ Muscle 

Mass 

msl -1 1 

55. Myostatin myo 1 -1 

56. Nerve Growth Factor (NGF) ngf -1 1 

57. Nitric Oxide nox 1 -1 

58. Nociception noc 1 -1 

59. Nor-epinephrine nep -1 1 

60. Oestrogen otg -1 1 

61. Osteocalcin ocl -1 1 

62. Oxytocin oxy -1 1 

63. Plasma Glucose pgl 1 -1 

64. Secreted Frizzled-Related 

Protein 5 (SFRP-5) 

sfr 1 -1 

65. Serotonin ser 1 -1 

66. Sympathetic Stimulation sys 0 0 

67. Testosterone tet -1 1 

68. Triglycerides tri 1 -1 

69. Tumour necrosis factor-α 

(TNF-α) 

tnf 1 -1 
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70. Vasodilation vdl 0 0 

71. Vitamin B12 v12 0 0 

72. Vitamin D3 vd3 0 0 

 

3.5.2 Null model simulation results: The bi-stability thus obtained is unlikely to be a 

statistical generality since a null model with the same number of nodes and links but 

with randomization of link placements rarely gave bi-stability. Out of 1000 null model 

simulations, 931 ended in a chaotic state. Stability was observed in 69 of them out of 

which, 12 showed a single stable state; 49 showed bi-stability, 4 showed tri-stability 

and the remaining 4 showed tetra-stability. The uncommon occurrence of bi-stability (p 

< 0.05) in the null model implies that the observed bi-stability in the network is unlikely 

to have arisen by chance alone. 

3.5.3 Results for Sustained Perturbations: I perturbed each node singularly, in a sustained 

manner, and observed the downstream effects. Sustained perturbation of the nodes in 

the network did not affect bi-stability. A fraction of these perturbations led to stable 

short repetitive oscillations in the states of some nodes. Out of the 72 nodes, 49 

sustained perturbations gave identical results as respective point perturbations. 

Remaining 23 sustained perturbations showed some changes in the attractor signatures 

as compared to their respective point perturbations. These changes were obvious since 

the system is not suspended or allowed to settle in case of sustained perturbations. The 

constant perturbation throughout the model run mimics a constant supply (in case of 

sustained up-regulation perturbation) or a constant deficit (in case of sustained down-

regulation perturbation) of that particular sustainably perturbed node. This sustained 

force leads to deviations in the attractor signatures from the original result. 

Nevertheless, bi-stability was maintained in all sustained perturbations. 

3.5.4 Combining Sustained and Point Perturbations: With each of the sustained 

perturbations in the background, every other node was point perturbed one at a time 

and simulations were run for a minimum of 300 cycles. Out of the 72 sustained 

perturbations, 61 led to bi-stability although the signatures of the attractors changed 

occasionally. These 61 included glucose, insulin and adiposity. This means that forcibly 

controlling any of these did not assure a healthy state. The state could drift depending 
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on other perturbations. This is compatible with the clinical results for treatments 

targeting weight loss, insulin signalling or plasma glucose reduction which show 

inconsistencies across studies and very limited evidence for effective reversal of the 

state (see chapter 1). In contrast, sustained up-regulations of ten other nodes gave rise 

to a single insulin sensitive attractor and these were aggression, adiponectin, dopamine, 

ghrelin, growth hormone, melatonin, muscle strength, oestrogen, osteocalcin, and 

testosterone. And sustained up-regulation of serotonin invariably led to the insulin 

resistant attractor. Sustained up-regulation of any of the 10 nodes or down-regulation 

of serotonin never allowed the system to become insulin resistant. Not only that, but 

aggression, dopamine, ghrelin, muscle strength, oestrogen and osteocalcin were able to 

completely reverse the states leading to the insulin sensitive attractor if the simulations 

began from the insulin resistant attractor as the starting condition. Hence, these nodes 

can be identified as potential therapeutic targets and are discussed in detail in Chapter 4 

Section 4.4. 

3.5.5 Clustering the nodes: Although with combinations of perturbations, the signatures 

of attractors could change, there were significant associations between the states of 

several nodes. I clustered the nodes based on Simple Matching Coefficient (SMC) 

between pairs of nodes defined as the number of times the states of the two nodes 

matched across all possible combinations of perturbations. This led to a SMC matrix of 

72 × 71 nodes to which the basic set of 72 point perturbations and 72 singular sustained 

perturbations were added to make the total 5256. All the scores were normalized by 

this total number 5256. Hence, every possible pair of nodes had a score from zero to 

one. To view this scoring as a distance between the two nodes under consideration, I 

subtracted that number from one. Hence, the pairs of nodes having a score nearer to 

zero mean that the nodes in the pair are strongly correlated and hence closer to each 

other and the pairs having a score of one denotes the longest possible distance and 

thereby no correlation between the nodes in that pair. These scores were used to 

construct a frequency distribution. Since the histogram showed two distinct peaks, it 

indicated clear clustering (Figure 3.5). The two peaks in the frequency distribution of 

pair-wise distances correspond to the intra-group distance and the inter-group 

distance, respectively. I considered the first dip, i.e. 0.4 in the histogram as a threshold 

and listed all the pairs which had a distance less than that threshold. Clustering was 
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made by associations starting with the first pair till the list was exhausted. In this way, 

the following 3 different clusters were obtained. 

1. and, agr, ang, aox, bdn, btc, cck, cts, crh, dop, egf, edp, epo, fty, gap, glg, gng, gt1, 

hst, igf,  inj, ina, ktg, msl, ngf, nep, otg, ost, ocl, oxy, bgl, tet 

2. ata, adp, msh, car, chl, cfn, dip, et1, ffa, fdi, gst, grh, inr, ins, lep, myo, nox, pgl, 

sfr, ser, tnf, tri, gmo, noc 

3. avp, bar, ctk, gab, ghr, hgh, il6, klt, lpa, mlt, sys, vdl, vd3, exe, glp, v12 

 

Figure 3.5: Frequency distribution of distances of pairs of nodes. I tried to validate 

this clustering result by comparing it to another readily used clustering technique - 

DendroUPGMA (http://genomes.urv.cat/UPGMA/), an open source online software to 

cluster the nodes in the network and plot a dendrogram (Figure 3.6). The software uses 

UPGMA (Unweighted Pair Group Method with Arithmetic mean) for clustering. I used 

the input data type as similarity matrix and fed in the 72 × 72 matrix with the original 

scores out of 5184 for each pair of nodes. Clusters identified by both the clustering 

protocols were identical. Reproduced from (Kulkarni et al., 2017). 
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Figure 3.6: Dendrogram generated by DendroUPGMA. Reproduced from (Kulkarni 

et al., 2017). 
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3.5.6 Validation of the Network Model: These clusters suggested a way of validating the 

model. The nodes in the first cluster were correlated to insulin sensitivity in the model. 

The nodes in the second cluster were related to insulin resistance and those in the third 

cluster had a basal (zero) state and were correlates to neither insulin sensitivity nor 

insulin resistance in the model. I checked if these one to one correlations of all these 

individual nodes with either insulin sensitivity or insulin resistance are also observed in 

real life data. I found that about 80.35% of these correlations do exist in the literature, 

which in a way validates the model. 

I expected all the other nodes in a cluster too, to be positively correlated to each other in 

real life data. Currently, there are no studies that provide quantitative data on all the 

nodes together. However, different studies have looked at different correlations. Of 

particular value are correlations between nodes that do not have a direct link between 

them but they lie in the same cluster in the above classification. Demonstrated 

correlations compatible with this expectation include myostatin to leptin (Lin et al., 

2002), TNF-α to triglycerides, plasma glucose to cholesterol (Hotamisligil et al., 1995), 

vitamin D3 to vasodilation (Ertek et al., 2012) and growth hormone to klotho (Schmid et 

al., 2013). 

I tested the robustness of the bi-stability of the model by random addition of a link 

between two randomly chosen nodes also. In 1,000 such random addition trials, bi-

stability was not altered except for 8 specific link additions. In 6 out of the 8, there were 

3 stable states instead of 2 and in only 2 cases there were multiple stable states. None of 

the additions resulted in chaos or homeostatic return to the starting state. Out of these 8 

links, 2 links were against what is known in the literature. These are cholesterol down-

regulating vitamin D3 and aggression up-regulating vasopressin. It is known that 

cholesterol is a precursor in the vitamin D3 pathway (Bikle, 2014) and vasopressin up-

regulates aggression (Ferris and Delville, 1994). About the other 6 links, which were 

fertility down-regulating ghrelin, nitric oxides up-regulating ghrelin, ghrelin up-

regulating serotonin, anti-oxides up-regulating vitamin D3, TNF-α up-regulating 

vasopressin and triglycerides up-regulating ghrelin; there was no information available. 

It was observed that a link with ghrelin was observed in 4 out of the 8 times. Taken 

together, it demonstrates further that the bi-stability is robust and unlikely to be 

because of some critical missing link. 
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3.6 Sensitivity analysis of the network model 

3.6.1 Assumptions of the Network Model: To test the sensitivity of bi-stability to the 

underlying assumptions of the model, I relaxed the assumptions one by one and in 

combinations to see whether bi-stability was an artefact caused by some of them. 

When I changed the mode of signal additions from simple arithmetic addition to 

qualitative addition, i.e. when a given node received both non-zero up-regulation and 

non-zero down-regulation links, the net signal strength was treated as zero. When a 

node received only positive signals, the node was up-regulated and when it received 

only negative signals, it was down-regulated. This invariably resulted in to chaos with 

every node and no long term tendency towards being up-regulated or down-regulated. 

A null model with qualitative additions invariably gave chaos. Therefore, this result 

appears to be more of a statistical generality of this mode of addition than any specific 

character of this network. The qualitative addition never allowed a sustained departure 

from the zero state. In the context of T2DM, this would mean that a stable insulin 

resistant or diabetic state may never be obtained. In reality, long term stability of 

insulin resistant or diabetic state is common and reversal is difficult. The qualitative 

addition mode did not appear to represent a realistic picture.  

In the original model, the step length (amount of state change a node can undergo) was 

always unity as mentioned above. As it changed from -1 to 0 in one cycle, the signals 

changed according to the new states and the next step was decided by the new set of 

signals. I relaxed this step length assumption and two other variants were considered. 

1. Direct step length: This variation allowed a direct leap from -1 to +1 if the net 

signal was greater than zero or vice versa. This variation of the model did not 

consider change in signals during state transition. 

2. Short step length: In this variation, the states as well as steps were fine 

grained with a resolution of 0.1 so that twenty different states for each node 

were possible between -1 and +1. Each link when activated led to a change of 

0.1 in the downstream effector node. If multiple signals reached a node in a 

cycle, their cumulative signal strength was calculated by adding them 

arithmetically. If it was lesser than the previous state, 0.1 was deducted from 
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it and if it was greater than the previous state, 0.1 was added to it. I examined 

whether the results were sensitive to the step length. 

For the unit and direct leap step lengths, bi-stability was observed and the composition 

of the two attractors remained identical. There were subtle changes in the basins of 

attraction though. When the steps were fine grained for the short step length, bi-

stability was maintained, but the stable states of the nodes took intermediate stable 

values instead of +1 and -1. Between unit step and fine grained step, the basins of 

attraction were over 80% similar. When direct leap was allowed, bimodality and 

composition of attractors remained the same and the basins of attraction were similar 

to unit step model by over 80%. Since bi-stability and attractor composition were not 

sensitive to the step length, for further analysis I used the unit step model alone which 

was faster as well as accommodated changes in signals during transition. 

Thus, relaxing some of the assumptions did not affect bi-stability and relaxing certain 

others gave rise to unrealistic chaotic results. None of the assumptions gave rise to good 

homeostatic control where the system returned to its ground state on its own. This 

demonstrated the robustness of bi-stability and the soundness of the set of assumptions 

used in the model. 

3.6.2 Contradictions of the Network Model: A surprising finding of the search for links 

was that some of the classical beliefs were not supported by interventional evidence. 

For example, there is no evidence for compensatory hyperinsulinemia (Watve, 2013). I 

have discussed each one of them in detail here. I made point perturbations to the 

network model independently with either of these contradicting links from each 

contradicting pair. I also encountered twelve other contradicting reports, where some 

studies had reported up-regulation while others observed down-regulation effect 

between the same directional node pair. I treated the contradictory links similar to the 

insulin resistance - hyperinsulinemia link i.e., the model was run separately assuming 

positive link or assuming negative link between the node pair. 

1. Compensatory hyperinsulinemia: I found no interventional evidence that muscle 

insulin resistance was compensated by hyperinsulinemia. Lack of evidence for 

this widely held assumption is acknowledged (Corkey, 2012; Shanik et al., 2008; 

Watve, 2013) but the assumption continues to be a part of mainstream thinking. 
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Strictly going by the inclusion criteria of the model, I should not have included 

this link in the model. However, since compensatory hyperinsulinemia is a 

widely held belief, I decided to run (make point perturbations to the network 

model and observe any changes in the results) the model independently with 

and without this link. The difference in the outcomes of the two models could 

potentially give us the importance of this link. The interesting and surprising 

finding was that having or not having the compensatory hyperinsulinemia link 

did not affect the bi-stability of the network or the signatures of the two 

attractors. Since some researchers have argued for compensatory insulin 

resistance in response to primary hyperinsulinemia (Shanik et al., 2008), I 

reversed the causal arrow between insulin resistance and insulin levels which 

again did not affect bi-stability. 

2. Link between obesity and insulin resistance: The link between obesity and 

insulin resistance is also laden with contradictory evidence but the mainstream 

thinking is that obesity increases insulin resistance. Similar to the insulin 

resistance – hyperinsulinemia link, reversing between the assumptions that 

obesity causes insulin resistance or insulin resistance causes obesity, or deleting 

the obesity-insulin resistance link altogether, did not affect bi-stability or the 

attractor signatures except for the state of obesity (i.e. the node ‘adipose tissue’) 

itself. 

3. Irreversibility of β-cell damage: The apparent irreversibility of β-cell damage is 

also debated. Although classically β-cells were believed not to regenerate once 

lost, experiments over the last two decades have shown that β-cells have good 

regeneration capacity in vitro and in vivo including de novo regeneration from 

ductal ascinar cells (Yamaoka, 2002). I operated the model independently 

assuming β-cell -1 state to be reversible as well as irreversible. When I operated 

the model assuming β-cell dysfunction to be reversible, in the insulin resistant 

attractor, the state -1 remained stable and up-regulating the state of β-cells, 

transiently (point perturbation) or sustainably, did not bring the system back to 

the insulin sensitive state. This suggests a possible solution to the β-cell paradox, 

that is, why β-cell dysfunction appears to be irreversible in T2DM when the cells 

have good regeneration capacity. In the model, other signals coming from the 
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network kept β-cell function down-regulated. Alternatively, I assumed β-cell 

dysfunction to be irreversible, that is, when β-cells achieved a state of -1, it was 

retained -1 through all further cycles. Even under this assumption, bi-stability 

was attained and the composition of the attractors was substantially the same. 

4. Necessity of insulin action node: When insulin and insulin action together down-

regulated plasma glucose, bi-stability was unaltered but when insulin alone 

down-regulated glucose independent of insulin action, the system oscillated with 

large periodicity (up to 32 cycles) and there were multiple resultant states. 

Therefore, inclusion of the insulin sensitivity-resistance axis was one of the 

critical conditions for the bi-stability of the system. 

5. Up- versus down-regulation contradictions: I also encountered twelve other 

contradicting reports, where some studies had reported up-regulation while 

others observed down-regulation effect between the same node pair. These 

contradiction pairs are shown in Table 3.3. I treated the contradictory links 

similar to the insulin resistance - hyperinsulinemia link i.e., the model was run 

separately assuming positive link or assuming negative link between the nodal 

pair. 

Table 3.3: Up- versus down-regulation contradiction pairs. 

Sr. 

No. 

Contradiction pair Default link considered 

between the two nodes 
Link originating at Link ending at 

1. Endorphin Food intake end → fdi 

2. GABA  brain Aggression gab → agr 

3. GABA brain Food intake gab ⊣ fdi 

4. Oestrogen Insulin action otg ⊣ ina 

5. Oestrogen 
Inflammatory 

response 

otg → inr 

6. Oxytocin Corticosteroids oxy → cts 

7. SFRP-5 Adipose tissue sfr ⊣ adp 
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8. Testosterone Insulin action tet → ina 

9. Leptin Serotonin lep → ser 

10. Oxytocin Aggression oxy → agr 

11. Nitrogen oxide Aggression nox ⊣ agr 

12. Plasma glucose β-cells pgl ⊣ btc 

 

For 11 out of the 12 up versus down-regulation contradictions examined, the 

system still retained bi-stability with the up-regulation or down-regulation 

arrows. Eight out of the 11 contradicting interactions that retained bi-stability 

showed no effects on the attractor signatures although the basins of attractions 

altered marginally (< 15%) in some of them. One of the 11 interactions (plasma 

glucose – β-cells pair) showed marginal effects in both the attractor signatures 

(<5%) and the basins of attraction (<10%) but retained the bi-stability. Two of 

the 10 interactions (leptin-serotonin pair and oxytocin-aggression pair) brought 

about marginal changes in the attractor signatures. The only up versus down-

regulation contradiction that affected bi-stability was when endothelial nitric 

oxide synthase (e-NOS) and neuronal nitric oxide synthase (n-NOS) action were 

considered a single node. Different studies have found either up-regulating 

(Demas et al., 1999; Gammie and Nelson, 1999) or down-regulating (Chiavegatto 

et al., 2001; Demas et al., 1997; Kriegsfeld et al., 1997; Nelson et al., 1995) action 

of NOS on aggression. Bi-stability was retained for the down-regulation link but 

not for the up-regulation link. After segregating the actions of e-NOS and n-NOS, 

bi-stability was retained. Since different studies report up or down-regulating 

action of n-NOS on aggression, the model was run with either of the links at a 

time. With both types of links, bi-stability was maintained but the inclusion of n-

NOS in the basin of attraction was affected. 

6. Reactive oxygen species (ROS): ROS is considered an important player in the 

pathophysiology of T2DM. During redundancy filtering, ROS was filtered out 

since it was tightly linked to inflammation and both shared identical incoming 

and outgoing links. But since ROS is believed to be an important player, I 
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simulated keeping ROS as a separate node. This change again did not affect bi-

stability and up-regulation of ROS led to the insulin resistant state. 

7. Glucagon – insulin link: Glucagon has a direct up-regulation effect on insulin 

secretion (Ohneda et al., 1975), but through the agency of kisspeptin, it has a 

down-regulation effect (Song et al., 2014), making the net effect zero. The signal 

between glucagon and insulin was therefore filtered out. However, since insulin 

and glucagon are believed to be central molecules to T2DM, I operated the model 

with and without these links singly and in combination. The bi-stability remained 

robust to the inclusion or exclusion of these links. 

 

3.7 A comparison with the classical theory 

The classical theory of insulin resistance states that obesity leads to insulin resistance, 

insulin resistance tends to increase plasma glucose which stimulates increased insulin 

secretion. This increased insulin secretion brings glucose back to normal leading to an 

insulin resistant-hyperinsulinemic-normoglycaemic stable state. Failure of 

compensatory hyperinsulinemia owing to β-cell exhaustion or dysfunction results in to 

hyperglycaemia. I included only adipose tissue, insulin, insulin action, β-cell mass and 

plasma glucose (Figure 3.7) as nodes in the model and included all known and 

classically believed links. 

 

Figure 3.7: Classical model. Interactions among adipose tissue, insulin action, plasma 

glucose, plasma insulin and β-cell mass according to the classical theory are shown with 
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red arrows indicating up-regulation links and cyan, down-regulation links. Reproduced 

from (Kulkarni et al., 2017). 

In this classical model, I failed to see bi-stability under any condition. After any point 

perturbation in any of the five nodes, the system returned to the initial basal state in not 

more than 4-5 cycles or showed stable oscillations around the initial basal state. This is 

a typical behaviour of a homeostatic system. No point perturbation could change the 

basal state and lead to a stable insulin resistant state (Figure 3.8). Being a smaller and 

simpler system, it is easier to visualize the reasons. For example, when I up-regulated 

adipose tissue mass, insulin resistance and subsequently, plasma glucose increased. 

This increased insulin levels and subsequently glucose returned to normal. As glucose 

returned to normal, insulin could not remain elevated. Thus a normoglycaemic-

hyperinsulinemic state was not stable. The states of the same nodes as observed in the 

T2DM network are showed in figure 3.9. Even when I applied the slow step algorithm to 

the classical network, an insulin resistant stable state was not attained. When insulin 

was up-regulated in the slow step length classical model, it led to a positive change in 

adipose tissue and negative changes in plasma glucose and beta cells; and thus, it 

eventually decreased, ultimately oscillating around zero with the other nodes (Figure 

3.10). 

 

Figure 3.8: Changes of states of nodes in the classical model. 
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Figure 3.9: Changes of states of nodes in the T2DM network model. 

 

 

Figure 3.10: Changes of states of nodes in the classical model with slow step 

length. 

Further in a state of high insulin resistance, the lipogenic action of insulin was 

suppressed and therefore, adipose tissue was reduced. Reduction in adipose tissue 

normalized insulin resistance and thus the system was back to its starting state. Even if I 

assumed that chronic overproduction of insulin affected β-cell function, β-cell mass 
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normal thereby removing β-cell stress. Inclusion of glucotoxicity, that is, considering pgl 

to btc a negative regulator, did not drift the system away from homeostasis. Assuming 

β-cell loss as irreversible, that is, fixing btc state to -1 resulted into oscillation of insulin 

between zero and -1 states but glucose remained normal because of feedback loops 

operating through adp and ina. All the links in this small network made effective 

negative feedback loops and therefore, the system failed to give a persistent insulin 

resistant state under any condition. 

This suggests that the stability of the insulin resistant state observed in T2DM may not 

be contributed by any defect in the restricted network involving insulin, glucose, obesity 

and β-cell. It appears to be contributed by the structure of the extended network. 

 

3.8 Discussion 

The model essentially demonstrates that the pathophysiology of type 2 diabetes is 

orders of magnitude more complex than the classical picture of insulin resistance and 

relative insulin deficiency causing hyperglycaemia. Insulin and glucose have been the 

two molecules central to classical thinking but apart from the burden of history, there 

are no other grounds to treat insulin and glucose to be more important in T2DM than 

any other nodes of the network. The behaviour of the system is decided more by the 

network structure than by one or a few key molecules. In a network structure, it is 

possible to reach all nodes by starting from any random node. Therefore, although I 

started assembling the network from insulin and glucose, it does not mean the network 

is gluco-insulino-centric. 

The model also accounts for foetal programming. If we consider the all zero baseline 

state of the system as a foetal condition and the point and sustained perturbations as 

stimuli faced in embryonic or early life, these stimuli can drive the system to one of the 

two states which are difficult to reverse. Unlike the classical belief that obesity is cause 

of T2DM, we observe that there are many different ways in which the process can begin. 

The set of such perturbations that can lead to the diabetic state is the insulin resistant 

basin of attraction. This may account for Developmental Origin of Health And Disease 

(DOHAD) in adulthood (Barker, 1998) or predictive adaptive response (Gluckman et al., 

2005). Since the model is based entirely on experimental data and it appropriately 
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accounts for many realistic phenomena, the unexpected outcomes of the model need to 

be considered seriously as new possibilities. Empirical work in this direction is needed 

to test whether they work in reality. 

Limitations of the model mainly come from four of its attributes. Firstly, there might be 

some important links that are yet to be discovered and are therefore missing in the 

network. I have been updating the model intermittently through my work and adding 

newly identified links to it. Secondly, the experiments from which data are taken are 

carried out on different model systems. All the identified links did not come solely from 

human studies since such data are not available. Hence, studies from other mammalian 

systems were also included to identify links from. Hence, the model represents a 

mammalian system. The use of the other model systems to extract the links is justified 

since there were no qualitative differences between the two. This means that for a 

particular link, the rate of the up-regulation of the downstream mode may differ in 

different model systems but the fact that the former node affects the latter in a positive 

manner stands true. Since my model considers only the qualitative nature of the link, 

these intra-organismic differences are insignificant in my case. 

Thirdly, the model is qualitative and discrete. A node can attain only three distinct 

states namely +1, 0 and -1. The reason behind generation of a qualitative model was 

again lack of data. Not all links from the network come from a single model system and 

as mentioned above, the links might differ quantitatively across the different systems. If 

such data becomes available, a similar model which can use it can be developed. This is 

explained in some detail in Chapter 5 Section 5.4. Lastly, since the model is qualitative, 

time-related predictions cannot be made. Some links in the model might be faster-acting 

than the others, but this distinction has not been made in the model for the same reason 

that link reaction rates for all the links are not available in the same organism. 

Nevertheless, the model made correct correlational predictions between pairs of 

variables that did not have a direct causal connection suggesting thereby that the 

network model works reasonably well despite the limitations. This suggests that the 

novel and unexpected predictions of the model need to be tested empirically. 
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This chapter deals with the applications of the model starting with finding nodes that 

might be important for the bi-stable nature of the network. Then the reasons for the 

robustness of the bi-stability are discussed. Lastly, the novel therapeutic ways are 

mentioned that, at least in this model, lead to the healthy state. 

 

4.1 What makes the bi-stability robust? 

Since there were only two resultant attractors in the baseline model, the nodes could be 

classified as the ones whose up-regulation led to the insulin sensitive attractor and the 

other whose up-regulation led to insulin resistant attractor. Notably, point up-

regulation of 40 of the 72 nodes, led to a stable state in which they remained up-

regulated. This is a positive feedback effect. Sixteen of the nodes resumed the zero state 

although they drove the system to one of the two stable states. The remaining 16 

showed an overcompensation-like response, i.e. point up-regulation of these 16 nodes 

led to a state in which they were down-regulated. Overall, the network had a 

preponderance of positive feedback circuits which explains the robust bi-stable 

behaviour of the system. 

If the network is redrawn segregating the two groups of nodes, one consisting of nodes 

in the insulin sensitive basin of attraction and the other consisting of those in the insulin 

resistant basin of attraction (Figure 4.1, see also Table 4.1), it can be appreciated that 

there are significantly more positive links within group as compared to between groups 

and there are significantly more negative links between groups as compared to within 

groups (chi square =37.33619, df= 3, p< 0.0001). This makes the bi-stability and the 

dichotomous grouping of the nodes very robust. Within group positive and between 

groups negative links will stabilize and reinforce the attractors; whereas within group 

negative and between groups positive links will tend to destabilize the attractors. Since 

there were 216 stabilizing and 114 destabilizing links, there is no wonder that the two 

attractors were highly stable and not sensitive to changing a few nodes or links (Figure 

4.2). 
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Figure 4.1: Basins of attraction. T2DM signalling network segregated according to the 

point perturbations leading to the two attractors. The outbound (white circle) and 

inbound (grey circle) portals are shown for each node. Red arrows indicate intra-group 

up-regulation links; cyan, intra-group down-regulation links; purple, inter-groups up-

regulation links; green, inter-groups down-regulation links. Reproduced from (Kulkarni 

et al., 2017). 
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Table 4.1: Placement of nodes in different organs and the two basins of attraction. 

 

Organs 
Insulin Sensitive Basin of 

Attraction 

Insulin Resistant Basin of 

Attraction 

Adipose Tissue adp, and, sfr bar, lep, lpa, tri 

Behaviour agr dip, exe 

Bone ost, ocl   

Brain 
msh, avp, car, dop, gab, gt1, grh, 

hgh, hst, mlt, oxy, bgl, sys bdn, cfn, edp, crh, nep, ser 

Gonads fty, otg, tet   

Gut cck, egf, gst, ghr, glp, gmo, v12 chl, fdi, ngf 

Immune System tnf ctk, il6 

Insulin Action ina   

Kidneys epo cts, klt 

Liver ktg gng, igf 

Muscles msl, myo ffa 

Pancreas gap btc, glg, ins 

Plasma Glucose   pgl 

Skin vd3 inj 

Systemic 

Response aox ata, inr, noc 

Vascular Tissue ang, et1, vdl nox 
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Figure 4.2: Link Statistics. The bars represent the deviation from the expected number 

of links per cluster, the expected being calculated assuming independence. First two 

columns show the stabilizing links and the next two columns show the destabilizing 

links for the two clusters. The red and blue bars represent the insulin sensitive and the 

insulin resistant basins of attraction, respectively. Reproduced from (Kulkarni et al., 

2017). 

4.1.1 Cyclic loop analysis. Another addition to the network model was the algorithm to 

extract cyclic loops from the network. A loop is a chain of links starting and ending in 

the same node. This gave us a clear idea of the fraction of loops that led to a positive 

feedback (activating the starting node through the loops) and the fraction of loops that 

led to a compensation-like response (inhibiting the starting node) for each node. The 

total number of loops goes on increasing from 46 one-membered loops (only one 

intermediate node the loops passes through) to 24,26,640 nine-membered loops. The 

rise in the number of loops with increase in the number of members is exponential 

(Figure 4.3). There was an obvious correlation between the number of links a node 

makes with the other nodes and the number of loops it has (Figure 4.4). It was also 

observed that as the number of members in the loops goes on increasing, the ratio of 

positive feedbacks to the negative ones goes on decreasing from over 1.4 to unity. I 

compared this with a null model with same number of nodes and links, but random 

placement of links across the nodes. It was observed in case of the null model, that there 

was no bias towards more positive feedbacks (Figure 4.5). 
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Figure 4.3: Total links vs number of members per loop 

 

 

Figure 4.4: Total links vs total loops per node 
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Figure 4.5: Positive/ negative loops vs number of members in the loop. Cyan line, 

the T2DM network model; red, across 3 different null models. 

In the T2DM network, the smaller loops are more positive and thereby responsible for 

the reinforcement of the two attractors. As the members go on increasing, the loops go 

on becoming less biased. Thus, the preponderance of small positive feedback loops 

appears to be responsible for the stability of the two attractors. 

 

4.2 Why bi-stability may have evolved 

The classical clinical thinking is that the body has a homeostatic system operative under 

healthy conditions and disease is a departure from this state. The structure of the 

network on the other hand suggests something else. Here, both the states are stable and 

reinforced by multiple stabilizing mechanisms. This suggests that there needs to be 

some strong selective force giving the network the bi-stable behaviour. Multiple 

stabilizing loops are unlikely to have arisen by chance. The two states might be adaptive 

under two different contexts and the body has evolved sufficient plasticity to enter one 

or the other state as guided by the environment. This view is qualitatively different from 

the concept of a single homeostatic state and a pathological departure from it. 

Evolutionary medicine is a relatively recent school of thought in medicine that studies 

the evolutionary origins of health and disease. A number of evolutionary hypotheses for 

obesity and T2DM have been proposed (Baig et al., 2011; Corbett et al., 2009; Mankar et 
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al., 2008; Neel, 1962; Watve and Yajnik, 2007). A common concept underlying most 

evolutionary hypotheses of T2DM is that insulin resistance is an adaptive state. The 

hypotheses differ in proposing what is adaptive and under which set of conditions. For 

example, the thrift family of hypotheses presumes obesity as an adaptation to 

fluctuating food availability and insulin resistance an inevitable outcome of obesity 

(Neel, 1962), the behavioural switch hypothesis proposes that the two states are fine 

tuned to two different behavioural strategies namely hawk and dove. The hawk 

resembles a ‘stronger’ phenotype accompanied by insulin sensitivity, higher muscle 

mass and ‘r’ type of reproduction strategy while the dove resembles a ‘smarter’ 

phenotype accompanied by disinvestment in the muscle and progeny with the help of 

insulin resistance. This hypothesis also proposes that the transition between the two 

states is possible and beneficial when the environment changes (Watve and Yajnik, 

2007). The fertility selection hypothesis puts fertility in the forefront and proposes that 

in case of food shortage or abundance, body physiology adapts in order to maximise 

fertility (Corbett et al., 2009). 

The different hypotheses are not completely mutually exclusive although they make 

certain differential predictions (Watve and Diwekar-Joshi, 2016) and can be tested 

differentially. I do not intend to test them here, but would rather highlight their 

common grounds that insulin resistance is an adaptive strategy. Once a strategy is 

adapted, the body physiology, as a whole, needs to fine tune itself, which involves a 

number of organs and systems. Therefore, a network needs to evolve that can bring 

about the finer level adjustments in a coordinated manner. Perhaps this logic underlies 

the evolution of cross talks between organs and evolution of networks. If the 

homeostasis view is correct, we would expect modular homeostatic mechanisms for 

every controlled variable with little, if any, cross talk between systems. Since one 

change needs to be accompanied by several other changes in the physiology, a network 

with two or more stable states is expected to evolve. 

If bi-stability is evolved as alternative adaptive states, why one of them leads to 

pathological outcomes is an important question. The possible answers to this are also 

discussed in literature on evolutionary medicine. One possible reason is a supernormal 

response shown by the alternative steady state. The response of the body’s physiology 

is adapted to a range of specific environmental conditions. In the example below (Figure 
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4.6), the optimum response to the environmental feature is sigmoid but within the 

range that the species faced during evolutionary time, the relationship is almost linear. 

It is likely therefore, that the evolved physiological response is linear. Now, if one faces 

an environment beyond the range for which it evolved, there would be an exaggerated 

response which is far from the optimum. Since the body has never come across such an 

environment before, the logical response it gives is the one shown with the red dotted 

line. This is called a supernormal response. A number of features of the modern life style 

are substantially different from the environment in which the human body evolved. 

Therefore, physiological responses that were once adaptive might turn out to be 

pathological (Watve, 2013).  

 

Figure 4.6: Supernormal response. Black line, natural physiological response; red 

dotted, supernormal response. 

The other possibility is unusually long term sustenance of the alternative state. The 

complications of T2DM arise only after a long term existence of the state. It is possible 

that this rarely happened in the evolutionary history of the species and as a result there 

was little selective pressure to evolve mechanisms to arrest them. Today, the increased 

lifespan on the one hand and early onset of the condition on the other allow sufficiently 

long time for the complications to become serious. 
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4.3 Identifying applicable features of the network model 

Having established a model whose results can be interpreted in basic biological terms, 

we move on to further understand whether it makes any useful translational 

predictions. The most evident way to do this is to try and find a single node or a cluster 

that is crucial in deciding the behaviour of the system. Such a key node can be 

potentially a good treatment target. If a target assures an insulin sensitive state in spite 

of other perturbations, it would make a good potential target.  

4.3.1 Is There Any Key Node? To check the sensitivity of the model to the nodes involved 

in the network and also to highlight the important nodes which when removed lead to 

the collapse of bi-stability, I deleted each node one at a time and observed the effect of 

perturbing every other node. A node under focus was frozen to the zero state all the 

time. This turned all the incoming as well as outgoing links from the node ineffective 

and thereby the node was cut-off from the rest of the network. This analysis also 

suggested whether tight homeostatic control over any node is sufficient for homeostasis 

of the entire system. I found that in 71 of the 72 deletions, there was no deviation from 

bi-stability. The system showed a deviation from bi-stability only when the node 

fertility (fty) was deleted. Deletion of fty led to multiple stable states; some being insulin 

sensitive and others being insulin resistant. Most of the correlates of insulin resistance 

remained similar except that high cholesterol was now associated with insulin 

sensitivity. To check whether any particular outgoing link of fty was responsible for this 

effect, I deleted each of them individually. None of the links made by fty when 

individually deleted affected the bi-stability. It seems to be a compound effect of the 4 

upstream links to fty namely up-regulation by adiponectin (Čikoš et al., 2010), EGF 

(Tsutsumi et al., 1993), oestrogen (Gill-Sharma et al., 1993) and growth hormone 

(Breier et al., 1996) and down-regulation by klotho (Ohnishi and Razzaque, 2010); and 

3 links downstream to fty namely up-regulation of EGF (Kurachi and Oka, 1985), 

oestrogen (Barkley et al., 1979) and oxytocin (Neumann et al., 1993). It is interesting to 

note that freezing glucose to the normal state did not ensure homeostasis of the entire 

network suggesting that glucose homeostasis is not central and critical to the behaviour 

of the network. 

I tried to find out the reason behind why fertility came out to be the only node which 

when deleted led to the collapse of bi-stability. The nodal parameters such as closeness 
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centrality, betweenness centrality, clustering coefficient (Figure 4.7), indegree and 

outdegree (Figure 4.8) were calculated (Cytoscape 3.5.1) to see if they could explain this 

behaviour shown by fty. None of these parameters could help explain that at least 

individually. I also calculated the edge betweenness centrality (the number of shortest 

paths that go through an edge); but none of the edges that fty makes were highlighted in 

the analysis (Figure 4.8). I therefore conclude that the answer lies in the network 

structure as a whole rather than with any single parameter. 
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Figure 4.7: Nodal properties of closeness centrality, betweenness centrality 

and clustering coefficient. Node size corresponds to value. Also, the colour 

from blue to red represents the values from low to high. Node fertility is 

highlighted in yellow. 
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Figure 4.8: Nodal properties of indegree, outdegree and edge betweenness. 

Edge width corresponds to value. Also, the colour from blue to red represents 

the values from low to high. Node fertility is highlighted in yellow. 
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Fertility being the critical node might be surprising for the classical theory of type 2 

diabetes which holds obesity to be the driver of the series of changes. It is not a surprise 

for some of the evolutionary hypotheses which involve selection for certain 

reproductive strategies to be a driving principle behind the evolution of insulin 

resistance (Corbett et al., 2009; Watve and Yajnik, 2007). These hypotheses are 

discussed later in this chapter. 

4.3.2 Is there a key node combination? In addition to single node deletion, I deleted 

combinations of nodes by randomly freezing to zero 10% of the nodes at a time. Out of 

1000 such simulations, bi-stability was conserved 81% of the times. Among the 

remaining 19%, there was complete loss of stability 1.1% of the times. Among the 

deleted combinations that led to loss of stability the nodes aggression, dopamine and 

fertility were overrepresented. Among the other non-bi-stability outcomes, 2.2% was 

contributed by uni-stability where the states of the nodes were at and around the basal 

zero state indicating that the network was in a robust homeostatic state. Among the 

combinations of deletions that gave robust homeostasis, fertility and leptin were 

overrepresented suggesting that these nodes in combination are critical for the bi-stable 

behaviour of the system. It is interesting to note that glucose did not appear in this list 

indicating that ensuring glucose homeostasis along with a few other key nodes does not 

assure homeostasis of the entire system. See Table 4.2 for the list of combinations of 

deletions that led to homeostatic uni-stability and complete loss of stability. In the 

remaining 15.7% cases tri, tetra or penta-stability was obtained in which some states 

were insulin sensitive and others resistant. 

Table 4.2: List of deletions of the 10% of the nodes that led to uni-stability and 

complete loss of stability. 

Simulation 

No. 
Uni-stability 

1 ktg fty and gmo bdn glp adp 

2 klt noc fty sys lep pgl hst 

3 bgl lep gst ctk ghr fty gmo 

4 myo ins avp agr and epo lpa 
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5 et1 mlt igf chl inj ost tri 

6 dop gap msh lep adp bgl agr 

7 btc fty ctk grh lep inj otg 

8 avp btc myo oxy dop lpa hst 

9 cts hst ost lep fty msl exe 

10 exe hgh msl hst and oxy chl 

11 noc avp vd3 fdi msh oxy fty 

12 chl egf il6 fty ngf glp cfn 

13 oxy sys dip btc gst fty and 

14 ang fty oxy msl gt1 chl hst 

15 ser ktg mlt exe gt1 otg hst 

16 otg epo lpa car chl hst ocl 

17 agr adp ins tnf ost nox epo 

18 aox fdi lep glp fty and ina 

19 myo ina bgl dop nep et1 epo 

20 fdi klt ctk avp inr ina gmo 

21 igf gap ina ffa bgl edp myo 

22 mlt dip ocl dop sfr gst ina 

 

Simulation 

No. 
Complete loss of stability 

1 otg gng chl tet sys pgl gab 

2 fty et1 dip ser agr exe igf 

3 agr bar fdi vd3 gap oxy msl 

4 fdi ocl crh and ina msl ang 
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5 dop v12 ghr noc ngf ins fty 

6 tet inj aox gap vdl dop otg 

7 vdl dop ocl glp agr ser gap 

8 ata chl fty inj pgl ina bar 

9 ina mlt oxy bar ocl ata dop 

10 vd3 chl ang hst fty cck inr 

11 mlt agr nep et1 aox gmo myo 

 

 

4.4 Towards robust targets for treatment of T2DM 

The combined perturbation simulation results give us possible new insights into long 

term effectiveness of a treatment. The critical question here is if a treatment target is 

sustainably locked into a desired state, how the network behaves in presence and 

absence of other perturbations. An ideal treatment target could be one which when 

locked should keep the system in an insulin sensitive state irrespective of any other 

perturbations. The different approaches currently targeted for treatment are 

suppression of liver gluconeogenesis, restoration of β-cell mass, incretin action, 

enhancement of insulin production, insulin supplementation, reduction in obesity, 

reduction in plasma free fatty acid levels, normalizing plasma glucose, reducing 

oxidative stress and exercise. None of these treatments was able to ensure an insulin 

sensitive state by sustained perturbation. The states were rather decided by the 

accompanying point perturbations. Thus, none of these treatments were able to reverse 

the diabetic state in the long run although transient suppression of plasma glucose 

could be obtained with many of them. One major line of attempted treatment is to 

improve the β-cell function or introduce a new population of healthy β-cells. The critical 

underlying questions are whether β-cell regeneration in T2DM is reversible and 

whether improving β-cell function can reverse T2DM. In the model, sustained up-

regulation of β-cells did not ensure a stable insulin sensitive state. Therefore, the 

effectiveness of this approach in the treatment of T2DM is questionable. 
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In contrast, there were 10 nodes namely aggression (agr), testosterone (tet), dopamine 

(dop), oestrogen (otg), osteocalcin (ocl), melatonin (mlt), ghrelin (ghr), muscle strength 

(msl), adiponectin (and) and growth hormone (hgh) which when sustainably up-

regulated, ensured insulin sensitivity. These nodes, when sustainably up-regulated from 

the all zero basal state, led to the insulin-sensitive state. All these nodes connect to 

insulin sensitivity by multiple pathways with positive regulatory pathways far 

outnumbering negative regulatory pathways (Table 4.3). For example, aggression links 

directly and indirectly to the first tier players (from Figure 3.1) which are insulin, 

glucose and insulin action through EGF (Brand et al., 2002; Hakonen et al., 2011; 

Sánchez et al., 2007), IGF-1 (O’Connell and Clemmons, 2002; Sapolsky and Spencer, 

1997), dopamine (Erp and Miczek, 2000; de Leeuw van Weenen et al., 2011), muscle 

mass (Schwarz and Peever, 2011), bone strength (Bliziotes et al., 2000), adiponectin 

(Borcherding et al., 2011; Kubota et al., 2002), testosterone (Albert et al., 1991; Sattler 

et al., 2014) and other intermediates. Similar role is shown to be played by oestrogen in 

females (Albert et al., 1991, 1992). Osteocalcin, a marker of bone formation (Falahati-

nini et al., 2000), also increases insulin sensitivity in humans (Lee et al., 2007). 

Melatonin is also known to enhance insulin sensitivity (Sartori et al., 2009), and also 

aggression (Jasnow et al., 2002). Thus, most of the above mentioned nodes that could 

ensure insulin sensitive state were closely related to aggression and aggression may 

hold the key to an insulin sensitive state as suggested by Belsare et al.(Belsare et al., 

2010), Watve (Watve, 2013) and Watve and Yajnik (Watve and Yajnik, 2007). 

Table 4.3: Number of pathways from the novel target to insulin action 

Novel target 
Total 

pathways 

Positive / negative 

ratio 

and 49 3.090909091 

agr 140 1.955555556 

dop 167 2.1 

ghr 154 1.375 

hgh 107 2.225806452 

mlt 138 1.976744186 
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msl 41 3 

otg 110 2.678571429 

ocl 68 1.56 

tet 135 1.62 

ser 99 0.446153846 

Table 4.3 Footnotes: All pathways that link the 11 promising nodes to insulin sensitivity 

were mapped and listed. The 10 nodes whose up-regulation increases insulin 

sensitivity, have a greater proportion of positive regulatory pathways. Serotonin, whose 

down-regulation increases insulin sensitivity, had a greater proportion of negative 

regulatory pathways. 

I further examined how much time did each of the potential candidate nodes took for a 

reversal from insulin resistant to sensitive state. As mentioned earlier, an ideal 

treatment target could be one which when locked should either keep the system in an 

insulin sensitive state or lead the system to it irrespective of any other perturbations. In 

this race, oestrogen was the fastest actor which made the transition in 3 cycles followed 

by ghrelin (4 cycles), aggression (5 cycles), dopamine (7 cycles), muscle strength (24 

cycles) and osteocalcin (59 cycles). If serotonin was down-regulated for at least 10 

cycles, it also pushed the system from insulin resistant to insulin sensitive state. The 

system stays in the insulin sensitive state, even when the sustained perturbation is 

lifted, after the specified number of cycles. Applying a combination of interventions 

could reduce the number of cycles required for transition from insulin resistant to 

sensitive state. A minimum of 3 nodes were required to be simultaneously up-regulated 

for bringing up the transition in one or two cycles. These combinations are listed in 

Table 4.4. Once the system attained the insulin sensitive state by any of these above 

combinations of interventions, it could sustain itself against any point perturbations 

even when the interventions were withdrawn. 
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Table 4.4: Combinations of three nodes that led to insulin sensitive state when up-

regulated simultaneously for a single cycle 

Combination Node 1 Node 2 Node 3 

1 aggression dopamine testosterone 

2 aggression dopamine serotonin* 

3 aggression dopamine ghrelin 

4 aggression dopamine muscle strength 

5 aggression dopamine melatonin 

6 aggression dopamine growth hormone 

7 aggression dopamine oestrogen 

8 aggression testosterone serotonin* 

9 aggression testosterone ghrelin 

10 aggression testosterone muscle strength 

11 aggression testosterone melatonin 

12 aggression testosterone growth hormone 

13 aggression testosterone oestrogen 

14 aggression ghrelin serotonin* 

15 dopamine testosterone oestrogen 

16 dopamine oestrogen growth hormone 

Table 4.4 footnotes: Serotonin needs to be down-regulated to lead to an insulin-

sensitive state. 

When these interventions were applied assuming β-cell degeneration to be irreversible, 

individual up-regulation of agr, dop, otg, ocl and ina; and down-regulation of ser could 

still lead to the insulin sensitive state. When these interventions were applied when 

both β-cell and insulin levels were kept fixed at -1, the results were identical. Thus, the 

question whether β-cell degeneration is reversible or irreversible did not seem to be 

central to the reversal of an insulin resistant state to a sensitive one. 
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From the above analysis where the three-membered combinations were identified 

which led to an insulin sensitive state, it is evident that aggression (agr) is the strongest 

node. agr appeared in more than 80% of these three-membered combinations followed 

by dopamine (dop) which appeared in 61% of the combinations. Hence, I selected these 

two candidates to understand what determines the transition from the insulin resistant 

to the sensitive state. When agr was sustainably up-regulated and the model was run 

for an up-regulation of all the other factors, only a single attractor was obtained. 

Moreover, it was an insulin sensitive attractor since the state of insulin action (ina) was 

1. Sustained up-regulation of dop also gave the same result. When agr was sustainably 

down-regulated and dop was sustainably up-regulated, the same insulin sensitive 

attractor was obtained. But when dop was sustainably down-regulated and agr was 

sustainably up-regulated, only insulin resistant attractor was obtained. Since, both agr 

and dop are pro-insulin sensitivity nodes, up-regulating them lead to insulin sensitivity. 

But when they were forced in opposite directions, abnormal network behaviour was 

observed. State of insulin action always correlated with dop. Hence, the state of the 

stronger of the two prevails; which means that if dop is up-regulated and agr is down-

regulated, the resultant attractor is insulin sensitive. From the above examples, we can 

infer that dop is the stronger node and dopamine dominates over aggression. 

The reason for this behaviour lies in the network structure. The strength of a node can 

also be determined by looking at the closeness centrality of that node; i.e. the prompt 

influence of that node on the rest of the network. The closeness centrality (given by 

cytoscape 3.5.1) of dop is 0.48, which is greater than that of agr (0.46) and also the 

highest amongst all the nodes in the network. Also, the outdgree of dop is 14, which is 

greater than that of agr (12) and again, the highest in the network. 

 

4.5 Discussion 

Despite the limitations of the model owing to its qualitative nature, the results are 

realistic in multiple ways. Running the model under different sets of assumptions, 

accommodating contradictory empirical results and the sensitivity analysis 

demonstrates that the model is robust and the results are not the artefactual outcome of 

any particular assumption. The model was able to predict the clinically observed 

correlates of insulin resistance accurately. The classically perceived treatments 
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targeting liver glucose production, insulin sensitivity, insulin secretion including 

incretin action and β-cell function failed to bring about a transition in the steady state in 

the model although they could temporarily improve glucose control. This matches with 

the clinical observations that all these lines of treatments have largely failed to cure 

diabetes or even control hyperglycaemia in the long run (Defronzo, 2004). Many large 

scale clinical trials have revealed that normalizing blood glucose is not effective in 

avoiding diabetic complications (Max Miller et al., 1976; Stratton et al., 2000; Turner et 

al., 1998). This finding is compatible with the model. Further, the model demonstrates 

that it might be impossible, in principle, to prevent diabetic complications by a sole 

focus on normalizing glucose. The ineffectiveness of aggressive glucose normalization 

trials may not be because of failure to appropriately regulate glucose. Even if glucose is 

regulated without hypoglycaemic and other undesirable events, the complications may 

not be arrested since normalization of glucose alone does not reverse the network state. 

The implications of these results to clinical diabetes are radical. The failure of the 

mainstream treatment to reverse T2DM is generally interpreted as inadequacy of the 

treatment. It is believed that the line of treatment is correct but the efficiency is 

inadequate. Often the blame for increased mortality on stringent sugar normalization is 

put on episodes of hypoglycaemia. The model, on the other hand, suggests that the 

failure of the treatment may not be inadequacy but an inappropriate direction of 

treatment. Therefore, rather than refining the technology of glucose regulation, we need 

to explore alternative treatment goals altogether. 

Because of the anastomoses of the network, the function lost by deleting a link can be 

compensated by alternative paths. Since the number of links stabilizing the attractors 

far outnumber the ones destabilizing it, a few missing links are unlikely to alter the 

behaviour of the network. This may explain why knockouts such as MIRKO, or insulin 

suppressing agents failed to increase fasting glucose in experiments (Alemzadeh et al., 

2004; Kim et al., 2000). It is possible in a network that one or a few nodes play a central 

role, but if this is true, it should have been detected by systematic deletion of nodes that 

I performed. The system was generally robust in this analysis and the only node whose 

deletion or freezing made any changes in the behaviour of the system was not related to 

energy homeostasis but to fertility and behaviour. This might be surprising for the 

classical theory of T2DM but is expected by some of the upcoming evolutionary 
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hypotheses for the origin of T2DM (Corbett et al., 2009; Watve and Yajnik, 2007). Unless 

a single node or single link makes a critical difference, a disorder is unlikely to originate 

in a single gene defect. Therefore, it is no wonder then that genome wide association 

studies are able to explain not more than 2% of obesity (Boehnke et al., 2010) and10% 

insulin resistance (Morris et al., 2012) at a population level. 

Reproductive capacity is measured differently in males and females. Since I wanted to 

make the model gender independent, I added the node fertility to it which comprised all 

the parameters related to the reproductive capacity pertaining to both males and 

females. The inclusion of fertility in males and that in females in a single node was 

justified since the interactions between fertility and insulin action are parallel in males 

and females. Fertility showed no correlation with the topological properties of the 

network. We argue that fertility is specifically evolved under certain pressures. In the 

model, fertility stands at the interface of insulin sensitivity and resistance. Removing 

fertility out of the equation results in a homogenous cluster of nodes and no two insulin 

sensitive and resistant groups are observed. This brings us to the notion that these two 

groups exist because of fertility. In case of an insulin sensitive individual, fertility is 

more and hence the investment per offspring is less. In case of an insulin resistant 

individual, fertility is less which increases the investment in the offspring (Watve, 

2013). Fertility determines the fate of the progeny and it is intricately associated with 

insulin action. Change in either has an effect on the other. 

Clinically, the first important realization of the study is that a large number of signals 

can potentially influence insulin sensitivity and the current emphasis on obesity alone is 

perhaps overplayed and unwarranted. The means of transiting from the insulin 

resistant attractor to the insulin sensitive one revealed by the model are substantially 

different from the traditional line of thinking in clinical practice or in drug discovery.  

The model shows that none of the current lines of treatment are able to make this 

transit. Instead, the model suggests some non-conventional lines of treatment. Of 

particular interest is the role of exercise. Sustained physical activity alone did not have 

effects comparable to aggression in the model. Physical activity has been classically 

considered to affect energy balance and reduce adiposity. Physical aggression, on the 

other hand, has many other direct endocrine effects (Belsare et al., 2010) and this 

effectively assured insulin sensitivity in the model. This raises the possibility that 
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exercises work more effectively through the behavioural neuro-endocrine pathways 

rather than through calorie consumption. In reality, many types of exercises have some 

or the other behavioural components and thereby stimulate the neuro-endocrine 

pathways (Chae and Kim, 2009; Farrell et al., 1987; Nexø et al., 1988; Stranahan et al., 

2009; Volek et al., 1997) in addition to burning calories. A testable prediction of the 

model is that different exercises can be expected to have different endobolic effects 

even if the caloric requirement is matched (Belsare et al., 2010; Whyte et al., 2010). 

The insights provided and the suggestion of new promising treatment targets is a result 

of our model not shared by earlier network models of T2DM. This difference is likely to 

be the result of inclusion of multi-organ and multi-level nodes and links. Inclusion of 

genetic, physiological, metabolic, endocrine, immunological and neurobehavioural 

mechanisms in the model elucidates elements that were not visualized at a single or a 

few levels at a time. Inclusion of neurobehavioural elements is particularly remarkable 

feature of our model which the classical thinking had not seriously incorporated in spite 

of some evidence pointing in that direction. Some evolutionary medicine hypotheses 

(Baig et al., 2011; Corbett et al., 2009; Mankar et al., 2008; Neel, 1962; Watve and Yajnik, 

2007) are centred around behavioural and reproductive strategies and they are 

particularly relevant here. Looking at a broader picture has not only made more data 

available but made new dimensions visible. 

We can no more view complex disorders by piecemeal and expect to treat the disorder 

effectively. The behaviour of a network can be substantially different from the 

behaviour of smaller pieces of the network. The model suggests molecular targets such 

as adiponectin, growth hormone, melatonin and testosterone for prevention of T2DM; 

and dopamine, ghrelin, oestrogen and osteocalcin for prevention as well as treatment of 

T2DM. There is some attention given to these targets as potential treatment options 

(Achari and Jain, 2017; Oh et al., 2016; Zanatta et al., 2014) and some of them are at an 

early clinical trial stage (Cincotta et al., 1999; Jones et al., 2011). However, if the end 

point is still visualized as glucose normalization, the trials may not go on the right 

direction. A radical conceptual change is needed to explore the new lines of treatment. 

A quick glance at the new set of targets reveals that all of them are related to behaviour.  

Adiponectin affects food intake (Tambascia et al., 2008), aggression affects dopamine 

(Ferrari et al., 2003), serotonin (Erp and Miczek, 2000) and testosterone (Elias, 1981). 



C h a p t e r  4  | 127 

 

Dopamine affects aggression (Ossowska et al., 1996) and food intake (Davis et al., 

2009). Ghrelin affects aggression (Chen et al., 2015) and food intake (Abizaid et al., 

2006). Growth hormone affects aggression (Matte, 1981) and so do melatonin (Jasnow 

et al., 2002) and oestrogen (Ogawa et al., 2000). Oestrogen also affects food intake 

(Musatov et al., 2007). Serotonin affects aggression (Cleare and Bond, 1997) and food 

intake (Hrboticky et al., 1985). Testosterone affects diplomat behaviour (Eisenegger et 

al., 2010) and aggression (Kriegsfeld et al., 1997). Therefore, it is likely that behavioural 

intervention may have a better promise. The concept of behavioural intervention is 

already there on the horizon (Carter et al., 2014; Schwingshackl et al., 2016), but 

currently it talks mainly about eating behaviours alone. Behaviours related to 

aggression or adventure are linked to elements of metabolic syndrome by a large 

number of pathways compiled in the appendix I of Watve (Watve, 2013) which suggests 

that behavioural interventions in this direction could affect physiology of many systems 

of the body. It is quite likely that a paradigm shift is awaiting round the corner in the 

field and we need to be open to this possibility. 
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The T2DM network model constructed and used here is based on causal links that are 

demonstrated by interventional experiments. However, biological causality is more 

complex and what an experiment demonstrates may have limited implications in the 

context of the system. As shown below, causality in a perturbed system can be 

substantially different than causality in a steady state. This chapter explores the 

difference between steady state (SS) versus perturbed state (PS) causality in 

homeostatic systems. This concept is then applied to the T2DM network. On the one 

hand, it explains how a network may shape the difference between steady state and 

perturbed state causality. On the other, it explores theoretical and empirical ways of 

inferring steady state causality in a multivariate system and then how a clinical study on 

T2DM needs to be designed to get the necessary data for this approach. 

Determining the relationship between SS and PS causality as well as inferring causality 

from multivariate steady state data are aspects of on-going team work in our lab. I have 

contributed to the teamwork as well as benefited from it. In this chapter, I will describe 

the relevant outcomes from the teamwork and then apply it to my model. 

 

5.1 Introduction to steady state and perturbed state causality 

Researchers in our lab realized that the nature of causality in a PS can be qualitatively 

different from that in a SS and the inability to distinguish between the two appears to 

have misguided research in biomedicine and even treatment in practicing medicine 

(Diwekar-joshi et al, manuscript under preparation). 

A well worked out theoretical model that can be used to distinguish clearly between 

perturbed and steady state causation is the logistic population growth curve. The 

population trajectory is decided by two parameters of the model, the intrinsic growth 

rate of the population r and the carrying capacity K of the environment for this species. 

The carrying capacity determines the size of the population at equilibrium. The intrinsic 

growth rate of the population does not determine the equilibrium population but it 

determines the time taken to reach the equilibrium or steady state (see Figure 5.1). 

Non-zero positive r is essential for attaining the equilibrium or returning to it if 
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perturbed. Thus, r has a causal role in attaining the equilibrium if disturbed but has no 

causal role in deciding the position of the equilibrium. Thus, in a perturbed state, r 

decided the fate of a population but once a steady state is reached, r loses its causal 

relevance.  

 

Figure 5.1: Simulated population dynamics of a species. It can be seen that at time 

T1, the population is in proportion to its growth rate but at T2 approaching equilibrium, 

growth rate become increasingly irrelevant in determining population size. Thus, 

growth rate is an important determinant of population size in a perturbed state but not 

at a steady state. 

This has relevance to experimental biology. The distinction between SS and PS causality 

is important in building the philosophy of experimental physiology and medicine. Most 

biological experiments are perturbation experiments and by using them, we try to infer 

about the biological system which is often in a homeostatic steady state. Thus, we use a 

method of perturbation and try to infer causality in a steady state. This is a major 

philosophical problem in experimental biology. A knock-out experiment that disables 

homeostatic control implies that the gene function may be necessary for achieving 

homeostatic control but does not necessarily imply that the gene determines the steady 

state levels of the controlled variable. 

A largely overlapping concept is that of driver versus navigator causality. In order to 

reach a destination both types of causalities are required. A driver is necessary to reach 

the destination but the driver does not decide the destination. In the examples 
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discussed above, the r of logistic equation shows driver causality whereas K is the 

navigator. In a knock-out experiment, knocking out either the driver or the navigator 

disables the act of reaching the destination. Therefore, a knock-out experiment is 

insufficient to infer whether the gene has a driver function or a navigator function or 

both. 

5.1.1 Demonstration of a causal mechanism does not imply SS causality: In a healthy 

warm blooded animal, the body temperature is maintained constant by homeostatic 

mechanisms. If homeostasis is efficient, one may not find any correlation between 

environmental temperature and body temperature. In this sense, the environmental 

temperature does not determine body temperature. Nevertheless, heat transfer 

between the body and the environment exists and can be demonstrated. This example 

shows that demonstration of a causal mechanism is not sufficient to establish a causal 

role in a steady state. 

5.1.2 Need for distinguishing between SS and PS causality in T2DM: Insulin was 

discovered in the context of type 1 diabetes (T1DM) which was the commoner form of 

diabetes that time. In T1DM, insulin producing β-cells are destroyed by an autoimmune 

mechanism and therefore, insulin production is almost absent. Similarly, complete 

pancreatectomy or complete destruction of β-cells by high doses of streptozotocin lead 

to loss of glucose control. But this does not tell us whether insulin is a driver or 

navigator or both. Without any clarity on this distinction, it was assumed that insulin 

action decided the steady state glucose levels and a change in this steady state fasting 

glucose is a result of a change in insulin signalling. 

A number of experiments showed later that either suppressed or raised insulin levels 

do not affect fasting glucose levels. Muscle or fat cell specific insulin receptor knockouts 

also do not show raised levels of fasting glucose. Systematic review and meta-analysis of 

such experiments in rodents as well as humans and a set of primary experiments from 

our lab (Diwekar-Joshi et al, manuscript under preparation; Diwekar-Joshi, thesis under 

preparation) have now demonstrated that insulin acts like r of the logistic equation. It is 

necessary to reach a steady state of fasting glucose; it decided the rate at which the 

steady state is achieved; but it does not decide the steady state glucose level. Thus, one 

major assumption in the theory as well as treatment strategy of T2DM was wrong. For 
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decades together, diabetes research was misled owing to a philosophical failure to 

distinguish between the SS and PS causality. A number of concepts such as the 

homeostatic model assessment (HOMA) indices for measuring insulin resistance and β-

cell responsiveness are based on the assumption that insulin regulates the fasting 

glucose levels. All experiments have only shown that insulin signalling is necessary to 

achieve glucose steady state (driver cause). No experiment conclusively demonstrates 

that insulin signalling decides the steady state glucose levels (navigator cause). The 

latter is only an assumption which is challenged by a series of experiments; but the field 

is confused about the interpretations of these experiments because of the inability to 

distinguish between the two types of causes. 

But intensive glucose control studies have shown us that insulin cannot reduce steady 

state glucose levels (Max Miller et al., 1976; Stratton et al., 2000; Turner et al., 1998). 

Perturbation experiments are usually conducted in translational research to identify 

novel targets. We need to be careful in assuming a similar causal relationship between 

the variables under study at the steady state and using these therapeutic targets. In case 

of T2DM, targets that can reduce the blood glucose levels at the steady state need to be 

identified. 

 

5.2 SS PS in the network model 

Having made clear the distinction between SS and PS causality, we will return to the 

network model. To build the network model, I have used a set of experiments which 

demonstrate a causal link but the experimenters have not distinguished between SS and 

PS causality in the experiments. So the input information is incomplete in a way. 

However, the network itself is likely to give us some insights into why some 

demonstrated PS causal relationships may fail to remain causal in a steady state.  

In a network setting, two variables may be connected to each other by multiple 

pathways. It is possible that there is a direct up-regulation link but the net effect 

through the network is nil or even down-regulation (Figure 5.2). Therefore, having a 

direct up-regulation causal link does not ensure that the relationship between the two 



140    |    C h a p t e r  5  

 

will be in the same direction. Further, when the network reaches a steady state, the two 

may not have a positive correlation with each other. We know that correlation does not 

ensure causation, but absence of correlation certainly means absence of effective 

causation. In the absence of steady state correlation, the causal link cannot be 

demonstrated in a steady state. This is likely to be at least one of the reasons why a PS 

causal link may disappear in a steady state. 

 

Figure 5.2: Direct and indirect causal links in a network system. 

5.2.1 Identifying the vanishing SS causal relations in the model: Going by this approach, I 

identified nodal pairs who have a causal link at the perturbed state and are correlated at 

the steady state, those who have a causal link at the perturbed state but are not 

correlated at the steady state and those who do not have a causal link at the perturbed 

state but are correlated at the steady state. 

The steady state relationships were identified in Chapter 3 Section 3.3.5. The results in 

the clustering methods employed are displayed below. 

1. and, agr, ang, aox, bdn, btc, cck, cts, crh, dop, egf, edp, epo, fty, gap, glg, gng, gt1, 

hst, igf,  inj, ina, ktg, msl, ngf, nep, otg, ost, ocl, oxy, bgl, tet 

2. ata, adp, msh, car, chl, cfn, dip, et1, ffa, fdi, gst, grh, inr, ins, lep, myo, nox, pgl, sfr, 

ser, tnf, tri, gmo, noc 

3. avp, bar, ctk, gab, ghr, hgh, il6, klt, lpa, mlt, sys, vdl, vd3, exe, glp, v12 

The nodes in each cluster are positively correlated to each other. The nodes in clusters 

one and two are negatively correlated to each other and not correlated to the nodes in 
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cluster three. The perturbed state causal relations are tabulated in Appendix I. I 

compared these perturbed state causal relations with their respective steady state 

correlations and listed the nodal pairs in three categories. 

1. The nodal pairs that have a PS causal link and correlate in the SS: 

Table 5.1: Nodal pairs that have a PS causal link and correlate in the SS. 

Node 

1 

Node 

2 
 

Node 

1 

Node 

2 
 

Node 

1 

Node 

2 

ata ins 

 

egf ina 

 

lep inr 

adp ata 

 

edp bdn 

 

lep ser 

adp lep 

 

edp ina 

 

msl agr 

adp sfr 

 

et1 ins 

 

msl ina 

adp tnf 

 

et1 lep 

 

myo adp 

and fty 

 

epo ang 

 

myo tnf 

and ina 

 

fty egf 

 

ngf bdn 

agr bdn 

 

fty otg 

 

nep crh 

agr cck 

 

fty oxy 

 

otg agr 

agr cts 

 

fdi adp 

 

otg ang 

agr dop 

 

fdi ffa 

 

otg fty 

agr egf 

 

fdi ins 

 

otg ocl 

agr edp 

 

fdi pgl 

 

ost ocl 
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agr igf 

 

gap btc 

 

ocl and 

agr ngf 

 

ghr gab 

 

ocl ina 

agr tet 

 

ghr hgh 

 

ocl tet 

ang bgl 

 

glg gng 

 

oxy agr 

bdn btc 

 

gt1 bgl 

 

oxy cts 

bdn ina 

 

hst agr 

 

oxy glg 

btc gap 

 

igf btc 

 

oxy gng 

cck ina 

 

igf ina 

 

pgl ata 

chl cfn 

 

igf msl 

 

pgl ins 

chl inr 

 

igf ost 

 

ser cfn 

chl ser 

 

il6 glp 

 

ser inr 

cfn dip 

 

inj ang 

 

tet agr 

cts gng 

 

inj btc 

 

tet ang 

crh cts 

 

inj hst 

 

tet aox 

crh edp 

 

inj ina 

 

tet egf 

ctk avp 

 

ins cfn 

 

tet epo 

dip ins 

 

ins et1 

 

tet ina 

dop and 

 

ins grh 

 

tet msl 

dop agr 

 

ins lep 

 

tet ocl 
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dop ina 

 

ins nox 

 

tnf ata 

dop msl 

 

ins gmo 

 

tnf et1 

dop ost 

 

ina msl 

 

tnf inr 

dop ocl 

 

ina ost 

 

tnf lep 

egf bdn 

 

lep car 

 

tri adp 

egf btc 

 

lep cfn 

 

exe il6 

egf fty 

 

lep et1 

 

v12 hgh 

 

Since correlation does not always ensure causality, I can only say that there are 

117 pairs that might have the same causal relationship in the SS and PS. 

2. The nodal pairs that do not have a causal link demonstrated in the PS but 

correlate in the SS: 

Table 5.2: Nodal pairs that do not have a causal link demonstrated in the PS 

but correlate in the SS. 

Node 

1 

Node 

2 
 

Node 

1 

Node 

2 
 

Node 

1 

Node 

2 

adp and 

 

gab agr 

 

mlt ins 

adp ctk 

 

gap inr 

 

mlt lep 

agr chl 

 

ghr et1 

 

mlt pgl 

agr et1 

 

ghr fdi 

 

mlt tri 
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agr ser 

 

ghr ins 

 

mlt agr 

and ata 

 

ghr agr 

 

mlt ina 

and ffa 

 

glp fdi 

 

mlt msl 

and fdi 

 

glp ins 

 

mlt ost 

and inr 

 

glp gmo 

 

mlt ocl 

and tri 

 

glp btc 

 

msh agr 

aox inr 

 

glp glg 

 

msh ina 

ata btc 

 

glp ina 

 

msh msl 

ata ctk 

 

glp ost 

 

msh ctk 

avp cfn 

 

gmo glp 

 

msl inr 

avp ins 

 

gng pgl 

 

myo ina 

avp agr 

 

grh tet 

 

myo msl 

avp gng 

 

gst agr 

 

ngf noc 

bar adp 

 

gst btc 

 

noc ina 

bdn cfn 

 

gst ina 

 

nox agr 

bdn fdi 

 

hgh ins 

 

nox ang 

bdn ser 

 

hgh agr 

 

nox dop 

bgl cfn 

 

hgh fty 

 

nox nep 

bgl fdi 

 

hgh igf 

 

nox vdl 
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btc ins 

 

hgh ina 

 

ocl ins 

cck fdi 

 

hgh msl 

 

ocl glp 

cck gst 

 

hst fdi 

 

otg fdi 

cck ins 

 

igf adp 

 

otg inr 

cfn bgl 

 

igf fdi 

 

otg gmo 

chl agr 

 

igf ins 

 

otg hgh 

crh fdi 

 

igf tnf 

 

oxy adp 

crh ins 

 

igf ctk 

 

oxy fdi 

ctk et1 

 

igf hgh 

 

oxy noc 

ctk inr 

 

il6 adp 

 

pgl glg 

ctk lep 

 

il6 fdi 

 

pgl gt1 

ctk crh 

 

il6 inr 

 

pgl bgl 

ctk edp 

 

il6 agr 

 

pgl ghr 

ctk ina 

 

il6 ina 

 

ser agr 

ctk oxy 

 

ina adp 

 

ser dop 

cts ffa 

 

ina pgl 

 

ser ina 

cts inr 

 

ina tri 

 

ser ost 

cts ins 

 

inj adp 

 

sys adp 

cts tri 

 

inj inr 

 

sys egf 
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dop ffa 

 

inj ins 

 

sys gng 

dop fdi 

 

inr ina 

 

sys ina 

dop ins 

 

ins and 

 

tet adp 

dop lep 

 

ins btc 

 

tet msh 

dop pgl 

 

ins egf 

 

tet dip 

dop tri 

 

ins ktg 

 

tet myo 

dop il6 

 

ins klt 

 

tnf ina 

edp fdi 

 

klt adp 

 

tnf nep 

egf noc 

 

klt inr 

 

tnf il6 

et1 agr 

 

klt ins 

 

tnf klt 

et1 ina 

 

klt ang 

 

tri ina 

et1 ghr 

 

klt aox 

 

v12 inr 

et1 vdl 

 

klt fty 

 

v12 noc 

exe adp 

 

klt ina 

 

v12 igf 

fdi agr 

 

ktg cfn 

 

v12 ost 

fdi msl 

 

ktg inr 

 

vd3 ins 

ffa bdn 

 

ktg ins 

 

vd3 agr 

ffa gng 

 

lep ang 

 

vd3 ina 

ffa inj 

 

lpa adp 

 

vd3 ost 
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ffa ina 

 

lpa fdi 

 

vdl ina 

gab fdi 

 

lpa tri 

 

vdl bgl 

gab grh 

 

mlt adp 

   

 

There are 191 such pairs that do not have a direct PS causal link but are 

correlated in SS. It is important to note this because false causal relationships 

may be inferred because of these correlations. 

3. The nodal pairs that have a PS causal link but do not correlate in the SS: 

Table 5.3: Nodal pairs that have a PS causal link but do not correlate in the 

SS. 

Node 

1 

Node 

2 
 

Node 

1 

Node 

2 
 

Node 

1 

Node 

2 

ata btc 

 

gab agr 

 

mlt ost 

adp and 

 

gab grh 

 

mlt ocl 

adp ctk 

 

gst agr 

 

ngf noc 

and ata 

 

gst btc 

 

nox ang 

agr et1 

 

gst ina 

 

nox vdl 

msh agr 

 

ghr agr 

 

otg hgh 

msh ina 

 

ghr fdi 

 

otg inr 

msh msl 

 

ghr ins 

 

ocl ins 
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avp agr 

 

gng pgl 

 

ocl glp 

avp cfn 

 

grh tet 

 

pgl bgl 

avp gng 

 

hgh agr 

 

bgl cfn 

avp ins 

 

hgh fty 

 

sys egf 

bdn cfn 

 

hgh igf 

 

sys gng 

bdn ser 

 

hgh ins 

 

sys ina 

btc ins 

 

hgh msl 

 

tnf il6 

cck ins 

 

ins btc 

 

vdl ina 

cts ffa 

 

ins egf 

 

vdl bgl 

crh ins 

 

ins klt 

 

vd3 agr 

ctk crh 

 

ina adp 

 

vd3 ins 

ctk edp 

 

ina tri 

 

vd3 ina 

ctk et1 

 

ktg cfn 

 

vd3 ost 

ctk inr 

 

ktg ins 

 

glp btc 

ctk lep 

 

klt adp 

 

glp ins 

ctk oxy 

 

klt ang 

 

glp ina 

dop il6 

 

klt aox 

 

glp ost 

edp fdi 

 

klt ins 

 

gmo glp 

et1 agr 

 

lep ang 

 

v12 igf 
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et1 ghr 

 

mlt agr 

 

v12 ost 

ffa gng 

 

mlt ina 

   

fdi msl 

 

mlt msl 

   

 

There are 88 such pairs that do not have the same causal relationship in SS and PS. The 

total number of possible nodal pairs in the 72-node network is 5112. Out of these, only 

117 may have the same causal relationship in the steady and the perturbed states 

(Figure 5.3). 

 

Figure 5.3: Nodal pairs that have similar and dissimilar causality in SS and PS. 

5.2.2 Inferring SS-PS from sustained perturbations: Another approach to study SS 

causality experimentally is to hold a perturbation constant for a long time sufficient to 

reach a steady state. On introducing the perturbation if the target variable changes, it is 

a demonstration of PS causality. On sustaining a constant perturbation, if the system 

reaches a steady state again with the same level of the target variable, there is no SS 

causality although there is PS causality. On the other hand, if the target variable reaches 

an altered level in the new stable state as a result of the sustained perturbation, there is 

both PS and SS causation. Such experiments with insulin and glucose indicate that there 
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is a negative feedback PS causality between the two but no evidence for SS causality 

(Diwekar-Joshi et al, manuscript under preparation; Diwekar-Joshi, thesis under 

preparation). It is difficult to find such experiments among other pairs of variables. 

Nevertheless, we can test what happens on sustained perturbations in the network 

model. We have seen the results of sustained up-regulation of insulin in the model 

which does not alter bi-stability. This means that the steady state level of glucose is 

decided by factors other than insulin. This result is compatible with other work in our 

lab which shows that glucose and insulin have only a PS causal relationship and not SS. 

This is an important realization and several lines of evidence converge on the 

conclusion that insulin and glucose do not have a steady state relationship with each 

other although they influence each other in a perturbed state. 

 

5.3 Predicting a SS causal network from empirical data: Is it possible? 

Since in a steady state, the variables remain at a constant level over time, longitudinal 

studies are of no use in inferring causality. Some of the methods of causal analysis such 

as Granger causality (Granger, 1969) necessarily depend upon longitudinal data. In a 

steady state, only cross-sectional data can be obtained. In such data, we may find a 

number of inter-correlated variables but correlations give little information about 

causation directly. 

A team in our lab has worked out a solution to this problem over the past few years 

which I was a small contributor to (Chawala et al, manuscript in revision). The novel 

philosophy, concept and method of inferring causation are described in a summary 

form in the next section. Later, I will also explore the application of these methods to the 

T2DM network in section 5.4.  

5.3.1 Correlation to causation between 3 variables: In a cross-sectional dataset, 

determining causality is difficult. We (Chawala et al, manuscript in revision) have 

developed a set of rules that use regression parameters from a cross-sectional dataset 

and help deduce causality between them. Cross-sectional correlations between two 

variables are insufficient to determine causality. But in a homeostatic system with three 
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or more inter-correlated variables, it is possible to make causal inferences from steady 

state data. We initially listed all possible pathways between the three variables (Figure 

5.4). 

 

Figure 5.4: Possible pathways between three variables (Reproduced from 

Chawala et al, manuscript in revision) 

Based on hypothesized pathways, we can write specific causal equations for each. The 

causal equations are derived from the hypothesized pathway, while the regression 

equations can be obtained from the given cross-sectional data using regression and 

correlation analysis. Causal equations are similar to structural equations. However, they 

differ in their interpretation and treatment. In structural equations, the left hand terms 

are effects and right hand terms are causes, and the two cannot be algebraically 

transferred without changing causal interpretations. In our approach, after finding 

equilibrium solutions, we can carry out algebraic operations freely in order to obtain 

testable predictions. The parameters of the regression equation are not necessarily 

identical to those of the causal equations. 
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For example, for a hypothesized pathway Y = mX + C, m is the causal slope, while the 

regression slope would be underestimated if there is post-effect variability in X, and 

such a bias in the slope is important in making and testing predictions. Similarly, we 

show that the parameters of causal equations hold pathway-specific relationships with 

the parameters of regression equations based on which, pathway-specific predictions 

about the regression correlation parameters can be made. We describe four general 

predictions across all pathways and formulate a null hypothesis for each. In addition, 

there are certain pathway specific predictions too, which are not discussed here. The 

four general predictions are: 

1. Whether the coefficient of determination    
  can be estimated from the 

product of    
  and    

 . 

2. Whether slope    can be estimated from the product of the slopes     and 

   . 

3. Whether the residuals of the regression of B on A (   ) are correlated with 

those of C on B (   ): The errors or residuals in a regression are assumed to 

be random independent errors. Based on the nature of dependence between 

    and    , presence of, and possible nature of the loops and convergence 

can be inferred. 

4. (a) Whether correction for A improves or reduces the correlation of B with C, 

i.e. whether      
  is greater or lesser than    

 .  

(b) Whether the extent to which      
 

 is greater or lesser than    
 

 can be 

predicted by    
 . 

Let us consider the linear pathways as an example here. The causal equations for a 

linear pathway are: 

         ́     
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Where          are errors, not correlated to each other.   

Regression parameters can be derived from the causal equations as follows. Since in 

regression of B on A, the slope = cov (A, B)/var A, 

    
∑      
∑    

 
 
∑    (       )

∑    
 

 
  ∑    

 

∑    
 
    

    
∑      
∑    

  
∑  (       )  

∑    
  

  ∑    
 

∑    
     

    
∑      
∑     

 
∑  (              )  

∑     
 
    ∑    

 

∑     
      

                             

                             

                                    

For linear equations, there is little difference between the causal equations and 

regression equations (Table 5.4). The regression equations therefore become 

                         

                         

                     (       )  (       ) 

Table 5.4. Relationship between the causal and regression equations for linear 

pathway.  

Slopes Errors 
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Prediction R1: Based on the equations above and Table 5.4, it can be shown that 

             .  

Prediction R2: From Table 5.4, it is obvious that the slope     can be predicted from the 

product        ;                         .  

Prediction R3: From Table 5.4, as there is no covariance between    and   ,  

       
       

     

Prediction R4: For a linear pathway, it can be shown that  

(a)           and further, 

(b) (b)  
   
       

 

   
     

  

Likewise, predictions were drawn for every pathway in Figure 5.3 (Table 5.5). We then 

test these predictions on a steady state cross sectional dataset and derive the plausible 

causal pathway between the 3 variables. 

Table 5.5: Summary of predictions of all pathways considered (Reproduced from 

Chawala et al, manuscript in revision). 

Prediction/ 

Rule → 

Pathway ↓ 

R1 R2 R3 R4 a R4 b Pathway 

specific 

prediction 
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P1 linear     

       
 
  

   

|Mca|= 

|Mba.Mcb| 

rEba,Ecb= 0 rEbc,C/rBC < 1 |  ba 
     

 |

ma (  ba 
     

 )
  A 

 
 

 

P2 radiating     

       
 
  

   

|Mca|= 

|Mba.Mcb| 

rEba,Ecb= 0 rEbc,C /rBC < 1 |  ba 
     

 |

ma (  ba 
     

 )
  A 

  
 

P3 

convergent 

    

       
 
  

   

|Mca|< 

|Mba.Mcb| 

rEba,Ecb> 0 rEbc,C /rBC > 1 |  ba 
     

 |

ma (  ba 
     

 )
  A 

  
rAC=0,  

r2AB+r2BC<1 

P4 common 

cause 

    

       
 
  

   

|Mca|> 

|Mba.Mcb| 

rEba,Ecb< 0 rEbc,C /rBC < 1 |  ba 
     

 |

ma (  ba 
     

 )
   A 

  
Symmetry 

around 

A,B,C 

P5 different 

cause 

    

       
 
  

   

|Mca|< 

|Mba.Mcb| 

rEba,Ecb> 0 rEbc,C /rBC > 1 |  ba 
     

 |

ma (  ba 
     

 )
  A 

  
rAC=0 

r2AB+r2BC<1 

P6 feedback 

Negative 

    

       
 
  

   

|Mca|> 

|Mba.Mcb| 

rEba,Ecb< 0 rEbc,C /rBC < 1 |  ba 
     

 |

ma (  ba 
     

 )
   A 

  
 

P6 feedback 

positive 

    

       
 
  

   

|Mca|< 

|Mba.Mcb| 

rEba,Ecb> 0 rEbc,C /rBC < 1 |  ba 
     

 |

ma (  ba 
     

 )
    A 

  
 

P7 feed-

forward 

negative 

    

       
 
  

   

|Mca|< 

|Mba.Mcb| 

rEba,Ecb> 0 rEbc,C /rBC < 1 |  ba 
     

 |

ma (  ba 
     

 )
   A 
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P7 feed-

forward 

positive 

    

       
 
  

   

|Mca|> 

|Mba.Mcb| 

rEba,Ecb< 0 rEbc,C /rBC < 1 |  ba 
     

 |

ma (  ba 
     

 )
   A 

  
 

 

5.3.2 Correlation to causation in a network: The three-variable method described above 

can be used in a network setting. The nodes in the network can be divided into triplets 

of inter-correlated variables and each of these triplets can be considered as a three 

variable motif for the correlation to causation analysis. Bringing in a fourth one can 

provide additional insights which can be used for cross-checking or validating our first 

set of inferences. In complex causal networks, there can be many such cross-check and 

validation possibilities. For large networks, algorithms requiring massive computational 

power may be needed that may pin down one or a few network structures from the 

large number of possible ones using combinations of three-member motifs and cross 

validation facility among the motifs. Developing such algorithms is another area where 

massive team efforts are needed. But the principles on which it can be built are now in 

hand (Chawala et al, manuscript in revision). 

Using this analysis, unlikely pathways can be rejected and the results from each triplet 

can be put together to construct a steady state causal network. This network can then 

be compared to the T2DM perturbed state network so the SS and PS state of every 

causal relation can be elucidated. Moreover, the steady state causal network 

constructed after applying the correlation to causation tool may give us a much better 

understanding of the pathophysiology of T2DM. The analytical methods used in the PS 

causality T2DM network model can then be applied in the SS causality T2DM network 

model to extract novel targets that can ensure reversal of T2DM. 
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5.4 Proposing a network clinical study 

Unlike the classical belief, the network model suggests that changes in insulin and 

glucose may not be central to T2DM but may only be the presenting symptoms arising 

from a complex network of events preceding it. The cause-effect relationships and inter-

connectedness of the multitude of changes is not incorporated in the classical theory. 

The network model is based on isolated e periments by a ‘joining the dots’ approach. In 

order to develop an insight into the causal relationships among the complex network, it 

is necessary to generate data on the different nodes of the network on the same set of 

subjects. Such data are unavailable currently in either experimental or epidemiological 

setting. All studies look at a small number of parameters at a time. So empirical data 

that could support, validate or make use of the model do not exist at present. Since the 

model results are radically different than the classical view and at the same time 

promising a new line of treatment for the reversal of T2DM, it is necessary to undertake 

an epidemiological study in the form of a ‘network clinical study’. So far, network 

models have been only theoretical and have little direct association with empirical 

clinical work. A design and proposal for a clinical study that could directly connect itself 

to a network model and has a potential to be revolutionary in the field of T2DM is 

described below.  

The key problem being investigated is the inference of causal relationships between the 

different variables in the pathophysiology of T2DM. This analysis will be able to identify 

reliable biomarkers for the diagnosis as well as prognosis of the disease as well as 

design either a universal or personalized line of treatment aimed towards complete 

reversal of T2DM.  

The chain of events leading to T2DM may begin to appear early in life, although it might 

take a long time to manifest into symptoms. In order to capture different stages of the 

progression, the sample should contain individuals of various age classes and with 

different levels of risk and actual disease. The study also needs to capture the effects of 

diet, behaviour and other lifestyle related factors. Periodic blood samples obtained from 

the study group will be analysed for a large number of parameters including 

metabolomic, endocrine, cytokines/chemokines, growth factors, tissues and other 

molecular signals present in the T2DM network. Not all nodes in the network model are 
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amenable to analysis owing to the limitations of sampling. For example, the nodes in 

brain cannot be sampled. Nevertheless, all the nodes that are reflected in plasma levels, 

morphometry, clinical examination and behavioural assessments can be quantified. 

Therefore, although there will be a difference between the number of nodes in our 

network model and the number of variables that can be gathered in an empirical study, 

there will still be sufficient multivariate data to apply to a network model. A cross-

sectional steady state dataset on these parameters can then be used to infer a causal 

network by the analytical methods that our lab has developed and are being refined 

further. 

5.4.1 Recruitment of participants: The proposed study requires a large cross sectional 

sample of the population covering a wide range of endo-bolic conditions. The cross-

sectional study will mainly generate the multivariate data needed by the network model 

and perform causal analysis. Cross sectional sampling: A targeted 1000 subjects 

spanning widely from sportsmen/ wrestlers/ boxers to completely sedentary non-

exercising and non-aggressive adults; forest dwelling tribals to high density urban 

residents; lean to obese and highly insulin sensitive to long standing T2DM with 

complications will be involved in one-time sampling in which a multi-dimensional 

assessment of health status will be done (details of which follow). 

5.4.2 Assessment Details: Assessment will be done along 4 different lines of enquiry - 

clinical, behavioural, fitness and physiological (metabolic, endocrine and 

immunological). 

1. Clinical assessment: Clinical assessment will include detailed history taking, clinical 

(general and systemic) examination. Assessment of diabetic complications 

including retinal, sensory nervous and renal will be done. Assessment of autonomic 

function tests will be done with the help of established standard autonomic 

function tests including heart rate variability, valsalva ratio, slow deep breathing, 

heart rate response to standing/ tilt, blood pressure response to sustained hand 

grip, cold pressure test, mental arithmetic stress, etc. Vascular function assessment 

will be done by ankle-brachial Index, toe-Brachial Index, brachial-ankle pulse wave 

velocity (baPWV), vascular age & R-R variability. Endothelial function will be 

assessed using Endo-PAT. A full body fat assessment, body composition, lean tissue 
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mass, fat tissue mass and fractional contribution of fat measurements, will be done 

by Dual Energy X-ray Absorptiometry (DEXA). Trunk-to-leg fat ratio, total-to-trunk 

fat ratio, bone mineral density & bone mineral content will also be calculated. 

Cardiac function will be assessed by electrocardiography, 4-D echocardiography 

and cardiac stress test. MRI (structural & functional) will be used to assess cortical 

thickness, occurrence cortical atrophy and functional connectivity. 

2. Behavioural assessment: The Watve and Yajnik hypothesis (Watve and Yajnik, 

2007) of neurobehavioral origins depicts a soldier-diplomat dimension of 

personality or behavioural syndrome. A soldier personality is characterized by 

physical strength and aggression, adventurous behaviour and tolerance to physical 

pain and discomfort. A diplomat personality is physically weak, risk and aggression 

avoider, physical harm and pain avoider and having higher degree of social 

manipulation skills. In order to assess the difference in behaviour on various 

dimensions and its role in altering various biochemical parameters, assessment will 

be done using following methods - questionnaires, interviews, games and cognitive 

testing. Several standardized questionnaires assessing various parameters like 

quality of sleep (Pittsburgh sleep quality index), aggression (Buss Perry aggression 

questionnaire), novelty seeking (Temperament Character Inventory - TCI), 

sensation seeking (Arnett inventory), fear of pain, lifestyle questionnaire, risk 

taking, personality, social intelligence, co-operative-competition levels (competitive 

strategy scale), harm avoidance (TCI), thinking (rational/ experiential inventory) 

etc. will be used. 

There is evidence from previous studies highlighting differences in behaviour using 

various games in metabolic disorders like T2DM (Joshi et al., 2010). Behavioural 

games such as ultimatum game will also be used. Assessment of cognition-related 

parameters such as IQ, memory, executive function, attention, visuo-spatial 

abilities, fluency, information processing, decision making, musicality, empathy 

quotient, emotion recognition etc. will be assessed using validated Cognitive Tests 

Battery. 

3. Physical fitness assessment: A complete physical assessment will be done using 

Global Physical Activity Questionnaire, Actigraph activity monitors, diet and calorie 
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assessment and a fitness test. The fitness test is a battery of tests designed to assess 

fitness along multiple dimensions - strength, flexibility, cardio-vascular capacity, 

balance and endurance. This battery is composed of various standardized tests like 

VO2 max, grip strength using dynamometer, vertical jump test, sit and rise test and 

stork pose test to name a few. A total fitness score along with a resolution on above 

mentioned axis will be obtained. Posture will also be assessed while walking, 

standing and sitting with help of video recordings. 

Along with that, anthropometric assessment will also be done. Following 

parameters will be obtained using World Health Organization (WHO) guidelines: 

height, weight, waist circumference, hip circumference, chest circumference, arm 

and leg length, bicipital and tricipital skin folds, Waist to Hip Ratio (WHR) and Body 

Mass Index (BMI). 

4. Physiological parameters: These will be at the core of the study and main 

contributors to the network model. They would include assays for a variety of 

metabolic, hormonal and immunological markers including growth factors (EGF, 

NGF, FGF, BDNF, IGF, etc.), hormones (Insulin, glucagon, male and female sex 

hormones, cholecystokinin, cortisol, myostatin, adiponectin, erythropoietin, 

endothelin-1, vasopressin, cortico-releasing hormone, gastrin, ghrelin, growth 

hormone, kotho, leptin, melatonin, osteocalcin, oxytocin, vitamin D3, vitamin B12, 

glucagon-like peptide 1, etc.), cytokines (activin A, IL6, SFRP-5, TNF-α, etc.), 

metabolites (glucose, FFA, triglycerides, cholesterol,  ROS, anti-oxidants, keto acids, 

etc.), autonomic and other neuronal function markers (α-MSH, dopamine, 

endorphin, CART, serotonin, GABA, histamine, nor-epinephrine, etc.). 

Although the limitation of sampling is that we can collect only blood, several organ-

level signalling pathways have some reflection in blood. As a result, all nodes in the 

multi-organ model will not be represented in total, but some indirect information 

about them will be reflected. The resultant network will therefore be somewhat 

different than our current network model but could be analysed in a similar way 

and may have similar implications. 
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5.5 Discussion 

Such study has not been done so far in spite of the huge amount of money spent on 

diabetes research all over the world. The reason for this is unlikely to be the availability 

of funds and appropriate tools. It is more likely to be lack of vision. Theoretical and 

empirical studies are inter-dependent. Development of theory is often limited by 

availability of data and design of new experimental and epidemiological studies is 

limited by the vision developed by theory. Since T2DM has been visualized as a 

fragmentary picture by all researchers, empirical studies giving a wide array of 

variables are conspicuously absent. A multi-level multi-organ network model has 

helped us giving a broader vision and raising the possibility that a broader vision can 

suggest novel potential breakthroughs as simple emergent properties of a complex 

model. Therefore, novel designs of empirical work need to be undertaken with a 

prospect of major conceptual breakthroughs. 

 

5.6 Summary 

Though the work in this thesis is focussed on construction and interpretation of a tool – 

‘a network model’ to better understand T2DM, the thesis skims through the entire 

pipeline starting from defining a diseased state, developing a robust tool to understand 

the disease, making testable predictions out of it to finally setting up an empirical study 

that should accompany a network model. Translational output of any research is as 

important as the research itself; which is why I have put effort in establishing the entire 

pipeline. 

I start with explaining what does a diabetic state in the network model mean. The 

insulin resistant attractor resembles a metabolic personality of a diabetic individual. 

This personality is characterized by the correlates of insulin resistance and the entire 

state represents the disease, not insulin resistance or glucose levels alone. The 

predicted correlates match well with clinical data on individuals with T2DM. 

The answer to the apparent irreversibility of this diabetic state is two-fold. Firstly, 

diabetic state is re-enforced by multiple positive feedbacks. Presence of multiple 
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mechanisms to stabilize the insulin resistant state suggests that it is not just a 

pathological departure from the healthy state but an independent, adaptive and evolved 

state; which is difficult to come out of, but not entirely impossible. Secondly, the current 

treatment seems to target the visible consequences of the disease rather than the 

apparently invisible causal factors. The model reveals that glucose and insulin are not 

central or key nodes of the network. A change in glucose and insulin levels may be mere 

manifestations of T2DM and there appear to be multiple other regulatory mechanisms 

that actually ‘lead’ to the diabetic state. I have listed this set of parameters and they fall 

under the insulin resistant basin of attraction. 

I then move on to explain the inadequacy and flaws in the current classical thinking. As I 

mentioned earlier in the thesis, there is growing evidence against different parts of the 

classical theory; but even in the light of these flaws, the treatment options given to 

patients haven’t changed. They are still based on the classical theory. The flaws arise, in 

part, due to confused cause-effect relationships between the correlates of the disease. 

My network model takes into consideration only experimentally demonstrated links 

between the nodes and is thereby clear in the direction of causality. If the classical 

theory revolving around insulin levels, insulin resistance, glucose levels, β-cells and 

obesity is treated by the same approach, it cannot explain the existence of a stable 

insulin resistant state. This is because the loops form an efficient homeostatic system 

and it always oscillates stably around the normal. 

Moving to the most important part of the thesis, I list the ways in which this diabetic 

state can be escaped or reversed and how an insulin sensitive state can be achieved. 

There are specific behaviourally regulated nodes in the network which, when up-

regulated for sufficient duration, can prevent and in some cases reverse the diabetic 

state. This reversal is complete transformation of the state and not glucose 

normalization alone. The novel targets essentially reverse diabetes in all these different 

diabetic microphenotypes in the model and this is what we might expect to see as a 

reversal target in real life too. Since all the novel targets are behaviourally regulated, 

alteration of the behaviour is potentially a logical and healthier (without chemical 

intervention) option. So, reversal of diabetic state is possible at least in the model which 

raises hopes for a complete reversal in real life. 
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Testing these predictions empirically is beyond the scope of a single thesis and is 

adequate amount of work (both in magnitude and multitude) for a team comprising 

‘omics’-related researchers, physiologists, epidemiologists, medical practitioners and 

theoretical biologists. Our lab and other collaborators have come up with a design of a 

clinical study that can test the predictions from the model and provide a way to tackle 

such complex diseases. A network model is a powerful tool to handle the large number 

of interactions involved in the disease process. However, it still has its limitation of 

being qualitative. More quantitative data on these relationships and more powerful 

computational tools will enable handling a quantitative model. Further, a distinction 

between SS and PS causality can make a more refined executable model. My network 

model is a small step in this field of executable biology (Fisher and Piterman, 2010) and 

we hope to fine tune it to make it as realistic as possible. But without waiting for 

perfection in the model, it would be advisable to test empirically the novel suggestions 

for prevention, control and reversal that the model has made. 
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Appendix I 

 

References for the links in the network with the respective model organisms used 

Factor Abbreviation Effect 
 

Model organism 

Activin A ata btc1 
 

Sprague-Dawley rat 1 
Activin A ata ctk0 

 
HUVECs 2 

Activin A ata ins1 
 

Cultured human pancreatic islets 3 
Activin A ata adp0 

 
Human adipose progenitors 4 

adipose tissue adp ata1 
 

Human adipose progenitors  4 

adipose tissue adp tnf1 
 

Human adipose tissue 5 

adipose tissue adp ctk1 
 

Human adipose tissue 6 
adipose tissue adp and1 

 
Human adipose tissue 7 

adipose tissue adp lep1 

 

Human adipose tissue 8; Rat epididymal fat pad 9; 
Human adipose tissue 10; C57BL/6J mice 11 

adipose tissue adp sfr1 
 

C57BL/6 mice 12; Mice 13 
adiponectin and ina1 

 
Mice 14; Mice 15 

adiponectin and ata1 
 

Primary human monocytes 16 
adiponectin and ffa0 

 
C57BL/6J mice 17 

adiponectin and fdi0 
 

Wistar rats 18 
adiponectin and inr0 

 
Human aortic endothelial cells 19 

adiponectin and fty1 

 

Bovine ovarian cells and embryo 20; Mice embryos 21; 
Human and C57BL/6J mice granulosa and cumulus 
cells 22 

adiponectin and tri0 
 

C57BL/6J mice 17 

aggression agr chl0 
 

Human subjects 23 
aggression agr egf1 

 
Mice 24; Osteoblast-like cell line 25; Mice 26 

aggression agr ngf1 
 

Mice 27; Mice 28; Mice 29; Mice 30; Mice 31 
aggression agr bdn1 

 
Hamsters 32 

aggression agr dop1 
 

Long-Evans rats 33; Long-Evans rats 34 

aggression agr ser0 
 

Long-Evans rats 33; Long-Evans rats 34 

aggression agr edp1 
 

Human subjects 35; Human subjects 36 
aggression agr tet1 

 
Human subjects 37 

aggression agr cts1 
 

Osteoblast-like cell line 25; Human subjects 37 
aggression agr cck1 

 
Long-Evans rats 38 

aggression agr et11 
 

Mice 39 

aggression agr igf1 
 

Pudu deer 40; Baboons 41 

alpha MSH msh tri0 
 

OLETF rats 42 
alpha MSH msh ina1 

 
OLETF rats 42; Sprague-Dawley rats 43 

alpha MSH msh agr1 
 

Mice 44; Wistar rats 45; Mice 46 
alpha MSH msh adp0 

 
Sprague-Dawley rats 43 

alpha MSH msh msl1 
 

Wistar rats 47 

alpha MSH msh ctk0 
 

Blood samples 48 
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alpha MSH msh fdi0 

 

Long-Evans rats 49; OLETF rats 42; Sprague-Dawley 
rats 50 

angiogenesis ang bgl1 
 

Logic 
anti-oxidant aox inr0 

 
Mice 51 

arginine 
vassopressin 

avp agr1 

 
Hamsters 52 

arginine 
vassopressin 

avp cfn1 

 

Human subject 53; Human subjects 54; Human 
subjects 55 

arginine 
vasopressin 

avp ins1 

 
Human subjects  56 

arginine 
vassopressin 

avp gng1 

 
Porton-Wistar rats 57 

BDNF bdn btc1 
 

C57BL/KsJ-db/db mice 58 

BDNF bdn ina1 

 

Mice 59; Zucker fatty rats 60; C57BL/KsJ-db/db mice 
61 

BDNF bdn cfn1 
 

Human subject 62 

BDNF bdn ser1 
 

C57BL/6 mice 63 

BDNF bdn fdi0 
 

Human subject 62; C57BL/6 mice 64; Mice 59 
beta adrenergic 

receptors 
bar adp0 

 
Human adipocytes 65; Beagle dogs 66 

beta cells btc ins1 
 

Human and rat pancreatic islets 67 

beta cells btc gap1  Rats and Human insulinoma68 
CART car fdi0 

 
Mice 69; Wistar rats 70 

cholecystokinin cck fdi0 

 

129/SvEv mice 71; Human subjects 72; OLETF rats 73; 
Sprague-Dawley rats 74; Rhesus monkey 75; Rats 76; 
Mice 77 

cholecystokinin cck ina1 
 

Mice 78 
cholecystokinin cck gst0 

 
Pigs 79 

cholecystokinin cck ins1 
 

Human subjects 80 
cholesterol chl ser1 

 
Macaques 81 

cholesterol chl inr1 
 

Mice 82 

cholesterol chl agr0 
 

Monkeys 83; Macaques 81 
cholesterol chl cfn1 

 
Human subjects 84 

cognitive 
function 

cfn bgl0 

 
Logic 

cognitive 
function 

cfn dip1 

 
Logic 

corticosteroids cts tri0 
 

Sprague-Dawleys rats 85; Human subjects 86 

corticosteroids cts ffa1 
 

Sprague-Dawleys rats 85; Human subjects 86 

corticosteroids cts gng1 

 

Hepatoma cells 87; H4IIE rat hepatoma cells 88; H4IIE 
rat hepatoma cells 89 

corticosteroids cts ina0 

 

Rats 90; Zucker rat 91; Rat muscle tissue 92; Mice 93; 
Human subjects 94; Human subject 95; Human 
subjects 96; Human subjects 97 

corticosteroids cts agr0 
 

Mice 98 
corticosteroids cts inr0 

 
Human subjects 99; Normal human epithelial cells 100; 
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Human subjects 101; Human subjects 102 

corticosteroids cts ins0 
 

Hamster HIT-15 Beta cells 103; Mice pancreas 104 
cortico 

releasing 
hormone 

crh fdi0 

 
Mice 105 

cortico 
releasing 
hormone 

crh cts1 

 

C57BL/6J mice 106; Rats 107; Human subjects 108; 
normal human epidermal melanocytes 109; Human 
fetal adrenal cells 110; Mice 111 

cortico 
releasing 
hormone 

crh agr0 

 
Harlan-Sprague-Dawley mice 112; Rats 113 

cortico 
releasing 
hormone 

crh ins1 

 
Mice pancreatic islets 56 

cortico 
releasing 
hormone 

crh edp1 

 
Pituitary 114; Mouse pituitary cell line (ATt-20) 115 

cytokines ctk edp1 

 

Mouse pituitary cell line (ATt-20) 115;  Mouse 
pituitary cell line 116 

cytokines ctk crh1 
 

Baboons 117; Rats 118; Rats 119 

cytokines ctk lep1 
 

Hamsters 120; C57BL/6 mice 121 

cytokines ctk inr1 
 

Logic 
cytokines ctk oxy1 

 
Rats 122 

cytokines ctk avp1 
 

Rats 122 

cytokines ctk ina0 

 

Human subject 123; Human megakaryotic cell line 
CHRF-288-11 124 

cytokines ctk klt0 
 

C57/BL6 rats 125 
cytokines ctk et11 

 
Porcine endothelial cells 126 

diplomat dip ins1 
 

Chimpanzees 127 
dopamine dop nep0 

 
Sprague-Dawley rats 128 

dopamine dop agr1 
 

Rats 129; Sprague-Dawley rats 128 

dopamine dop ost1 
 

Mice 130 

dopamine dop ocl1 
 

Human subjects 131 
dopamine dop ina1 

 
C57BL6 mice 132 

dopamine dop msl1 
 

Sprague-Dawley rats 133 

dopamine dop ins0 

 

INS-1E cells and pancreatic islets 134; C57BL/5J mice 
135 

dopamine dop lep0 
 

Human adipocytes 136 
dopamine dop il61 

 
Human adipocytes 136 

dopamine dop and1 
 

Human adipocytes 136 

dopamine dop ffa0 
 

C57BL/5J mice 135 

dopamine dop tri0 
 

C57BL/5J mice 135 

dopamine dop pgl0 
 

C57BL/5J mice 135 
dopamine dop fdi0 

 
Zucker rats 137; C57BL/5J mice 135 

egf egf noc0 
 

Dorsal root ganglia neurons 138 
egf egf btc1 

 
Canine islets and murine bet cells 139; FVB E1-DN 
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mice 140 

egf egf bdn1 
 

CD-1 mice 141 
egf egf ina1 

 
Human adipose tissue 142 

egf egf fty1 
 

Mice 143; Mice 144; Mice 145; C3H/HeN mice 146 

endorphin edp bdn1 
 

Sprague-Dawley rats 147 
endorphin edp ina1 

 
Rats 148 

endorphin edp agr0 
 

Mice 149 
endorphin edp fdi1 ? Rats 50; Rats 150 
endorphin edp fdi0 ? Zucker rats 151 

endothelin et1 ghr1 
 

Holstein Steers 152; Holstein Steers 153 

endothelin et1 ina0 

 

Rat muscles 154; Sprague-Dawley rats 155; Human 
subjects 156 

endothelin et1 agr1 
 

Mice 39 

endothelin et1 ins1 
 

Mice islets of Langerhans 157 

endothelin et1 lep1 
 

Adipocyte cell lines 158 

endothelin et1 vdl0 

 

Pigs, Humans and Rats 159; Human epicardial 
coronary arteries 160; Porcine endothelial cells 161 

EPO epo ang1 

 

Human glioma 162;Human mesenchymal stem cells 
163 

fertility fty egf1 
 

Mice 164 

fertility fty oxy1 
 

Rats 165 
fertility fty otg1 

 
Mice 166 

FFA ffa bdn0 
 

Human subjects 167 
FFA ffa gng1 

 
Human subjects 168 

FFA ffa inj0 
 

Human subjects 169 

FFA ffa ina0 

 

Human subjects 167; Human subjects 170; Human 
subjects 171; Human subjects 169 

food intake fdi adp1 
 

Sprague-Dawley rats 172 
food intake fdi agr0 

 
Meerkats 173 

food intake fdi msl1 
 

Logic 
food intake fdi ffa1 

 
Logic 

food intake fdi ins1 
 

Rats 174 

food intake fdi pgl1 
 

Logic 

GABA Brain gab agr1 ? Mice 175 
GABA Brain gab agr0 ? Human subjects 176; Mice 177 
GABA Brain gab grh1 

 
Mice 178 

GABA Brain gab fdi0 ? Rats 179; Rats 180 
GABA Brain gab fdi1 ? Sprague-Dawley rats 181; Rats 182 

GABA pancreas gap inr0 
 

Mice183 

GABA pancreas gap btc1  Human islets and Rats184 
gastrin gst btc1 

 
Rat pancreas 185 

gastrin gst agr1 
 

Mice 186 
gastrin gst ina1 

 
Mice 187 

gastrin gst adp0 
 

Mice 187 

ghrelin ghr agr1 
 

BALB/c mice 188 
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ghrelin ghr fdi1 

 

Mice 189; Rats 190; Human subjects 191; Wistar rats 192; 
Mice and Rats 193; Sprague-Dawley rats 194; Sprague-
Dawly rats 195 

ghrelin ghr hgh1 

 

Holstein Steers 153; Rats 196; Rats 197; Wistar rats 192; 
Human subjects 198; Mouse hypothalamus 199; Human 
subjects 200; Human subjects 191 

ghrelin ghr ins1 
 

Sprague-Dawley rats 201 
ghrelin ghr gab1 

 
Sprague-Dawley rats 202; Rats and mice 203 

ghrelin ghr et10 
 

Sprague-Dawley rats 204 
glucagon glg gng1 

 
Rats 205; Rats 206; Bovine 207 

gluconeogenesis gng pgl1 
 

Rats 205; Rats 206 

glut1 gt1 bgl1 
 

Rats 208 

GnRH grh tet1 

 

European ground squirrels 209; Sprague-Dawley rats 
210 

growth 
hormone 

hgh msl1 

 

Human subjects 211; Human subjects 212; Human 
subjects 213 

growth 
hormone 

hgh agr1 

 
Mice 214 

growth 
hormone 

hgh ins1 

 
Human subjects 215; Human subjects 216 

growth 
hormone 

hgh ina0 

 

Human subjects 215; Human subjects 216; 3T3-L1 
adipocytes 217;  Human subjects 218; Human subjects 
219; balb/c mice 220 

growth 
hormone 

hgh igf1 

 

Rats 221; Human subjects 219; Human subjects 215; 
Human subjects 222; Mice 223 

growth 
hormone 

hgh fty1 

 
Rats 221 

histamine hst fdi0 

 

H1KO mice 224; Sprague-Dawley rats 225; Wistar King 
A rats 226; Mice 227 

histamine hst agr1 
 

Mice 228 

IGF 1 igf ina1 

 

Human subjects 229; Human subjects 230; Human 
subjects 231; Sprague-Dawley rats 232; Human 
subjects 222; Human subjects 233; Mice 234; Mice 235; 
Wistar rats 236 

IGF 1 igf btc1 
 

Mice 237 

IGF 1 igf fdi0 
 

Wistar rats 238; Wistar rats 236 

IGF 1 igf adp0 
 

Sprague-Dawley rats 232; Wistar rats 236 
IGF1 igf msl1 

 
C57BL/6 mice 239; Mice 240; Mice 241; Rabbits 242 

IGF1 igf ins0 
 

Rat pancreatic beta cells 243; Mice 235 
IGF1 igf hgh0 

 
Primary rat pituitary cells 244; Sheep 245; Mice 234 

IGF1 igf ost1 
 

Mice 246 

IGF1 igf ctk0 
 

Sprague-Dawley rats 247 

IGF1 igf tnf0 
 

Sprague-Dawley rats 247 
Il-6 il6 agr0 

 
Mice 248 

Il-6 il6 ina0 
 

Human adipose tissue 249; Mouse hepatocytes 250 
Il-6 il6 adp0 

 
Mice 251 
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Il-6 il6 inr0  Human subjects252 
Il-6 il6 glp1  Mice253 
Il-6 il6 fdi0  Mice254 

inflammatory 
response 

inr ina0 

 
Mice 255 

injury (growth 
factors) 

inj btc1 

 
Human pancreatic islets 256; Mice 257 

injury (growth 
factors) 

inj hst1 

 
Dogs 258 

injury (growth 
factors) 

inj adp0 

 
Mice 259 

injury (growth 
factors) 

inj ins0 

 
Mice 259 

injury (growth 
factors) 

inj ina1 

 
Mice 259 

injury (growth 
factors) 

inj agr0 

 
Mice 260 

injury (growth 
factors) 

inj inr0 

 
Human fibroblast cells 261 

injury (growth 
factors) 

inj ang1 

 
Mice 262 

insulin ins cfn1 

 

Human subjects 263; Human subjects 264; Human 
subjects 265; Human subjects 266; Mice 267 

insulin ins ktg0 
 

Rat adipose tissue 268 
insulin ins btc1 

 
Canine islets and murine beta cells 139 

insulin ins lep1 
 

Rat white adipose tissue 9; Human subjects 269 
insulin ins klt1 

 
COS-7 cells 270 

insulin ins egf1 
 

C57BL/KsJ mice 271; Mice 145 

insulin ins et11 
 

Human subjects 272 
insulin ins grh1 

 
GnRH expressing cell line 273 

insulin ins and0 
 

Bovine adipocytes 274; Human subjects 275 
insulin ins nox1 

 
Bovine endothelial cells 276; Human subjects 277 

insulin ins gmo1 
 

Rats 278 

insulin action ina pgl0 
 

Rats 279; Rats 238 

insulin action ina gng0 
 

Bovine 207; Mice 280; Mice 281 
insulin action ina msl1 

 
Human muscle tissue282 

insulin action ina ost1 
 

Mice 283; Mice and cell lines 284 
insulin action ina adp1 

 
Mouse embryonic fibroblasts 285; Mice 286 

insulin action ina tri1 
 

Rats 287; Mice 288 

keto acids ktg cfn1 
 

Rats 289 

keto acids ktg ins1 
 

Pancreatic beta cells290; Rat pancreatic islets 291 
Keto acids ktg inr0 

 
Mammalian cell culture 292 

klotho gene klt fty0 
 

Mice 293; Mice 294 
klotho gene klt ina0 

 
Mice 295; Mice 296 

klotho gene klt aox1 
 

Mice 297 

klotho gene klt ang1 
 

Mice 298 
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klotho gene klt inr0 
 

KM mice 299; Mice 300 
klotho gene klt adp1 

 
Mouse 3T3-L1 cells 301; Mice 295 

klotho gene klt ins1 
 

MIN6 beta cells 302 

leptin lep inr1 
 

Human adipocytes 10 

leptin lep car1 
 

Wistar rats 70; Sprague-Dawley rats 303; Rats 304 
leptin lep ffa0 

 
Rats 305 

leptin lep ang1 

 

HUVECs and PAECs 306; Normal HUVECs and 
HCASMCs 307; Rats and human endothelial cells 308; 
Wistar rats 309 

leptin lep cfn1 
 

Mice 310 

leptin lep ser1 ? Black Swiss mice 311 
leptin lep ser0 ? Mice 312 
leptin lep et11 

 
Rat portal vein 313;HUVECs 314 

leptin action lpa fdi0 

 

Rats 304; Mice 315; Rat pancreatic islets 316; Wistar rats 
317; Rats 318 

leptin action lpa adp0 
 

Mice 315; Mice 319; Wistar rats 317 

leptin action lpa tri0 
 

Mice 315; Rat pancreatic islets 316 

melatonin mlt agr1 
 

Syrian hamsters 320 

melatonin mlt ost1 
 

MC3T3 cells 321; Osteoblast-like cell line 322 
melatonin mlt ocl1 

 
MC3T3 cells 321 

melatonin mlt adp0 

 

Rats 323; Sprague-Dawley rats 324; Sprague-Dawley 
rats 325;  osteoblast-like cell line322 

melatonin mlt lep0 
 

Rats 326; Rats 327 
melatonin mlt ins0 

 
Rats 323; Rats 326; Sprague-Dawley rats 324; Rats 327 

melatonin mlt pgl0 
 

Sprague-Dawley rats 325 
melatonin mlt tri0 

 
Sprague-Dawley rats 325; Rats 327 

melatonin mlt ina1 

 

Rats 328; SAMP8/SAMR1 mice 329; Mice 330; Mice 331; 
Rats 332 

melatonin mlt msl1 
 

Rats 333; Rats 334 
muscle strength msl agr1 

 
Human subjects 335 

muscle strength msl ina1 
 

Human subjects 335 

muscle strength msl inr0 
 

Human subjects 252 

myostatin myo msl0 

 

Mice 336; Mice 337; Mice 338; Mice 339; Sprague-Dawley 
rats 340; Mice 341 

myostatin myo ina0 

 

C57BL/6 mice 342; Human subjects 343; Mice 339; 
C57BL/6 (B6) mice 344 

myostatin myo tnf1 
 

C57BL/6 (B6) mice 344 

myostatin myo adp1 

 

Mice339; Mice 341; C57BL/6 (B6) mice 344; C57BL/6 
mice 342 

NGF ngf bdn1 
 

Human and rat pancreatic islets 345; CD-1 mice 141 
NGF ngf noc1 

 
Dogs 346; Lewis rats 347; Human subjects 348 

NO nox vdl1 
 

Human subjects 349; Human subjects 277 
NO nox ang1 

 
Mice 350; Mice 262 

NO nox nep0 
 

Wistar rats 351 

NO nox dop0 
 

Wistar rats 351 
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NO nox agr1 ? Mice 352; Mice 353 
NO nox agr0 ? Mice 354; Mice 355; Mice 356; Mice 357 

norepinephrine nep agr0 
 

Sprague-Dawley rats 128 

norepinephrine nep ina0 
 

Hamsters 358 

norepinephrine nep crh1 
 

Rats 359 

oestrogen otg hgh1 

 

Human subjects 360; Rat osteosarcoma cells (UMR 
106.01) 361; Human subjects 362 

oestrogen otg ina1 ? Human subjects 363; Rats 364 

oestrogen otg ina0 ? Human subjects 365 
oestrogen otg fdi0 

 
C57BL/6J and Swiss Webster mice 366 

oestrogen otg agr1 

 

Rats 367; Rats 368; California mice 369; CD-1 mice 370; 
C57BL/6J  mice 371; C57BL/6J  mice 372; C57BL/6J  
mice 373 

oestrogen otg ang1 

 

Human endometrial cells and HMMECs 374; BALB/c 
mice 375; Mouse mammary tumour explants 376; 
HUVECs and murine model 377 

oestrogen otg inr0 ? In vitro 378 
oestrogen otg inr1 ? BALB/c mice 375 
oestrogen otg gmo0 

 
Colon muscle cells 379 

oestrogen otg ocl1 
 

Human subjects 380 
oestrogen otg fty1 

 
Holtzman strain rats 381 

bone strength ost ocl1 
 

Normal human bone cells 382 

osteocalcin ocl ina1 
 

Mice 383; C57BL/6J mice 384 385 
osteocalcin ocl ins1 

 
Mice 383; C57BL/6J mice 384 

osteocalcin ocl and1 
 

Mice 383; C57BL/6J mice 384 
osteocalcin ocl tet1 

 
129-Sv mice 386; Mice 387 

osteocalcin ocl glp1 
 

STC-1 cells and C57BL/6J mice 388 

oxytocin oxy agr1 ? Wistar rats 389; Mice 390 Prairie voles 391 

oxytocin oxy agr0 ? Wild type Groningen rats 392 
oxytocin oxy cts1 ? Wistar rats 393 
oxytocin oxy cts0 ? Sprague-Dawley rats 394; Human subjects 395 

oxytocin oxy adp0 
 

Mice 396; Mice 397 
oxytocin oxy fdi0 

 
C57BL6 mice 398 

oxytocin oxy gng1 
 

Rat hepatocytes 57 

oxytocin oxy glg1 
 

Dogs 399 
oxytocin oxy noc0 

 
Sprague-Dawley rats 400 

plasma glucose pgl ins1 
 

Human subjects 401 
plasma glucose pgl ata1 

 
Human subjects  and HUVECs 2 

plasma glucose pgl ghr0 
 

Human subjects 402 

plasma glucose pgl bgl1 
 

Human subjects 403 

plasma glucose pgl glg0 
 

Mongrel dogs 404 

plasma glucose pgl gt10 
 

Large White pigs 405; Rats 208 
brain glucose bgl cfn1 

 
Logic 

brain glucose bgl fdi0 
 

C57BL/6NHsd mice 406; Rats 407 
sfrp5 sfr adp0 ? Mice 408 
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sfrp5 sfr adp1 ? Mice 12 
sfrp5 sfr inr0 

 
Mice 408 

serotonin ser cfn1 

 

Mice 409; Human subjects 410; Human subjects 411; 
Rats 412; ICR mice 413; Marmoset monkeys 414; Wistar 
rats 415 

serotonin ser ina0 

 

Hamsters 358; C57BL/6 mice 416; Naïve rat hepatoma 
cells 417; Pigs 418 

serotonin ser ost0 

 

Mice 419; Human subjects 420; Human subjects 421; 
Mice 422 

serotonin ser agr0 

 

Human subjects 423; Rats 424; Mice 425; C57BL/6J mice 
354; Human subjects 426; Human subjects 427; Dogs 428; 
Vervet monkeys 429; Human subjects 430; Dogs 431; 
Mice 432 

serotonin ser inr1 

 

C57BL/6 mice 433; Mice 434; HT-29 colon epithelial 
cells 435; Mice 436; C57BL/6J mice 437 

serotonin ser fdi0 

 

Wistar rats 438; Mice 439; Mice 440; Mice 441; Human 
subjects 442 

serotonin ser dop0 
 

Rats 443 
symapathetic 
stimulation 

sys gng1 

 
Rats 206 

symapathetic 
stimulation 

sys ina1 

 
Human subjects 444 

symapathetic 
stimulation 

sys adp0 

 
Sprague-Dawley rat 445; Human subjects 446 

sympathetic 
stimulation 

sys egf1 

 
Human subjects 447 

testosterone tet edp0 
 

Rats 448 
testosterone tet msh0 

 
Rats 448 

testosterone tet egf1 
 

Mice 449; Mice 145 
testosterone tet myo0 

 
C57BL6J mice 450 

testosterone tet msl1 
 

Human subjects 451; Human subjects 452 
testosterone tet ocl1 

 
Human subjects 380 

testosterone tet adp0 

 

Human subjects 453; Human subjects 454; Rats 455; 
Human subjects 456; Human subjects 457 

testosterone tet dip0 
 

Human subjects 458 
testosterone tet aox1 

 
Cerebellar granule cells 459 

testosterone tet epo1 
 

Human subjects 460 
testosterone tet agr1 

 
Mice 355; Rats 367; Rats 368; CD-1 mice 370 

testosterone tet ina1 ? Human subjects 457; Human subjects 453 
testosterone tet ina0 ? Rat skeletal muscle culture 461 
testosterone tet ang1 

 
Sprague-Dawley rats 462 

TNF alpha tnf inr1 
 

Mice 463 

TNF alpha tnf ina0 

 

Murine 3T3-L1 or 3T3-F442A cells 464; Human 
adipose tissue 249 

TNF alpha tnf ata1 
 

Human leucocytes 465; C57BL6/J mice 466 
TNF alpha tnf il61 

 
SCID-HuRAg mice 467; LS14 cell culture 468 
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TNF alpha tnf lep1 

 

C57BL/6J mice 469; Human subjects 470; C3H/HeOuJ 
mice 471; Syrian hamsters 120; C57BL/6 mice 121 

TNF alpha tnf klt0 

 

C57/BL6 mice 125; Mice and mouse embryonic 
adipocytes 472 

TNF alpha tnf et11 
 

Bovine aortic endothelial cells 473 
TNF alpha tnf nep0 

 
Rats 474 

triglycerides tri adp1 
 

C57BL6 mice475 
triglycerides tri ina0 

 
C57BL6 mice475 

vasodilation vdl bgl1 
 

Logic 
vasodilation vdl ina1 

 
Sprague-Dawley rats 476 

vitamin D3 vd3 ina1 
 

Human subjects 477; Rats 478 
vitamin D3 vd3 ost1 

 
Human subjects 479 

vitamin D3 vd3 agr1 
 

Mice 480 
vitamin D3 vd3 ins1 

 
Rat pancreas 481; Rats 478 

Vitamin B12 v12 igf1 
 

Mice 223 
Vitamin B12 v12 inr0 

 
Mice 482 

Vitamin B12 v12 hgh1 
 

Mice 223 
Vitamin B12 v12 ost1 

 
Mice 223 

Vitamin B12 v12 noc0 
 

Mice 482 
Exercise exe adp0  OM and S5B/P1 rats 483 

Exercise exe il61  Humans484 
GLP-1 glp ins1  Rat pancreatic ductal cells 485; Human subjects 486 
GLP-1 glp btc1  Human islets 487; Rat pancreatic ductal cells 485 
GLP-1 glp glg0  Wistar rats 488 

GLP-1 glp gmo0  Human subjects 489 
GLP-1 glp fdi0  Human subjects 489 
GLP-1 glp ina1  Human subjects 489 
GLP-1 glp ost1  Human subjects 490; Sprague-Dawley rats 491 

Gut Motility gmo glp1  Human subjects 492 
Nociception noc ina0  Human subjects 493 

 

Table footnotes: A question mark in the fourth column indicates a contradicting 

interaction. Nine interactions which did not have a specific reference, but were obvious, 

logical or evident are labelled as ‘Logic’. These interactions are explained in the thesis 

Chapter 3 section 3.2.4. 
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Appendix II 

 

Interface of the network model and the code 

As mentioned in Chapter 3, the model was constructed using Visual Basic Application 

(VBA), associated with Microsoft Excel 2010. 

 

Figure AI.1: Network model user interface 

 

Network model code 

Private Sub cmdshoweffects_Click() 

For everyfactor = 1 To 72 

Call cyclethrough 

Sheets("Sheet2").Cells(everyfactor, 1) = 1 

For counter = 1 To 300 

Call cycleperform(counter) 

Next counter 

For avg = 2 To 73 

Sum = 0 
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For rangeit = 202 To 301 

Sum = Sheets("Sheet3").Cells(rangeit, avg).Value + Sum 

Next rangeit 

Sheets("Sheet3").Cells(302, avg).Value = Sum 

Sheets("Sheet3").Cells(303, avg).Value = Sheets("Sheet3").Cells(302, avg).Value / 100 

Next avg 

Sheets("Sheet3").Cells(302, 1) = "Sum (of last 100 cycles)" 

Sheets("Sheet3").Cells(303, 1) = "Average (of last 100 cycles)" 

For copydata = 2 To 73 

Sheets("Sheet4").Cells((everyfactor + 1), copydata) = Sheets("Sheet3").Cells(303, 

copydata) 

Next copydata 

Next everyfactor 

End Sub 

 

Sub cyclethrough() 

Sheets("Sheet3").Cells(1, 1) = "Cycle" 

For Row = 1 To 72 

For col = 1 To 30 

Sheets("Sheet2").Cells(Row, col) = Sheets("Sheet1").Cells(Row, col) 

If Sheets("Sheet2").Cells(Row, 3).Value = comboboxtwo.Value Then 

If optionbuttonfour.Value = True Then 

Sheets("Sheet2").Cells(Row, 1) = -1 

End If 

If optionbuttonthree.Value = True Then 

Sheets("Sheet2").Cells(Row, 1).Value = 1 

 End If 



212    |    A p p e n d i x  I I  

 

End If 

If chkboxone.Value = True Then 

For freeze = 1 To 72 

If Sheets("Sheet1").Cells(freeze, 3) = comboboxone.Value Then 

Sheets("Sheet2").Cells(freeze, 1).Value = 0 

If optionbuttonone.Value = True Then 

Sheets("Sheet2").Cells(freeze, 1).Value = 1 

End If 

If optionbuttontwo.Value = True Then 

Sheets("Sheet2").Cells(freeze, 1).Value = -1 

End If 

 End If 

Next freeze 

End If 

'For sustained perturbation, add the perturbation here 

'Sheets("Sheet2").Cells(1, 1).Value = 1 

Next col 

Sheets("Sheet3").Cells(1, (Row + 1)) = Sheets("Sheet1").Cells(Row, 4) 

Sheets("Sheet4").Cells(1, (Row + 1)) = Sheets("Sheet1").Cells(Row, 4) 

Next Row 

End Sub 

 

Sub cycleperform(counter) 

For Row = 1 To 72 

If Sheets("Sheet2").Cells(Row, 1) <> 0 Then 

For col = 5 To 30 
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part1 = "" 

part2 = "" 

part1 = Left(Sheets("Sheet2").Cells(Row, col), 3) 

If part1 = "" Then 

Exit For 

End If 

part2 = Right(Sheets("Sheet2").Cells(Row, col), 1) 

state = Sheets("Sheet2").Cells(Row, 1).Value 

Call signalupdate(part1, part2, counter, state) 

Next col 

End If 

Next Row 

Call stateupdate(counter) 

End Sub 

 

Sub signalupdate(part1, part2, counter, state) 

For Signalrow = 1 To 72 

If Sheets("Sheet2").Cells(Signalrow, 4).Value = part1 Then 

If state > 0 Then 

If part2 = 0 Then 

Sheets("Sheet2").Cells(Signalrow, 2).Value = Sheets("Sheet2").Cells(Signalrow, 2).Value 

- 1 

Else 

Sheets("Sheet2").Cells(Signalrow, 2).Value = Sheets("Sheet2").Cells(Signalrow, 2).Value 

+ 1 

End If 

End If 
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If state < 0 Then 

If part2 = 0 Then 

Sheets("Sheet2").Cells(Signalrow, 2).Value = Sheets("Sheet2").Cells(Signalrow, 2).Value 

+ 1 

Else 

Sheets("Sheet2").Cells(Signalrow, 2).Value = Sheets("Sheet2").Cells(Signalrow, 2).Value 

– 1 

End If 

End If 

Exit For 

End If 

Next Signalrow 

End Sub 

 

Sub stateupdate(counter) 

Sheets("Sheet3").Cells((counter + 1), 1).Value = counter 

For staterow = 1 To 72 

If Sheets("Sheet2").Cells(staterow, 2).Value > 0 Then 

Sheets("Sheet2").Cells(staterow, 1).Value = Sheets("Sheet2").Cells(staterow, 1).Value + 

1 

End If 

If Sheets("Sheet2").Cells(staterow, 2).Value < 0 Then 

Sheets("Sheet2").Cells(staterow, 1).Value = Sheets("Sheet2").Cells(staterow, 1).Value - 1 

End If 

If Sheets("Sheet2").Cells(staterow, 2).Value = 0 Then 

Sheets("Sheet2").Cells(staterow, 1).Value = 0 

End If 

If Sheets("Sheet2").Cells(staterow, 1).Value > 0 Then 
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Sheets("Sheet2").Cells(staterow, 1).Value = 1 

End If 

If Sheets("Sheet2").Cells(staterow, 1).Value < 0 Then 

Sheets("Sheet2").Cells(staterow, 1).Value = -1 

End If 

Sheets("Sheet2").Cells(staterow, 2).Value = 0 

If chkboxone.Value = True Then 

For freeze = 1 To 72 

If Sheets("Sheet1").Cells(freeze, 3) = comboboxone.Value Then 

Sheets("Sheet2").Cells(freeze, 1).Value = 0 

If optionbuttonone.Value = True Then 

Sheets("Sheet2").Cells(freeze, 1).Value = 1 

End If 

If optionbuttontwo.Value = True Then 

Sheets("Sheet2").Cells(freeze, 1).Value = -1 

End If 

End If 

Next freeze 

End If 

'For sustained perturbation, add the perturbation here 

'Sheets("Sheet2").Cells(1, 1).Value = 1 

Sheets("Sheet3").Cells((counter + 1), (staterow + 1)).Value = 

Sheets("Sheet2").Cells(staterow, 1).Value 

Next staterow 

End Sub 
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Abstract

Type 2 diabetes mellitus (T2DM) is believed to be irreversible although no component of the

pathophysiology is irreversible. We show here with a network model that the apparent irre-

versibility is contributed by the structure of the network of inter-organ signalling. A network

model comprising all known inter-organ signals in T2DM showed bi-stability with one insulin

sensitive and one insulin resistant attractor. The bi-stability was made robust by multiple

positive feedback loops suggesting an evolved allostatic system rather than a homeostatic

system. In the absence of the complete network, impaired insulin signalling alone failed to

give a stable insulin resistant or hyperglycemic state. The model made a number of correla-

tional predictions many of which were validated by empirical data. The current treatment

practice targeting obesity, insulin resistance, beta cell function and normalization of plasma

glucose failed to reverse T2DM in the model. However certain behavioural and neuro-endo-

crine interventions ensured a reversal. These results suggest novel prevention and treat-

ment approaches which need to be tested empirically.

Introduction

The classical thinking about the pathogenesis of Type 2 diabetes mellitus (T2DM) can be sum-

marized in the form of five postulates: (i) Obesity results when net energy intake exceeds net

energy expenditure. (ii) Obesity leads to insulin resistance. (iii) To compensate for the insulin

resistance, more insulin is produced by the pancreatic β-cells. (iv) Chronically increased rate

of insulin synthesis leads to ‘exhaustion’ or some form of dysfunction of β-cells which causes

relative insulin insufficiency. This combination of insulin resistance and relative insulin insuf-

ficiency results in hyperglycaemia. (v) The pathophysiological complications of T2DM are a

consequence of chronically elevated glucose levels in the blood [1,2].

A number of recent studies have exposed many gaps, flaws and paradoxes in this thinking

[1–3]. The inability to cure diabetes can be attributed to these flaws and the clinical approach

that uses this classical thinking in patient treatment. Since hyperglycemia was assumed to be

the primary cause of the macrovascular and microvascular complications, treating hyperglyce-

mia was the major course of treatment for T2DM patients. It was observed in many large scale
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clinical trials that normalizing blood glucose is not sufficient to avoid diabetic complications

[4].

One of the fundamental paradoxes of T2DM is that the diabetic state is known to be irre-

versible although no component of the pathophysiology is individually irreversible. Beta cell

loss was considered irreversible for some time but they are shown to have good regeneration

capacity[5–8]. Therefore, the reason why T2DM cannot be cured is not known. Experiments

in rodents and humans using different means to suppress insulin production have shown that

whenever insulin production was suppressed, insulin sensitivity increased and blood sugar

remained normal [9–16]. Such experiments have raised doubts whether insulin resistance and

inadequate insulin production is necessary and sufficient for hyperglycemia in T2DM.

Although T2DM is historically identified as a condition of increased plasma glucose levels

owing to inadequate insulin action, we know today that not only insulin and glucose but a

large number of metabolites, hormones, growth factors, neurotransmitters, neuropeptides,

cytokines, behaviours and neuronal signals are up or down-regulated in this disorder. Whether

alterations in these signals are causes or consequences of altered insulin signalling and hyper-

glycemia is not clearly known [2]. We need to be open to the possibility that insulin and glu-

cose are not central players but only two of the links in a complex network of signals. In order

to get a good understanding of the pathophysiology of T2DM we need to consider all demon-

strated interactions between molecules and other signals involved in T2DM without any preju-

dice and construct a comprehensive model.

We constructed a multi-organ multi-signal interactive network model of pathophysiology

of T2DM and studied its behaviour. We show here that a network explains the pathophysiol-

ogy of T2DM better than a simplistic insulin and glucose centred model. The model was vali-

dated by testing many of its predictions and the results demonstrated that most of the

characteristics of T2DM are contributed by the structure of the network rather than

impairment of insulin signalling alone. Since the classical drug targets for the treatment of

T2DM failed to ensure a complete cure [17], a systematic search for alternative markers and

targets is needed and a network model is likely to give some directions for the search. In the

model, interventions that could reverse the insulin resistant state were not related to obesity,

beta cell functionality, insulin production or insulin action but to a set of behavioural and

neuro-endocrine targets.

Materials and methods—The network model

Identifying nodes and links of the network

We started with the classical theory of T2DM involving the 3 main variables classically believed

to be central to T2DM namely plasma insulin level, insulin resistance and plasma glucose level.

We searched literature for signals that affected one or more of the three (direct effectors) and

further for signals that affected the direct effector signals (indirect effectors). Since specific

behaviours are also known to trigger certain hormones and growth factors among the direct

effectors, behaviours were also included in the list of signals. Thus, our definition of signals

includes nutrients, metabolites, hormones, growth factors, cell populations, behaviours and

neuronal signals (Fig 1). All our signals have a functional meaning. So, a down-regulation

means loss or decrease in the signal. Whether it is because of structural change or any other

change, is considered irrelevant.

The source data to extract possible interactions amongst the listed signals were publications

reporting interventional studies giving causal evidence for a positive effect (up-regulation) or a

negative effect (down-regulation) of a given signal on another signal of interest. All searches

were made in ‘Google Scholar’ and ‘BioMedNet’ using the name(s) of the target nodes and
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“regulation of”, “expression of” and “affected by” as key words. Correlations and associations

were not considered as evidence for an interaction. All published interactions were treated

with equal weighting. No weighting of interactions was done by number of studies/ publica-

tions, validation, reliability, impact factor or level of current acceptance. Since, most of the

interventional data comes from non-human species; we included all experiments with

humans, rodents or other mammalian hosts (see S1 Table for model organisms used in the ref-

erence for each link).

After listing a large number of possible interactions, we applied the following inclusion and

exclusion criteria and redundancy filters. Since our focus was on signalling between cell types

and organs we excluded strictly intracellular pathways. If two or more signals shared the same

upstream signal/s and the downstream effect/s, they were merged into one. From a known lin-

ear signalling pathway, only one molecule was listed. However, if there was a branching point

in a pathway, it was listed as a signal. Only the signals having both upstream and downstream

effects from other nodes of the network were included (see S1 Text for details).

Finally, 330 interactions among 72 signals were identified from 491 publications and incor-

porated in the model (see S2 Table for details of the nodes and links with references). A net-

work was constructed using these signals and interactions (Fig 2). All signals were treated as

organ specific nodes and the interactions formed the directional links (in the network)

between these nodes. If a given signal had different actions in different organs they were

Fig 1. Signals in their respective tiers. First tier (innermost circle) includes players classically believed to be central to T2DM. Second tier

(intermediate whorl) includes the players that directly affected or were directly affected by the players in the first tier. The third tier (outermost

whorl) included players that affected those in the second tier or were affected by them.

https://doi.org/10.1371/journal.pone.0181536.g001
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Fig 2. The inter-organ signalling network involved in the pathogenesis of T2DM. Each organ (coloured

rectangles) displays the signals it produces. The outbound (white rectangle) and inbound (black rectangle)

portals for each signal are shown. Red arrows indicate up-regulation interactions and cyan, down-regulation

interactions. (See also S2 Table).

https://doi.org/10.1371/journal.pone.0181536.g002
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considered different nodes. For example, glucose in blood and that in the brain were treated as

separate nodes. A limitation of the study is that the network model may be currently incom-

plete due to lack of specific studies (studies yet to be pursued by the scientific community),

publication bias or studies that we may have missed during literature survey. Currently, the

model is only qualitative, in that it considers normal, up-regulated and down-regulated states

as discrete states. Each of the links may have some quantitative dynamics which may be linear

or non-linear which was not incorporated in the current model.

Perturbation simulations

A combination of Microsoft Excel 2007 for data input (addition of links to the network) and

output (network perturbation results) and Visual Basic Application for executing the links was

used to construct a network perturbation model. The signals were treated as nodes that can

have one of three states namely 0 or baseline, +1 or up-regulated and -1 or down-regulated.

Also, the directional links were of three different kinds namely up-regulatory or positive

(which increased the state of the downstream node by 1), down-regulatory or negative (which

decreased the state of the downstream node by 1) and basal level (which did not change the

state of the downstream node). A zero signal here does not mean that there is no signal; it

rather denotes that there is basal level signalling going on between the two nodes. Although

the model considers only discrete states, it does not indicate extreme states. For example, -1

state of beta cell mass does not mean complete destruction of beta cells. In T2DM, a substantial

proportion of beta cells survives lifelong [18]. Therefore, even in the -1 state of beta cells, insu-

lin producing capacity is not assumed to be completely lost.

After constructing the network, we studied the effects of different kinds of perturbations in

the network. At the beginning all nodes were at a default state of zero. Whenever a node was

manually up or down-regulated, the state of that node changed to +1 or -1 respectively. All the

directional links starting from that node were activated to change the states of the recipient

nodes (first generation nodes). Subsequently directional links from these first generation

nodes were activated to change the states of nodes further downstream (second generation

nodes). The event of activation of one generation of nodes was termed as a ‘cycle’. Whenever a

node received activated signals from more than one other node, the signals were added arith-

metically to give a net signal strength. Based on the net positive or negative value of the signal

strength, the state of the node was changed by +1 or -1 respectively; but without exceeding the

state limits of -1 to +1. If the net signal strength was zero or normal in a given cycle, then the

node returned to its normal default state. Thus at any given time the direction of change in the

state of a node was solely determined by the net input signal. However, the step length for any

change was restricted to unity, i.e. the state -1 could not become +1 in a single step.

Mathematically, the function of each node in every cycle can be explained as follows.

If Si 6¼ 0, then si = Seji; where ‘S’ is the state of the node ‘i’, ‘s’ is the cumulative signal it

received and ‘eji’ is the link from node j to i.

Depending upon the cumulative signal, the node is assigned a state.

If si > 0, Si(t) = Si(t − 1) + 1

If si = 0, Si(t) = 0

If si < 0, Si(t) = Si(t − 1)– 1; where ‘t’ is the cycle number

The state is then bound to limits -1 to +1

If Si(t)� −1,Si(t) = −1

If Si(t)� 1,Si(t) = 1

For example, to simulate the effects of primary hyperinsulinemia, the state of insulin in the

starting cycle was made 1 where all the other nodes had a state of zero. In the first cycle, the
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direct effects of insulin were executed. Hence, only those nodes that were immediate down-

stream of insulin altered their state to +1 or -1 depending upon whether they received up-regu-

lation or down-regulation link respectively, from the insulin node. In the current example, β-

cells, leptin, klotho, EGF, cognitive functions, endothelin-1, gonadotropin—releasing hor-

mone, nitric oxides and gut motility were up-regulated (state changed to +1); and keto acids

and adiponectin were down-regulated (state changed to -1). In the second cycle, the immediate

effects of these first generation nodes were executed. Thus in every cycle, the effects radiated,

and because all the nodes lay in a network, in a few cycles, every node was affected in some

way or the other. The recorded output was the state of each node after each cycle.

In the model above, the step length was always unity. As it changed from -1 to 0 in one

cycle, the signals changed according to the new states and the next step was decided by the

new signals. The step length was altered in two other variations of the model. One allowed a

direct leap from -1 to +1 if the net signal was> 0 or vice versa. This variation of the model did

not consider change in signals during state transition. In another variation the states as well as

steps were fine grained with a resolution of 0.1 so that twenty different states for each node

were possible between -1 and +1. Each link when activated led to a change of 0.1 in the down-

stream effector node. Multiple signals led to a cumulative signal strength which changed the

state of the node quantitatively between the limits of -1 and +1. We examined whether the

results were sensitive to the step length.

We used two types of perturbations separately or in combinations. (i) Point perturbations,

i.e., after the perturbation was made in the starting cycle, the perturbed node came back to

basal state after the first cycle; and then its state was allowed to be decided by the links it

received eventually from other nodes. (ii) Sustained perturbations, i.e., the state of a starting

perturbation node was changed and the changed state was maintained independent of any link

it received subsequently.

A stable state of a node was described as a consistent resultant state of the node which

remained so throughout further cycles. If a node changed its state with a repeated cyclic pat-

tern of a fixed periodicity throughout the cycles, it was termed as a node in stable oscillation. If

a node changed its states with unpredictably altering periodicity, it was termed as a node in a

chaotic state. The stable state of the system was defined as a state in which every node was in a

stable state or in short term deterministic oscillations. Further for the definition of a stable

state it was necessary that if the system was point perturbed starting with that state it returned

to the same state. If an apparently stable state obtained after one perturbation did not return to

it after any other point perturbation it was called pseudo-stable state. A chaotic state of the sys-

tem was defined by one or more nodes being in a chaotic state. Whenever there were stable

oscillations or chaos the average of the last hundred cycles was taken as the ‘mean final state’

for a node.

Some debatable links

A surprising finding of the search for links was that some of the classical beliefs were not sup-

ported by interventional evidence. For example we found no interventional evidence that mus-

cle insulin resistance was compensated by hyperinsulinemia. Lack of evidence for this widely

held assumption is acknowledged [2,19,20] but the assumption continues to be a part of main-

stream thinking. Strictly going by the inclusion criteria of the model, we should not have

included this link in the model. However since compensatory hyperinsulinemia is a widely

held belief, we decided to run (make point perturbations to the network model and observe

any changes in the Results) the model independently with and without this link. The difference

in the outcomes of the two models could potentially give us the importance of this link. The
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link between obesity and insulin resistance is also laden with contradictory evidence but the

mainstream thinking is that obesity increases insulin resistance. We run the model separately

with no link and with to and fro links between the two nodes.

The apparent irreversibility of beta cell damage is debated. Although classically beta cells

were believed not to regenerate once lost, experiments over the last two decades have shown

that beta cells have good regeneration capacity in vitro and in vivo including de novo regenera-

tion from ductal ascinar cells [21]. We operate the model independently assuming beta cell -1

state to be reversible as well as irreversible. We also encountered eleven other contradicting

reports, where some studies had reported up-regulation while others observed down-regula-

tion effect between the same node pair. We treated the contradictory links similar to the insu-

lin resistance—hyperinsulinemia link i.e., the model was run separately assuming positive link

or assuming negative link between the node pair.

Results

Point perturbations

For all point perturbations, after 20–25 cycles, the system invariably reached a stable state. Fur-

ther, there were only two observed stable states that the system reached. Chaos or a homeo-

static return to the starting state was never observed in the system. The two stable states did

not drift further after any point perturbation and were thus true stable states by definition. If

instead of zero, starting states of all nodes were randomly assigned, the same two stable system

states were obtained. The bi-stability thus obtained is unlikely to be a statistical generality

since a null model with the same number of nodes and links but with randomization of link

placements rarely gave bi-stability. Out of 1000 null model simulations, 931 ended in a chaotic

state. Stability was observed in 69 of them out of which, 12 showed a single stable state; 49

showed bi-stability, 4 showed tri-stability and the remaining 4 showed tetra-stability. The

uncommon occurrence of bi-stability (p< 0.05) in the null model implies that the observed

bi-stability in the network is unlikely to have arisen by chance alone.

In the two alternative stable system states, the states of all nodes including insulin action

were stable, consistent and exactly opposite (in terms of +1 or up-regulated and -1 or down-

regulated) to each other. Since insulin resistance is conventionally believed to be central to

T2DM we called the two attractors as insulin sensitive and insulin resistant attractors. The for-

mer was characterized by low adiposity, cholesterol, glucose levels and inflammatory markers;

and high adiponectin. The latter had a diametrically opposite picture (Table 1). The nodes

which, when perturbed (up-regulated), led to the insulin sensitive attractor were collectively

called the insulin sensitive basin of attraction and those which led to the insulin resistant

attractor, when perturbed (up-regulated), were collectively called the insulin resistant basin of

attraction.

The model used three different step lengths. For all the three step lengths, bi-stability was

observed and the composition of the two attractors remained identical. There were subtle

changes in the basins of attraction though. When the steps were fine grained, although the

nodes attained transient fractional values in the initial cycles, they ultimately settled at +1 or -1

and the attractors remained identical. Between unit step and fine grained step the basins of

attraction were over 90% similar. When direct leap was allowed bimodality and composition

of attractors remained the same and the basins of attraction were similar to unit step model by

over 80%. Since bi-stability and attractor composition were not sensitive to the step length, for

further analysis we used the unit step model alone which was faster as well as accommodated

changes in signals during transition.
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Table 1. Attractors for the point perturbations.

Serial

Number

Signals/ Nodes Three Letter

Code

State in the insulin resistant

attractor

State in the insulin sensitive

attractor

1. Activin A ata 1 -1

2. Adiponectin and -1 1

3. Adipose Tissue adp 1 -1

4. Aggression agr -1 1

5. α-Melanocyte Stimulating Hormone (α-MSH) msh 1 -1

6. Angiogenesis ang -1 1

7. Anti-oxidants aox -1 1

8. Arginine Vasopressin avp 0 0

9. β-Adrenergic Receptors bar 0 0

10. β Cells btc -1 1

11. Bone Strength/ Bone Mass ost -1 1

12. Brain-Derived Neurotrophic Factor (BDNF) bdn -1 1

13. Brain Glucose bgl -1 1

14. Cholecystokinin cck -1 1

15. Cholesterol chl 1 -1

16. Cocaine and Amphetamine Regulated

Transcript (CART)

car 1 -1

17. Cognitive Functions cfn 1 -1

18. Cortico-Releasing Hormone (CRH) crh -1 1

19. Corticosteroids cts -1 1

20. Cytokines ctk 0 0

21. Diplomat Behaviour dip 1 -1

22. Dopamine dop -1 1

23. Endorphins edp -1 1

24. Endothelin-1 et1 1 -1

25. Epidermal Growth Factor (EGF) egf -1 1

26. Erythropoeitin epo -1 1

27. Exercise exe 0 0

28. Fertility fty -1 1

29. Food Intake fdi 1 -1

30. Free Fatty Acids ffa 1 -1

31. γ-Aminobutyric acid (GABA) pancreas gap -1 1

32. γ-Aminobutyric acid (GABA) brain gab 0 0

33. Gastrin gst 1 -1

34. Ghrelin ghr 0 0

35. Glucagon glg -1 1

36. Glucagon-Like Peptide-1 (GLP-1) glp 0 0

37. Gluconeogenesis gng -1 1

38. Glucose Transporter-1 (GLUT-1) gt1 -1 1

39. Gonadotropin-Releasing Hormone (GnRH) grh 1 -1

40. Growth Hormone hgh 0 0

41. Gut Motility gmo 1 -1

42. Histamine hst -1 1

43. Inflammatory Response inr 1 1

44. Injury (Growth Factors) inj -1 1

45. Insulin ins 1 -1

46. Insulin Action ina -1 1

(Continued )
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Sensitivity of the model to assumptions and contradictions

1. Assumptions. To test the sensitivity of bi-stability to the underlying assumptions of the

model, we relaxed the assumptions one by one and in combinations to see whether bi-stability

was an artefact caused by some of them.

When we changed the mode of signal additions from simple arithmetic addition to qualita-

tive addition, i.e. when a given node received both non-zero up-regulation and non-zero

down-regulation links, the net signal strength was treated as zero. When a node received only

positive signals, the node was up-regulated and when it received only negative signals, it was

down-regulated. This invariably resulted in to chaos with every node and no long term ten-

dency towards being up-regulated or down-regulated. A null model with qualitative additions

invariably gave chaos. Therefore this result appears to be more of a statistical generality than

any specific character of this network. The qualitative addition never allowed a sustained

departure from the zero state. In the context of T2DM, this would mean that a stable insulin

resistant or diabetic state may never be obtained. In reality, long term stability of insulin resis-

tant or diabetic state is common and reversal is difficult. The qualitative addition mode did

not appear to represent a realistic picture. Thus, relaxing some of the assumptions did not

affect bi-stability and relaxing certain others gave rise to unrealistic chaotic results. None of

the assumptions gave rise to good homeostatic control where the system returned to its ground

Table 1. (Continued)

Serial

Number

Signals/ Nodes Three Letter

Code

State in the insulin resistant

attractor

State in the insulin sensitive

attractor

47. Insulin-like Growth Factor (IGF-1) igf -1 1

48. Interleukin-6 il6 0 0

49. Keto Acids ktg -1 1

50. Klotho klt 0 0

51. Leptin lep 1 -1

52. Leptin Action lpa 0 0

53. Melatonin mlt 0 0

54. Muscle Strength/ Muscle Mass msl -1 1

55. Myostatin myo 1 -1

56. Nerve Growth Factor (NGF) ngf -1 1

57. Nitric Oxide nox 1 -1

58. Nociception noc 1 -1

59. Nor-epinephrine nep -1 1

60. Oestrogen otg -1 1

61. Osteocalcin ocl -1 1

62. Oxytocin oxy -1 1

63. Plasma Glucose pgl 1 -1

64. Secreted Frizzled-Related Protein 5 (SFRP-5) sfr 1 -1

65. Serotonin ser 1 -1

66. Sympathetic Stimulation sys 0 0

67. Testosterone tet -1 1

68. Triglycerides tri 1 -1

69. Tumour necrosis factor-α (TNF-α) tnf 1 -1

70. Vasodilation vdl 0 0

71. Vitamin B12 v12 0 0

72. Vitamin D3 vd3 0 0

https://doi.org/10.1371/journal.pone.0181536.t001
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state on its own. This demonstrated the robustness of bi-stability and the soundness of the set

of assumptions used in the model.

2. Contradictions. For all the contradictory interactions, simulations were run using posi-

tive or negative links. The interesting and surprising finding was that having or not having the

compensatory hyperinsulinemia link did not affect the bi-stability of the network or the signa-

tures of the two attractors. Since some researchers have argued for compensatory insulin resis-

tance in response to primary hyperinsulinemia [19], we reversed the causal arrow between

insulin resistance and insulin levels which again did not affect bi-stability. Similarly, reversing

between the assumptions that obesity causes insulin resistance or insulin resistance causes obe-

sity, or deleting the obesity-insulin resistance link altogether, did not affect bi-stability or the

attractor signatures except for the state of obesity (i.e. the node ‘adipose tissue’) itself. When

insulin and insulin action together down-regulated glucose, bi-stability was unaltered but

when insulin alone down-regulated glucose independent of insulin action, the system oscil-

lated with large periodicity (up to 32 cycles) and there were multiple resultant states. Therefore

inclusion of the insulin sensitivity-resistance axis was one of the critical conditions for the bi-

stability of the system.

For 10 out of the 11 up versus down-regulation contradictions examined, the system still

retained bi-stability with the up-regulation or down-regulation arrows. Eight out of the 10

contradicting interactions that retained bi-stability showed no effects on the attractor signa-

tures although the basins of attractions altered marginally (< 15%) in some of them. Two of

the interactions brought about marginal changes in the attractor signatures. The only up ver-

sus down-regulation contradiction that affected bi-stability was when endothelial nitric oxide

synthase (e-NOS) and neuronal nitric oxide synthase (n-NOS) action were considered a single

node. Different studies have found either up-regulating [22,23] or down-regulating [24–27]

action of NOS on aggression. Bi-stability was retained for the down-regulation link but not for

the up-regulation link. After segregating the actions of e-NOS and n-NOS, bi-stability was

retained. Since different studies report up or down regulating action of n-NOS on aggression,

the model was run with either of the links at a time. With both types of links, bi-stability was

maintained but the inclusion of n-NOS in the basin of attraction was affected.

Reactive oxygen species (ROS) is considered an important player in the pathophysiology of

T2DM. During redundancy filtering, ROS was filtered out since it was tightly linked to inflam-

mation and both shared identical incoming and outgoing links. But since ROS is believed to

be an important player, we simulated keeping ROS as a separate node. This change again did

not affect bi-stability and up-regulation of ROS led to insulin resistant state.

Glucagon has a direct up-regulation effect on insulin secretion [28], but through the agency

of kisspeptin, it has a down-regulation effect [29], making the net effect zero. The signal

between glucagon and insulin was therefore filtered out. However, since insulin and glucagon

are believed to be central molecules to T2DM we operated the model with and without these

links singly and in combination. The bi-stability remained robust to the inclusion or exclusion

of these links. The effect of glucose on beta cell mass also has contradictory literature. Glucose

is shown to stimulate proliferation of beta cells on the one hand [30] and on the other gluco-

toxicity is said to affect beta cell function [31]. Nevertheless the bi-stability of the model was

not sensitive to either of the assumptions.

Sustained perturbations

We perturbed each node singularly, in a sustained manner, and observed the downstream

effects. Sustained perturbation of the nodes in the network did not affect bi-stability. A fraction

of these perturbations led to stable short repetitive oscillations in the states of some nodes. Out
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of the 72 nodes 49 sustained perturbations gave identical results as respective point perturba-

tions. Remaining 23 sustained perturbations showed some changes in the attractor signatures

as compared to their respective point perturbations. Bi-stability was nevertheless maintained

in all cases.

Combining sustained and point perturbations

With each of the sustained perturbations in the background, every other node was point per-

turbed one at a time and simulations were run for a minimum of 300 cycles. Out of the 72 sus-

tained perturbations, 60 led to bi-stability although the signatures of the attractors changed

occasionally. Eleven sustained up-regulations gave rise to a single insulin sensitive attractor

and these were aggression, adiponectin, dopamine, ghrelin, growth hormone, insulin action,

melatonin, muscle strength, oestrogen, osteocalcin, and testosterone. And sustained up-regu-

lation of serotonin invariably led to the insulin resistant attractor. Sustained up-regulation of

the 11 nodes or down-regulation of serotonin never allowed the system to become insulin

resistant. Not only that, but aggression, dopamine, ghrelin, insulin action, muscle strength,

oestrogen and osteocalcin were able to completely reverse the states leading to the insulin sen-

sitive attractor if the simulations began from the insulin resistant attracter as the starting

conditions.

Although with combinations of perturbations the signatures of attractors could change,

there were significant associations between the states of several nodes. We clustered the nodes

based on the distance between pairs of nodes defined as the number of times the states of the

two nodes did not match across all possible combinations of perturbations. The 3 different

clusters obtained were (see S1 and S2 Figs for details of cluster analysis):

1. and, agr, ang, aox, bdn, btc, cck, cts, crh, dop, egf, edp, epo, fty, gap, glg, gng, gt1, hst, igf, inj,
ina, ktg, msl, ngf, nep, otg, ost, ocl, oxy, bgl, tet

2. ata, adp, msh, car, chl, cfn, dip, et1, ffa, fdi, gst, grh, inr, ins, lep, myo, nox, pgl, sfr, ser, tnf, tri,
gmo, noc

3. avp, bar, ctk, gab, ghr, hgh, il6, klt, lpa, mlt, sys, vdl, vd3, exe, glp, v12

Validation of the network model

These clusters suggested a way of validating the model. We expected all the nodes in a cluster

to be positively correlated to each other in real life data. Currently there are no studies that

provide quantitative data on all the nodes together. However different studies have looked at

different correlations. Of particular value are correlations between nodes that do not have a

direct link between them but they lie in the same cluster in the above classification. Demon-

strated correlations compatible with this expectations include myostatin to leptin [32], TNF-α
to triglycerides, plasma glucose to cholesterol [33], vitamin D3 to vasodilation [34] and growth

hormone to klotho [35]. We did not find any correlation in literature contrary to the model

expectations.

A comparison with the classical theory

The classical theory of insulin resistance states that obesity leads to insulin resistance, insulin

resistance tends to increase plasma glucose which stimulates increased insulin secretion. This

increased insulin secretion brings glucose back to normal leading to an insulin resistant-hyper-

insulinemic-normoglycemic stable state. Failure of compensatory hyperinsulinemia owing to
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beta cell exhaustion or dysfunction results in to hyperglycemia. We included only adipose tis-

sue, insulin, insulin action, beta cell mass and plasma glucose (Fig 3) as nodes in the model

and included all known and classically believed links. In this classical model, we failed to see

bi-stability under any condition. After any point perturbation in any of the five nodes, the sys-

tem returned to the initial basal state in not more than 4–5 cycles or showed stable oscillations

around the initial basal state. This is a typical behaviour of a homeostatic system. No point per-

turbation could change the basal state and lead to a stable insulin resistant state. Being a

smaller and simpler system it is easier to visualize the reasons. For example, when we up-regu-

lated adipose tissue mass, insulin resistance and subsequently plasma glucose increased. This

increased insulin levels and subsequently glucose returned to normal. As glucose returned to

normal, insulin could not remain elevated. Thus a normoglycemic-hyperinsulinemic state was

not stable. Further in a state of high insulin resistance, the lipogenic action of insulin was sup-

pressed and therefore adipose tissue was reduced. Reduction in adipose tissue normalized

insulin resistance and thus the system was back to its starting state. Even if we assume that

chronic overproduction of insulin affects beta cell function, beta cell mass remains in a homeo-

static state since glucose is known to stimulate beta cell proliferation. Further, owing to the

other homeostatic loops, both glucose and insulin return to normal thereby removing beta cell

stress. Inclusion of glucotoxicity, that is, considering pgl to btc a negative regulator, did not

drift the system away from homeostasis. Assuming beta cell loss as irreversible, that is, fixing

btc state to -1 resulted into oscillation of insulin between zero and -1 states but glucose

remained normal because of feedback loops operating through adp and ina. All the links in

this small network made effective negative feedback loops and therefore the system failed to

give a persistent insulin resistant state under any condition.

Fig 3. Classical model. Interactions among adipose tissue, insulin action, plasma glucose, plasma insulin

and beta cell mass according to the classical theory are shown with red arrows indicating up-regulation links

and cyan, down-regulation links.

https://doi.org/10.1371/journal.pone.0181536.g003

Bi-stability in type 2 diabetes signalling network

PLOS ONE | https://doi.org/10.1371/journal.pone.0181536 August 2, 2017 12 / 23

https://doi.org/10.1371/journal.pone.0181536.g003
https://doi.org/10.1371/journal.pone.0181536


Applications of the network model

1. Is there any key node?. To check the sensitivity of the model to the nodes involved in

the network and also to highlight the important nodes which when removed lead to the col-

lapse of bi-stability, we deleted each node one at a time and observed the effect of perturbing

every other node. A node under focus was frozen to the zero state all the time. This turned all

the incoming as well as outgoing links from the node ineffective and thereby the node was cut-

off from the rest of the network. This analysis also suggested whether tight homeostatic control

over any node is sufficient for homeostasis of the entire system. We found that in 71 of the 72

deletions, there was no deviation from bi-stability. The system showed a deviation from bi-sta-

bility only when the node fertility (fty) was deleted. Deletion of fty led to multiple stable states;

some being insulin sensitive and others being insulin resistant. Most of the correlates of insulin

resistance remained similar except that high cholesterol was now associated with insulin sensi-

tivity. To check whether any particular outgoing link of fty was responsible for this effect, we

deleted each of them individually. None of the links made by fty when individually deleted

affected the bi-stability. It seems to be a compound effect of the 3 links downstream to fty
namely up-regulation of EGF, oestrogen and oxytocin. It is interesting to note that freezing

glucose to the normal state did not ensure homeostasis of the entire network suggesting that

glucose homeostasis is not central and critical to the behaviour of the network.

2. Is there a key node combination?. In addition to single node deletion, we deleted com-

binations of nodes by randomly freezing to zero 10% of the nodes at a time. Out of 1000 such

simulations, bi-stability was conserved 81% of the times. Among the remaining 19%, there was

complete loss of stability 1.1% of the times. Among the deleted combinations that led to loss of

stability the nodes aggression, dopamine and fertility were overrepresented. Among the other

non-bi-stability outcomes 2.2% was contributed by uni-stability where the states of the nodes

were at and around the basal zero state indicating that the network was in a robust homeostatic

state. Among the combinations of deletions that gave robust homeostasis adiponectin, choles-

terol, fertility, histamine, insulin action, leptin and oxytocin were overrepresented suggesting

that these nodes in combination are critical for bi-stable behaviour of the system. It is interest-

ing to note that glucose did not appear in this list indicating that ensuring glucose homeostasis

along with a few other key nodes does not assure homeostasis of the entire system. See S3

Table for the list of combinations of deletions that led to homeostatic uni-stability and com-

plete loss of stability. In the remaining 15.7% cases tri, tetra or penta-stability was obtained in

which some states were insulin sensitive and others resistant.

3. Is there a critical missing link?. We tested the robustness of the bi-stability of the

model by random addition of a link between two randomly chosen nodes also. In 1,000 such

random addition trials, bi-stability was not altered except for 8 specific link additions. In 6 out

of the 8 there were 3 stable states instead of 2 and in only 2 cases there were multiple stable

states. None of the additions resulted in chaos or homeostatic return to the starting state. This

demonstrates further that the bi-stability is unlikely to be because of some critical missing link.

4. What makes the bi-stability robust?. Since there were only two resultant attractors in

the baseline model, the nodes could be classified as the ones whose up-regulation led to the

insulin sensitive attractor and the other whose up-regulation led to insulin resistant attractor.

Notably, point up-regulation of 40 of the 72 nodes, led to a stable state in which they remained

up-regulated. This is a positive feedback effect. Sixteen of the nodes resumed the zero state

although they drove the system to one of the two stable states. The remaining 16 showed an

overcompensation-like response, i.e. point up-regulation of these 16 nodes led to a state in

which they were down-regulated. Overall the network had a preponderance of positive feed-

back circuits which explains the robust bi-stable behaviour of the system.
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If the network is redrawn segregating the two groups of nodes (Fig 4), it can be appreciated

that there are significantly more positive links within group as compared to between groups

and there are significantly more negative links between groups as compared to within groups

(chi square = 37.33619, df = 3, p< 0.0001). This makes the bi-stability and the dichotomous

grouping of the nodes very robust. Within group positive and between groups negative links

will stabilize and reinforce the attractors; whereas within group negative and between groups

positive links will tend to destabilize the attractors. Since there were 216 stabilizing and 114

Fig 4. Basins of attraction. T2DM Signalling network segregated according to the point perturbations leading to the two attractors. The

outbound (white circle) and inbound (grey circle) portals are shown for each node. Red arrows indicate intra-group up-regulation links; cyan,

intra-group down-regulation links; purple, inter-groups up-regulation links; green, inter-groups down-regulation links.

https://doi.org/10.1371/journal.pone.0181536.g004
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destabilizing links, there is no wonder that the two attractors were highly stable and not sensi-

tive to changing a few nodes or links (Fig 5).

5. Towards robust targets for treatment of T2DM. The combined perturbation simula-

tion results give us possible new insights into long term effectiveness of a treatment. The criti-

cal question here is if a treatment target is sustainably locked into a desired state, how the

network behaves in presence and absence of other perturbations. An ideal treatment target

could be one which when locked should keep the system in an insulin sensitive state irrespec-

tive of any other perturbations. The different approaches currently targeted for treatment are

suppression of liver gluconeogenesis, restoration of beta cell mass, incretin action, enhance-

ment of insulin production, insulin supplementation, reduction in obesity, reduction in

plasma free fatty acid levels, normalizing plasma glucose, reducing oxidative stress and exer-

cise. None of these treatments was able to ensure an insulin sensitive state by sustained pertur-

bation. The states were rather decided by the accompanying point perturbations. Thus none of

these treatments were able to reverse the diabetic state in the long run although transient sup-

pression of plasma glucose could be obtained with many of them. One major line of attempted

treatment is to improve the beta cell function or introduce a new population of healthy beta

cells. The critical underlying questions are whether beta cell regeneration in T2DM is revers-

ible and whether improving beta cell function can reverse T2DM. When we operated the

model assuming beta cell dysfunction to be reversible, in the insulin resistant attractor, the

state -1 remained stable and up-regulating the state of beta cells, transiently (point perturba-

tion) or sustainably, did not bring the system back to the insulin sensitive state. This suggests a

possible solution to the beta cell paradox, that is, why beta cell dysfunction appears to be irre-

versible in T2DM when the cells have good regeneration capacity. In the model, other signals

coming from the network kept beta cell function down-regulated. Alternatively, we assumed

Fig 5. Link statistics. The bars represent the deviation from the expected number of links per cluster, the

expected being calculated assuming independence. First two columns show the stabilizing links and the next two

columns show the destabilizing links for the two clusters. The red and blue bars represent the insulin sensitive and

the insulin resistant basins of attraction, respectively.

https://doi.org/10.1371/journal.pone.0181536.g005
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beta cell dysfunction to be irreversible, that is, when beta cells achieved a state of -1, it was

retained -1 through all further cycles. Even under this assumption, bi-stability was attained

and the composition of the attractors was substantially the same.

In contrast, there were 11 nodes namely aggression (agr), testosterone (tet), dopamine

(dop), oestrogen (otg), osteocalcin (ocl), melatonin (mlt), ghrelin (ghr), muscle strength (msl),
adiponectin (and), insulin action (ina) and growth hormone (hgh) which when sustainably

up-regulated, ensured insulin sensitivity. All these nodes connect to insulin sensitivity by mul-

tiple pathways with positive regulator pathways far outnumbering negative regulatory path-

ways (Table 2). For example, aggression links directly and indirectly to the first tier players

from Fig 1 through EGF [6,36,37], IGF-1 [38,39], dopamine [40,41], muscle mass [42], bone

strength [43], adiponectin [44,45], testosterone [46,47] and other intermediates. Similar role is

shown to be played by oestrogen in females [47,48]. Osteocalcin, a marker of bone formation

[49], also increases insulin sensitivity in humans [50]. Melatonin is also known to enhance

insulin sensitivity [51], and also aggression [52]. Thus most of the above mentioned nodes that

could ensure insulin sensitive state were closely related to aggression and aggression may hold

the key to an insulin sensitive state as suggested by Belsare et al.[53], Watve [2] and Watve and

Yajnik [54].

We further examined how much time did each of the potential candidate nodes took for a

reversal from insulin resistant to sensitive state. In this race, oestrogen was the fastest actor

which made the transition in 3 cycles followed by ghrelin (4), aggression (5), dopamine (7),

muscle strength (24) and osteocalcin (59). If serotonin was down-regulated for at least 10

cycles, it also pushed the system from insulin resistant to insulin sensitive state. Applying a

combination of interventions could reduce the number of cycles required for transition from

insulin resistant to sensitive state. A minimum of 3 nodes were required to be simultaneously

up-regulated for bringing up the transition in one or two cycles. Eleven three-membered com-

binations containing agr along with two other from dop, tet, ghr, mlt, msl, otg, and hgh; dop
and otg with either tet or hgh could change the attractor from insulin resistant to the insulin

Table 2. Number of pathways from the novel target to insulin action.

Novel Target Total Pathways Positive / Negative ratio

and 49 3.090909091

agr 140 1.955555556

dop 167 2.1

ghr 154 1.375

hgh 107 2.225806452

ina 49 1.705882353

mlt 138 1.976744186

msl 41 3

otg 110 2.678571429

ocl 68 1.56

tet 135 1.62

ser 99 0.446153846

All pathways that link the 12 promising nodes to insulin sensitivity were mapped and listed. The 11 nodes

whose up-regulation increases insulin sensitivity, have a greater proportion of positive regulator pathways.

Serotonin, whose down-regulation increases insulin sensitivity, had a greater proportion of negative

regulator pathways. The 11 target to insulin action.l target to insulin action. The reference for each link and

pathways far outnumbering negative r.

https://doi.org/10.1371/journal.pone.0181536.t002
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sensitive state in a single cycle. Down-regulation of ser in combination with up-regulation of

agr and either dop, tet or ghr could give the same effect. Once the system attained the insulin

sensitive state by any of the above combinations of interventions, it could sustain itself against

any point perturbations even when the interventions were withdrawn.

When these interventions were applied assuming beta cell degeneration to be irreversible,

up-regulation of agr, dop, otg, ocl and ina; and down-regulation of ser could still lead to the

insulin sensitive state. When these interventions were applied when both beta cell and insulin

levels were kept fixed at -1, the results were identical. Thus the question whether beta cell

degeneration is reversible or irreversible did not seem to be central to the reversal of an insulin

resistant state to a sensitive one.

Discussion

Despite the limitation of the model owing to its qualitative nature, the results are realistic in

multiple ways. Running the model under different sets of assumptions, accommodating con-

tradictory empirical results and the sensitivity analysis demonstrates that the model is robust

and the results are not the artefactual outcome of any particular assumption. The model was

able to predict the clinically observed correlates of insulin resistance accurately. It also made

correct correlational predictions between pairs of variables that did not have a direct causal

connection. The classically perceived treatments targeting liver glucose production, insulin

sensitivity, insulin secretion including incretin action and beta cell function failed to bring

about a transition in the steady state in the model although they could temporarily improve

glucose control. This matches with the clinical observations that all these lines of treatments

have largely failed to cure diabetes or even control hyperglycemia in the long run [55]. Many

large scale clinical trials have revealed that normalizing blood glucose is not effective in avoid-

ing diabetic complications [4]. This finding is compatible with the model. Further, the model

demonstrates that it might be impossible, in principle, to prevent diabetic complications by a

sole focus on normalizing glucose. The ineffectiveness of aggressive glucose normalization tri-

als may not be because of failure to appropriately regulate glucose. Even if glucose is regulated

without hypoglycemic and other undesirable events, the complications may not be arrested

since normalization of glucose alone does not reverse the network state.

The model also accounts for foetal programming. If we consider the all zero baseline state

of the system as a foetal condition, certain stimuli faced in embryonic or early life can drive the

system to one of the two states which are difficult to reverse. This may account for develop-

mental origins of adulthood disease (DOHAD) [56] or predictive adaptive response [57]. Since

the model is based entirely on experimental data and it appropriately accounts for many realis-

tic phenomena, the unexpected outcomes of the model need to be considered seriously as new

possibilities. Empirical work in this direction is needed to test whether they work in reality.

Limitations of the model mainly come from 3 of its attributes that some of links might yet

have to be discovered, the experiments from which data are taken are carried out on different

model systems and that the model is discrete. Nevertheless, many predictions of the model

matched with observed data suggesting thereby that the network model works reasonably well

despite the limitations. This suggests that the novel and unexpected predictions of the model

need to be tested empirically.

The model essentially demonstrates that the pathophysiology of type 2 diabetes is orders of

magnitude more complex than the classical picture of insulin resistance and relative insulin

deficiency causing hyperglycemia. Insulin and glucose have been the two molecules central to

classical thinking but apart from the burden of history, there are no other grounds to treat

insulin and glucose to be more important in T2DM than any other nodes of the network. The
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behaviour of the system is decided more by the network structure than by one or a few key

molecules. In a network structure, it is possible to reach all nodes by starting from any random

node. Therefore, although we started assembling the network from insulin and glucose, it does

not mean the network is gluco-insulino-centric.

Because of the anastomoses of the network, the function lost by deleting a link can be com-

pensated by alternative paths. Since the number of links stabilizing the attractors far outnum-

ber the ones destabilizing it, a few missing links are unlikely to alter the behaviour of the

network. This may explain why knockouts such as MIRKO, or insulin suppressing agents

failed to increase fasting glucose in experiments [13,58]. It is possible in a network that one or

a few nodes play a central role, but if this is true, it should have been detected by systematic

deletion of nodes that we performed. The system was generally robust in this analysis and the

only node whose deletion or freezing made any changes in the behaviour of the system was

not related to energy homeostasis but to fertility and behaviour. This might be surprising for

the classical theory of T2DM but is expected by some of the upcoming evolutionary hypotheses

for the origin of T2DM [54,59]. Unless a single node or single link makes a critical difference,

a disorder is unlikely to originate in a single gene defect. Therefore it is no wonder then that

genome wide association studies are able to explain not more than 2% of obesity [60] and10%

insulin resistance [61] at a population level.

The multiply reinforced alternative stable states suggest that there could have been strong

selective forces to stabilize both the states under different contexts. Some of the evolutionary

hypotheses argue that insulin resistance is not an inevitable result of obesity but is a contextu-

ally adaptive state selected to face certain environments or to support certain coping strategies

[2,59]. Bi-stability indicates an adaptive and evolved insulin resistant state rather than a patho-

logical deviation from a homeostatic system [62].

Clinically the first important realization of the study is that a large number of signals can

potentially influence insulin sensitivity and the current emphasis on obesity alone is perhaps

overplayed and unwarranted. The means of transiting from the insulin resistant attractor to

the insulin sensitive one revealed by the model are substantially different from the traditional

line of thinking in clinical practice or in drug discovery. The model shows that none of the cur-

rent lines of treatment are able to make this transit. Instead the model suggests some non-con-

ventional lines of treatment. Of particular interest is the role of exercise. Sustained physical

activity alone did not have effects comparable to aggression in the model. Physical activity has

been classically considered to affect energy balance and reduce adiposity. Physical aggression

on the other hand has many other direct endocrine effects [53] and this effectively assured

insulin sensitivity in the model. This raises the possibility that exercises work more effectively

through the behavioural neuro-endocrine pathways rather than through calorie consumption.

In reality, many types of exercises have some or the other behavioural components and thereby

stimulate the neuro-endocrine pathways [63–67] in addition to burning calories. A testable

prediction of the model is that different exercises can be expected to have different endobolic

effects even if the caloric requirement is matched [53,68].

We can no more view complex disorders by piecemeal and expect to treat the disorder

effectively. The behaviour of a network can be substantially different from the behaviour of

smaller pieces of the network. The model suggests molecular targets such as adiponectin,

growth hormone, melatonin and testosterone for prevention of T2DM; and dopamine, ghre-

lin, oestrogen and osteocalcin for prevention as well as treatment of T2DM. But since all these

molecules are behaviourally regulated, it is likely that behavioural intervention may have a bet-

ter promise. It is quite likely that a paradigm shift is awaiting round the corner in the field and

we need to be open to this possibility.
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Supporting information

S1 Fig. Frequency distribution of distances of pairs of nodes. We clustered the nodes based

on Simple Matching Coefficient (SMC) between pairs of nodes defined as the number of times

the states of the two nodes matched across all possible combinations of perturbations. This led

to a SMC matrix of 71 X 70 nodes to which the basic set of 71 point perturbations and 71 sin-

gular sustained perturbations were added to make the total 5112. All the scores were normal-

ized by this total number 5112. Hence, every possible pair of nodes had a score from zero to

one. To view this scoring as a distance between the two nodes under consideration, we sub-

tracted that number from one. Hence, the pairs of nodes having a score nearer to zero mean

that the nodes in the pair are strongly correlated and hence closer to each other and the pairs

having a score of one denotes the longest possible distance and thereby no correlation between

the nodes in that pair. These scores were used to construct a frequency distribution. Since the

histogram shows two distinct peaks, it indicates clear clustering. The two peaks in the fre-

quency distribution of pair-wise distances correspond to the intra-group distance and the

inter-group distance respectively. We considered the first dip, i.e. 0.4 in the histogram as a

threshold and listed all the pairs which had a distance less than that threshold. Clustering was

made by associations starting with the first pair till the list was exhausted. In this way, 3 differ-

ent clusters were obtained.

(TIF)

S2 Fig. Dendrogram generated by DendroUPGMA. To compare the method of clustering

with a known method of clustering, we used DendroUPGMA (http://genomes.urv.cat/

UPGMA/), open source online software to cluster the nodes in our network and plot a dendro-

gram. The software uses UPGMA (Unweighted Pair Group Method with Arithmetic mean)

for clustering. We used the input data type as similarity matrix and fed in the 71 X 71 matrix

with the original scores out of 5112 for each pair of nodes. Clusters identified by both the clus-

tering protocols were identical.

(TIF)

S1 Table. Model organism used in each reference.

(DOCX)

S2 Table. Nodes and links with references.

(DOCX)

S3 Table. List of deletions of the 10% of the nodes that led to uni-stability and complete

loss of stability.

(DOCX)

S1 Text. Merger and exclusion of links according to criteria defined in the text.

(DOCX)
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